
Analysis and Extension of the Inc* on the Satisfiability
Testing Problem

Mohamed Bader-El-Den and Riccardo Poli

Abstract— Inc* is a general algorithm that can be used in
conjunction with any local search heuristic and that has the
potential to substantially improve the overall performance of
the heuristic. The general idea of the algorithm is the following.
Rather than attempting to directly solve a difficult problem,
the algorithm dynamically chooses a smaller instance of the
problem, and then increases the size of the instance only after
the previous simplified instances have been solved, until the full
size of the problem is reached. Genetic programming is used to
discover new strategies for Inc*. Preliminary experiments on
the satisfiability problem (SAT) problem have shown that Inc*
is a competitive approach.

In this paper we enhance Inc* and we experimentally test
it on larger set of benchmarks, including big instances of
SAT. Furthermore, we provide an analysis of the algorithm’s
behaviour.

I. INTRODUCTION

Inc*, which was first introduced in [1], is a general
algorithm that can be used in conjunction with any local
search heuristic to improve its performance. The general idea
of the algorithm is the following. Rather than attempting
to directly solve a difficult problem, let us first derive a
sequence of progressively simpler and simpler instances of
the problem. Then, let us give the solver these instances one
by one starting from the simplest, and progressing in the
sequence only after all previous simplified instances have
been solved. Note that the search is not restarted when a
new instance is presented to the solver. Thus, the solver
is effectively and progressively biased towards areas of the
search space where there is a higher chance of finding a
solution to the original problem.

While this is the fundamental idea, the Inc* framework
goes one step further and makes the choice of the simplified
problems dynamic. The objective of this is to limit the
chances of the algorithm getting stuck in local optima.
Whenever the system detects that one of the simplified
instances in the chain leading to the original problem is too
difficult, it backtracks and creates a new simplified instance
in the attempt to continue the progression towards the goal
problem instance.

In this paper, we will study the use of the Inc* algo-
rithm on the satisfiability problem (SAT). However, Inc* is
expected to be useful in many combinatorial optimisation
problems: especially the ones that could be easily decom-
posed into smaller instances, such as the graph colouring,

Mohamed Bahy Bader-El-Den and Riccardo Poli are with the Department
of Computing and Electronic Systems, University of Essex, Wivenhoe Park,
Colchester, UK (email: {mbbade, rpoli}@essex.ac.uk).

This work was supported by EPSRC (grants EP/C523377/1 and
EP/C523385/1).

the graph labelling and travelling salesman problems. In these
problems, a simpler instance of the problem could be either a
graph with smaller number of vertices, graph with a smaller
number of edges, or both.

The SAT is NP-complete [2] and a classical combinatorial
optimisation problem. The target in SAT is to determine
whether it is possible to set the variables of a given Boolean
expression in such a way to make the expression true. The
expression is said to be satisfiable if such an assignment
exists. If the expression is satisfiable, we often want to know
the assignment that satisfies it. The expression is typically
represented in Conjunctive Normal Form (CNF), i.e., as a
conjunction of clauses, where each clause is a disjunction of
variables or negated variables.

There are many algorithms for solving SAT. Incomplete
algorithms attempt to guess an assignment that satisfies a
formula. If they fail, one cannot know whether that’s because
the formula is unsatisfiable or simply because the algorithm
was not run for long enough. Complete algorithms, instead,
effectively prove whether a formula is satisfiable or not. So,
their response is conclusive. They are in most cases based on
backtracking. That is, they select a variable, assign a value to
it, simplify the formula based on this value, then recursively
check if the simplified formula is satisfiable. If this is the
case, the original formula is satisfiable and the problem is
solved. Otherwise, the same recursive check is done using
the opposite truth value for the variable originally selected.

The best complete SAT solvers are instantiations of the
Davis Putnam Logemann Loveland procedure [3]. Incom-
plete algorithms are often based on local search heuristics
(see Section I-A). These algorithms can be extremely fast,
but success cannot be guaranteed. On the contrary, complete
algorithms guarantee success, but their computational load
can be considerable, and, so, they can be unacceptably slow
on large SAT instances.

SAT heuristics use one of two main strategies for choosing
the next variable to flip. The first strategy is to make a
greedy move. In other words, the SAT solver chooses to
flip the variable which transforms the current solution state
to a state which is closest to a solution. The gain of the
variable (see Section I-A) is typically the most important
factor in selecting such a move, although also the age of
the variable is sometimes used to avoid looping. The second
strategy is to perform a random walk. This is done to avoid
(or escape from) local optima. This is achieved by selecting
a random variable to flip from a designated set of variables.
There are different ways of choosing this set. For example,
the set can include all the variables in the CNF formula, as

in GSAT, or just the variables in unsatisfied clauses, as in
WalkSat. We look at these algorithms in more detail in the
next subsections.

A. Stochastic Local-search Heuristics for SAT

Stochastic local-search heuristics have been widely used
since the early 90s for solving the SAT problem following the
successes of GSAT [4]. The main idea behind these heuristics
is to try to get an educated guess as to which variable will
most likely, when flipped, give us a solution or will move
us one step closer to a solution. Normally the heuristic starts
by randomly initialising all the variables in a CNF formula.
It then flips one variable at a time until either a solution is
reached or the maximum number of flips allowed has been
exceeded.

GSAT [4] works as follows. At each iteration, it flips
the variable with the highest gain score, where the gain
of a variable is the difference between the total number of
satisfied clauses after flipping the variable and the current
number of satisfied clauses. The gain is negative if flipping
the variable reduces the total number of satisfied clauses.

WalkSat [5] starts by selecting one of the unsatisfied
clauses C. Then it flips randomly one of the variables that
will not “break” any of the currently satisfied clauses (leading
to a “zero-damage” flip). If none of the variables in C has a
“zero-damage” characteristic, it selects with probability p the
variable with the maximum score gain, and with probability
(1− p) a random variable in C.

B. Incremental SAT

In a standard SAT algorithm the input is a problem
instance and the target is to state whether this instance could
be satisfied or not, and what are the variable assignment that
satisfies it. In some cases it is also important to know if the
instance could be still satisfied if further (arbitrary) Boolean
clauses were added to the current set. This is known in the
literature as incremental or dynamic SAT [6]. In incremental
SAT the solver normally starts with a certain number of
clauses and determines whether this set can be satisfied or
not. In case it is satisfied, the solver gives the user the
opportunity of adding more clauses to the existing set. The
solver then checks whether the solution is still valid. If not,
it attempts to repair it.

Most incremental SAT solvers are based on exact SAT
algorithms as in [7], although some researchers have also
used incomplete or heuristic-based solvers to deal with the
incremental SAT problem [8]. The main problem with this
second kind of solvers is that heuristics give no guarantee
that a solution can be found. Their main advantage is speed.

C. Evolutionary Algorithms and SAT Problem

There have been a number of proposals of using evolution-
ary algorithms for SAT. An example is FlipGA which was
introduced by Marchiori and Rossi in [9]. There a genetic
algorithm was used to generate offspring solutions to SAT
using standard genetic operators. However, offspring were
then improved by means of local search methods. The same

authors later proposed ASAP, a variant of FlipGA [10]. A
good overview of other algorithms of this type is provided
in [11].

GP has evolved competitive SAT solvers. For example,
Fukunaga evolved local search heuristics [12], [13]. Also,
GP has been used to enhance the performance of exact
algorithms for SAT by helping the algorithm decide which
variables to start the backtracking process with or to evolve
heuristics for initialising dynamic decisions [14]. Further-
more, a general framework for evolving local-search 3-SAT
heuristics, called GP-HH, has recently been proposed [15].
The aim there is to obtain “disposable” heuristics which
are evolved and used for a specific subset of instances of
a problem. Results were promising, with GP-HH evolving
competitive heuristics.

D. Structure and Contributions of this Papers

In [1], we introduced an approach that presents some
similarity with incremental SAT, but where the objective is
to solve SAT problems, not incremental SAT problems. In
particular, we used Genetic Programming (GP) [16], [17],
[18] to investigate the benefits of dynamically changing the
number of active clauses during the course of solving SAT
problems. So, the solver is given a CNF formula including all
the clauses from the beginning, but we give the solver the
ability to decide which clauses to start with and in which
order to tackle them. This will be explained in more detail
later on in the paper.

In principle Inc* [1] is a general algorithm that can be
used in conjunction with any local search heuristic and any
structured combinatorial optimisation problem, although, so
far, we have only applied it to the SAT problem, where,
in preliminary experiments, Inc* appeared to be a com-
petitive approach. No explanation for why Inc* improved
performance of traditional local-search SAT solvers was
provided. Also, the experiments were limited to relatively
small instances of SAT and small instance sets.

This paper makes three main contributions: we enhance
Inc*, we experimentally test it on larger set of benchmarks,
including big instances of SAT, and, finally, we provide an
analysis of the algorithm’s behaviour and an explanation for
why it provides performance improvements.

The paper is organised as follows. In Section II, we
describe the basic Inc* algorithm and the GP system used to
evolve strategies for Inc*. Then, in Section III we introduce
some novel enhancements to Inc*. A description of the
new sets of experiments we performed with the GP Inc*
framework is given in Section IV. Finally, we draw some
conclusions in Section V.

II. THE INC* FRAMEWORK

A. Principles Behind Inc*

As we mentioned above, Inc* is a general algorithm that
can be used in conjunction with any local search heuristic to
improve its performance. The general idea of the algorithm
is the following. Rather than attempting to directly solve a

difficult problem, we first derive a sequence of progressively
simpler and simpler instances of the problem. Then, we
give the solver these instances one by one starting from
the simplest, and progressing in the sequence only after all
previous simplified instances have been solved.

The Inc* framework is particularly applicable to the SAT
problem, where one can easily and dynamically create the
necessary set of simplified problems. Effectively the algo-
rithm starts by selecting a subset of the clauses in the
formula. It then uses one of the SAT heuristics to test the
satisfiability of this portion of the formula, which we call the
clauses active list. Depending on whether or not the heuristic
is successful on this portion of the formula, the algorithm
then increases or decreases the number of clauses in the
active list. In some cases, adding a clause has no effect on
the satisfiability of the active list with the current variable
assignment, so no additional flips are necessary. In other
cases, more work is needed to find a new valid assignment.

More specifically, as shown in Algorithm 1, Inc* starts
by initialising all the variables in the formula F randomly.
It then activates an initial set of clauses by adding them
to active clause list AC. The algorithm then runs one of
the SAT local search heuristics. The heuristic is given a
relatively small maximum number of flips at the beginning.
However, this number is incremented gradually if the SAT
solver fails to satisfy the AC, until, of course, the total number
of flips used exceeds a predefined maximum (MaxFlips). A
weight is assigned to each clause, which indicates how many
flips have been necessary in order to satisfy the active list
after the addition of the clause. After each run of the SAT
heuristic, clause weights are updated. If the heuristic found
a variable assignment L that satisfies the current AC, then
the size of the AC is increased by adding new classes to it.
Otherwise, the algorithm removes a small set of clauses from
AC, giving preference to those with the lowest clause weight,
and the number of allowed flips is increased, as previously
mentioned.

Two key elements in determining the effectiveness of Inc*
are the decisions taken in Steps 21 and 24 of Algorithm 1 as
to how many clauses to add or remove from the active list
after a success or failure, respectively. In our work, we have
used GP to find optimal strategies to make these decisions.
In the next section, we describe the GP system used and the
evolved strategies.

Random or scheduled restarting of a heuristic is known to
improve the heuristic overall performance [19], [20]. Typi-
cally, the restarting is simply done by assigning randomly
either 0 or 1 to all the variables in a CNF formula and then
starting the heuristic again. It is important to note here that
this is not what Inc* does. If the heuristic failed to solve the
current active list, Inc* changes the number of clauses in the
active list, but does not alter the value of the variables. So,
it restarts from where it left.

B. Inc* Optimisation via GP

As we mentioned above, an evolved strategy (which takes
the form of a computer program) needs to decide how

Algorithm 1 Inc* approach to solving SAT problems
1: L = random variable assignment
2: AC = small set of random clauses from the original

problem
3: Flips = number of allowed flips at each stage
4: Flips Total = 0 {This keeps track of the overall number

of flips used}
5: Flips Used = 0 {This keeps track of the flips used to

test the active list}
6: Inc Flip Rate = rate of increment in the number of flips

after each fail
7: repeat
8: for Flips Used = 0 to Flips do
9: if L satisfies formula F then

10: return L
11: end if
12: select variable V from AC using some selection

heuristic
13: flip V in L
14: end for
15: Flips Total = Flips Total + Flips Used
16: update clause weights
17: if L satisfies AC then
18: if AC contains all clauses in F then
19: return L
20: end if
21: AC = add more clauses to the active list
22: else
23: sort AC
24: AC = remove some clauses from the active list
25: Flips = Flips * Inc Flip Rate
26: end if
27: until Flips Total < MaxFlips
28: return no assignment satisfying F found

many clauses the algorithm should add/remove to/from the
active list after each success or failure at finding a variable
assignment that satisfies the current active clauses of the
full SAT formula. The block titled ”run a GP individual” in
figure 1 shows exactly where the evolved strategy is placed
in the Inc* algorithm.

We use a tree-based representation for programs. The
function and terminal sets are shown Table I. We con-
strain the representation by requiring that the root node of
each individual in the population be the binary function
i f Success(d1,d2), where d1 and d2 are of type real. This
function returns the integer part of its first argument, bd1c, if
the last run of the SAT heuristic was successful at satisfying
the current AC. If this is the case, the value bd1c is taken
to represent how many clauses should be added to AC.1 If,
instead, the SAT heuristic failed to satisfy AC, then i f Success
returns the value bd2c, which is taken to represent how many

1Note that, to give complete freedom to evolution, negative return values
are allowed. If bd1c is negative clauses are removed, rather than added, from
AC.

Fig. 1. A flowchart showing the main steps in the inc*/inc** algorithm,
and where the GP individual (strategy) is placed in the algorithm.

clauses should be removed from AC.
The other elements of the primitive set behave as fol-

lows. The functions add(d1,d2), sub(d1,d2), mul(d1,d2)
and div(d1,d2) are the standard arithmetic operations (note,
division is protected to avoid division by 0 errors). The
primitive neg(d1) inverts the sign of d1. The terminals vNo
and cNo return the total number of variables and the total
number of clauses in the full SAT formula, respectively.
The terminals used cNo and used vNo, instead, return the
number of unique variables and the number of clauses cur-
rently loaded in the active list, respectively. Finally, constX
represent random integers between 0 and 9.

In order to evolve general Inc* strategies, we used a
training set including many SAT problems with different
numbers of variables. The problems were taken from the

widely used SatLib benchmark library. All problems were
randomly generated satisfiable instances of 3-SAT. In total
we used 50 instances: 10 with 100 variables, 15 with 150
variables and 25 with 250 variables. The fitness f (s) of
an evolved strategy s was measured by running the Inc*
algorithm under the control of s on all the 50 fitness cases.
More precisely

f (s) = ∑
i

(
incs(i)∗ v(i)

10

)
+

1
f lips(s)

where v(i) is the number of variables in fitness case i,
incs(i) is a flag representing whether or not running the Inc*
algorithm with strategy s on fitness case i led to success (i.e.,
incs(i) = 1 if fitness case i is satisfied and 0 otherwise), and
f lips(s) is the number of flips used by strategy s averaged
over all fitness cases. The factor v(i)/10 is used to emphasise
the importance of fitness cases with a larger number of
variables, while the term 1/ f lips(s) is added to give a slight
advantage to strategies which use fewer flips (this is very
small and typically plays a role only to break symmetries in
the presence of individuals that solve the same fitness cases,
but with different degrees of efficiency).

There is only one exception to this fitness calculation.
In the system we keep a count of the number of attempts
the SAT solver made at solving the AC list. If a maximum
number of tries is reached, fitness is computed differently.
Imagine, for example, what would happen if an evolved
strategy added zero clauses after each successful attempt and
removed zero clauses after each unsuccessful one. After a
small number of flips had been expended to satisfy the initial
active clauses, no further flips would ever be necessary (since
no clauses are added or removed). So, the total number of
flips used would never reach the maximum number of flips
allowed, leading to an infinite loop. By using a maximum
number of tries, we avoid this and we signal to the system
that this individual (strategy) went into an infinite loop on the
current fitness case. The system reacts by setting the fitness
of this strategy to zero and stopping the evaluation of any
remaining fitness cases.

The GP system initialises the population by randomly
drawing nodes from the function and terminal sets. This is
done uniformly at random using the GROW method, except
that the selection of the function i f Success is forced for the
root node and is not allowed elsewhere. After initialisation,
the population is manipulated by the following operators:
• Roulette wheel selection (proportionate selection) is

used. Reselection is permitted.
• The reproduction rate is 0.1. Individuals that have not

been affected by any genetic operator are not evaluated
again to reduce the computation cost.

• The crossover rate is 0.8. Offspring are created by
generating a copy of a random subtree from the first
parent and inserting it at a random point (excluding the
root of the tree) in a copy of the second parent.

• Mutation is applied with a rate of 0.1. This is done
by selecting a random node from the parent (including

TABLE I
GP FUNCTION AND TERMINAL SETS.

Function Set
i f Success(d1,d2) : returns d1 if the last attempt to solve

the formula was successful
add(d1,d2) : returns the sum of d1 and d2
sub(d1,d2) : subtracts d2 from d1
mul(d1,d2) : returns the multiplication of d1 by d2
div(d1,d2) : protected division of d1 by d2
abs(d1) : returns the absolute value of d1
neg(d1) : multiplies d1 by −1
f neg(d1) : abs(d1) multiplied by −1, to force

negative value
sqrt(d1) : returns the a protected square root of d1

Terminal Set
vNo : total number of variables in the formula
cNo : total number of clauses in the formula
used cNo : number of currently active clauses
used vNo : number of currently active variables
constX : random integer number from 0 to 9

the root of the tree), deleting the sub-tree rooted there,
and then regenerating it randomly as in the initialisation
phase.

Figure 2 shows Some of the best evolved strategies, the
strategies were manually edited and normalized for display
purposes, the code for some of the best performing heuristics
is so large and complex to show here.

III. INC**

In this section we introduce Inc**, a novel and enhanced
version of the Inc* algorithm. We have modified two main
behaviours on the Inc* algorithm.

The first modification is the weighting mechanism of the
clauses. In the Inc* algorithm, only the weight of newly
added clauses are updated, and the update is done only after
the heuristic fails to satisfy the current active clauses, as
described before. In inc**, the weight is modified as in Inc*,
but, additionally, the weight of each unsatisfied clause is
increased by one after each flip. Furthermore, the weight
of all active clauses are multiplied by δ (with 0 < δ < 1)
after each successful try in satisfying the active list, thereby
decreasing the weight of this combination of clauses after
they have been successfully satisfied.2

The second modification in Inc** regards the flip incre-
ment rate. In Inc*, the number of allowed flips is increased
by a constant percentage. This sometimes causes Inc* to use
more flips to solve some solvable instance than the standard
heuristics without Inc* (this is explained the next section in
more detail). In order to increase the number of flips more
rationally, since we increase the number of allowed flips only

2The idea of increasing the weight of unsatisfied clauses is not entirely
new. Indeed, we took inspiration from the Dynamic Local Search (DLS)
heuristic [21]. However, weights in DLS are used in a completely different
manner in DLS. In DLS, the target is to flip the variable which will minimise
the weight of all unsatisfied clauses. This is more widely used in MAX-
SAT than SAT. Updating and maintaining the weight in this category of
algorithms is more sophisticated and computationally expensive than in
Inc**, where the clause weight is only used to guide which clauses to add
or remove from the active list.

on after each fail to satisfy the current active list, in Inc**
we increase the number of allowed flips in proportion to the
number of unsatisfied clauses in the active list. This simple
modification allows the algorithm to change its behaviour
depending on the size of the SAT instance being solved and
the hardness of the current active list.

For example, consider the case of a large instance and
assume we have many clauses in the active list but the current
number of allowed flips is relatively small. In this case, if the
number of unsatisfied clauses is large, Inc** grants the next
try with this instance more flips than Inc* would. Conversely,
if the number of unsatisfied clauses was small, Inc** gives
a smaller number of maximum allowed flips to the next
iteration, which makes sense since probably these clauses
could be satisfied with fewer flips.

IV. EXPERIMENTAL RESULTS

The results are presented in two section. In Section IV-
A we will show comparative results between the proposed
algorithm combined with WalkSat, and WalkSat alone. In
Section IV-B we will provide results on the behaviour of the
algorithm on instances with different structural characteris-
tics (namely, SAT backbone size).

A. Comparative Results

In these experiments we used a population of 1,000 indi-
viduals, run for 51 generations. While strategies are evolved
using 50 fitness cases, the generality of best of run individ-
uals is then evaluated on an independent test set including
500 SAT instances. In this section, will show a comparison
between the performance of a standard handcrafted heuristic,
WalkSat, and the same heuristics when combined with Inc*
and Inc** controlled by strategies evolved by GP.

We have used the following parameters values for the Inc*
algorithm:3

• We allow 100 flips to start with, and 2,000 for instances
with more than 250 variables.

• Upon failure, the number of flips is incremented by
20%.

• We allow a maximum total number of flips of 100,000,
and 400,000 for instances with more than 250 variables.

• The maximum number of tries is 1,000 (including
successful and unsuccessful attempts).

The GP system has managed to evolve a number of
successful strategies. Most of these can be categorised into
three groups. In the first group, strategies start by activating a
relatively small number of clauses w.r.t. the total, after which
they then rapidly increase the number of active clauses. This
was almost always the best performing group. In the second
group, strategies start by activating a very large number
clauses at the beginning, then they remove some clauses
after each fail and try to go forward again until a solution
for all clauses is found. Strategies in this category perform
slightly worse than those in the first category. Strategies

3Many different combinations of parameter values have been tested, but
this particular combination gave almost invariably the best results.

in the third group were generally outperformed by those
in the other groups. Strategies in this group acted in an
unexpected manner. Namely, these strategies kept moving
forward, adding clauses after both successful and unsuc-
cessful tries. In the testing phase, this kind of strategies
performed well on instances with fewer than 100 variables in
terms of number of flips used to solve the instance. However,
they had a lower success rate than other strategies on larger
instances. The reason of this will be explained after showing
detailed results of the strategies.

Table II shows the results of a set of experiment using
WalkSat and a combination of Inc* and Inc** with WalkSat.
Instances with up to 250 variables were taken from SatLib.
On these instances, heuristics where given a maximum of
100,000 total flips. Larger instances were taken from the
benchmark set of the SAT 2007 completion and where given
a maximum of 400,000 total flips. None of the test instances
had been used in the GP training phase . The performance of
the heuristics on an instance is the number of flips required
to solve it averaged over 10 independent runs of a solver,
to ensure the results are statistically meaningful. The AF
column shows the average number of flips used by each
heuristic in successful attempts only.

We categories the results in this table into two groups. The
first group includes instances with no more than 100 vari-
ables. The second group includes instances with more than
100 variables. In the first group of problems all heuristics
have a perfect success rate of 100%. While WalkSat used
a slightly smaller number of flips than Inc* on this group
of problems, Inc** was able to outperform both algorithms
on instances with 20, 50 and 75 variables. In the second
group of problems, which contains larger instances, however,
Inc* and Inc** have a higher success rate than WalkSat,
and the difference in the performance increases as the size
of the instances increases, figure refg1 shows how the gap
increases by the increase of the size of the instances. This
means that Inc*/Inc** can solve complex instances where
local heuristics alone fail. Again, Inc** tends to perform
better than Inc*.

This explains why, when training the GP system on small
instances, some evolved strategies (the strategies in group
three) always tried to go foreword, adding more clauses
after both successful and unsuccessful tries, as we mentioned
above. Effectively, these strategies tried to imitate the stan-
dard heuristics behaviour, and, indeed, they were slightly
faster on small instances. Table II also shows that Inc*
and Inc** perform much better on more complex instances
with larger number of variables, and that the gap in the
performances increases too.

B. Behaviour on SAT Instances with Different Backbone Size

SAT problems may have multiple solutions. The backbone
of a SAT problem consists of those variables for which
logical values are the same in all possible solutions. Instances
with large backbone sizes are known to be more difficult to
solve for local search heuristics than instances with smaller
backbones. Knowing which variables belong to the backbone

Fig. 2. Some of the best evolved strategies for Inc*/Inc**. The strategies
were manually edited for display purposes.

TABLE III
NUMBER OF FLIPS REQUIRED BY WALKSAT AND INC* (WITH

WALKSAT) TO SOLVE SAT INSTANCES WITH DIFFERENT BACKBONE

SIZES (SR=SUCCESS RATE, AF=AVERAGE NUMBER OF FLIPS).

backbone size WalkSat Inc*
SR AF SR AF

10 1 752 1 670
30 1 1523 1 1541
50 1 2796 1 2191
70 1 3153 1 2340
90 1 6788 1 5680

of an instance would greatly help its solution. However, de-
tecting the backbone variables in an instance is an expansive
process.

To try and understand the reasons why the Inc* approach
improves performance so much over an already highly ef-
fective solver (WalkSat), we have tested the performance of
Inc* on different SAT instances all with the same number
of variables (100 variables), but with different numbers of
backbone variables. The instances are grouped into classes
with 10, 30, 50, 70, 90 backbone variables out of the 100 total
variables. Table III and Figure 3 show the difference in per-
formance between Inc* and Walksat on these instance sets.
Both heuristic were capable of finding solutions in all cases

TABLE II
COMPARISON BETWEEN AVERAGE PERFORMANCE OF WALKSAT AND WALKSAT WITH INC* AND INC** SR=SUCCESS RATE, AT = AVERAGE TRIES,

AF=AVERAGE NUMBER OF FLIPS

WalkSat Inc* Inc**
name #variables #clauses SR AF SR AF AT SR AF AT
uf20 20 91 1 104.43 1 116.239 1.18 1 89.349 0.95
uf50 50 218 1 673.17 1 696.174 4.95 1 603.784 5.03922
uf75 75 325 1 1896.74 1 2000.59 8.07 1 1776.61 8.18039
uf100 100 430 1 3747.32 1 3825.82 11.51 1 3889.52 11.2706
uf150 150 645 0.97 15021.3 0.99 14275 16.45 1 6454.14 13.6706
uf200 200 860 0.9 26639.2 0.94 28526.2 21.39 1 24620.7 20.7922
uf225 225 960 0.87 29868.5 0.91 31258.8 22.16 0.99 29189.4 21.2627
uf250 250 1065 0.81 38972.4 0.87 38304.2 24.09 0.90 35021.5 23.2784
com360 360 1533 0.68 277062 0.78 221597 36.72 0.87 149616 31
com400 400 1704 0.66 172820 0.78 158485 30.66 0.79 161413 31
com450 450 1912 0.64 169113 0.72 140329 30.72 0.75 140489 30.36
com500 500 2130 0.38 271822 0.42 257987 36.52 0.44 263771 36.68
com550 550 2343 0.30 288379 0.42 271227 37.34 0.48 261428 37.28
com600 600 2556 0.44 257479 0.6 228347 35.74 0.6 251906 37.12
com650 650 2769 0.34 274112 0.44 268845 37.46 0.46 262329 41.07

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 10 20 30 40 50 60 70 80 90

S
uc

ce
ss

 R
at

e

Number of Back-Bone Variables

WalkSat
WalkSat+Inc*

Fig. 3. Number of flips required by WalkSAT and Inc* (with Walksat) to
solve SAT instances with different backbone sizes

(as shown in Table II their success rate is 100% on problems
with 100 variables). However, Inc* was clearly faster than
WalkSat on problems with more backbone variables.

Why is this? We conjecture that in Inc* the processes of
progressively adding clauses to the clause list (based on their
weights) and backtracking upon failure lead to satisfying
(and implicitly identifying) early those clauses which have a
higher-than-average frequency of backbone variables. There-
fore, effectively, Inc*’s improved performance on difficult
SAT instances is the result of its detecting and exploiting the
structure of such instances.

V. CONCLUSION

In this paper we extended the recently proposed Inc*
framework, and introduced Inc**, a SAT solver which signif-
icantly outperforms one of the best heuristic solvers for SAT,
WalkSat. Results on the SAT problem showed that applying
local search heuristics to progressively harder and harder
versions of a problem with Inc* improves their performance
both in terms of number of flips needed and, crucially,
success rate. Thanks to relatively small modifications, Inc**
further improves the performance of the Inc* algorithm.

In future work, we will try to generalise the algorithm to
other problem domains, including scheduling, timetabling,
TSP, etc. Also, we will test the algorithm on different types
of SAT benchmarks (e.g., structured and handcrafted SAT
problems). Furthermore, we would like to embed Inc* within
a hyperheuristic framework where multiple agents perform
the search in parallel. Each agent might, for example, use a
different heuristic and would search for solutions to a part of
the original problem (e.g., a subset of the clauses in a SAT
formula).

REFERENCES

[1] M.B. Bader-El-Den and R. Poli. Inc*: An Incremental Approach for
Improving Local Search Heuristics. In Proceedings of 8th European
Conference Evolutionary Computation in Combinatorial Optimization
(EvoCop-08) , page 194–205, 2008.

[2] S.A. Cook. The complexity of theorem-proving procedures. In STOC
’71: Proceedings of the third annual ACM symposium on Theory of
computing, pages 151–158, New York, NY, USA, 1971. ACM Press.

[3] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Commun. ACM, 5(7):394–397, 1962.

[4] B. Selman, H.J. Levesque, and D. Mitchell. A new method for
solving hard satisfiability problems. In P. Rosenbloom and P. Szolovits,
editors, Proceedings of the Tenth National Conference on Artificial
Intelligence, pages 440–446, Menlo Park, CA, 1992. AAAI Press.

[5] B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving
local search. In Proceedings of the Twelfth National Conference on
Artificial Intelligence (AAAI’94), pages 337–343, Seattle, 1994.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700

S
uc

ce
ss

 R
at

e

Number of Variables

WalkSat
WalkSat+Inc*

WalkSat+Inc**

Fig. 4. Performance comparison between WalkStar, Inc*, and Inc**

[6] S. Minton, M.D. Johnston, A.B. Philips, and P. Laird. Minimizing
conflicts: A heuristic repair method for constraint satisfaction and
scheduling problems. Artificial Intelligence, 58(1-3):161–205, 1992.

[7] H. Han and F. Somenzi. Alembic: an efficient algorithm for cnf
preprocessing. In DAC ’07: Proceedings of the 44th annual conference
on Design automation, pages 582–587, New York, NY, USA, 2007.
ACM.

[8] H.H. Hoos and K. O’Neill. Stochastic local search methods for
dynamic SAT- an initial investigation. Technical Report TR-00-01,
1, 2000.

[9] E. Marchiori and C. Rossi. A flipping genetic algorithm for hard 3-
SAT problems. In W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon,
V. Honavar, M. Jakiela, and R. E. Smith, editors, Proceedings of the
Genetic and Evolutionary Computation Conference, volume 1, pages
393–400, Orlando, Florida, USA, 13-17 1999. Morgan Kaufmann.

[10] C. Rossi, E. Marchiori, and J. N. Kok. An adaptive evolutionary
algorithm for the satisfiability problem. In SAC (1), pages 463–469,
2000.

[11] J. Gottlieb, E. Marchiori, and C. Rossi. Evolutionary algorithms for
the satisfiability problem. Evol. Comput., 10(1):35–50, 2002.

[12] A. Fukunaga. Automated discovery of composite SAT variable
selection heuristics. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), pages 641–648, 2002.

[13] A.S. Fukunaga. Evolving local search heuristics for SAT using genetic
programming. In Genetic and Evolutionary Computation – GECCO-
2004, volume 3103 of Lecture Notes in Computer Science, pages 483–
494, Seattle, WA, USA, 26-30 June 2004. Springer-Verlag.

[14] R.H. Kibria and Y. Li. Optimizing the initialization of dynamic
decision heuristics in DPLL SAT solvers using genetic programming.
In P. Collet et al., editors, Proceedings of the 9th European Conference
on Genetic Programming, volume 3905 of Lecture Notes in Computer
Science, pages 331–340, Budapest, Hungary, 10 - 12 Apr. 2006.
Springer.

[15] M.B. Bader-El-Din and R. Poli. Generating SAT local-search heuristics
using a GP hyper-heuristic framework. Proceedings of the 8th
International Conference on Artificial Evolution, 36(1):141–152, 2007.

[16] J.R. Koza. Genetic Programming: On the Programming of Computers
by Means of Natural Selection. MIT Press, Cambridge, MA, USA,
1992.

[17] W.B. Langdon and R. Poli. Foundations of Genetic Programming.
Springer-Verlag, 2002.

[18] R.Poli, W.B. Langdon, and N. F. McPhee. A field guide to genetic
programming. Published by http://lulu.com and freely available
at http://www.gp-field-guide.org.uk , 2008. (With contributions
by J. R. Koza).

[19] H. Kautz, E. Horvitz, Y. Ruan, C. Gomes and B. Selman Dynamic
restart policies. InProceedings of Eighteenth national conference on
Artificial intelligence, page 674–681, Menlo Park, CA, 2002 AAAI
Press.

[20] A.J. Parkes and J.P. Walser. Tuning Local Search for Satisfiability
Testing. InAAAI/IAAI, Vol. 1, page 356-362, 1996.

[21] P. Morris. The Breakout Method for Escaping from Local Minima.
InAAAI, page 40–45, 1993.

