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Abstract 

A ferrocene containing ÏÒÔÈÏ-aminoanilide, .υ-(2-aminophenyl)-N8-ferrocenyloctanediamide, 2b (Poja-

mide) displayed nanomolar potency vs. HDAC3. Compared to RGFP966, a potent and selective HDAC3 in-

hibitor, Pojamide displayed superior activity in HCT116 colorectal cancer cell invasion assays; however, 

TCH106 and Romidepsin, potent HDAC1 inhibitors, outperformed Pojamide in cellular proliferation and 

colony formation assays. Together, these data suggest that HDAC 1 & 3 inhibition is desirable to achieve max-

imum anti-cancer benefits. Additionally, we explored Pojamide-induced redox-pharmacology. Indeed, treat-

ing HCT116 cells with Pojamide, SNP (sodium nitroprusside) and glutathione (GSH) led to greatly enhanced 

cytotoxicity and DNA damage attributed to activation to an Fe(III) species. 

 

Introduction 

Histone deacetylases (HDACs) are key targets in cancer and neurodegeneration1. Their overexpression leads 

to increased deacetylated lysine/arginine levels and a condensed chromatin state resulting in transcriptional 

silencing. Clinically useful HDAC inhibitors (HDACis) include SAHA2 (Fig. 1) and Romidepsin3, which trigger 

growth arrest and apoptosis ÖÉÁ histone hyperacetylation by pan-inhibition principally of Class I and II 

HDACs and other targets (ÅȢÇȢ p53). 

 



 

Our increased knowledge of HDAC biology has emphasised the need for isoform-selective histone deacety-

lase inhibitors (HDACis)4. Selective inhibitors of HDAC3, (ÅȢÇȢ the benzamides TCH106 and RGFP966) (Fig. 

1)5-6, are particularly attractive in CNS applications7 and cancer8. However, recent studies using HDAC3-

overexpressing HCT116 cells show that silencing individual HDACs (1-3) through RNAi is insufficient to 

achieve similar levels of growth arrest and apoptosis induced by generic HDACis such as Trichostatin A9. It 

is therefore likely that the inhibition of specific combinations of HDAC isoforms, HDACs 1-3 in particular, may 

help to achieve the full benefits of HDAC inhibition in colorectal carcinomas and possibly other cancer cells. 

 
Figure 1. SAHA, and known HDACis. 

 
Results and Discussion 

Transition metal-based anticancer agents are interesting due to their novel ligand exchange and redox chem-

istry, the ability of a heavy metal atom to facilitate phasing in protein x-ray crystallography and the availabil-

ity of geometries and oxidation states unachievable with carbon-based therapeutics10-13. Ferrocene-based 

JAHAs and other metal-based analogues, many containing a hydroxamic acid zinc-binding group (ZBG), are 

effective HDACis with good activity vs. Class I HDACs14-25. Guided by docking studies of a standard “cap-

linker-ZBG” arrangement, we wished to extend the chemistry of JAHAs to ÏÒÔÈÏ-anilide analogues, anticipat-

ing that this may lead to HDAC3-selectivity and alleviate toxicity issues documented for hydroxamate ZBGs26. 



 

Hence, compounds 1a and 2a were readily made by standard coupling reactions and were characterised in 

the solid state by x-ray crystallography (Figure 2)27. 

 

 
Figure 2. Ferrocene-based HDACis and precursors. 
 
 

To explore the binding modes of 1b and 2b (Pojamide) in HDAC3 we performed docking studies using the 

structure of HDAC3 bound to co-repressor and inositol tetraphosphate (Figure 3A,B)29. We found that Poja-

mide bound to the zinc active site forming hydrogen bonds between the N-H of the amide and the carbonyl 

of Asp93, the benzamide amide N-H and the carbonyl of Gly143, the aniline NH2 and the nitrogen of His134, 

and the carbonyl of Asp170 as well as the characteristic benzamide-zinc interaction.  

 

The docked structure of 1b is docked slightly shifted from Pojamide. It forms hydrogen bonds with Asp93 

and Gly143. However, the substitution of the 6- carbon aliphatic chain for a 4-carbon chain results in a rota-

tion of the benzamide group leading to a loss of key interactions, namely, hydrogen bonding with His134 and 

Asp170 as well as forcing zinc coordination from the benzamide aniline to the amide carbonyl (Figure 3A,B). 

Comparison of the active sites of HDAC3 and 8 reveals that ferrocenyl substitution for the archetypal aryl cap 

in HDAC inhibitors in Pojamide clashes with Tyr100 and Lys33 in HDAC8; assuming a similar binding mode 

to that of Pojamide in HDAC3. Thus it is assumed that ferrocenyl substitution in Pojamide and 1b is respon-

sible for HDAC3 selectivity (Figure 3C). 

 

In addition to structural evidence supporting selective HDAC3-binding, we confirmed Pojamide’s cell per-

meation and HDAC3-specificity using 8ÅÎÏÐÕÓ ÌÁÅÖÉÓ embryos (2-cell to stage 14) as a model system for 



 

deacetylase activity. 8ÅÎÏÐÕÓ ÌÁÅÖÉÓ embryos were incubated with 1b and Pojamide in order to test their 

bioavailability and JAHA, a broad HDAC inhibitor, was used as a positive control30. As expected Pojamide 

and 1b, which have some selectivity towards HDAC3 (ÖÉÄÅ ÉÎÆÒÁ), did not affect -tubulin acetylation, whereas 

JAHA increased acetylation of -tubulin (Figure S1A). Acetylated H4K12 (H4K12ac) has, however, been 

shown to be a target of HDAC3 and was expected to increase if these HDAC3is were able to function in the 

whole organism31. Compound 1b gave no sign of affecting H4K12 acetylation levels unlike Pojamide, which 

demonstrated a concentration-dependent accumulation of H4K12ac (Figure S1B). In three separate experi-

ments the level of H4K12ac, as detected by western blotting, increased in developing embryos treated with 

Pojamide; however, embryo development was severely affected and many died (as low as 10% survival 

rates). For this reason, it was impossible to obtain a clear concentration-dependency for Pojamide, nonethe-

less we conclude that Pojamide is highly likely to be cell-permeable as an HDAC3 inhibitor, but that com-

pound 1b is not. 

             

            

Figure 3. A,B) Docking poses of 1b and Pojamide in HDAC3 (PDB code: 4A69). Top docking poses of 1b 
(teal, A) and Pojamide (slate, B) in HDAC3. C) Superposition of the active sites of HDAC3 (gray) and HDAC828 
(PDB code: 1T69, green) showing key residues overlaid with Pojamide top docking pose in HDAC3. Color 
Scheme: Hydrogen bonds shown in green dashed lines, π-π interactions shown in orange dashed lines. 
             
            

 
Next, we tested Pojamide on a panel of HDACs vs. 1b, SAHA and HDAC3is (Table 1)32. Indeed both 1b and 

Pojamide displayed ca. 11- and 22-fold selectivity respectively towards HDAC3 over HDACs 1/2 and signifi-

cantly greater selectivity over HDACs 4-8. Pojamide’s profile was on par with other ÏÒÔÈÏ-anilide (ben-

zamide) inhibitors, being most similar to that of TCH106, yet was outperformed by RGFP966 with respect 

to HDAC3-selectivity. Only SAHA displayed activity vs. HDAC8 (Table 1). 

 

With ÉÎ ÖÉÔÒÏ validation of the anti-HDAC3 activity of these ferrocene-analogues, we sought to explore their 

inhibitory activity in HDAC3-overexpressing cervical and colorectal cancer cell lines. HeLa, HT-29 and 

A B C 



 

HCT116 cells are tumor-forming cell lines that have been used previously as model systems to characterise 

HDACis9,33-35. We confirm in this study that compared to hTERT immortalised Retinal Pigment Epithelium 

(RPE) cells – cells with a longer lifespan, but incapable of forming tumors36 – the malignant cancer cell lines 

HeLa, HT-29 and HCT116 all showed significantly elevated HDAC3 expression levels (Figure 4). 

 

 
 

Figure 4. Western blot analysis of HDAC3 and α-Tubulin (Tub) in Retinal Pigment Epithelium (RPE), HeLa, 
HT-29 and HCT116 cells.  
 

Table 1. Biochemical evaluation of HDAC isoforms 1 – 8. 
 

IC50 ( M) 

HDAC SAHA[a] 1b 2b[a] RGFP966 TCH106[b]  

1 0.006 ± 0.001  8.94 1.10 ± 0.14 0.61 0.39 

2 0.016 ± 0.001 13.79 1.3 ± 0.4 0.58 1.2 

3 0.008 ± 0.001 0.606 0.09 ± 0.02  0.015 0.05 

4 19 ± 1 >30 >30 >30 >30 

5 9.7 ± 0.1 >30 >30 >30 >30 

6 0.030 ± 0.001  >30 >30 >30 >30 

7 >30 >30 >30 >30 >30 

8 0.36 ± 0.10 >30 >30 >30 >30 

[a]Profiling done in duplicate, n=8. All others n=4; [b] Slow, tight-binding inhibitor, with  
inverted IC50 and Ki values, causes IC50 value to drop over longer pre-incubation peri-
ods.6 The IC50 value was defined as the amount of compound that caused 50% reduc-
tion in HDAC activity in comparison with DMSO-treated control and was calculated us-
ing GraphPad Prism version 6 software. 

 
 
Based on these data, this small panel of cell lines was treated with increasing concentrations of 1b, Pojamide 

and the control HDACis RGFP966 and TCH106. Despite RGFP966 showing 6.5-fold greater potency than 

Pojamide in blocking HDAC3 activity (Table 1), we found that RGFP966 and Pojamide are equipotent at 

inhibiting HCT116 cellular proliferation, displaying GC50 values of 8.9 and 8.6 μM respectively (Figure 5A, 



 

Table 2). RPE cells on the other hand were as sensitive to Pojamide as HCT116 cells, but were not inhibited 

by RGFP966 (Figure 5B, Table 2). TCH106 displayed superior potency against all cell lines with GC50 values 

ranging from 1 – 2 M and completely blocked colony formation at 10 M in HCT116 colony formation assays 

compared to 75 and 60% inhibition of colony formation by Pojamide and RGFP966 respectively (Figures 

5A-E, S2A-C). Interestingly, TCH106 is 1.6- and 2.8-fold more potent toward HDAC1 inhibition than 

RGFP966 and Pojamide respectively (Table 1) and proliferating RPE cells have been shown to overexpress 

HDACs 1, 2 and 537, suggesting that HDAC1 inhibition is in part responsible for the anti-proliferative effects 

of Pojamide and TCH106 in these cell lines. In fact, cellular proliferation and colony formation assays using 

Romidepsin, a potent and exquisitely selective HDAC1/2 inhibitor (reported IC50 values of 36 and 47 nM 

respectively38), revealed a GC50 value of 0.52 ± 0.02 nM and near complete inhibition of colony formation at 

0.5 nM; clearly the most potent anti-proliferative HDACi tested in this study (Figures 5F, S3A,B). HeLa and 

HT-29 cells were only mildly inhibited by Pojamide and RGFP966 showing maximal growth inhibition of 

~40 and 30% at 10 μM respectively, and in all cases compound 1b was ineffective at inhibiting cellular pro-

liferation (Figure 5A-D). This result was mirrored in 8ÅÎÏÐÕÓ ÌÁÅÖÉÓ embryo development assays, whereby 

Pojamide caused a concentration-dependent increase in acetylated H4K12 levels and 1b did not (Figure S1). 

     
 
Figure 5. A-D) (A) HCT116, (B) RPE, (C) HeLa and (D) HT-29 CellTiter-Blue proliferation assays. E) HCT116 
colony formation assays; % Colony formation (normalised to DMSO control) was quantitated manually and 
the average ± S.D. was plotted. F) Inhibitory activity of Romidepsin on HCT116 cellular proliferation. G-I) 
HCT116 cellular invasion assays in the presence of (G) RGFP966, (H) TCH106 and (I) Pojamide. 

 



 

To establish the anti-invasive properties of Pojamide against known HDACis, we investigated the effects of 

RGFP966, TCH106 and Pojamide on HCT116 cellular invasion. In this assay, we decided to test compounds 

at 1x and 0.1x of their GC50 value determined using the HCT116 cellular proliferation assay. At the lowest 

concentrations tested, only Pojamide demonstrated robust inhibition of invasion, with about 70% inhibitory 

activity; however, at the 1x concentrations both RGFP966 and Pojamide, exhibiting ca. 40 and 11-fold se-

lectivity for HDAC3 inhibition respectively compared to HDAC1 (Table 1), inhibited invasion by about 90% 

compared to 70% for TCH106, which showed only 7-fold selectivity for HDAC3 vs. HDAC1 inhibition (Figure 

5G-I). Based on these data and taking into consideration the activity of these compounds in the cellular pro-

liferation assay, we conclude that HDAC isoform synergystic effects can be exploited using HDAC1- and 

HDAC3-selective HDACis; proliferation being attenuated more so by HDAC1, and possibly HDAC2, inhibition 

and invasion blocked more robustly through HDAC3 inhibition. 

 
Table 2. Cellular characterization of HDACis 
 

GC50 ( M) or (nM) [b]  

Cell Line 2b TCH106 RFP966 Romidepsin 1b 

RPE 9.0 ± 0.7 ≈ 1 na nd na 

HCT116 8.6 ± 1.2 2.2 ± 0.2 8.9 ± 0.7 0.52 ± 0.02[b]  na 

HeLa na 1.5 ± 0.2 na  nd na 

HT-29 na ≈ 1 na nd na 

[a]The GC50 value was defined as the amount of compound that caused 50% reduction 
in cellular proliferation in comparison with DMSO-treated control and was calculated 
using GraphPad Prism version 6 software; na = not applicable and nd = not deter-
mined.  

 
 

Pojamide appears more efficacious in preventing HCT116 cellular invasion, particularly at lower concentra-

tions (ÉȢÅȢ 1 M). In addition, we wanted to explore the possibility that engaging a different oxidation state of 

the iron atom in the ferrocene moiety might offer a unique advantage at targeting cancer cells. Seminal stud-

ies with Ehrlich ascites tumor (EAT) cells and HPB (human leukemic T lymphocytes) showed that incubation 

with ferrocenium salts (ÅȢÇȢ Fe(III)Cp2PF6) inhibited tumor growth, whereas their ferrocene counterparts 

were ineffective. Indeed, ferrocenium’s toxicity involves the generation of OH radicals and the rapid induc-

tion of DNA-damage; repeated later in MCF7 and MCF10A cells39-40. 

 

In order to take advantage of ferrocenium cytotoxicity, we generated the ferrocenium species 3b (Fe(III)-

Poj) through standard means by reacting Pojamide with nitrosonium (NO+) tetrafluoroborate (Scheme 1), 



 

which was confirmed by cyclic voltammetry41 (Figure S4). Hence, we hypothesised that intracellular gener-

ation of NO+ in the presence of Pojamide might also lead to Fe(III)-Poj in cells. 

 
Scheme 1. Synthetic ferrocenium Pojamides. 

 
 
It has previously been reported that sodium nitroprusside (SNP) leads to intracellular NO+ release42, yet 

studies in neuronal PC12 cells have shown that SNP alone triggers apoptosis at concentrations greater than 

30 M42. To develop a cell-based assay utilising SNP as an NO+ donor, we conducted cytotoxicity studies using 

the colony formation assay (Figures S5A). At 25 M SNP, just shy of the concentration that triggers apoptosis 

in PC12 cells, HCT116 colony formation is reduced by about 30%; however, addition of 500 M GSH com-

pletely eliminated SNP cytotoxicity (Figure S5A,B). GSH is a free radical scavenger, detoxifies H2O2 in a gluta-

thione peroxidase-1 dependent manner43 and its cytoprotective effects were demonstrated in our assay at 

concentrations of 50 and 500 M, whereby GSH treatments, in the presence of SNP, enhanced colony for-

mation by about 4 and 10% respectively (Figure S5A,B). The reaction of SNP with GSH to form innocuous NO 

may further reduce SNP cytotoxicity44. 

 

 
 
Figure 6. A-C) Western analysis of pH2AX and -tubulin (Tub) in HCT116 cells treated for 3 d with (A) 
RGFP966, (B) Pojamde and (C) Pojamide + SNP/GSH. D) The pH2AX/Tub ratio was determined via densi-
tometry and the average ratio normalised to DMSO control was plotted as the mean ± S.D. E) Western analysis 
of pH2AX and -tubulin (Tub) in HCT116 cells treated for 6 d as indicated above. F,G) NAD+ fold-induction 



 

(F), total NAD+/NADH (F) and reactive oxygen species (ROS) (G) levels normalised to the DMSO control; the 
average (n=10) was plotted ± S.D. The t-test statistical module of Prism 6.0 was used to determine p-values 
(ns (not statistically significant): P > 0.05; *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001). 

 
After identifying the optimal conditions for SNP/GSH treatment, we treated HCT116 cells with increasing 

concentrations of inhibitor in the presence and absence of SNP/GSH. The generation of Fe(III)-Poj was mon-

itored by blotting for the DNA-damage marker phospho-H2AX (pH2AX)45 (Figure 6A-D). Without SNP/GSH, 

increasing concentrations of RGFP966 and Pojamide reduced pH2AX levels, but addition of SNP/GSH to 

cells treated with Pojamide led to an initial decrease in pH2AX, with recurrence of the DNA-damage marker 

at concentrations greater than 2 M (Figure 6A-D). In a longer time-course (6 d) with 4 M inhibitor (± 

SNP/GSH), only the Pojamide/SNP/GSH combination led to significant DNA-damage nearly tantamount to 

the levels of DNA-damage caused by cisplatin (4 M) (Figure 6E). 

 

To further support that our SNP/GSH treatment in the presence of Pojamide leads to production of Fe(III)-

Poj, we assessed the levels of NAD+ in cells using the NAD/NADH-Glo Assay.  Early studies on the one-elec-

tron transfer from NADH to ferrocenium oxidants such as Fe(III)Cp2PF6 demonstrated that ferrocenium salts 

can successfully oxidise NADH to NAD+ at physiologic pH in a phosphate buffer ÉÎ ÖÉÔÒÏ46. To recapitulate this 

conversion in cells, we treated HCT116 cells with DMSO/SNP/GSH and 2.5 M Pojamide with and without 

SNP/GSH. For each condition, total NAD+/NADH levels remained the same, but Pojamide in the presence of 

SNP/GSH led to an increase in NAD+ levels; similar to those obtained with synthetic Fe(III)-Poj. In contrast, 

Pojamide treatment alone decreased NAD+ levels (Figure 6F).  

 

In order to correlate this increase in NAD+ with oxidative stress, reactive oxygen species (ROS) levels were 

determined in HCT116 cells treated with Pojamide, the non-transition metal-based HDAC3i RGFP966, and 

other transition metal-based compounds JAHA and ruthenocene. Indeed, without SNP/GSH, both ferrocene-

ligands Pojamide and JAHA caused an induction in ROS; an effect documented with other ferrocene-ligands 

such as ferrocifens and aminoferrocene prodrugs, which produce quinone methides, and in the latter case, 

ferrocenium catalysts for ROS production, in the absence of SNP47,48. DMSO, RGFP966 and ruthenocene were 

assayed and showed no ROS induction without SNP/GSH. In the presence of SNP/GSH, ROS levels increased 

by 2.5-fold with and without RGFP966 and, interestingly, all other conditions with SNP/GSH, Pojamide, 

JAHA and ruthenocene, led to greater ROS levels with Pojamide displaying the most significant increase, 3.3-

fold, despite co-treatment with excess GSH (Figure 6G). 

 



 

 
Figure 7. A) HCT116 colony formation assays; % Colony formation (B) (normalised to DMSO control) was 
quantitated manually and the average ± S.D. was plotted. The t-test statistical module of Prism 6.0 was used 
to determine p-values (ns (not statistically significant): P > 0.05; *: P ≤ 0.05; **: P ≤ 0.01; ***: P ≤ 0.001). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Model for the enhanced redox-triggered cytotoxicity of Pojamide. 
 
With cellular validation of Fe(III)-Poj generation, we tested our system in the HCT116 colony formation as-

say (Figures 7A,B). Pojamide alone caused a significant decrease in colony formation, which was enhanced 

by addition of SNP/GSH; 27 and 53% inhibition respectively. At 4 M, RGFP966, with and without SNP/GSH, 

displayed a 10 – 15% reduction in colony formation; however, like Pojamide, both ferrocenium salts were 

less effective without SNP/GSH. In combination with SNP/GSH, Fe(III)-Poj and Fe(III)Cp2PF6 caused a slight, 

about 10%, reduction in colony formation (Figure 7A,B). Interestingly, colonies resulting from treatment 

with ferrocenium salts and SNP/GSH were larger, but overall fewer colonies formed; a result similar to 

RGFP966 treatment. Although the cytotoxicity of ferrocenium salts is well documented, their activity is 

~100-fold reduced compared to Pojamide39, perhaps due to limited membrane permeability, and explains 

their meagre inhibitory activities at the 4 and 20 M concentrations tested. 

 

Conclusions 



 

In summary, the SNP/GSH combination treatment is an ideal system for increasing the intracellular ferroce-

nium concentration from a Pojamide precursor. Also, when Fe(III)-Poj is reduced back to the Fe(II) species, 

it would be available to act upon HDACs. Due to having two separate modes of action, one which is SNP/GSH-

dependent, Pojamide is advantageous compared to other similarly potent HDACis: its cytotoxicity is en-

hanced by its facile conversion to the cytotoxic Fe(III) species in cells, whilst the reduced species inhibits 

cellular invasion through potently targeting HDAC3 and proliferation, to a lesser extent, due to its low mi-

cromolar HDAC1 inhibitory activity (Figure 8). Lastly, co-treatments of intravenous SNP injection along with 

Pojamide administration might offer a highly efficacious strategy for managing some colon carcinomas; a 

strategy that might have broader, generalizable applications when used with pharmacologically distinct 

Fe(II)Cp2-containing drugs (ÅȢÇȢ aminoferrocenes, ferrocifens, ferroquines).47-50 Current studies are looking 

at ruthenium-based HDACis and will be reported in due course.  

 
Experimental. 

Solvents and reagents were purchased from commercial suppliers and were used without purification. Fer-

rrocenylamine was purchased from TCI, UK, and used as such. All reactions were performed in a fume hood. 

NMR spectra were recorded on Varian 500 MHz or 400 MHz spectrometers and chemical shifts are reported 

in ppm, usually referenced to TMS as an internal standard. LCMS were performed by Shimadzu LCMS-2020 

equipped with a Gemini® 5µm C18 110Å column and percentage purities were ran over 30 minutes in wa-

ter/acetonitrile with 0.1% formic acid (5 min at 5%, 5%-95% over 20 min, 5 min at 95%) with the UV de-

tector at 254 nm. High-resolution mass spectrometry (HRMS) was performed by the EPSRC National Mass 

Spectrometry Facility, University of Swansea. Elemental analyses were conducted by Stephen Boyer (London 

Metropolit an University). FT-IR were recorded on a PerkinElmer Spectrum Version 10.03.06.  

 

Tert -butyl-2-(6-oxo-6-phenylamino)hexanamido)ferrocenyl carbamate 1a.  

6-Oxo-6-(ferrocenylamino)hexanoic acid14 (493.6 mg, 1.5 mmol, 1 equiv.) and N-Boc-o-phenylenediamine 

(343.4 mg, 1.65 mmol, 1.1 equiv.) were dissolved in dichloromethane (18 mL). To this triethylamine (1.17 

mL, 9 mmol) was added and the mixture was cooled in an ice bath. Next, propane phosphonic acid anhydride 

(T3P) (50% solution in DMF, 1.38 mL, 1.1 mmol) was added and the reaction mixture was allowed to warm 

up to room temperature overnight. Then the mixture was poured into a saturated solution of K2CO3, stirred 

for 30 min. and extracted into CH2Cl2 (DCM). The organic layer was dried (MgSO4), filtered and evaporated 

in vacuo. The residue was purified by trituration with DCM to give an orange solid (576.3 mg, 74%). Crystal-

lization by solvent evaporation of DCM provided yellow crystals. 1H NMR (DMSO-d6, 500 MHz): d = 9.44 (1H, 

s, NH), 9.22 (1H, s, NH), 8.31 (1H, s, NH), 7.53 (1H, d, J=7.8 Hz, CHAr), 7.41 (1H, d, J=7.8 Hz, CHAr), 7.12-7.04 

(1H, m, CHAr), 7.06 (1H, d, J=7.8 Hz, CHAr), 4.57 (2H, s, 2CH (Cp)), 4.08 (5H, s, unsusbst. Cp), 3.93 (2H, s, 2CH 

(Cp)), 2.37 (2H, d, J=8.3 Hz, CH2), 2.19 (2H, t, J=6.1 Hz, CH2), 1.65-1.56 (4H, m, 2CH2), 1.45 (9H, s, 3CH3). 13C 



 

NMR (DMSO-d6, 126 MHz ): d = 171.0, 153.5, 130.1, 125.4, 125.3, 124.3, 124.1, 96.1, 79.8, 69.2, 64.1, 61.1, 

36.2, 28.7, 28.5, 25.3. 

 

N1-(2-Aminophenyl)-N6-ferrocenyladipamide 1b. The previous compound, tert-butyl-2-(6-oxo-6-(phe-

nylamino)hexanamido)ferrocenylcarbamate, (520 mg, 1.00 mmol, 1 equiv.) was suspended in dichloro-

methane (40 mL) and MeOH (4 mL). To this mixture 4N HCl/dioxane (8 mL) was added and the mixture was 

stirred at room temperature overnight. The volatiles were removed in vacuo, then sat. Na2CO3 (aq.) was 

added to the residue and the mixture was sonicated. The precipitate was collected by suction and washed 

on the frit with water, dried, tritura ted with CH2Cl2 to give the title compound as a brown solid (318 mg, 

76%). 1H NMR (DMSO-d6): 9.21 (1H, s, NH), 9.09 (1H, s, NH), 7.15 (1H, d, J=7.8 Hz, CHAr), 6.78-6.73 (1H, m, 

CHAr), 6.70 (1H, dd, J=7.8, 1.4 Hz, CHAr), 6.53 (1H, dd, J=7.8, 1.4 Hz, CHAr), 4.80 (2H, s, NH2), 4.56 (2H, s, 2CH 

(Cp)), 4.08 (5H, s, unsubst. Cp), 3.92 (2H, s, 2CH (Cp)), 2.36-2.32 (2H, m, CH2), 2.25-2.10 (2H, m, CH2), 1.68-

1.54 (4H, m, 2CH2). 13C NMR (DMSO-d6, 126 MHz ): d = 171.4, 171.1, 142.3, 126.1, 125.7, 124.1, 116.6, 116.3, 

96.1, 69.2, 64.1, 61.1, 36.3, 36.1, 25.5. HRMS-ESI (m/z): found 420.1366, calc. for [C22H26FeN3O2]+ 420.1369. 

Anal. calcd (%) for C22H25FeN3O2: C, 63.02; H, 6.01; N, 10.02. Found (%): C, 62.85; H, 6.05; N, 9.84. 

 

Tert-butyl-2-(8-oxo-8-(phenylamino)octanamido) ferrocenylcarbamate 2a. Methyl-8-oxo-8-(ferro-

cenylamino)octanoic acid (215 mg, 0.6 mmol, 1 equiv.) and N-Boc-o-phenylenediamine (137.4 mg, 0.66 

mmol, 1.1 equiv.) were dissolved in dichloromethane (7.7 mL). To this triethylamine (0.5 mL, 3.6 mmol) was 

added and the mixture was cooled in an ice bath. Next, propane phosphonic acid anhydride T3P (50% solu-

tion in DMF, 0.59 mL, 0.66 mmol) was added and the reaction mixture was allowed to warm up to room 

temperature overnight. Then the mixture was poured into saturated solution of K2CO3, stirred for 30 min. 

and extracted into CH2Cl2. The organic layer was dried (MgSO4), filtered and evaporated in vacuo. The residue 

was purified by trituration with DCM to give the orange solid (233.1 mg, 71%). Crystallization by solvent 

evaporation of DCM provided yellow crystals. 1H NMR (DMSO-d6): 9.40 (1H, s, NH), 9.15 (1H, s, NH), 8.26 

(1H, s, NH), 7.54-7.48 (1H, m, CHAr), 7.42-7.35 (1H, m, CHAr), 7.13-7.09 (1H, m, CHAr), 7.08-7.03 (1H, m, 

CHAr), 4.55 (2H, s, 2CH (Cp)), 4.06 (5H, s, unsusbt. Cp), 3.91 (2H, s, 2CH (Cp)), 2.33 (2H, t, J=7.4 Hz, CH2), 2.14 

(2H, t, J=7.4 Hz, CH2), 1.62-1.54 (4H, m, 2CH2), 1.44 (9H, s, 3CH3), 1.38-1.26 (4H, m, 2CH2). 13C NMR (DMSO-

d6, 126 MHz ): d = 171.6, 171.2, 142.3, 126.1, 125.7, 124.1, 116.6, 116.3, 96.1, 69.1, 64.1, 61.0, 39.7, 39.5, 36.4, 

36.2, 29.0, 28.9, 25.7, 25.6.  

 

 N1-(2-Aminophenyl)-N8-ferrocenyloctanediamide 2b (Pojamide) 

Tert-butyl-2-(8-oxo-8-(phenylamino)octanamido)ferrocenyl carbamate (136.8 mg, 0.25 mmol, 1 equiv.) 

was suspended in dichloromethane (10 mL) and MeOH (1 mL). To this mixture 4N HCl/dioxane (2 mL) was 

added and the mixture was stirred at room temperature overnight. The volatiles were removed in vacuo, 

then sat. Na2CO3 (aq.) was added to the residue and the mixture was sonicated. The precipitate was collected 



 

by suction and washed on the frit with water, dried, triturated with CH2Cl2 to give the title compound as a 

brown solid (82 mg, 73%). 1H NMR (DMSO-d6): 9.18 (1H, s, NH), 9.05 (1H, s, NH), 7.14 (1H, dd, J=8.0, 1.5 Hz, 

CHAr), 6.91-6.84 (1H, m, CHAr), 6.70 (1H, dd, J=8.0, 1.5 Hz, CHAr), 6.54-6.48 (1H, m, CHAr), 4.78 (2H, s, NH2), 

4.57 (2H, t, J=1.9 Hz, 2CH (Cp)), 4.08 (5H, s, unsubst. Cp), 3.92 (2H, t, J=1.9 Hz, 2CH (Cp)), 2.31 (2H, t, J=7.4 

Hz, CH2), 2.15 (2H, t, J=7.4 Hz, CH2), 1.68-1.53 (4H, m, 2CH2), 1.35-1.29 (4H, m, 2CH2). 13C NMR (DMSO-d6, 

126 MHz): d = 171.6, 171.2, 142.3, 126.1, 125.7, 124.1, 116.6, 116.3, 96.1, 69.1, 64.1, 61.0, 39.7, 39.5, 36.4, 

36.2, 29.0, 28.9, 25.7, 25.6. HRMS-ESI (m/z): found 448.1675, calc. for [C24H30FeN3O2]+ 448.1682. Anal. Calcd 

(%) for C24H29FeN3O2: C, 64.44; H, 6.53; N, 9.39. Found (%): C, 64.23; H, 6.60; N, 9.29. 

 

Tert-butyl-2-(8-oxo-8-(phenylamino)octanamido) ferroceniumcarbamate tetrafluoroborate, 3a. 

Tert-butyl-2-(8-oxo-8-(phenylamino)octanamido)ferrocenylcarbamate (109.5 mg, 0.2 mmol, 1 equiv.) was 

suspended in dry DCM (5 mL). To this NOBF4 (37.4 mg, 0.32 mmol, 1.6 equiv.) was added. The color of the 

solution changed from yellow to dark brown. Filtration afforded the title compound as a dark brown solid 

(89 mg, 70%). 19F NMR (DMSO-d6): -29.53. 11B NMR (DMSO-d6): -2.56. C29H37BF4FeN3O4: C, 54.92; H, 5.88; N, 

6.62. Found (%): C, 55.08; H, 5.84; N, 6.57. FTIR (cm-1): 992 (BF4-). 

 

N1-(2-Aminophenyl)-N8-ferroceniumoctanediamide tetrafluoroborate, 3b (Fe(III)-Poj). N1-(2-Amino-

phenyl)-N8-ferrocenyloctanediamide (100 mg, 0.2 mmol, 1 equiv.) was suspended in dry DCM (5 mL). To 

this NOBF4 (37.4 mg, 0.32 mmol, 1.6 equiv.) was added. The color of the solution changed from yellow to 

dark brown. Filtration afforded the title compound as a dark brown solid (78 mg, 73%). 19F NMR (DMSO-d6): 

-29.53. 11B NMR (DMSO-d6): -1.34. C24H29BF4FeN3O2: C, 67.12; H, 5.80; N, 9.49. Found (%): C, 66.97; H, 5.84; 

N, 9.31. FTIR (cm-1): 1038 (BF4). 
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