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ABSTRACT
It is of great interest to measure the properties of substructures in dark matter halos at galactic
and cluster scales. Here we suggest a method to constrain substructure properties using the
variance of weak gravitational flexion in a galaxy-galaxy lensing context. We show the effec-
tiveness of flexion variance in measuring substructures in N-body simulations of dark matter
halos, and present the expected galaxy-galaxy lensing signals. We show the insensitivity of
the method to the overall galaxy halo mass, and predict the method’s signal-to-noise for a
space-based all-sky survey, showing that the presence of substructure down to10

9M⊙ halos
can be reliably detected.
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1 INTRODUCTION

The amount of substructure in dark matter halos on galactic and
cluster scales is a question of considerable interest.ΛCDM cos-
mological simulations predict thousands of dark satellites within
the virial radius of the Milky Way, yet to date only∼ 20 have
been observed (e.g. Kauffmann et al. 1993; Klypin et al. 1999;
Diemand et al. 2007). Similar results have been obtained forour
nearest neighbour Andromeda (McConnachie & Irwin 2006), and
in galaxy groups (D’Onghia et al. 2007). Averaging over galaxies
observed in the field, there appears to be a suppression in theex-
pected number below a baryonic mass of∼ 1010 M⊙ (e.g. Read &
Trentham 2005). This dearth of low mass galaxies could be telling
us that galaxy formation becomes increasingly inefficient below the
peak of the luminosity function (e.g. Dekel & Silk 1986; Bullock
et al. 2000; Benson et al. 2002; Kravtsov et al. 2004; Read et al.
2006). Alternatively, it could be telling us something about the na-
ture of dark matter (e.g. Bode et al. 2001; Barkana et al. 2001;
Avila-Reese et al. 2001; Knebe et al. 2008), or about the details of
inflation (Zentner & Bullock 2003).

Gravitational lensing is a powerful tool for probing substruc-
ture within galaxies and clusters. Unlike photometric galaxy sur-
veys, lensing directly probes the dark Universe; in principle, even
if completely dark subhalos exist, these will have some influence on
the observed gravitational lensing signal and may therefore be de-
tected. Several lensing techniques for constraining substructure al-
ready exist: one can examine the strong lensing of quasars bygalax-
ies and clusters (e.g. Mao & Schneider 1998; Metcalf & Madau
2001; Metcalf & Zhao 2002; Keeton et al. 2003; Moustakas &
Metcalf 2003; Kochanek & Dalal 2004; Metcalf et al. 2004; Met-
calf 2005; Aazami & Natarajan 2006; Amara et al. 2006; Miranda

& Macciò 2007; Shin & Evans 2008) including the time delay
phenomenon (Keeton & Moustakas 2009). One can also constrain
the substructure using weak galaxy-galaxy shear (Natarajan et al.
2004). Here we examine the usefulness for measuring substructure
of another weak lensing phenomenon: flexion, building on several
earlier studies (c.f. Goldberg & Natarajan 2002; Goldberg &Bacon
2005; Bacon et al. 2006; Irwin & Shmakova 2006; Schneider & Er
2008).

It has been noted by these authors that flexion responds to
small-scale variations in the gravitational potential. Ina galaxy-
galaxy lensing context, the mean flexion in annuli around a halo
will fall off rapidly, as the mean halo density gradient is small
away from the central region. However, if substructure is present,
the flexionvariance in annuli may not fall off so quickly, as the
substructures will lead to potential fluctuations which will cause a
flexion varying rapidly from place to place. It is this idea that the
current paper will examine.

The topic is of particular interest in the context of forth-
coming and planned large lensing surveys. Ground-based surveys
such as Pan-STARRS1 and the Dark Energy Survey2 will obtain
many thousands of square degrees of lensing-quality data, allowing
very precise galaxy-galaxy lensing constraints. Beyond this, space-
based survey telescopes such as Euclid3 will obtain extraordinary
accuracy for galaxy-galaxy lensing due to a high number density
of galaxies and a survey area of 20000 square degrees. This pa-

1 http://pan-starrs.ifa.hawaii.edu
2 https://www.darkenergysurvey.org
3 http://www.ias.u-psud.fr/imEuclid
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per will make some initial predictions for the level of accuracy of
flexion variance measurements with the latter survey.

The paper is organised as follows. In section 2, we consider
the relevant theory of weak gravitational lensing, concentrating on
the flexion formalism. We proceed to define the galaxy-galaxyflex-
ion statistics that we require, and show how they can be estimated
theoretically. In section 3 we describe N-body simulationsof halos
with and without substructure, and explain the procedure for cre-
ating lensing maps from these simulations. In section 4 we use the
maps to illustrate the sensitivity of flexion to substructure, then cal-
culate the expected galaxy-galaxy flexion variance signal together
with its signal to noise for a Euclid-like survey. We examinethe
effect of varying the dominant halo mass, finding little impact, and
show the much more pronounced effect of varying the amount of
substructure present. This latter finding will illustrate the useful-
ness of the technique as a probe of dark matter temperature. We
present our conclusions in section 5.

2 THEORY

2.1 Flexion

The flexion formalism described here is more fully developedin
Bacon et al. (2006). We begin by noting that lensing in the weak
regime can be described by mapping the surface brightness ofa
galaxy in the source plane,fS(βi), to the surface brightness in the
image plane,fI(θi):

fI(θi) = fS(βi) = fS

„

Aijθj +
1

2
Dijkθjθk

«

. (1)

Here we have introduced several quantities: firstly, the Jacobian
matrix A, which is taken to be constant across the galaxy image
in the weak regime. It can be written in terms of lensing quantities

A =

„

1 − κ 0
0 1 − κ

«

+

„

−γ1 −γ2

−γ2 γ1

«

(2)

whereκ is the convergence; this maps a unit circle in the image
plane to a circle with radius1 − κ in the source plane. In the case
of an isolated lens, the convergence is proportional to the projected
density of matter in the lens (c.f. Bartelmann & Schneider 2001),

κ(~θ) =
Σ(Dl

~θ)

Σcr

(3)

whereΣ is the 2D projection of the densityρ,

Σ(~ξ) =

Z

dr3ρ(~ξ, r3) (4)

where the integration is over the radial distancer3 andΣcr is given
by

Σcr =
c2

4πG

Ds

DlDls

(5)

whereDl,Ds andDls are the angular diameter distances from the
observer to the lens, from the observer to the source, and from the
lens to the source respectively. If we also define the lensingpoten-
tial ψ, which is proportional to the projection of the gravitational
potentialΦ,

ψ(~θ) =
4πG

c2
DlDs

Dls

Z

dr3Φ(Dl
~θ, r3) (6)

then we can also write the convergence as

κ =
1

2
(∂2

1 + ∂2

2)ψ (7)

The other term inA is the shearγi; this maps a circle in the im-
age plane to an ellipse in the source plane. Its components can be
written as

γ1 =
1

2
(∂2

1 − ∂2

2)ψ γ2 = ∂1∂2ψ (8)

The next term in equation (1) is theD-tensor; this contains the
lensing information at the next order of approximation, andcorre-
sponds to the varying of convergence and shear across an object.
As shown in Bacon et al. (2006), theD-tensor can be written in
terms of the flexions,

−2Dij1 =

„

3F1 F2

F2 F1

«

+

„

G1 G2

G2 −G1

«

−2Dij2 =

„

F2 F1

F1 3F2

«

+

„

G2 −G1

−G1 −G2

«

(9)

whereGi are the components of 3-flexion, describing the degree to
which an object resembles a trefoil, andFi are the components of
1-flexion, describing the skewed shape of an object. We will only
consider the 1-flexion for the purposes of this paper, which has the
property of being the gradient of the convergence,

F1 =
1

2

`

∂3

1 + ∂1∂
2

2

´

ψ = ∂1κ

F2 =
1

2

`

∂2

1∂2 + ∂3

2

´

ψ = ∂2κ (10)

It is this property of 1-flexion that is so important for the technique
of this paper; 1-flexion will respond wherever the density isvarying
rapidly from place to place, which is the case with substructure.

2.2 Galaxy-Galaxy Flexion

We can now introduce the flexion variance in annuli as a substruc-
ture probe. It is usual in galaxy-galaxy lensing (e.g. Kleinheinrich
et al. 2006; Mandelbaum et al. 2006) to choose particular galaxy
samples which act as lens and source sets. The sets may have some
members in common, depending on the technique used for lens-
source correlation, but at any rate the selections can be achieved
either via photometric redshifts, spectroscopic redshifts or a com-
bination of the two.

Let us orientate ourselves with the most familiar case of
galaxy-galaxy lensing, which involves shears. The angularsepara-
tion θ of foreground objectf and background objectb is measured,
and the shear ofb is decomposed into components tangential and
diagonal to the line connectingf andb,

γt = −ℜ
“

γe−2iφ
”

γB = −ℑ
“

γe−2iφ
”

(11)

whereφ is the position angle of the line,γ = γ1 + iγ2, andℜ
andℑ denote real and imaginary parts respectively. For a circular
foreground lens,γt will be activated by gravitational lensing, while
γB will not; if it is present, it is due to systematic effects.

Similarly a background flexion can be decomposed, but
whereas shear is decomposed into tangential and diagonal compo-
nents, flexion is decomposed into radial and tangential components
due to the fact that it has different rotational properties to shear:

Fr = −ℜ
“

F e−iφ
”

FB = −ℑ
“

F e−iφ
”

(12)

whereF = F1 + iF2. Here ther component is activated by gravity
for a circular lens, while theB component is unactivated unless
systematics are present.

The behaviour of flexion at an angular distanceθ from a singu-
lar isothermal sphere (SIS) was considered by Bacon et al. (2006).
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They show that while the surface density of the SIS is proportional
to θ−1, the 1-flexion and 3-flexion drop asθ−2. While real galaxies
are not truly SIS, they are close enough to this profile that ifwe take
foreground-background pairs, measureFr, and consider the mean
Fr in annuli, we will see a similarly rapid drop in galaxy-galaxy
flexion with annulus radiusθ.

This will remain true if there are substructures at angular dis-
tanceθ from the centre of foreground galaxies. Although in the
extreme locality there will be a larger flexion than usual, the mean
signal averaged around the galaxy will still drop rapidly with θ.

However, this will not be true for the flexionvariance in the
annulus. This will respond to any density fluctuations within the
annulus. Therefore, in any annuli with non-negligible substructure,
even if the mean flexion is small (as the mean gradient of density
is small), the flexion variance will remain comparatively large. It is
this behaviour that we will use to constrain substructure ongalactic
scales.

At this point one may ask whether flexion variance is the best
tool for our task; wouldn’t flexion correlation functions inannuli
provide more information? The question could be informed byex-
perience in cosmic shear studies, where shear correlation functions
provide more finesse than shear variance in cells.

However, in our present case a correlation function does not
seem to be helpful. Since the correlation function in question would
be in annuli around a foreground galaxy, it constitutes a form of
galaxy-galaxy-galaxy lensing (Schneider & Watts 2005); itis a
three-point statistic. In order to use this to measure substructures,
it is necessary for two background sources to be close to the same
substructure as well as to the foreground galaxy; this rarely hap-
pens, leading to low signal-to-noise. On the other hand, theflex-
ion variance in annuli only involves two points, a foreground-
background pair, with much greater signal-to-noise as we shall see.

3 SIMULATIONS

In this section we describe N-body simulations which we willuse
to demonstrate the utility of flexion variance as a probe of substruc-
ture.

3.1 3-D Density

We use the cosmologicalΛCDM simulation already presented in
Diemand et al. (2005). The simulation was run using PkdGRAV
(Stadel 2001), with cosmological parameters:(Ωm,ΩΛ, σ8, h) =
(0.268, 0.732, 0.7, 0.71), and a box of sizeLbox = 90 Mpc,
with 3003 particles. The initial conditions were generated with
GRAFIC2 (Bertschinger 2001). From the simulation volume, we
extracted four Milky Way sized halos at a mass resolution ofmp =
5.7×105M⊙; their virial masses are[2.1, 1.5, 1.2, 1.3]×1012M⊙.
While we are therefore very limited in our number of lenses (to
three projections of each of four high-resolution galaxies), we will
find that this is sufficient to give the initial indicative results re-
quired by this paper.

As in Read et al. (2008), the subhalos inside each ‘Milky Way’
at redshiftz = 0 were identified using theAHF algorithm (Gill
et al. 2004). We considered all subhalos with> 50 particles and as-
signed particles to the smallest structure they appear in sothat each
particle was counted only once. In some cases we will remove sub-
structure; this is achieved by subtracting all particles not assigned
to the main halo. An example halo, with and without substructure,
is shown in Figure 1.

Figure 1. N-body simulation of one of our Milky Way mass halos,
with substructure (top panel) and without substructure (bottom panel),
with contours showing projected logarithmic density over the range
[0.02, 672] M⊙ pc−2.

3.2 2-D Convergence

The 3D numerical simulations discussed above represent theden-
sity field using discrete particles. We transform these intoconver-
gence maps by projecting the particles along particular spatial di-
rections and placing the particles onto a 2D 1024x1024 grid,which
we carry out using the IDL cloud-in-cell routine available as part of
The IDL Astronomy User’s Library4. We produce three projection
maps for each 3D halo (by projecting along the x, y or z axis).

We investigated a number of techniques for filtering the mass
maps. This is important because the finite number of simulation
particles introduces shot noise into the 2D maps; this can compete

4 http://idlastro.gsfc.nasa.gov
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Figure 2. Standard deviation of 1-flexion in annuli for one galaxy halo,
in units of (arcsec)−1 . Arrows show the positions of subhalos, with arrow
length proportional to subhalo mass.

with the substructure signal we are investigating. Here we show the
results obtained using Multiscale Entropy Filtering (MEF)(Starck
et al. 2006). This provides superior performance to a simpleGuas-
sian filter, as it reduces the shot noise while preserving theden-
sity fluctuations, as we shall demonstrate. For this purposewe use
the routines supplied in the public code MRLens (Multi-Resolution
methods for gravitational LENSing)5, choosing the eight scale for
MEF with first detection at the second scale. The 2D mass maps (Σ)
are then rescaled using the critical density (Σc) to give the conver-
gence (κ). We will use a lens-source configuration ofDs = 1200
Mpc,Dl = 860 Mpc, andDls = 610 Mpc corresponding to our
choice of median redshifts for foreground (z = 0.46) and back-
ground(z = 1.1) sources appropriate for our projected Euclid sur-
vey.

4 ANALYSIS

Armed with this set of simulations, we are in a position to examine
whether substructure can be reliably measured using galaxy-galaxy
flexion variance.

4.1 Flexion Variance Sensitivity to Substructure

Using the convergence maps for each halo, we calculate the related
1-flexion map usingFi = ∂iκ, and smooth the resulting flexion
map with a0.6′′ diameter top hat filter to remove small-scale flex-
ion peaks inaccessible to galaxy shape measurements. We then cal-
culate the mean and standard deviation ofF in annuli with width
0.8′′, centred on the mode of the galaxy’sκ distribution.

As an initial example, Figure 2 shows the standard deviation
σF for the radial 1-flexion in annuli, for one example halo. Also
displayed are arrows showing the radial positions of subhalos found

5 http : //irfu.cea.fr/Phocea/Vie des labos/Ast/astv isu.php?id ast =
878

Figure 3. Mean (dotted lines) and standard deviation (solid lines) ofconver-
genceκ in annuli for the twelve halo orientations combined. Upper lines in
each case show results with substructure, while lower linesshow the results
when substructure is removed.

in the simulation, with arrow size proportional to the mass of the
subhalo. We can see that there is a rather close correspondence be-
tween the flexion variance and the subhalo positions and masses.
This encourages us to examine what the signal will be for an en-
semble of galaxy halos in a galaxy-galaxy lensing context.

4.2 Galaxy-Galaxy Flexion Signal

In this section we will present an estimate of the galaxy-galaxy
flexion signal; but in order to begin with a familiar quantity, we
first examine the convergence for our halos in annuli of width0.8′′,
centred on the mode of the main halos’κ distribution. Figure 3
shows the mean convergenceκ̄ and standard deviationσκ for an
ensemble of background galaxies behind the twelve stacked halos,
in annuli with radiusθ. Note thatσκ is smaller than̄κ for θ <
50′′; sinceκ is proportional to the projected surface density, this
reflects the fact that the substructure fluctations are fairly small in
amplitude in relation to the mean density. Hence the difficulty in
using convergence or shear to measure substructures; the signal-to-
noise onσκ will be smaller than that on̄κ.

The upper and lower lines for̄κ andσκ can be compared to
see the effect of including or omitting substructure; the mean of the
convergence is a little higher on scales>∼ 30′′ if we include sub-
structure, and the standard deviation of the convergence isseveral
times larger. This is to be expected; the presence of substructure
changes the profile a little, and significantly alters the spatial varia-
tion of the matter distribution.

We now consider the 1-flexion galaxy-galaxy signals, again
calculated in annuli with width0.8′′, centred on the mode of the
galaxy’sκ distribution, and smoothed with a0.6′′ diameter top hat.
Figure 4 shows the mean̄F and standard deviationσF for the radial
1-flexion in annuli, for an ensemble of background galaxies behind
the halos. We show results with either MEF filtering or no filtering,
and with or without substructure, as it is important to understand
the impact of our filter on the results. We should emphasize that this
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Figure 4. Mean (dotted lines) and standard deviation (solid lines) of1-
flexion in annuli for the twelve halo orientations combined,in units of
(arcsec)−1 . Upper lines in each case show results with substructure, while
lower lines show results when substructure is removed. Top panel: MEF
results; bottom panel: unfiltered results.

filter is applied to the N-body simulations to increase theirrealism;
it is not a filter applied at the measurement stage.

We immediately see that the filtering of the N-body simulation
is valuable; in the cases where no filtering is applied, the flexion
standard deviation is substantial even in the absence of substruc-
ture. This is due to the particle noise in the simulations that leads to
spurious high frequency convergence gradients. However, with the
MEF filter in the absence of substructure, the flexion standard de-
viation is at least an order of magnitude smaller than the unfiltered
standard deviation.

Importantly, we see that when substructure is included (with
MEF filtering of the simulations),σF dominates over̄F on scales
greater than about10′′, and is two orders of magnitude larger than
the no-substructure signal. The former observation confirms our
claim that flexion variance is of interest, as it has much larger

Figure 5. Ratio of σ2

F
with modified central halo amplitude to the usual

σ2

F
. Solid: no central halo; dashed: total mass standard deviation of 4 ×

1012M⊙; dotted: total mass standard deviation of1013M⊙.

signal-to-noise than standard galaxy-galaxy flexion. The latter ob-
servation shows that it is substructure which is activatingthis sig-
nal; this is important, as the overall ellipticity of the central halo
might have given a flexion variance (c.f. Hawken & Bridle 2009)
but our result demonstrates that this is negligible for our statistic.
To measure halo ellipticity with flexion, one should insteadfollow
the methods of Hawken & Bridle (2009).

The flexion variance also dies off more slowly withθ than
F̄ does. This is presumably due to the different phenomena being
probed:F̄ is probing the mean gradient of the overall galaxy halo
density; whileσF is dominated by the gradients of substructure
halos within the annuli, which remain similar regardless ofwhich
annulus they are found in.

4.3 Insensitivity to Varying Dominant Halo Mass

An issue that we have not yet dealt with is the question of whether
combining galaxies with various masses contributes a dominant un-
wanted signal to our galaxy-galaxy flexion signal. It is common in
galaxy-galaxy lensing to divide up or scale one’s foreground lens
set according to a mass proxy such as luminosity (e.g. Kleinhein-
rich et al. 2006) or stellar mass (e.g. Mandelbaum et al. 2006). Nev-
ertheless, within such a bin in mass, will the flexion variance signal
be dominated by the overall mass variance rather than the substruc-
ture signal?

In order to test this, we measured the mean flexion signal for
each of the main halos. We then subtracted this signal from each
halo’s flexion map, leaving the flexion due to substructure alone.
We then optionally re-added a random proportion of the mean flex-
ion signal, leading to a total mass standard deviation of4×1012M⊙

or 1013M⊙, and remeasured the ensemble flexion variance signal
for our 12 realizations. The effects on our signal are shown in figure
5.

Firstly we notice that the difference between the shear vari-
ance with and without central halos is very small; most of thesig-
nal in our original ensemble is therefore coming from substructure.
This is borne out by the case where we have a halo mass variance



6 Bacon et al

of 4 × 1012M⊙. The ratio of this signal to our original is within a
few per cent of unity beyondθ >∼ 20′′. In the extreme case where

the mass variance is1013M⊙, we obtain about 10% of the flexion
variance from the main halos forθ > 30′′, but this case corresponds
to hardly having any mass binning at all.

We conclude, then, that provided reasonable steps are taken
to deal with the galaxy-galaxy lensing in mass or luminositybins,
flexion variance is totally dominated by the substructure signal.

4.4 Signal-to-Noise for Galaxy-Galaxy Flexion

The question now arises whether flexion variance is measurable
with sufficient accuracy on the relevant scales to constrainsub-
structure. The difficulty is that source galaxies are measured with
a substantial intrinsic flexion (c.f. Goldberg & Bacon 2005); the
distribution has a strong central peak and wide wings, such that the
measured distribution has a 68% rangeσF ≃ 0.1 arcsec−1. Clearly
this intrinsic variance dominates over the substructure variance at
all scales. However, following a statistical approach fromBacon
et al. (2000), one can estimate the flexion variance due to substruc-
ture,σ2

sub, as an excess variance within an annulus, over and above
that due to shape noiseσ2

intrinsic:

σ2

sub ≃ σ2

annulus − σ2

intrinsic (13)

whereσ2

annulus is the measured total variance within an annulus,
while σ2

intrinsic is the variance measured for the whole ensem-
ble of source galaxies. Since this equation is only exact forGaus-
sian distributions, we have checked that it is approximately true for
our simulation flexion distribution and realistic shape noise distri-
bution; we find thatσ2

sub is correctly estimated to within5%. As
described by Bacon et al. (2000), the error on this estimatoris ap-
proximately

σ[σ2

sub] ≃ σ2

intrinsic/
√
N (14)

whereN is the number of objects in the annulus.
We can now use this equation to estimate how strong a signal

we expect for a Euclid-like survey. We useσF int = 0.1, and calcu-
lateN using the standard survey parameters of Amara & Réfrégier
(2007). We examine the case of choosing 9 foreground galaxies
per sq arcmin withzmed = 0.46, 26 background galaxies per sq
arcmin withzmed = 1.1, and a survey area of 20000 sq deg. Fig-
ure 6 shows the expected value of our estimatorσ2

F sub (solid line)
and the noise level on this estimator in each annulus (dashedline).
Note that for a large range inθ, the S/N is considerable:S/N ≃ 1
to 5 for each of 50 annuli between20′′ and60′′. This suggests that
substructure can be studied in great detail using this method.

4.5 Sensitivity to Substructure Content

To pursue this point, we provide some examples of the degree to
which we can distinguish between different substructure scenarios.

First, we examine the impact of removing half of the subhalos
at random in each of our simulations. We carry out the analysis of
sections 4.2 and 4.4 for these modified simulations, and showhow
their flexion variance signal differs from the usual case on Figure
7. Here we have used 50 bins between 0 and 80′′ for clarity.

We note that the flexion variance is itself approximately
halved in this case. Aχ2 measure for the significance of this differ-
ence is the sum of(σ2

F −σ2

F half )2/σ[σ2

sub]
2 for all annuli, and is in

this case≃ 250, confirming that such a substructure configuration
would be strongly distinguished.

Figure 6. Flexion variance estimator (solid line) in units of (arcsec)−2 , and
expected noise level in each annulus (dashed line) for the Euclid survey
described in the text.

Figure 7. Ratio of flexion variances with substructure and without 50%of
the subhalos. Grey shading shows region within1σ uncertainty of flexion
variance with substructure.

However, that scenario is not expected physically. More plau-
sibly, if dark matter has a non-negligible temperature, this will pref-
erentially remove substructures up to a certain mass threshold. To
examine whether this type of phenomenon would be detectableby
flexion variance, we remove all halos with mass< 5 × 108M⊙ or
< 109M⊙ from our simulations. We again carry out the analysis
of sections 4.2 and 4.4 for the modified simulations. The results of
this process are shown on Figure 8.

We see that there is only a small difference between the sig-
nals for all subhalos and for all subhalos> 5 × 108M⊙; they are
only slightly distinguishable within the error expected asshown by
grey shading, withχ2 = 4.3. Care should be taken in drawing con-



Galaxy-Galaxy Flexion Statistics 7

Figure 8. Ratio between (a) flexion variances with all subhalos, and with
all subhalos> 5 × 108M⊙ (dashed line); (b) flexion variances with all
subhalos, and with all subhalos> 109M⊙ (solid line). Grey shading shows
region within1σ uncertainty of flexion variance with all subhalos.

clusions from this, as halos with mass5 × 108M⊙ are still near
our resolution limit; we will explore lower mass substructure in fu-
ture work. On the other hand, the difference between the> 109M⊙

case and the full substructure case is easily detected, withχ2 = 37.
According to the thresholds given by Barkana et al. (2001), this
would approximate detection of a 2keV mass scale for warm dark
matter.

5 CONCLUSIONS

In this paper we have explored the utility of galaxy-galaxy flexion
variance for the purpose of measuring the degree of substructure on
galactic scales.

We have described the relevant statistics, showing how flex-
ion radial and systematic modes are constructed in a galaxy-galaxy
lensing context, and introducing the concept of flexion variance in
annuli. We have explained how this is a more suitable probe than
galaxy-galaxy-galaxy flexion (or flexion correlation functions in
annuli), as the latter has a very rapid drop in signal as a function
of angle.

We have gone on to test the use of these statistics by adopting
a set of N-body simulations of galaxy halos, including substructure,
or removing this substructure by means of halo-finding algorithms.
We have then calculated the weak lensing convergence associated
with these halos, applying the suitable MEF filter to reduce the ef-
fect of particle shot noise.

We have shown that the flexion variance is able to detect sub-
structures on a halo by halo basis. This carries through to the full
galaxy-galaxy flexion variance expected with an ensemble ofha-
los; the signal found is substantially larger than that for the flexion
mean, or indeed the flexion variance in the absence of substruc-
tures. The underlying central halo mass variance is not found to be
a dominant source of noise for this signal.

We have made predictions for the level of the flexion vari-
ance signal-to-noise for a space-based survey such as Euclid, find-

ing that substructure amplitudes will be measured with significant
precision. This allows us to discriminate between substructure sce-
narios with different numbers and masses of halos, and will enable
a constraint on dark matter particle mass.
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