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Robust Feature Extraction via ℓ∞-Norm based
Nonnegative Tucker Decomposition

Bilian Chen, Jiewen Guan, Zhening Li, and Zhehao Zhou

Abstract—Feature extraction plays an indispensable role in
image and video technology. However, it is difficult for traditional
matrix based feature extraction methods to handle massive multi-
dimensional data. This, alongside with the ubiquitous uncertainty
(noise) in real-world data, resulted in many robust tensor based
feature extraction models. However, these existing models did
not consider the worst-case model performance (i.e., the largest
fitting error among all samples), which is critically important
from a robust optimization perspective. In this paper, we propose
a novel robust feature extraction model via ℓ∞-norm based
nonnegative Tucker decomposition. The model is to minimize the
maximum sample fitting error so as to overcome the influence
of data uncertainty. Although the new model is nonconvex
and nonsmooth, we design an effective iterative optimization
algorithm with theoretical guarantee on its convergence for it.
The performance of the new model on five real-world benchmark
object classification and face recognition datasets under various
corruption scenarios are evaluated, and the experimental results
show the excellence of the new model by comparing to many
existing models.

Index Terms—Feature extraction, classification, robust opti-
mization, nonnegative Tucker decomposition, tensors.

I. INTRODUCTION

FEATURE extraction is a fundamental topic in many
applied research areas, such as data mining, machine

learning and pattern recognition, as well as image and video
processing. With the advancement of data acquisition tech-
nology, massive multi-dimensional data in tensor formats are
generated in various realistic scenarios, such as reconstructed
images [1], video data [2], social networks [3], and multi-
channel electroencephalography (EEG) [4]. In the recent
decade, tensor decomposition has become an effective method
for extracting features from multi-dimensional data. Among all
tensor decomposition techniques, Tucker decomposition [5],
which decomposes a tensor into a core tensor and multiple fac-
tor matrices, has attracted the most attention. Due to the nature
of the factorization, the core tensor of Tucker decomposition
is commonly regarded as the extracted features. There are
many Tucker decomposition based feature extraction models
in the literature, such as the multilinear principal component
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analysis (MPCA) [6] and higher-order discriminant analysis
(HODA) [7].

Recently, it has been discovered that the quality of the
extracted features can be further improved by adding prior
data knowledge onto Tucker decomposition. As an exam-
ple, the nonnegativity constraint can be imposed on Tucker
decomposition to obtain better extracted features [8] since
real-world data are usually nonnegative. Similarly, adding
low-rank constraints on Tucker decomposition can also lead
to more informative extracted features [9]–[11]. Moreover,
to ensure that samples in the original data space and the
projected feature space have consistent structural information,
the local geometrical structures of data can also be integrated
into Tucker decomposition [12]–[15]. Although these models
incorporate different types of prior data knowledge, they share
a common trait: The ℓ2-norm (the sum of squared errors) is
adopted to compute the overall fitting error to be minimized.
We denote this class of models as ℓ2-norm based models.

In reality, the observed data are often uncertain. For ex-
ample, one is usually unable to exactly measure the statistics
of a signal, and the observations of different measuring tri-
als often fluctuate. Although the noise inside data is often
inconspicuous, the crucial fact is that, even a slight change
in data can dramatically influence the optimal solutions of
the corresponding optimization problem [16]. This is also the
case for feature extraction due to measurement limitations
or unintentional corruptions of data. In order to avoid this
drawback, several researchers proposed ℓ1-norm (the sum of
non-squared errors) based models, which are generally more
robust than ℓ2-norm based models. Cao et al. proposed an ℓ1-
norm based robust tensor decomposition model [17] for face
clustering. Markopoulos’s team studied various robust Tucker
decomposition models such as ℓ1-Tucker decomposition [18]–
[20], ℓ1-HOOI [21] and ℓ1-HOSVD [22].

In robust optimization theory [16], [23], an effective strategy
to handle data uncertainty is to emphasize the worst-case
model performance, which is neglected by both ℓ2- and ℓ1-
norm based models. Inspired by this idea, in this paper, we
propose a novel ℓ∞-norm based robust nonnegative Tucker
decomposition model for feature extraction. The key idea of
the ℓ∞ model is to minimize the maximum fitting error among
samples so as to suppress the negative effects caused by data
uncertainty (recall that a slight change in data can drastically
influence the optimal solutions), which guarantees that the
fitting errors of all samples are uniformly well-controlled. We
remark that it is clear that this functionality cannot be fulfilled
by commonly-used norms such as ℓ1 norm, ℓ2,1 norm and
nuclear norm, etc. However, the ℓ∞ model admits a nonconvex
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and nonsmooth objective function, which poses challenge on
its optimization. In order to effectively optimize it, we propose
an iterative optimization algorithm based on second-order cone
program (SOCP), and then theoretically prove its convergence
and analyze its computational complexity. The performance
of the proposed ℓ∞ model is tested via image classification
and face recognition problems under various corruption condi-
tions, with comparisons to ℓ1- and ℓ2-norm based nonnegative
Tucker decomposition models and nine classical and state-of-
the-art (SOTA) feature extraction methods. In summary, the
main contributions of the paper are highlighted as follows:
1) We propose a novel ℓ∞-norm based robust nonnegative
Tucker decomposition model for feature extraction. The model
can effectively suppress the negative influence caused by data
uncertainty. The generality of the ℓ∞ model makes it flexible
in extension, such as adding prior data knowledge.
2) We develop an effective iterative optimization algorithm to
solve the ℓ∞ model. We also theoretically show the conver-
gence of the algorithm and analyze its computational com-
plexity. We remark that our algorithm has a clear difference
in comparison with existing iterative updating strategies as a
necessary SOCP based subroutine is also involved here.
3) We design a variety of corruptions to test the effectiveness
and robustness of the proposed ℓ∞ model based on five real-
world benchmark datasets. Experimental results show that our
model has a superior performance over the competitors.

The remainder of the paper is organized as follows. We
briefly overview related work in Section II and introduce
preliminaries in Section III. Then, we formally propose the
ℓ∞ model in Section IV and design its optimization algorithm
in Section V. In Section VI, we perform comprehensive
experiments to test the new model. Finally, we conclude this
paper in Section VII.

II. RELATED WORK

In this section, we review related nonrobust/robust tensor
decomposition based feature extraction methods. Since feature
extraction is a general topic, our review is not only restricted
to Tucker decomposition based methods.

A. Nonrobust Tensor Decomposition based Feature Extraction

Tensor decomposition is an effective and powerful method
to extract features from multi-dimensional data. Phan and
Cichocki [8] imposed orthogonality and nonnegativity con-
straints in HODA [7], and the resulted model showed promis-
ing results in image data and EEG data. Idaji et al. [24]
proposed higher-order spectral regression discriminant anal-
ysis (HOSRDA) model, which transformed HODA into a
regression problem. Jukic et al. [25] proposed a new tensor
decomposition model based on mutual information maximiza-
tion, which can include higher-order statistical information in
data. Li et al. [14] proposed a graph regularized tensor decom-
position model to preserve the local geometrical structures of
data. Yin and Ma [15] adopted the Laplacian eigenmaps [26]
as a regularization term to improve Tucker decomposition,
so as to capture the nonlinear structure of data. In order to
extract features from incomplete tensor data, Shi et al. [27]

proposed a tensor decomposition model that can perform
feature extraction and missing entry estimation simultaneously.
Fu et al. [9] constructed a tensor decomposition based low-
rank sparse representation model by adding low-rank con-
straints on the factor matrices and a sparse constraint on the
core tensor. We remark that low-rankness is an important
objective that has inspired many critical techniques in mod-
ern machine learning such as making deep neural networks
lightweight [28]. Zhou et al. [29] proposed a multiple rank-
R decomposition method to learn compact representations for
dynamic texture video coding. Khokher et al. [30] employed
tensor Tucker decomposition to extract features for dynamic
scene recognition. Liu et al. [31] proposed to jointly optimize
CANDECOMP/PARAFAC (CP) rank and Tucker rank for
low-rank tensor approximation. Xu et al. [32] proposed a
novel reconstruction method for hyperspectral computational
imaging based on collaborative Tucker3 tensor decomposition.
He et al. [33] proposed a streaming tensor ring decomposition
based method for visual data recovery. These feature extraction
methods also have applications in other fields. For example,
Tang et al. further studied tensor completion based methods for
social-aware image tag refinement [34] and large-scale social
image retagging [35]. Lebedev et al. [36] proposed a simple
method for accelerating the computation of convolutional
neural networks based on fine-tuned tensor CP decomposition.
However, the aforementioned methods mainly focus on adding
different prior data knowledge on tensor decomposition to
improve the quality of the extracted features, but ignore the
uncertainty (noise) in data by using the ℓ2-norm based error.

B. Robust Tensor Decomposition based Feature Extraction

To extract features from noisy data, researchers proposed
many ℓ1-norm based tensor decomposition models in recent
years. It turns out that the ℓ1-norm is more robust to noise
than the ℓ2-norm. Zhang and Ding [37] replaced the ℓ2-norm
of the orthogonal Tucker decomposition by the ℓ1-norm to
suppress the impact caused by data noise. Markopoulos et
al. [19] designed two efficient algorithms for the ℓ1-norm
based Tucker2 model [18]. Markopoulos et al. [22] proposed
the ℓ1-norm based HOSVD model and Chachlakis et al. [21]
proposed the ℓ1-norm based HOOI model. Wu [38] developed
a streaming tensor low-rank representation method with error
term regularized by ℓ1-norm, which is capable of handling
dynamic data. On the other hand, tensor singular value decom-
position (t-SVD) [39] based robust feature extraction models
also attracted much attention. Lu et al. [40] proposed the tensor
robust principal component analysis (TRPCA) model, which
simultaneously optimizes the t-SVD based nuclear norm of
the reconstructed data and the ℓ1-norm of errors. However,
TRPCA cannot effectively deal with outliers, as it uses the
ℓ1-norm instead of the ℓ2,1-norm. To this end, Zhou and
Feng [41] proposed the outlier-robust tensor PCA (ORTPCA)
that adopts the ℓ2,1-norm to compute the error. Besides, Jia
et al. [42] adopted the low-rank tensor learning with ℓ2,1-
norm regularization to recover ‘missing’ knowledge in cross-
modality action recognition. Chen et al. [43] proposed to learn
the low-rank tensor representation and affinity matrix in a joint
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manner, and imposed an ℓ2,1-norm based regularizer on top
of them for alleviating the negative effects led by noise and
outliers. Jia et al. [44] designed a specific tensor low-rank
representation method with ℓ2,1-norm regularization, which
is tailored for multi-view spectral clustering. Jia et al. [45]
proposed a low-rank tensor representation method with ℓ2,1-
norm regularization for semi-supervised subspace clustering,
which globally explores the information of supervision. Be-
yond the above norms, there are also other norms applied to
enhance robustness. For example, Liu et al. [46] employed the
ℓp-regression where p ∈ (0, 2) to increase the outlier resistance
for low-rank tensor completion.

We highlight that [43], [44], [46] are the most closely related
works to ours that were published in this journal. However,
among all the above methods, no work has considered the
ℓ∞-norm to enhance system robustness by maintaining the
worst-case model performance, which is the most distinctive
part of our model. We also stress here that the ℓ∞-norm used
in our scheme has also been adopted in other fields to enhance
robustness, such as deep learning [47]–[49], adversarial train-
ing [50], control theory [51], etc. However, as these fields are
not quite related to tensor factorization, we do not elaborate
on them here.

III. PREPARATION

A. Notations and Tensor Operations

Throughout this paper, we uniformly use calligraphic letters,
capital letters, boldface lowercase letters, and non-bold low-
ercase letters to denote tensors, matrices, vectors, and scalars.
For example, a tensor G, a matrix A, a vector y, and a scalar i.
We use subscript to denote an element of a tensor, a matrix, or
a vector, e.g., Gijk as the (i, j, k)th entry of a third-order tensor
G, Aij as the (i, j)th entry of a matrix A, yi as the ith entry
of a vector y. The identity matrix in Rd×d is denoted by Id.
The Kronecker product is denoted as ⊗ and the element-wise
product is denoted by ∗. For a matrix X = [x1, . . . ,xn] ∈
Rm×n, vec(X) = [xT

1 , . . . ,x
T
n ]

T ∈ Rmn. For a dth order
tensor G ∈ Rn1×n2×···×nd with d ≥ 3, we denote its mode-k
matricization (or unfolding) as G(k) ∈ Rnk×

∏
1≤i≤d, i ̸=k ni , in

which the (i1, i2, . . . , id)th entry of the tensor G is mapped to
the (ik, j)th entry of the matrix G(k) where

j = 1 +
∑

1≤s≤d, s ̸=k

(is − 1)
∏

1≤t≤s−1, t ̸=k

nt.

The k-rank of G, denoted by rankk(G), is defined as the rank
of G(k). A dth order tensor G with rankk(G) = rk for k =
1, 2, . . . , d is called a rank-(r1, r2, . . . , rd) tensor. The mode-k
product of G by a matrix U ∈ Rm×nk , denoted by G ×k U ∈
Rn1×···×nk−1×m×nk+1×···×nd , is defined by

(G ×k U)i1...ik−1jik+1...id =

nk∑
ik=1

Gi1...idUjik . (1)

It is easy to verify that

Y = G ×k U ⇐⇒ Y(k) = UG(k).

The Frobenius norm of a tensor is defined as

∥G∥F :=

(
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1

Gi1i2...id
2

)1/2

.

For more details about tensor operations, the readers are
referred to the review paper [52].

B. Nonnegative Tucker Decomposition

Nonnegative Tucker decomposition (NTD) [53] is a com-
monly used model for feature extraction. Given a data sample
X (0) ∈ Rn1×n2×···×nd and the dimension of the core tensor
r1× r2×· · ·× rd, NTD of X (0) is the following optimization
model

min
G(0),A(j)

∥∥X (0) − G(0) ×1 A
(1) ×2 A

(2) · · · ×d A
(d)
∥∥
F

s.t. G(0) ≥ 0, {A(j)}dj=1 ≥ 0, (2)

where G(0) ∈ Rr1×r2×···×rd is the core tensor for X (0), A(j) ∈
Rnj×rj is the mode-j factor matrix and the mode-j product
×j is defined in (1) for j = 1, 2, . . . , d.

C. Workflow of Feature Extraction from Tensor Data via NTD

We here briefly introduce the workflow of feature extraction
introduced in the literature [54], which will also be used in this
paper. Consider a training data tensor X ∈ Rn1×n2×···×nd×k

stacked by k multiway training samples {X (i)}ki=1 belonging
to c categories, and a test data tensor Y ∈ Rn1×n2×···×nd×t

stacked by t multiway test samples {Y(i)}ti=1 also belonging
to the same c categories. The goal of feature extraction via
NTD is to learn feature extractors {A(j)}dj=1 from the training
data X via the NTD model (or its variants) and apply the
learned feature extractors to extract features from the test data
Y [54]. This procedure is also vividly illustrated in Figure 1.

D. Feature Extraction via ℓ2-Norm and ℓ1-Norm based NTD

Consider a training data tensor X ∈ Rn1×n2×···×nd×k. The
traditional ℓ2-norm based feature extraction model aims to
solve the following optimization problem based on the Tucker
decomposition model (2)

min
G(i),A(j)

∑k
i=1

∥∥X (i) − G(i) ×1 A
(1) · · · ×d A

(d)
∥∥2
F

s.t. {G(i)}ki=1 ≥ 0, {A(j)}dj=1 ≥ 0,
(3)

where G(i) ∈ Rr1×r2×···×rd is the core tensor of X (i) for
i = 1, 2, . . . , k, and A(j) ∈ Rnj×rj is the mode-j factor
matrix for j = 1, 2, . . . , d. For brevity, we call the model (3)
to be the ℓ2 model in this paper. As we can see, the ℓ2 model
computes the sum of all squared errors, for which the attention
(weight) paid to different samples is the same. Due to the
square involved, the model is sensitivity to data noise. But
thanks to the smoothness of the objective function, the ℓ2
model is relatively easy to optimize.

In a similar vein, the ℓ1-norm based feature extraction model
takes the following form

min
G(i),A(j)

∑k
i=1

∥∥X (i) − G(i) ×1 A
(1) · · · ×d A

(d)
∥∥
F

s.t. {G(i)}ki=1 ≥ 0, {A(j)}dj=1 ≥ 0,
(4)
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Fig. 1: Workflow of feature extraction from tensor data via nonnegative Tucker decomposition.

which is called the ℓ1 model in this paper for short. In contrast
to the ℓ2 model, the ℓ1 model directly computes the sum of all
non-squared errors. This increases the robustness of the model
to noise. However, we observe that the ℓ1 model also pays
the same attention to different samples. Besides, we also see
that the ℓ1 model introduces nonsmoothness onto its objective
function, which increases optimization difficulty.

IV. ROBUST FEATURE EXTRACTION VIA ℓ∞-NORM BASED
NONNEGATIVE TUCKER DECOMPOSITION

As discussed above, the ℓ2 model (3) is relatively easy to
solve since the objective function is smooth but it is sensitive
to data noise which directly affects the quality of the extracted
features. The ℓ1 model (4) can mitigate the disadvantage of
the ℓ2 model to some extent by using the ℓ1-norm but it
still underestimates the importance of different samples since
it pays the same attention to every sample. This motivates
us to develop new methods to emphasize more important
samples so as to further enhance the ability for handling data
uncertainty in feature extraction. We resort to the techniques in
robust optimization theory [16] to make an improvement. The
philosophy of robust optimization is to guarantee that even
in the worst-case scenario the model is still effective. Such
an idea exactly falls into our needs and suggests to control
the largest fitting error of Tucker decomposition among all
samples, i.e., max1≤i≤k ∥X (i) − G(i) ×1 A

(1) · · · ×d A
(d)∥F .

Keeping the notations defined in Section III-D, the above
discussion leads us to the following ℓ∞ model

min
G(i),A(j)

max
1≤i≤k

∥∥X (i) − G(i) ×1 A
(1) · · · ×d A

(d)
∥∥
F

s.t. {G(i)}ki=1 ≥ 0, {A(j)}dj=1 ≥ 0.
(5)

We remark that, distinct from the ℓ2 and ℓ1 models mentioned
above, the attention in (5) has been paid to the sample with the
largest fitting error, which exactly makes up the shortage in the
ℓ2 and ℓ1 models. As a consequence, in the ℓ∞ model, even for
the worst data sample its Tucker decomposition performance
can be guaranteed and the robustness of the whole feature
extraction process can thus be increased.

Although the ℓ∞ model is promising in terms of its model
functionality, its objective function is nonsmooth and this
makes the optimization hard. In the next section, we design
an effective iterative algorithm based on SOCP to solve the
ℓ∞ model.

V. ALGORITHM AND ANALYSIS

A. Solution Method

The proposed ℓ∞ model (5) is nonconvex and its objective
function is nonsmooth, making it difficult to be solved directly.
Therefore, we propose to solve G(i)’s and A(j)’s iteratively and
alternatively. First of all, we decompose (5) into the following
two subproblems.

1) Update G(i)’s by fixing A(j)’s: This is to solve a set of
problems in the following form

min
G(i)

∥∥X (i) − G(i) ×1 A
(1) · · · ×d A

(d)
∥∥2
F

s.t. G(i) ≥ 0,
(6)

for i = 1, 2, . . . , k. Note that the square added to the objective
function of (6) will not affect the optimal solutions of (6) but
make the optimization process easier. Since (6) has the same
format for every i, we may combine all these problems into a
whole, as a simpler form below in the analysis

min
G

∥∥X − G ×1 A
(1) · · · ×d A

(d)
∥∥2
F

s.t. G ≥ 0,
(7)

where G ∈ Rr1×r2×···×rd×k is obtained by stacking G(i)’s.
It is not difficult to show that the solution to (7) gives the
solutions to (6) for all i = 1, 2, . . . , k in one hit. The updating
rule to solve (7) can be derived from its nonnegative matrix
factorization (NMF) counterpart, as

G ← G ∗ X ×1 A
(1)T · · · ×d A

(d)T

G ×1 A(1)TA(1) · · · ×d A(d)TA(d)
. (8)

2) Update A(j)’s by fixing G(i)’s: This is to solve a set of
problems in the following form

min
A(j)

max
1≤i≤k

∥∥X (i) − G(i) ×1 A
(1) · · · ×d A

(d)
∥∥
F

s.t. A(j) ≥ 0,
(9)

for j = 1, 2, . . . , d. Problem (9) can be rewritten in the matrix
form as

min
A(j)

max
1≤i≤k

∥∥∥X(i)
(j) −A(j)G

(i)
(j)A

(\j)T
∥∥∥
F

s.t. A(j) ≥ 0,

where A(\j) := A(d) ⊗ · · · ⊗ A(j+1) ⊗ A(j−1) ⊗ · · · ⊗ A(1).
This model can then be equivalently transformed to an SOCP

min
A(j)

tj

s.t.
∥∥∥X(i)

(j) −A(j)G
(i)
(j)A

(\j)T
∥∥∥
F
≤ tj i = 1, 2, . . . , k

A(j) ≥ 0. (10)
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Algorithm 1: Optimization algorithm for the ℓ∞ model

1 Input: A training data tensor X ∈ Rn1×n2×···×nd×k

with intrinsic ranks {r1, r2, . . . , rd} (which can be
estimated by Algorithm 2) and a convergence
threshold ϵ.

Output: Feature extractors {A(j)}dj=1.
2 Randomly initialize G ∈ Rr1×r2×···×rd×k ≥ 0 and

A(j) ∈ Rnj×rj ≥ 0 for j = 1, 2, . . . , d;
3 while change in objective function ≥ ϵ do
4 Update G by (8);
5 for j = 1, 2, . . . , d do
6 Update A(j) by solving (10);

7 return {A(j)}dj=1.

Recall that the SOCP is a widely-used convex optimization
model and can be solved quickly by existing convex program
solvers, such as MOSEK [55] to be used in this paper.

In summary, the whole optimization algorithm to solve the
ℓ∞ model is illustrated in Algorithm 1. Specifically, we update
the core tensor in Line 4 and the factor matrices in Lines 5-6.

B. Convergence Analysis
We now analyze the convergence of Algorithm 1 in this

part. For convenience, we denote the objective function of (5)
as J (G, A(1), . . . , A(d)).

Theorem V.1. J (G, A(1), . . . , A(d)) is nonnegative and non-
increasing in each iteration of Algorithm 1. Therefore,
J (G, A(1), . . . , A(d)) will converge to a local minimum.

Proof. It is obvious that J (G, A(1), . . . , A(d)) is bounded be-
low by zero as it is the maximum of several Frobenius norms.
We next show that J (G, A(1), . . . , A(d)) is nonincreasing in
each iteration of Algorithm 1 by two parts.
1) Update G: Since the updating rule of G is directly derived
from its NMF counterpart, the convergence proof of NMF [56]
can be easily applied to our case. We omit the proof here for
the interest of space and conclude that

J (Gt+1, A
(1)
t , . . . , A

(d)
t ) ≤ J (Gt, A(1)

t , . . . , A
(d)
t ). (11)

2) Update A(j)’s: Since we update A(j) by solving an SOCP
problem to obtain an optimal solution, it is guaranteed that
A

(j)
t+1 = argminA≥0 J (Gt+1, A

(1)
t+1, . . . , A

(j−1)
t+1 , A,A

(j+1)
t ,

. . . , A
(d)
t ). By the optimality of A

(j)
t+1 to the SOCP and the

feasibility of A(j)
t to the SOCP, it naturally holds that

J (Gt+1, A
(1)
t+1, . . . , A

(j−1)
t+1 , A

(j)
t+1, A

(j+1)
t , . . . , A

(d)
t )

≤J (Gt+1, A
(1)
t+1, . . . , A

(j−1)
t+1 , A

(j)
t , A

(j+1)
t , . . . , A

(d)
t ).

As a result, when all A(j)’s have been updated, we shall have

J (Gt+1, A
(1)
t+1, . . . , A

(d)
t+1) ≤ J (Gt+1, A

(1)
t , . . . , A

(d)
t ). (12)

Combining (11) and (12), we have

J (Gt+1, A
(1)
t+1, . . . , A

(d)
t+1) ≤ J (Gt, A

(1)
t , . . . , A

(d)
t ),

which implies that the objective function of (5) is non-
increasing in each iteration. This further shows that
J (G, A(1), . . . , A(d)) will converge to a local minimum.

C. Complexity Analysis

In this part, we analyze the computational complexity of
Algorithm 1. Recall that d is the number of modes of the
tensor data, k is the number of data samples, and nj and
rj are the dimensions of the jth mode of the data and the
core tensor, respectively. Here we assume that rj ≪ nj and
rj ≪

∏
1≤i≤d, i ̸=j ni for j = 1, 2, . . . , d, which usually hold

in reality.

Theorem V.2. Given an acceptable duality gap ϵ from an
SOCP solver, the computational complexity for one iteration
of Lines 4-6 in Algorithm 1 is O(d(

∏d
i=1 ni)

3.5k3.5 ln(ϵ−1)).

Proof. The proof consists of two parts.
1) Update G: This subproblem involves many tensor and
matrix multiplications. Computing A(j)TA(j) costs O(njrj

2)
time for j = 1, 2, . . . , d. Computing the numerator and the
denominator of (8) costs O(k

∑d
i=1(

∏i
j=1 rj)(

∏d
j=i nj)) and

O(k(
∏d

j=1 rj)
∑d

i=1 ri) time, respectively. Since ri ≪ ni for
i = 1, 2, . . . , d, the total time complexity of updating G is
O(
∑d

i=1 niri
2 + k

∑d
i=1 ri(

∏i−1
j=1 rj)(

∏d
j=i nj)).

2) Update A(j)’s: Let us denote Ψi = Inj
⊗A(\j)G

(i)T
(j) and

then equivalently rewrite (10) as

min
vec(A(j)T )

tj

s.t.
∥∥∥Ψi vec

(
A(j)T

)
− vec

(
X

(i)T
(j)

)∥∥∥
2
≤ tj i = 1, . . . , k

vec
(
A(j)T

)
≥ 0.

In order to formulate the above SOCP model, A(\j)G
(i)T
(j)

needs to be computed in O((
∏

1≤i≤j, i ̸=j ni)(
∏d

i=1 ri)) time
for j = 1, 2, . . . , d. Therefore, the total time complexity to
compute {Ψi}ki=1 is O(k(

∏
1≤i≤d, i ̸=j ni)(

∏d
i=1 ri+ rjnj

2)).
This SOCP has k + njrj second-order cone constraints, each
having a dimension of

∏d
i=1 ni+1 or 2. According to the im-

plementation in MOSEK for solving SOCPs [57], [58], given
an acceptable duality gap ϵ > 0, the computational complexity
for updating A(j) is O((k(

∏d
i=1 ni +1)+2njrj)

3.5 ln(ϵ−1)),
reduced to be O((

∏d
i=1 ni)

3.5k3.5 ln(ϵ−1)). This easily dom-
inates the previous computation complexity for {Ψi}ki=1.
Therefore, the total computational complexity for updating
{A(j)}dj=1 is O(d(

∏d
i=1 ni)

3.5k3.5 ln(ϵ−1)).
Combining the above two steps of analysis, the computa-

tional complexity for one iteration of Lines 4-6 in Algorithm 1
isO(d(

∏d
i=1 ni)

3.5k3.5 ln(ϵ−1)) as the complexity of updating
G is dominated by the one of updating A(j)’s.

If we let
∏d

j=1 nj = n (the total number of elements in
a sample), then the above computational complexity will be
O(dn3.5k3.5 ln(ϵ−1)).

VI. EXPERIMENTS

In this section, we evaluate the performance of the proposed
ℓ∞ model following the workflow introduced in Section III-C.
The experiments are implemented in MATLAB 2020b, and
all experiments are run on a Ubuntu server with 3.70-GHz
i9-10900K CPU, 64-GB main memory. We use MATLAB
Tensor Toolbox 2.6 [59] whenever tensor operations are called.
To solve the SOCP (10), we use MOSEK [55], a package
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for specifying and solving convex optimization problems. The
source code of the proposed ℓ∞ model is publicly available
at https://github.com/zhzhouxmu/linf.

A. Datasets

We adopt five real-world benchmark object classification
and face recognition datasets as below. These datasets are
standard and have been extensively used in related fields.
• COIL1: COIL is a gray image database consisting of 1,440
images of 20 different objects each of which is associated with
72 images with different rotation degrees. For each object, we
select 8 images for training and 64 images for testing.
• YALE2: YALE face database contains 165 grayscale images
of 15 individuals, each of which has 11 images, showing
changes in lighting conditions and facial expressions (e.g.,
normal, happy, etc.). For each individual, we select 8 images
for training and 3 images for testing.
• UMIST3: The UMIST face database consists of 565 images
of 20 people, where everyone covers a series of poses. Re-
search objects in UMIST include race, gender and appearance.
Since the numbers of images of different research objects are
different, about one quarter of the images of each object are
used for training and the remaining three quarters are used for
testing.
• COIL-1004: COIL-100 is similar to COIL, and consists of
7,200 images of 100 different objects. For each object, we
select 5 images for training and 67 images for testing.
• YALE-B5: YALE-B is similar to YALE, and contains 2414
grayscale images of 38 individuals. For each individual, we
select 20 images for training and leave the remaining for
testing.

For all the above datasets, we resize each image to 32× 32
and then normalize each pixel to lie within 0 and 1 by dividing
each pixel by the maximum one. The statistics of the datasets
are listed in Table I, including the divided training and test
data.

B. Noise Design

In this part, we design a variety of noise disturbance for the
five datasets. The notations and corresponding explanations
about the noise types are given as follows6.

1) Noise for COIL: Four types of noise are designed for
the COIL dataset, as described below.
• ms-n1-n2-n3 (resp. ms-n1-n2-n3-n4): In every eight images
of the training set, n1%, n2% and n3% (resp. n1%, n2%, n3%
and n4%) pixels are removed from the first three (resp. four)
images, respectively.
• sp-n1-n2-n3 (resp. sp-n1-n2-n3-n4): In every eight images
of the training set, the first three (resp. four) images are

1See https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php.
2See http://vision.ucsd.edu/content/yale-face-database.
3See https://see.xidian.edu.cn/vipsl/database Face.html.
4See https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php.
5See http://vision.ucsd.edu/∼leekc/ExtYaleDatabase/ExtYaleB.html.
6We remark there that our proposed scheme is not designed for handling

outliers in data, and therefore we do not design experiments to test its anti-
outlier functionality.

corrupted by the salt and pepper noise with density n1%,
n2% and n3% (resp. n1%, n2%, n3% and n4%), respectively.

2) Noise for YALE: Two types of noise are designed for
the YALE dataset, as described below.
• ms-n1-n2-n3: In every eight images of the training set, n1%,
n1%, n2%, n2%, n3% and n3% pixels are removed from the
first six images, respectively.
• sp-n1-n2-n3: In every eight images of the training set, the
first six images are corrupted by the salt and pepper noise with
density n1%, n1%, n2%, n2%, n3% and n3%, respectively.

3) Noise for UMIST: Two types of noise are designed for
the UMIST dataset, as described below.
• ms-n1-n2-n3: In 45 randomly selected images of the train-
ing set, n1%, n2% and n3% pixels are removed from 25, 15
and 5 images, respectively.
• sp-n1-n2-n3: In 45 randomly selected images of the training
set, 25, 15, and 5 images are corrupted by the salt and pepper
noise with density n1%, n2% and n3%, respectively.

4) Noise for COIL-100: Two types of noise are designed
for the COIL-100 dataset, as described below.
• ms-n1-n2-n3: In every five images of the training set, n1%,
n2% and n3% pixels are removed from the first three images,
respectively.
• sp-n1-n2-n3: In every five images of the training set, the
first three images are corrupted by the salt and pepper noise
with density n1%, n2% and n3%, respectively.

5) Noise for YALE-B: Two types of noise are designed for
the YALE-B dataset, as described below.
• ms-n1-n2-n3: In every twenty images of the training set,
n1%, n2%, n3% pixels are removed from the first to fifth, the
sixth to tenth, and the eleven to fifth images, respectively.
• sp-n1-n2-n3: In every twenty images of the training set, the
first to fifth, the sixth to tenth, and the eleven to fifth images
are corrupted by the salt and pepper noise with density n1%,
n2% and n3%, respectively.

6) Noisy Image Generation: In summary, (a) on the COIL
dataset, we generate 34 different noisy scenarios, (b) on the
UMIST, YALE, COIL-100, YALE-B datasets, we generate 18
different noisy scenarios for each dataset.

These generated noisy data will be used in the subsequent
experiments (please refer to Table II to Table VI for their
specifications).

C. Implementation Details

1) Rank Estimation: Since our model is based on Tucker
decomposition, we have to designate the size of the core tensor
G. In our case, if we know a priori that the data tensor is rank-
(r1, r2, . . . , rd, k), then the core tensor G shall be defined in
Rr1×···×rd×k. This, however, is often not available in reality,
and rank estimation has to be conducted. In this paper, we
adopt the traditional method introduced in [8] to estimate
the rank of the data tensor. In short, ri is estimated by the
number of dominant eigenvalues of X(i)X

T
(i) ∈ Rni×ni . This

rank estimation algorithm is described in Algorithm 2, where
diag(·) is used to extract the diagonal elements of a square
matrix to be a vector.

https://github.com/zhzhouxmu/linf
https://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://vision.ucsd.edu/content/yale-face-database
https://see.xidian.edu.cn/vipsl/database_Face.html
https://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
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TABLE I: Statistics of the five real-world datasets

Dataset COIL YALE UMIST COIL-100 YALE-B
Samples 1,440 165 565 7,200 2,414
Classes 20 15 20 100 38
Image size 32× 32 32× 32 32× 32 32× 32 32× 32
Training tensor size 32× 32× 160 32× 32× 120 32× 32× 150 32× 32× 500 32× 32× 760
Test tensor size 32× 32× 1, 280 32× 32× 45 32× 32× 415 32× 32× 6, 700 32× 32× 1, 654

Algorithm 2: Rank estimation algorithm [8]

Input: A data tensor X ∈ Rn1×n2×···×nd×k.

Output: Estimated rank of X .
1 for i = 1, 2, . . . , d do
2 Compute X(i)X

T
(i) = UΛUT (eigen-decomposition);

3 Compute λ as sorted diag(Λ) in noninceasing order;

4 Compute ri as the minimum r with
∑r

j=1 λj∑ni
j=1 λj

≥ 98%;

5 return {r1, r2, . . . , rd}.

2) Performance Measurements: We measure the quality of
the extracted features by their classification results. Here we
use two classical classifiers, k-nearest neighbors (k-NN) [60]
and multi-class support vector machine (SVM) [61], as well
as an advanced classifier, ReLU neural network [62]. Their
parameter settings are introduced as follows. We tune the
parameters of the two classical classifiers by a grid-search
strategy with a three-fold cross-validation. Then we tune k for
the k-NN classifier in the search space for k = 1, 2, . . . , 10 and
tune c and γ for the SVM classifier in the same search space,
i.e., {2i}7i=−7 × {2i}7i=−7. For the ReLU neural network, we
set the number of hidden layer as 1, the dimension of the
hidden layer as 100, the ℓ2 regularization parameter as 0.0001,
the learning rate as 0.001, the momentum parameter as 0.9,
and we use the well-known LBFGS [63] method to train the
neural network. The classification accuracy, defined as the
fraction of the correct label predictions, is used as an indicator
of the classification performance. The higher the classification
accuracy, the better the feature extraction performance.

D. Competitor Choices
We remark here that for a fair comparison in the experi-

ments, we mainly focus on comparing with basic competitors
instead of the most cutting-edge ones (specific competitors
will be introduced in due course). This is due to the following
two reasons.
• Because our proposed ℓ∞ model is only a backbone, we
can simply use it to replace the one of any more advanced
method having a similar basic architecture. Therefore, if our
scheme has a superior performance over basic methods, then
hopefully a similar improvement shall also be observed if our
backbone is adopted in more advanced methods instead.
• Most recent more advanced methods involve regularizers,
but ours do not, and therefore the fairness would be impaired
if we forcibly compare with them. Besides, on the other hand,
it is also not appropriate to remove their regularizers and then
compare, and moreover, in many cases, if we do remove them,
the resulting ablated methods would simply degenerate to the
ℓ1 or ℓ2 model to be compared in the next subsection.

TABLE II: Comparisons on COIL with ℓ1 and ℓ2 models

Noise k-NN ACC SVM ACC ReLU-NN ACC
ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞

original 0.9208 0.8906 0.8891 0.9406 0.9065 0.9198 0.8938 0.8482 0.8576
ms-5-10-20 0.8560 0.8560 0.8810 0.9234 0.9242 0.9388 0.8516 0.8591 0.9128
ms-10-10-10 0.8435 0.8240 0.8990 0.9234 0.8758 0.9500 0.8641 0.8349 0.9141
ms-10-20-30 0.8224 0.7852 0.8406 0.9036 0.9133 0.9466 0.8836 0.8714 0.9070
ms-10-30-50 0.8221 0.8013 0.8721 0.9031 0.9107 0.9339 0.8484 0.8583 0.8583
ms-10-50-90 0.8128 0.7888 0.8664 0.9133 0.9008 0.9401 0.8141 0.8182 0.8471
ms-20-20-20 0.8159 0.8073 0.8698 0.9112 0.9010 0.9378 0.8747 0.8315 0.8961
ms-30-30-30 0.7901 0.8180 0.8768 0.9174 0.9104 0.9380 0.8482 0.8284 0.9083
ms-40-40-40 0.8076 0.8193 0.8964 0.9190 0.9128 0.9570 0.8604 0.8656 0.8927
ms-50-50-50 0.8250 0.8206 0.8680 0.9216 0.9216 0.9469 0.8792 0.8812 0.8568
ms-5-10-15-20 0.8285 0.7830 0.8969 0.9041 0.8934 0.9346 0.8363 0.8816 0.9131
ms-10-10-10-10 0.8320 0.8391 0.8482 0.9260 0.9156 0.9115 0.8432 0.8682 0.8490
ms-10-20-30-40 0.7526 0.7049 0.8534 0.8945 0.8734 0.9352 0.8477 0.8495 0.8625
ms-10-30-50-70 0.7940 0.7776 0.8555 0.8729 0.9156 0.9344 0.8490 0.8383 0.8247
ms-20-20-20-20 0.7716 0.8247 0.8063 0.9078 0.9086 0.9245 0.8576 0.8680 0.8948
ms-30-30-30-30 0.7615 0.7880 0.8010 0.9125 0.9159 0.9430 0.8440 0.8654 0.8805
ms-40-40-40-40 0.7596 0.7802 0.8526 0.9201 0.9281 0.9549 0.8518 0.8448 0.8724
ms-50-50-50-50 0.7721 0.7974 0.8104 0.9190 0.9143 0.9385 0.8378 0.8513 0.8542
sp-5-10-20 0.8029 0.8109 0.8839 0.9115 0.9026 0.9383 0.8753 0.8135 0.8891
sp-10-10-10 0.7865 0.7492 0.8664 0.9065 0.8841 0.9320 0.8604 0.8435 0.8812
sp-10-20-30 0.7969 0.7414 0.8766 0.8922 0.7859 0.9336 0.8367 0.6690 0.8784
sp-10-30-50 0.7865 0.8318 0.8846 0.8992 0.8901 0.9164 0.8646 0.8398 0.8417
sp-10-50-90 0.8227 0.6411 0.8701 0.8938 0.7299 0.9107 0.8234 0.4911 0.8513
sp-20-20-20 0.7802 0.8255 0.8646 0.9057 0.8896 0.9313 0.7901 0.8005 0.8182
sp-30-30-30 0.7896 0.7422 0.8789 0.8932 0.8401 0.9089 0.8177 0.7310 0.8419
sp-40-40-40 0.8013 0.8253 0.8685 0.8948 0.8690 0.9242 0.7818 0.8180 0.8318
sp-50-50-50 0.8216 0.7901 0.8508 0.8776 0.8961 0.8779 0.8063 0.7990 0.8453
sp-5-10-15-20 0.7701 0.7482 0.8453 0.8849 0.8388 0.9263 0.8414 0.7276 0.8443
sp-10-10-10-10 0.7464 0.7878 0.8701 0.8781 0.8867 0.9286 0.7875 0.8339 0.8513
sp-10-20-30-40 0.7630 0.6997 0.8536 0.8576 0.7443 0.9065 0.8214 0.6677 0.8180
sp-10-30-50-70 0.7828 0.8180 0.8464 0.8888 0.8604 0.8992 0.8034 0.7802 0.8409
sp-20-20-20-20 0.7456 0.7990 0.8268 0.8755 0.8724 0.8823 0.8294 0.8409 0.8417
sp-30-30-30-30 0.7609 0.6701 0.8406 0.8661 0.6927 0.8688 0.8284 0.5531 0.8120
sp-40-40-40-40 0.7604 0.7865 0.8372 0.8534 0.8581 0.8747 0.8076 0.8172 0.8208
sp-50-50-50-50 0.7576 0.5669 0.8052 0.8612 0.6635 0.8414 0.7674 0.4971 0.8161

TABLE III: Comparisons on YALE with ℓ1 and ℓ2 models

Noise k-NN ACC SVM ACC ReLU-NN ACC
ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞

original 0.6370 0.6222 0.5556 0.7407 0.7556 0.7407 0.7259 0.6815 0.6667
ms-5-10-20 0.3481 0.5259 0.6000 0.7852 0.7556 0.8148 0.6667 0.6519 0.6444
ms-10-10-10 0.4074 0.4667 0.4074 0.7407 0.7704 0.7704 0.6519 0.7037 0.6593
ms-10-20-30 0.3852 0.4815 0.4963 0.7556 0.7630 0.7852 0.6148 0.6370 0.6593
ms-10-30-50 0.4444 0.4889 0.5259 0.7704 0.7630 0.8222 0.6296 0.6815 0.6593
ms-10-50-90 0.3852 0.5333 0.4963 0.7333 0.7407 0.7704 0.6519 0.6815 0.6741
ms-20-20-20 0.2963 0.4296 0.4593 0.7778 0.7704 0.7926 0.6370 0.7333 0.6741
ms-30-30-30 0.4000 0.4963 0.4444 0.7778 0.8296 0.7778 0.6741 0.6593 0.6519
ms-40-40-40 0.4148 0.5111 0.4519 0.8148 0.8000 0.7111 0.6370 0.6370 0.6370
ms-50-50-50 0.4370 0.4370 0.3852 0.7259 0.7333 0.7407 0.4889 0.4370 0.5556
sp-5-10-20 0.3333 0.4519 0.6296 0.7111 0.7778 0.8370 0.6741 0.6000 0.7185
sp-10-10-10 0.3259 0.4519 0.4148 0.7407 0.7704 0.7926 0.6593 0.7185 0.6815
sp-10-20-30 0.4444 0.4889 0.4074 0.7111 0.8222 0.8296 0.6667 0.7630 0.6815
sp-10-30-50 0.4000 0.5185 0.5333 0.6519 0.7481 0.8296 0.6741 0.6815 0.6741
sp-10-50-90 0.4074 0.5852 0.4593 0.6519 0.7704 0.7481 0.5556 0.5852 0.5185
sp-20-20-20 0.3407 0.5407 0.4963 0.6370 0.7556 0.7333 0.5481 0.6593 0.7259
sp-30-30-30 0.4444 0.5259 0.5704 0.5630 0.6593 0.6593 0.6074 0.6519 0.6148
sp-40-40-40 0.4074 0.5926 0.5704 0.5333 0.5333 0.5778 0.5259 0.7111 0.6519
sp-50-50-50 0.3778 0.4296 0.5185 0.4889 0.5037 0.5556 0.5556 0.6074 0.6222

E. Experiment: Comparisons with ℓ1 and ℓ2 Models

In this part, we evaluate the performance of our proposed
ℓ∞ model by image classification and face recognition tasks
under different corruption degrees, in comparison with ℓ1 and
ℓ2 models. Specifically, we apply the ℓ∞, ℓ2 and ℓ1 models
to extract features from all corrupted datasets mentioned in
Section VI-B6, following the workflow introduced in Sec-
tion III-C. Then, we evaluate the quality of the extracted
features in terms of classification accuracy. To alleviate the
stochastic effects of random initialization, we run each model
three times and report the averaged results. Experimental
results are shown in Table II to Table VI, where values in
bold represent the highest. From these tables, we have the
following findings.
• Our ℓ∞ model is effective. As observed, in more than
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TABLE IV: Comparisons on UMIST with ℓ1 and ℓ2 models

Noise k-NN ACC SVM ACC ReLU-NN ACC
ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞

original 0.8281 0.8466 0.8546 0.8755 0.9133 0.9181 0.8024 0.8209 0.8683
ms-5-10-20 0.7912 0.8193 0.8482 0.8554 0.8851 0.8900 0.7671 0.8129 0.8000
ms-10-10-10 0.7727 0.8104 0.8217 0.8586 0.9036 0.9341 0.8112 0.7639 0.8506
ms-10-20-30 0.7534 0.7590 0.7928 0.8378 0.8635 0.9253 0.7655 0.7888 0.8426
ms-10-30-50 0.7823 0.7454 0.7888 0.8281 0.8643 0.8980 0.7502 0.7783 0.7815
ms-10-50-90 0.7028 0.7293 0.8008 0.8217 0.8699 0.8803 0.6699 0.7261 0.7494
ms-20-20-20 0.7365 0.7486 0.8080 0.8514 0.8787 0.9341 0.7446 0.8177 0.8161
ms-30-30-30 0.7157 0.7028 0.8000 0.8434 0.8795 0.9036 0.7213 0.7157 0.7944
ms-40-40-40 0.7261 0.7269 0.8080 0.8538 0.8699 0.9124 0.7566 0.7357 0.8064
ms-50-50-50 0.7277 0.7084 0.8048 0.8120 0.8265 0.8675 0.6353 0.6570 0.7092
sp-5-10-20 0.7446 0.7293 0.8313 0.8643 0.8795 0.9357 0.7510 0.8120 0.8313
sp-10-10-10 0.6867 0.6876 0.7823 0.7920 0.8072 0.8787 0.7920 0.7743 0.8032
sp-10-20-30 0.6546 0.6506 0.7679 0.7550 0.7719 0.8771 0.6940 0.7133 0.7687
sp-10-30-50 0.6900 0.6739 0.8209 0.8297 0.8233 0.9221 0.7173 0.7221 0.7992
sp-10-50-90 0.7261 0.7044 0.8281 0.7622 0.8000 0.8795 0.7398 0.7470 0.8104
sp-20-20-20 0.6554 0.6731 0.7944 0.7815 0.7960 0.8916 0.6490 0.6747 0.8080
sp-30-30-30 0.6908 0.6803 0.7855 0.7871 0.7888 0.9076 0.6972 0.7373 0.8201
sp-40-40-40 0.7454 0.7550 0.8225 0.8129 0.8498 0.9020 0.6916 0.7695 0.8241
sp-50-50-50 0.7606 0.6659 0.8586 0.8514 0.6514 0.9293 0.7221 0.5197 0.8305

TABLE V: Comparisons on COIL-100 with ℓ1 and ℓ2 models

Noise k-NN ACC SVM ACC ReLU-NN ACC
ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞

original 0.4299 0.4371 0.4488 0.4659 0.4815 0.4864 0.4029 0.4086 0.4081
ms-5-10-20 0.3775 0.4012 0.4436 0.4385 0.4724 0.4855 0.3531 0.4055 0.3896
ms-10-10-10 0.3427 0.3124 0.3546 0.4215 0.4719 0.4848 0.3076 0.3340 0.3660
ms-10-20-30 0.3701 0.4224 0.4325 0.4370 0.4930 0.4896 0.3945 0.4082 0.3999
ms-10-30-50 0.3604 0.4139 0.4382 0.4433 0.4909 0.4979 0.3927 0.4245 0.4567
ms-10-50-90 0.3733 0.4072 0.4384 0.4606 0.4931 0.5049 0.3764 0.3722 0.3993
ms-20-20-20 0.3687 0.4140 0.3385 0.4436 0.4903 0.4881 0.3325 0.3719 0.3222
ms-30-30-30 0.3873 0.3294 0.4110 0.4527 0.4885 0.4769 0.2846 0.3755 0.3294
ms-40-40-40 0.3845 0.4160 0.4231 0.4533 0.4903 0.4815 0.2685 0.3740 0.3399
ms-50-50-50 0.3933 0.4285 0.4387 0.4818 0.5031 0.4930 0.4049 0.3790 0.3818
sp-5-10-20 0.3858 0.4450 0.4741 0.4405 0.4789 0.4995 0.3342 0.3960 0.4223
sp-10-10-10 0.3940 0.4188 0.4450 0.4383 0.4554 0.4691 0.3701 0.3314 0.4047
sp-10-20-30 0.4302 0.4561 0.4822 0.4666 0.4753 0.4992 0.3859 0.3618 0.3787
sp-10-30-50 0.4467 0.4630 0.4822 0.4777 0.4822 0.4943 0.3850 0.4270 0.3944
sp-10-50-90 0.4428 0.4661 0.4889 0.4736 0.4818 0.5019 0.3884 0.3666 0.3687
sp-20-20-20 0.4138 0.4507 0.4651 0.4608 0.4676 0.4825 0.3853 0.3635 0.3701
sp-30-30-30 0.4418 0.4553 0.4776 0.4620 0.4678 0.4863 0.3740 0.3682 0.3904
sp-40-40-40 0.4557 0.4723 0.4836 0.4786 0.4779 0.4929 0.3817 0.3957 0.3748
sp-50-50-50 0.4548 0.4781 0.4846 0.4705 0.4847 0.4937 0.3803 0.3882 0.3701

TABLE VI: Comparisons on YALE-B with ℓ1 and ℓ2 models

Noise k-NN ACC SVM ACC ReLU-NN ACC
ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞ ℓ2 ℓ1 ℓ∞

original 0.4081 0.4196 0.4069 0.4359 0.3881 0.4268 0.2993 0.2963 0.3174
ms-5-10-20 0.3759 0.4127 0.3881 0.4272 0.4538 0.3950 0.3140 0.3041 0.2386
ms-10-10-10 0.3235 0.4131 0.3174 0.3916 0.4254 0.3797 0.2481 0.2465 0.2320
ms-10-20-30 0.2997 0.3668 0.3738 0.3934 0.4393 0.3924 0.2584 0.1945 0.2191
ms-10-30-50 0.2898 0.3396 0.3640 0.3738 0.4045 0.4037 0.2797 0.2735 0.2166
ms-10-50-90 0.3130 0.3773 0.3688 0.3329 0.3414 0.2723 0.2064 0.2033 0.1812
ms-20-20-20 0.2031 0.3345 0.2846 0.3305 0.4188 0.3861 0.2181 0.2011 0.1834
ms-30-30-30 0.1636 0.2680 0.2287 0.3180 0.3827 0.3537 0.1915 0.1528 0.1896
ms-40-40-40 0.1467 0.1943 0.1784 0.2868 0.3497 0.3601 0.1675 0.1792 0.1467
ms-50-50-50 0.1590 0.1836 0.1753 0.2868 0.3428 0.3374 0.0983 0.1173 0.1135
sp-5-10-20 0.3283 0.3593 0.3748 0.3730 0.4381 0.4442 0.3353 0.2733 0.2646
sp-10-10-10 0.2499 0.3722 0.3410 0.4041 0.4438 0.4196 0.3412 0.3200 0.3158
sp-10-20-30 0.2459 0.3577 0.3484 0.3615 0.4146 0.3992 0.3085 0.2753 0.2541
sp-10-30-50 0.2755 0.3527 0.3394 0.3668 0.3974 0.3976 0.2576 0.2235 0.2221
sp-10-50-90 0.2765 0.3430 0.3275 0.3547 0.3827 0.3835 0.2753 0.1832 0.2320
sp-20-20-20 0.1749 0.2747 0.2640 0.3517 0.3805 0.3783 0.3174 0.2306 0.2257
sp-30-30-30 0.1824 0.1937 0.2011 0.3247 0.3601 0.3537 0.2537 0.2547 0.1927
sp-40-40-40 0.2215 0.1528 0.1733 0.3370 0.3380 0.3418 0.2090 0.1493 0.1640
sp-50-50-50 0.1971 0.1572 0.1719 0.3021 0.3118 0.3281 0.2241 0.2076 0.2005

half of cases, the performance of the proposed ℓ∞ model
shows substantial improvement over both the ℓ2 and ℓ1 models.
For instance, on the COIL (sp-10-20-30-40) dataset in terms
of k-NN ACC, the ℓ∞ model shows over 10% and 20%
improvement over the ℓ2 and ℓ1 models, respectively. Besides,
although the ℓ∞ model shows inferior performance than the ℓ1
model in several cases on the YALE and YALE-B datasets, its
overall performance is still good, and is much better than the
ℓ2 model in many cases. These evidences have fully illustrated
the effectiveness of the proposed ℓ∞ model.
• Our ℓ∞ model best suits for noisy scenarios. As observed,
on the five original datasets (without corruption), the proposed
ℓ∞ model performs not well sometimes. This is because the
ℓ∞ model aims at optimizing the maximum fitting error, which
is an inappropriate choice in noise-free scenarios. When the
data contains uncertainty, the ℓ∞ model should be a good
choice.
• There is no free lunch [64]. As observed, although our

proposed ℓ∞ performs excellently on the COIL, UMIST and
COIL-100 datasets, its performance is not as good as expected
on the YALE and YALE-B datasets, where the ℓ1 model
performs relatively well. We think this is partly due to the fact
that the YALE and YALE-B datasets only contain the frontal
faces of the individuals under different conditions, but the
others cover a series rotations/poses of the objects/individuals,
and thus the importance distributions of different samples on
these two datasets become relatively more even, and hence
the ℓ1 model may intuitively be more competitive. This shows
that different models may have their own preferred datasets.

F. Experiment: Comparisons with Classical and SOTA Methods

To comprehensively verify the effectiveness of the ℓ∞
method, we further compare it with six classical feature ex-
traction methods, namely probabilistic PCA (ProbPCA) [65],
factor analysis (FA) [66], isometric mapping (IsoMap) [67],
locally linear embedding (LLE) [68], Laplacian eigenmaps
(LapE) [26] and autoencoder (AE) [69], as well as three
SOTA feature extraction methods, namely UMAP7 [70],
TriMAP8 [71] and PaCMAP9 [72]. For the six classical
methods, we directly use their implementations provided by
the MATLAB Dimensionality Reduction Toolbox [73], while
for the three SOTA methods, we use their open-sourced imple-
mentations. Since the ℓ∞ model is dedicated for handling data
uncertainty, all the experiments here are conducted on the five
corrupted datasets: COIL (sp-10-30-50), YALE (sp-10-30-50),
UMIST (sp-10-30-50), COIL-100 (sp-10-30-50) and YALE-B
(sp-10-30-50). Since the nine comparative methods are matrix-
based, we first vectorize the images in the five datasets and
arrange the resultants in order to form a data matrix, and
then use Algorithm 2 again to estimate the rank of the data
matrix in the implementation. For IsoMap, LLE and LapE,
we set k = 20 since they adopt a k-NN graph. Moreover,
we use the Nyström approximation [74] to extract features
from the test data as these three methods do not support
exact out-of-sample mapping. For AE, we set the layer size
as f0 � ⌈1.2f0⌉ + 5 � ⌈f0/4⌉ + 3 � ⌈f0/10⌉ � f where f0
denotes the number of original features (i.e., 32× 32 = 1,024
for all datasets) and ⌈·⌉ is the ceiling function. For the three
SOTA methods, we use their default parameter settings as
their numbers of parameters are too large to be tuned. The
evaluating procedures are the same as the previous experiment.

We list the experimental results in Table VII where figures
in bold represent the highest and figures in shade are the top-
two. As observed, in terms of both k-NN ACC, SVM ACC
and ReLU-NN ACC, the ℓ∞ method consistently achieves the
top-two performance on these five corrupted datasets. Besides,
for 10 out of 15 cases, our ℓ∞ model performs the best over
all competitors. This fully illustrates the effectiveness of the
ℓ∞ model which is mainly attributed to its consideration of
maintaining the worst-case model performance.

7Open sourced at https://github.com/lmcinnes/umap.
8Open sourced at https://github.com/eamid/trimap.
9Open sourced at https://github.com/YingfanWang/PaCMAP.

https://github.com/lmcinnes/umap
https://github.com/eamid/trimap
https://github.com/YingfanWang/PaCMAP
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TABLE VII: Comparisons with nine classical and SOTA methods

k-NN ACC SVM ACC ReLU-NN ACCModel COIL YALE UMIST COIL-100 YALE-B COIL YALE UMIST COIL-100 YALE-B COIL YALE UMIST COIL-100 YALE-B
ProbPCA 0.8318 0.4667 0.7012 0.1955 0.2135 0.8648 0.5481 0.7671 0.1844 0.2062 0.8164 0.5778 0.6434 0.3085 0.0387
FA 0.7102 0.4889 0.5631 0.2087 0.2292 0.7247 0.5852 0.6892 0.2175 0.2360 0.7789 0.4889 0.6602 0.3204 0.0472
IsoMap 0.7354 0.4667 0.7325 0.1646 0.1890 0.7578 0.6000 0.7759 0.1644 0.1889 0.7258 0.4222 0.7253 0.3194 0.0526
LLE 0.7130 0.4000 0.7301 0.1769 0.2163 0.8148 0.4000 0.7205 0.1764 0.2139 0.7391 0.5111 0.6651 0.2585 0.0629
LapE 0.2599 0.0741 0.2313 0.0114 0.0276 0.3734 0.1333 0.2048 0.0246 0.0442 0.3398 0.2444 0.1855 0.0385 0.0441
AE 0.3615 0.4296 0.5888 0.2162 0.2366 0.6117 0.5333 0.6867 0.1932 0.2174 0.7875 0.1333 0.6313 0.2610 0.0381
UMAP 0.6969 0.4148 0.5614 0.2880 0.0907 0.7049 0.4444 0.6000 0.2799 0.1133 0.5182 0.3704 0.4418 0.0566 0.0437
TriMAP 0.8466 0.3704 0.7365 0.6836 0.0977 0.8672 0.3704 0.7542 0.6417 0.0854 0.8609 0.3259 0.8008 0.5941 0.0792
PaCMAP 0.4883 0.1481 0.3815 0.2650 0.0707 0.4987 0.2000 0.3791 0.2677 0.0879 0.4721 0.1556 0.3767 0.2174 0.0792
ℓ∞ 0.8846 0.5333 0.8209 0.4822 0.3394 0.9164 0.8296 0.9221 0.4943 0.3976 0.8417 0.6741 0.7992 0.3944 0.2221

(1) ℓ2 model (2) ℓ1 model (3) ℓ∞ model

Fig. 2: Visualization of the extracted features by the three
models on the UMIST (sp-10-30-50) dataset.

G. Experiment: Visualization of the Extracted Features

In this part, we perform a visualization experiment to
qualitatively compare the ℓ2, ℓ1 and ℓ∞ models and deliver
some intuitive insights. Specifically, we apply the well-known
t-distributed stochastic neighbor embedding (t-SNE) [75] to
embed the extracted features by these three models from the
test set of the UMIST (sp-10-30-50) dataset into R2 and then
plot the distribution of the dimension-reduced features in this
low-dimensional space. The experimental results are illustrated
in Figure 2 where different colors represent different classes.
We can clearly observe from the figures that the features
extracted by the ℓ∞ model show a better separability and
features within the same class stay close for almost every
class, while the features extracted by the other two models
admit some entanglements and features within some classes
can spread out. This phenomenon intuitively demonstrates the
superiority of the features extracted by the ℓ∞ model over the
other two and explains the reason of the better performance,
which is mainly attributed to the robustness considered in the
ℓ∞ model.

H. Experiments: Running Time and Convergence Analyses

In this part, we first analyze the running time of the
proposed ℓ∞ model. Specifically, we run the ℓ2, ℓ1 and ℓ∞
models on the COIL (sp-10-30-50), YALE (sp-10-30-50) and
UMIST (sp-10-30-50) datasets, and record their accumulated
time consumption within 50 iterations, reported in Figure 3.
Similar running time trends can be observed on other corrup-
tion conditions, therefore we omit them here for the interest
of space. As observed, the running time trends of the ℓ2,
ℓ1 and ℓ∞ models are very similar across the three datasets.
Besides, for each of the three datasets, although the ℓ∞ model
is much slower than the ℓ2 model, it costs nearly the same time
as the ℓ1 model, which shows its efficiency to some extent.
Furthermore, as previous experimental results convey, the ℓ∞
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Fig. 3: Running time analysis on the COIL (sp-10-30-50),
YALE (sp-10-30-50) and UMIST (sp-10-30-50) datasets.
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Fig. 4: Convergence analysis on the COIL (sp-10-30-50),
YALE (sp-10-30-50) and UMIST (sp-10-30-50) datasets.

model shows great performance improvement over the ℓ2 and
ℓ1 models. Therefore, the ℓ∞ model strikes a good balance
between effectiveness and efficiency.

In Section V-B, we proved the convergence of Algorithm 1
theoretically. We now empirically study the convergence be-
havior of Algorithm 1. Specifically, we run the ℓ∞ model
on the COIL (sp-10-30-50), YALE (sp-10-30-50) and UMIST
(sp-10-30-50) datasets again, and record its objective function
value in each iteration on each dataset. The curves for objective
function values are shown in Figure 4. Because similar conver-
gence trends can be observed on other corruption conditions,
we omit them here again for the interest of space. As observed,
on each of the three datasets, the objective function value
decreases monotonically, which validates our convergence the-
ory. Besides, although the computational complexity for each
iteration of Algorithm 1 is relatively high (see Theorem V.2),
the algorithm converges very quickly in practice. As observed,
Algorithm 1 can converge within only dozens of iterations
on each of the three datasets, showing its efficiency to some
extent. This fast convergence of Algorithm 1 guarantees the
efficiency of the whole feature extraction process.

VII. CONCLUSION

In this paper, we proposed a novel robust nonnegative
Tucker decomposition model, the ℓ∞ model, for feature extrac-
tion from uncertain data. Inspired by the idea of maintaining



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 10

the worst-case model performance from robust optimization,
the ℓ∞ model aims to minimize the maximum fitting error
to tackle the data uncertainty. To solve the proposed model,
we developed an effective algorithm based on alternating up-
date with theoretically guaranteed convergence. We performed
extensive experiments on five real-world benchmark datasets
under a variety of noisy conditions. The experimental results
showed excellent performance of the ℓ∞ model compared to
many others. In the future, we plan to investigate how to
incorporate prior data knowledge into the ℓ∞ model.
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