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Abstract: Incoloy 800 is frequently used in high-temperature applications as it has the 

ability to retain good metallurgical stability at elevated temperatures. Due to the 

nature of the applications used for, parts made from Incoloy 800 usually require 

different machining processes such as milling and turning. Therefore, the current 

study aims to investigate the milling performance of Incoloy 800 under different 

cutting parameters (75-150 m/min and 0.075-0.15 mm/rev) and cooling conditions 

namely dry, flood, Minimum Quantity Lubrication (MQL) and Cryogenic 

(Cryo)+MQL. It was observed that all machinability metrics improved in the 

MQL+Cryo C/L environment. It is noticeable that the surface roughness value 

improved by 30% in this environment. In addition, a model based on artificial neural 

networks (ANN) and particle swarm optimization (PSO) was proposed to analyze the 
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results and predict optimum cutting parameters. It appears that Cryo+MQL strategies 

are the best option for all cutting parameters. It was found that the estimations for 

surface roughness, flank wear, and cutting temperature with the proposed ANN 

architecture are achieved with overall relative error of 6.08%, 12.38%, and 8.32%, 

respectively. The proposed model resulted in good performance between the 

experimental test data and the predicted values. The developed model made the most 

efficient predictions for the MQL+Cryo cutting environment. It was observed that the 

estimations of the different input parameters in the MQL+Cryo cutting environment 

present a relative error of 8.36%, 1.46%, and 2.38% for surface roughness, flank wear, 

and cutting temperature, respectively. By utilizing the predictive capability of the 

trained ANN model, the optimization of the input parameters was carried out with 

the PSO technique. Thus, with the developed PSO-ANN model, promising findings 

were obtained in overcoming important handicaps such as time and cost in 

experimental studies. 

Keywords: Incoloy 800; Hybrid cooling; Artificial intelligent; Machining; MQL; LN2 

Nomenclature 

MQL  Minimum Quantity Lubrication 

LN2  Liquid Nitrogen 

ANN  Artificial Neural Network 

PSO  Particle Swarm Optimization 

C/L  Cooling/Lubricating 

Vc  Cutting Speed 

f  Feed Rate 

Ra  Average Surface Roughness 

Tc  Cutting Temperature 

VB  Flank Wear 

 

1. Introduction 

Incoloy 800, also known as Inconel alloy 800, is a heat resistant alloy used in 

engineering applications at a wide range of temperatures ranging from -200 to +815 °C 
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[1]. It is mainly used in heat treatment and high-temperature industrial applications 

such as ovens, heat exchangers and energy power plants. Since these nickel-based 

superalloys have low heat transfer coefficients and high satiety conditions, some 

difficulties arise in their process [2, 3]. Incoloy 800 is a complex material, and a 

developing processing index requires significant research. The correct determination 

of cutting tools, cutting parameters, cooling/lubrication (C/L) condition, and the right 

decision of processing strategies play significant roles in the machinability of 

superalloys [4]. For example, coated cemented carbide cutting tools are preferred due 

to the high hardness of superalloys, especially that those alloys are usually machined 

at higher cutting speeds. This phenomenon also results in elevated cutting 

temperatures at the interface between the cutting tool and the workpiece [5]. 

Nevertheless, the tools used in machining super alloys are susceptible to thermal 

cracks and rapid tool wear which adversely affect the part surface finish. This has 

additionally prompted scholars to explore the impact of C/L technologies on both the 

resultant surface finish and tool wear [6]. Although dry cutting is considered 

environmentally friendly, it is well-known that it is not practical for machining 

superalloys. In addition, some studies have confirmed this by emphasizing that the 

machinability of super alloys is reduced under dry conditions [7-10]. The utilization of 

cutting fluids stands out as one of the prevalent approaches to enhance machinability 

indices [11, 12]. Cutting fluids play a crucial role in chip evacuation and mitigating 

heat generation within the cutting zone by diminishing friction between the workpiece 

and the cutting tool [13-15]. However, the use of cutting fluids, especially petroleum-

based conventional cutting fluids, with the traditional method have health and 

environmental implications which adds extra costs to the manufacturing process [16]. 

An alternative is to use smaller amounts of coolants via a technology called minimum 

quantity lubrication (MQL). With this method, environmentally friendly vegetable-

based oils can be used [17]. MQL uses air mixed with a minimal volume of oil that 

forms a spray focused on the cutting zone. Hence, the oil establishes a thin film within 

the cutting zone, thereby diminishing friction between the workpiece and the cutting 
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tool [18, 19]. Previous studies reported that MQL method directly improves the 

machinability metrics [20-24]. Despite all this, it was emphasized that the MQL might 

not be efficient when used in extreme machining environments (high speed 

machining, machining of difficult to cut alloys) [5]. An additional option involves the 

adoption of sustainable and environmentally friendly cryogenic cooling, a subject that 

has garnered increased attention from researchers in recent times. Chetan et al. [25] 

reported that cryogenic cooling reduces tool wear by 0.2 mm. Deshpande et al. [26] 

stated that cutting tool life and workpiece surface quality improved when using 

cryogenic cooling conditions. Similarly, it was reported that cryogenic cooling reduces 

tool wear and cutting temperatures, and has a good effect on chip morphology [27-29]. 

Chen et al. [30] reported that providing the hybrid cryo-MQL condition achieved twice 

the tool life by minimizing the friction coefficient compared to dry machining. In this 

technique, it was reported that the cryogenic coolant provides effective cooling, while 

using MQL improved tribological conditions [31, 32]. Nowadays, the optimization of 

machining parameters and the machined part quality are of great importance that aims 

to save costs and increase productivity [33]. Accurate determination of cutting 

parameters shortens the processing time and reduces material loss and energy 

consumption. In machining, AI (artificial intelligence) often emerges as a technology 

that can be used to determine optimal cutting parameters. Artificial intelligence 

algorithms scrutinize the characteristics of materials, tools, and machinery to ascertain 

optimal cutting parameters for the machining process, thereby contributing to the 

enhancement of the final part quality. Artificial neural networks (ANN) is a concept 

produced by mathematical modeling of biological neural networks [34]. ANN 

mathematically mimics the behavior and learning skills of brain nerve cells [35]. It is 

actively used in the solution and optimization of complex problems with a large 

number of trainable parameters in its structure [36]. It uses a transfer function that 

produces outputs corresponding to the input parameters, depending on a weighting 

factor adapted during training [37]. Its exceptional ability to learn complex and 

nonlinear connections has made it popular for estimation and optimization models of 
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input-output parameters [36, 38-40]. The connections between input cutting 

parameters and outputs, such as surface roughness, flank wear, and cutting 

temperature, can be mathematically modeled using the ANN approach. Thus, efficient 

and robust simulations can be performed before a real-time application.  

In material processing, optimum machining performance in cutting tool life, time, and 

cost can be achieved by modeling the relationship between input parameters and 

outputs [41]. However, selecting an appropriate heuristic optimization model is 

required to apply the optimum input parameters to the ANN input. Thus, the ANN-

based optimal cost function can be obtained. Numerous optimization techniques 

inspired by nature were proposed recently [42].  In this context, genetic algorithm (GA) 

[43], particle swarm optimization (PSO) [44], ant colony optimization (ACO) [45] and 

artificial bee colony (ABC) [46] are among the most frequently used optimization 

models. Compared to other optimization techniques, the PSO technique stands out in 

terms of containing few parameters to adjust, the memory ability of herd members, 

and preserving herd diversity [47]. Therefore, it was frequently preferred in the 

literature for parameter optimization in material machinability [48-52]. With this 

motivation, this study proposes a PSO-based ANN (PSO-ANN) approach to 

determine the optimum machining parameters and most suitable cooling technology.   

The number of studies on the machinability of Incoloy 800 in the literature is limited. 

At the same time, the machinability and power consumption properties of superalloys, 

which have an important place in the industry, were investigated using different 

sustainable cooling techniques. In particular, the lack of optimal cutting parameters 

will lead to significant energy, time, and cost losses. Therefore, the current study aims 

to investigate the machinability of Incoloy 800 by combining AI algorithms and cooling 

technologies to improve the machining process.  

2. Materials and methods 

2.1. Workpiece and experimental procedure 
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The milling tests were conducted on a Ø50 mm and 15 mm Incoloy 800 material 

consisting of nickel-based iron. It is known that this material has high corrosion 

resistance, high-temperature resistance, and high creep rupture resistance [53, 54]. 

Chemical composition and mechanical properties of Incoloy 800 are presented in 

Tables 1 and 2, respectively.  

Table 1. Chemical composition of Incoloy 800 

Elements Fe Ni Cr Mn Si Cu Al Ti C S 

Rate        
39.5% 

min  

30% 

min 

19% 

min 

1.5% 

max 

1% 

max 

0.75% 

max 

0.15% 

min 

0.15% 

min 

0.1% 

max 

0.1% 

max 

 

Table 2.  Mechanical properties of Incoloy 800 

Property Metric 

Density 7.94 g/cm3 

Thermal conductivity 11.5 W/m.°C 

Electrical resistivity 0.989 µΩ.m 

Tensile strength 600 MPa 

Yield strength 275 MPa 

Hardness 184 HB 

The experimental procedures were conducted utilizing a Dahlih MCV 860 three-axis 

(x-y-z) CNC milling machine, featuring a maximum rotational speed of 10,000 rpm 

and a power rating of 7.5 kW. In the experiments, the single-edged face milling cutter 

with a diameter of 12 mm and Al-TiN coated insert (HM90 APKT1003 PDR-HM IC908, 

Iscar) were used. Two cutting speeds (75-150 m/min) and two feed rates (0.075-0.15 

mm/rev) were used. Preliminary experiments were effective in the selection of the 

aforementioned cutting parameters. A depth of cut  of 1 mm and a cutting width of 12 

mm were chosen during the milling tests. The milling experiments were conducted 

employing the Zig tool path and employing a down-milling approach. In addition, 

four different C/L conditions were used throughout the experiments. Table 3 shows 

the input factors and their levels which were used in the milling tests. The full 

experimental design was determined for the milling tests, and a total of 16 experiments 

were carried out.  
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Table 3. Levels and factors of experimental parameters 

Parameters Unit Level 1 Level 2 Level 3 Level 4 

C/L conditions - Dry Flood MQL Cryo+MQL 

Cutting speed m/min 75 150 - - 

Feed rate mm/rev 0.075 0.15 - - 

Depth of cut mm 1 - - - 

Width of cut mm 12    

 

 

2.2. Cooling methods setup 

Machinability tests were carried out under four different C/L conditions. Mineral-

based metalworking fluid is preferred under flooding  conditions. The working fluid 

is formed by adding 8% mineral oil to pure water. For the MQL C/L environment, an 

MQL system from Kar-Tes (Turkiye) and a Werte branded oil with KT-2000 

hydrodynamic lubrication was used. In the MQL system, a nozzle having a diameter 

of 3 mm was employed, with the distance from the nozzle to the workpiece set at 100 

mm. The MQL system pressure was configured at 6 bar, and the lubrication flow was 

established at 50 mL/h. As for the cryogenic cooling environment in the MQL+Cryo 

hybrid C/L condition, liquid nitrogen (LN2) sourced from a self-pressurized tank at -

196 °C was utilized. For LN2, the system pressure and flow rate were set to 6 bar and 

approximately 30 L/h, respectively. The liquid nitrogen hose incorporated a nozzle 

with a fixed diameter of 5 mm, positioned at a distance of 100 mm from the workpiece. 

The final C/L condition was made by using LN2 and MQL cooling techniques 

simultaneously to form a hybrid cooling method and assess their impact when used 

together during the milling process. The experiment scheme is seen in Figure 1. 
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Figure 1. Experiment scheme showing (a) material and equipment used in the 

milling tests (b) an illustration of the milling test setup 

2.3. Post-machining analysis 

To determine the machinability characteristics of the Incoloy 800 workpiece, a series 

of post-machining tests were conducted to evaluate the quality of the machined parts. 

The average surface roughness (Ra) of the machined components was assessed using 

a TIME 3200 surface roughness measurement device. Surface roughness 

measurements were conducted at five distinct locations on the machined surfaces for 

each specimen. The largest and smallest values were subtracted, and the mean of the 

remaining values was computed. The temperature within the cutting zone was 

monitored utilizing a Testo 871 infrared thermal camera with a resolution of 240x180 

pixels. The reported cutting temperature measurements were obtained approximately 

500 mm away from the contact region between the cutting tool and the workpiece. The 

maximum flank wear of the cutting tools was measured using Insize ISM-PM200SB 

digital measuring microscope. In our current study, temperatures were measured in 

the machining zone with a thermal camera. The measurement was taken just before 

the processing was completed. Since coolants are generally transferred to the cutting 

area in a pulverized manner, the cutting fluids around do not affect the measurement. 
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2.4. Artificial Neural Network 

ANN is a mathematical imitation inspired by the behavior and learning abilities of the 

biological nervous system. By a trained ANN model, the patterns not previously 

presented to the network can be classified, and an estimation of the patterns can be 

made [35].  An ANN structure generally consists of an input layer with many neurons, 

one or more hidden layers, and an output layer [40]. Throughout the network, each 

layer processes the information from the previous layer and transmits it to the next 

layer. Input data is given to the hidden layer with trainable weights [34]. The weight 

and bias parameters connecting the input layer to the subsequent hidden layer are 

initially assigned random values. Subsequently, the activation of each hidden neuron 

is computed based on the outputs of the input units and the corresponding weights 

linking the input and hidden units [55]. While the neurons in the input layer (𝑥𝑖)  

transmit the input information to the neurons in the hidden layer (𝑗), the input 

information of the neurons in the hidden layer (𝑤𝑖𝑗)  is multiplied by their weights and 

collected with bias (𝑏𝑗) [35].  Thus, the output of an ANN model (𝑦𝑗) can be 

represented as follows. 

𝑦𝑗 = 𝑓(∑ (𝑤𝑖𝑗
𝑙 𝑥𝑖

𝑙−1 + 𝑏𝑗)𝑑𝑙−1

𝑖=0          (1) 

Here, f represents the activation function, d represents the network size, and l 

represents the number of layers. This study's input layer; consists of three neurons 

representing cutting speed, feed rate, and coolant type. Furthermore, three distinct 

output layers were taken into account, specifically addressing surface roughness, flank 

wear, and cutting temperature. It is important to note that there exists no standardized 

guideline for determining the number of neurons in the hidden layer [40]. It is usually 

determined by trial and error, depending on the complexity of the dataset [36]. 

According to the complexity of the data set used in this study, using a hidden layer 

was appropriate. The number of neurons in the hidden layer was evaluated gradually, 
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starting from 1 to 100. Optimum ANN architecture was determined by considering 

error and analysis time. Figure 2 shows the proposed ANN structure in the study.  

 

Figure 2. The proposed ANN structure for prediction 

The average terrestrial error targeted during the training phase was set to 0.001, and 

the number of iterations to 1000. The learning rate was determined as 0.7. The 

activation functions employed were the hyperbolic tangent sigmoid (tansig) and the 

logarithmic sigmoid (logsig) functions, respectively. Levenberg-Marquardt (trainlm), 

scaled conjugate gradient (trainscg), and gradient with momentum (traingdm) 

training algorithms were evaluated to ensure the optimum performance of the 

backpropagation algorithm. Trainscq showed the best training performance.  

2.5. Particle swarm optimization 

Particle Swarm Optimization (PSO) is characterized as a stochastic optimization 

technique based on population dynamics [44]. The cooperative behavior of 

populations, such as flocks of birds and fish, inspires the proposed optimization 

algorithm [42, 52]. Because the PSO technique is simple, offers superior convergence, 
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and high accuracy, it is suitable for multivariate and complex problems. [52, 56].  The 

positions of each particle (swarm member) within the PSO record possible solutions 

to the optimization problem. Following each iteration, the position of each particle 

undergoes an update based on its individual best position (pbest) and the collective 

best position within the swarm (gbest) [42]. Thus, after the PSO is started with a group 

of random particles, it is tried to determine the optimum depending on the positions 

and velocities of all particles [47]. After finding the pbest and gbest regarding the 

positions of the particles, each particle's velocity and position are updated by applying 

the following equations.  

𝑣𝑖𝑗(𝑡 + 1) = 𝑤. 𝑣𝑖𝑗(𝑡) + 𝑐1𝑟1 (𝑝𝑏𝑒𝑠𝑡𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) + 𝑐2𝑟2 (𝑔𝑏𝑒𝑠𝑡𝑖𝑗(𝑡) − 𝑥𝑖𝑗(𝑡)) (2) 

𝑥𝑖𝑗(𝑡 + 1) = 𝑥𝑖𝑗(𝑡) + 𝑣𝑖𝑗(𝑡 + 1)  (3) 

Here 𝑗 = 1, 2, 3, … 𝑛, 𝑣𝑖𝑗 𝑗. in iteration 𝑖. represents the particle's speed. 𝑥𝑖𝑗 is 𝑗. in 

iteration 𝑖. represents the current of the particle. 𝑟1and 𝑟2 are random numbers, and 𝑐1 

and 𝑐2 are learning coefficients. For a better understanding of the step-by-step 

operation of the PSO algorithm, the block diagram of the relevant process flux in the 

PSO algorithm is shown in Figure 3. 
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Figure 3. The flow chart of the proposed PSO algorithm 

3. Result and discussion 

3.1. Surface roughness analysis 

Figure 4 illustrates the surface roughness obtained by varying cutting speed and feed 

rate under different cooling conditions. The findings indicate that the concurrent 

application of liquid nitrogen (LN2) and Minimum Quantity Lubrication (MQL) can 

result in a substantial reduction of surface roughness, reaching up to 400%. This 

improvement can be attributed to the synergistic effects of the two cooling techniques, 

where MQL enhances surface lubrication between the cutting tool and the workpiece, 
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while LN2 mitigates cutting temperatures within the cutting zone. Previous studies 

have reported an association between elevated temperatures during the machining of 

nickel-based superalloys and increased surface roughness [57]. The outcomes further 

indicated that surface roughness is relatively insensitive to variations in both cutting 

speed and feed rate. Nevertheless, a discernible decrease in average surface roughness 

was observed with an increase in cutting speed, a phenomenon attributed to the 

concurrent rise in temperature. As the cutting temperature increases, the machining 

area softens and can reduce BUE formation on the cutting tool. Thus, a higher quality 

surface can be obtained [58]. The existing body of literature provides corroborative 

evidence for this circumstance [59, 60]. Simultaneously, it is evident that augmenting 

the feed rate resulted in an escalation of surface roughness, whereas the impact of 

increasing cutting speed appeared to be comparatively less pronounced.   

 

Figure 4. Effects of different C/L condition  on surface roughness; a) 75 m/min, b) 150 

m/min 

Figure 5 presents the 2D and 3D surface topographies of machined specimens 

subjected to various cutting environments. Notably, the dry-cutting environment 

exhibited the most prominent peaks and valleys. The resulting average Ra values were 

1.929 µm, 1.708 µm, 1.603 µm, and 0.619 µm for dry, flood, Minimum Quantity 

Lubrication (MQL), and MQL combined with cryogenic (MQL+Cryo) cutting 
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conditions, respectively. Using the MQL+Cryo cooling strategy, cooling and 

lubrication are performed simultaneously, reducing the surface roughness 

significantly. The observed trend indicates a reduction in both peaks and valleys as the 

transition is made from the dry cutting environment to the MQL+Cryo cutting 

environment. During lubrication with MQL, a hydrodynamic film is formed. This 

mitigates the frictional forces between the tool and the workpiece. Moreover, the 

combined application of LN2 and MQL contributes to a reduction in cutting tool wear 

by moderating the temperature within the cutting zone. As a result, the longevity of 

the cutting tool's effective performance is extended, thereby enhancing surface quality 

[58]. 
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Figure 5. 3D and 2D surface topographies of samples milled in different cutting 

environments 
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3.2. Flank wear analysis 

Figure 6 illustrates the measurement of flank wear during the machining process 

across various cutting environments. Generally, it is evident that the utilization of 

coolants contributes to the reduction of flank wear. The minimum flank wear, 

measuring at 0.415 mm, was observed in the MQL+Cryo environment. It was 

determined that flank wear exhibited an increase with cutting speed, ranging from 75 

m/min to 150 m/min. Conversely, an increase in feed rate resulted in a reduction in 

flank wear. Elevated cutting speeds contribute to heightened temperatures at the 

interface between the cutting tool and the workpiece, leading to an accelerated rate of 

tool wear [61]. It was observed that the cooling effect for flank wear decreases at high 

cutting speeds. The reduction of the cooling factor effect at high speeds in milling 

operations is generally dependent on thermal and kinematic factors. The thermal 

impact arises from the heat generated by the friction between the cutting tool and the 

workpiece, and its rapid dissipation becomes challenging, particularly at elevated 

cutting speeds. The kinematic effect is due to the rapid movement of the cutting edge, 

which can shorten the time for the coolant to intervene. Other factors that can affect 

the effectiveness of the coolant can include cooling unevenness and mist formation. 

Thus, it was observed that there is not much difference in flank wear values. 

 

Figure 6. Effects of different C/L condition  on flank wear; a) 75 m/min, b) 150 m/min 
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Figure 7 depicts SEM images of inserts employed under diverse cutting environments. 

Within these SEM images, regions indicative of flank wear and notch wear are 

demarcated along the edges of the cutting tool. In the flood environment, the edge and 

nose of the insert are subjected to thermo-mechanical loading. This results in edge 

chipping and nose wear [62]. EDS images are given in Figure 8, and mapping analysis 

images in Figure 9. The most notable phenomena from the SEM images are that the 

size of the worn area in the tool is smaller when using Flood, MQL and MQL+LN2. It 

can be seen that the wear zone is smaller, especially in MQL+LN2 conditions. This 

shows that these methods, which provide more effective cooling, reduce tool wear by 

lowering the temperature generated during cutting. 

Chipping can be seen to occur under dry, MQL and MQL+LN2 and to a much lesser 

extent under flood conditions. This could be due to the when the cutting tool is 

subjected to excessive wear, particle detachment (chipping) on the surface or edges of 

the material of the cutting tool often occurs as a result of the wear process. There may 

be various mechanisms behind this phenomenon: the most important of which is 

mechanical fatigue. The edges of the cutting tool can be subjected to fatigue stress 

during repetitive cutting movements. This stress can cause microcracks to form in the 

material of the cutting edge and eventually lead to chip breakage. 
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Figure 7. SEM images of inserts used in different cutting environments 

 

Figure 8. EDS analysis of insert used in a flood machining environment 
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Figure 9. Mapping analysis of the insert used in the MQL environment 

3.3. Cutting temperature analysis 

Figure 10 illustrates the maximum cutting temperature recorded at the cutting zone 

across distinct cutting environments. The peak cutting temperature, reaching 317 °C, 

was observed in the dry cutting condition. Similar results also confirms that machining 

under dry condition usually yields highest temperatures compared to those generated 

when using coolants [63, 64]. The minimum cutting temperature, recorded at 45 °C, 

was achieved within the MQL+Cryo environment, employing a cutting speed of 75 

m/min and a feed rate of 0.075 mm/rev. The combined effect of lubrication and cooling 

provide maximum efficiency in reducing the cutting temperatures at the cutting zone 

and carrying away some of the heat. It be also seen that applying MQL alone doesn’t 

provide sufficient reduction of temperature at the cutting zone. This is mainly due to 
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the fact that MQL is intended to be used as a lubricant rather than a coolant to remove 

heat. Most of the lubricant from MQL evaporates once the machining process is 

complete leaving no signs of lubrication behind. The flood coolant and MQL+LN2 are 

both more efficient in taking away large amounts of the heat generated at the cutting 

zone. In particular, it was determined that MQL+LN2 provides effective 

cooling/lubrication at high and low cutting parameters. In a study, it was emphasized 

that MQL+LN2 creates an effective cooling/lubrication environment [27]. 

 

Figure 10. Effects of different C/L condition on cutting temperature; a) 75 m/min, b) 

150 m/min 

3.4. Chip morphology 

Figure 11 depicts the impacts of various cooling and lubrication techniques on the 

process of chip formation. It is observed that, within a dry environment, the size of the 

chip diminishes progressively as the system transitions towards the MQL+Cryo 

environment. This is due to improved chip breakability caused by the increased 

plasticity of the uncut chip. Serrations are discernible along the edges of chips 

produced under dry, flood, and MQL conditions. In contrast, chips obtained within 

the MQL+Cryo environment exhibit reduced instances of serrations.  
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Figure 11. Chip images obtained in different cutting environments 

 The main reason why serrated chips are undesirable is that it makes the machining 

process difficult to control, reduces the machined surface quality and accelerates the 

wear of the cutting tool. Therefore, it is important to use appropriate cutter geometry, 

cutting parameters and cooling methods to ensure smooth and uninterrupted chip 

formation during the milling process. It can be said that the appropriate C/L condition 

for producing acceptable chips for this study is MQL+LN2. This is supported by a study 

in the literature [58]. 
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3.5. Artificial intelligence analysis 

In this study, the proposed PSO-ANN model was developed in Matlab to estimate the 

outputs corresponding to the milling parameters and to determine the optimum 

parameters. The determination of the appropriate number of neurons in the hidden 

layer for the ANN model, constituting the fundamental framework of the proposed 

model, was achieved through iterative experimentation. Regarding the number of 

neurons in the hidden layer, different ANN models were tested separately each time, 

and the final structure with the best performance was determined.  

 

Figure 12. RE performance distribution in prediction with the number of neurons 

As seen in Figure 12, the estimation performance increased with the number of 

neurons in the hidden layer. The lowest RE value was obtained as 0.0893 for 85 

neurons. Therefore, an architecture of a 3×85×16 structure was used in this study. The 

estimation results obtained with the proposed architecture are shown in Table 4. For 

the training of the network, 16 milling experiments with three different cutting 

parameters were used. In order to evaluate the performance of the proposed ANN-

based prediction model, 10 milling experiments consisting of different cutting 

parameters that were not previously shown to the network were used as test data. 

 

 



 

23 
 

Table 4. Evaluation of prediction performance in terms of relative error (re) for 

experimental test data  

Inputs Outputs  

   Surf. Roughness 

(µm) 

Flank wear 

(mm) 

Cutt Temp 

(°C) 
% 

Cutting 

Speed 

Feed 

Rate 
Environment Exp. Predict Exp. Predict Exp. Predict 

Overall 

(re) 

75 0.1 Dry 2.198 2.204 0.625 0.462 235 213.25 11.81 

100 0.1 Dry 2.125 2.183 0.702 0.492 248 243.77 11.40 

150 0.1 Dry 2.103 1.944 0.721 0.490 286 187.03 24.72 

100 0.1 Flood 2.026 2.007 0.614 0.545 89 98.455 7.583 

125 0.1 Flood 1.984 1.725 0.567 0.470 93 102.32 13.37 

100 0.1 MQL 1.758 1.700 0.45 0.446 171 170.84 1.37 

125 0.1 MQL 1.788 1.644 0.472 0.484 175 192.08 6.82 

75 0.1 MQL+Cryo 0.959 0.918 0.417 0.415 45 45.08 1.59 

100 0.1 MQL+Cryo 0.853 0.885 0.432 0.421 48 45.62 3.71 

150 0.1 MQL+Cryo 0.762 0.631 0.473 0.465 52 50.95 6.89 

 

Table 4 shows that the proposed ANN model can be adapted to the problem of interest 

with high accuracy. It was reported that the proposed ANN model offers the best 

performance in surface roughness estimation. The mean relative error for the surface 

roughness was obtained as 6.08%. The relative errors of the estimates for flank wear 

and cutting temperature were 12.38% and 8.32%, respectively. Figure 13 shows the 

experimental findings of surface roughness in four different environments and the 

estimation results made by the proposed model. It was determined that the ANN 

model provides the highest performance for the Dry environment in terms of surface 

roughness estimation in milling operations applied in different environmental 

conditions. It was reported that the estimation results for this environment present a 

mean relative error of 3.49%. For Flood, MQL and MQL+Cryo environments, the 

relative error performances were obtained as 6.99%, 5.64%, and 8.36%, respectively. It 

was observed that the proposed ANN structure for the MQL+Cryo environment can 

be adapted to the problem with the lowest efficiency.  
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Figure 13. Comparison of experimental result and ANN prediction performance for 

surface roughness. Blue color represents experimental results; red represents the 

prediction 

Figure 14 shows the experimental findings of flank wear in four different 

environments and the estimation results made by the proposed model. It was observed 

that the proposed model for flank wear could be adapted to provide results close to 

the experimental test findings in different ambient conditions, cutting speeds, and feed 

rates. It was observed that the model proposed in Figure 15 provides the most efficient 

predictive performance of flank wear for the MQL+Cryo environment. It was reported 

that the ANN model for the MQL+Cryo environment has a relative error of 1.46%. It 

was reported that the proposed ANN model for flank wear estimation presents an 

average relative error of 1.74% in the MQL environment. It was observed that the 

developed ANN model works in the Dry environment with the lowest efficiency and 

offers a relative error of 29.27% for the said environment. It was emphasized by the 

findings that the experimental real findings and the computer-based synthetic outputs 
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diverge from each other in the DRY environment. It can be said that the proposed 

model makes more accurate predictions for the flank wear parameter, especially for 

the MQL and MQL+CRYO environments, and it is more reliable for these 

environments.   

 

Figure 14. Comparison of experimental result and ANN prediction performance for 

flank wear. Blue color represents experimental results; red represents the prediction. 

Figure 15 shows the experimental findings regarding the cutting temperature in four 

different environments and the estimation results made by the proposed model. 
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Figure 15. Comparison of experimental results and ANN prediction performance for 

cutting temperature. Blue color represents experimental results; red represents the 

prediction. 

In the estimations made by the proposed ANN model for the cut-off temperature, it 

was reported that the effect of ambient conditions on performance is higher than other 

parameters. It was observed that the estimations are performed with the highest 

efficiency for the MQL+Cryo environment. The mean relative error for the MQL+Cryo 

environment was 2.38%. It was observed that the proposed model for the cutting 

temperature performs at a low level of efficiency in the Dry environment. The 

proposed ANN model showed the lowest performance for the Dry environment, 

presenting an average relative error of 15.19%. The high variation of the experimental 

findings according to the input parameters in the Dry environment can be shown as 

the main reason for the low performance. High variation can be considered one of the 

biggest obstacles to a healthy adaptation.  
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3.6. PSO-based optimization 

This study applied the PSO technique to optimize the input parameters with the ANN 

model adapted to the problem. In this context, it is aimed to determine the most 

efficient input parameters in terms of flank wear, surface roughness, and cutting 

temperature factors before real-time application. 

In the PSO optimizer run, the selected particles are limited to 0 to 200 for the cutting 

speed and between 0.00 and 0.50 for the feed rate. Thus, the particles were enabled to 

make observations in the relevant range. In addition, particles are limited to four 

different conditions for environmental conditions. Initially, 20 particles were used for 

each input parameter. It is aimed to predict the optimum outputs by presenting each 

particle to the pre-trained ANN input. At the end of 284 iterations, it was reported that 

20 selected particles for each input reached the optimum value.     

 

Figure 16. Sample PSO particle positions for cutting speed optimization, including 

1st, 12th, 20th, 50th, and final iterations 

With the proposed model, optimum cutting speed and feed rate values were 

determined as 97.2 and 0.0829, respectively. The PSO model also determined the 

MQL+Cryo environment as the optimum environmental condition. Figures 16 and 17 

illustrate the trajectory of particles within the solution space as they converge towards 

the optimal solution for the input parameters of cutting speed and feed rate, 
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respectively. First, their random positions within certain limits are shown, followed by 

their positions in the 12th, 20th, 50th, and 284th iterations. 

 

Figure 17. Sample PSO particle positions for feed rate optimization, including 1st, 

12th, 20th, 50th, and final iterations 

 

4. Conclusions 

In this study, the effect of milling of Inconel 800 material in different cutting 

parameters and different C/L environments on machinability metrics was 

investigated. In addition,  modeling and optimizing the relationship between outputs 

such as surface roughness, flank wear, and cutting temperature corresponding to the 

input parameters in milling nickel-based superalloys was carried out. In this context, 

a conventional ANN architecture was proposed during the modeling phase. The main 

findings can be summarized as follows; 

• When milling Incoloy 800 material at high speeds, the surface roughness quality 

increases by approximately 30%. This effect was achieved with the sustainable 

MQL+Cryo C/L environment. 

• For optimum flank wear values, it was seen that it would be more appropriate 

to choose C/L media according to cutting speed and feed rates. For example, for 

low shear parameters (Vc:75 m/min and fn: 0.075 mm/rev) MQL+Cryo C/L 
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environment plays an active role, while for high shear parameters (Vc:150 

m/min and fn: 0.15 mm/rev) flood C/L environment can play an active role. 

• Thanks to the excellent lubrication/cooling capability of MQL +Cryo condition, 

it was determined by SEM analysis that the mechanical abrasions that occur in 

the cutting tool are minimized. 

• It shows that the proposed ANN model can be adapted to the problem of 

interest with high accuracy. Relative errors of 6.08%, 12.38%, and 8.32% were 

obtained for surface roughness, flank wear, and cutting temperature, 

respectively. 

• It was determined that the proposed ANN model effectively estimates 

machinability metrics in the MQL+Cryo C/L environment. Relative errors of 

8.36%, 1.46%, and 2.38% were obtained for surface roughness, flank wear, and 

cutting temperature, respectively. 

• In the study, PSO optimization technique was applied to obtain optimum 

machinability metrics for the milling of Incoloy 800 material. The proposed 

model determined the optimum cutting speed and feed rate as 97.2 and 0.0829, 

respectively. The PSO model also decided the MQL+Cryo environment as the 

optimum environmental condition. 
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