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We describe and demonstrate the potential of a new and very efficient method for simulating certain classes of
modified gravity theories, such as the widely studied f(R) gravity models. High resolution simulations for such
models are currently very slow due to the highly nonlinear partial differential equation that needs to be solved
exactly to predict the modified gravitational force. This nonlinearity is partly inherent, but is also exacerbated by
the specific numerical algorithm used, which employs a variable redefinition to prevent numerical instabilities.
The standard Newton-Gauss-Seidel iterative method used to tackle this problem has a poor convergence rate.
Our new method not only avoids this, but also allows the discretised equation to be written in a form that is
analytically solvable. We show that this new method greatly improves the performance and efficiency of f(R)
simulations. For example, a test simulation with 5123 particles in a box of size 512 Mpc/h is now 5 times
faster than before, while a Millennium-resolution simulation for f(R) gravity is estimated to be more than 20
times faster than with the old method. Our new implementation will be particularly useful for running very high
resolution, large-sized simulations which, to date, are only possible for the standard model, and also makes it
feasible to run large numbers of lower resolution simulations for covariance analyses. We hope that the method
will bring us to a new era for precision cosmological tests of gravity.

I. INTRODUCTION

Modified gravity theories [1, 2] are popular alternatives to
the cosmological constant and dark energy models [3] to ex-
plain the observed accelerating expansion of our Universe [4–
9]. Rather than invoking a cosmological constant (Λ), or a new
energy component to drive the dynamics of the cosmos, these
theories suggest that the Universe contains only normal and
dark matter (which is often assumed as cold dark matter, or
CDM), but the law of gravitation deviates from that prescribed
by Einstein’s General Relativity (GR) on large scales, result-
ing in an acceleration of the expansion rate.

Since the law of gravity is universal, deviations from GR
on large scales are often associated with changes in the be-
haviour on small scales. Any such small scale changes, how-
ever, must be vanishingly small due to the strong constraints
placed by numerous local tests of gravity [10]. Consequently,
viable modified gravity theories usually have some mecha-
nism by which such modifications are suppressed, recovering
GR in dense regions like the Solar System, where those grav-
ity tests have been carried out and their resulting constraints
apply. These are commonly referred to as ‘screening mecha-
nisms’ in the literature, and are an inherent (instead of an add-
on) property which comes from the dynamics of the theory.
The screening effect implies that gravity behaves differently
in different environments; this environmental dependence is
often reflected in strong nonlinearities in the field equations,
which make both analytical and numerical studies of such the-
ories challenging.
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In most theories that are currently being investigated, the
modification to GR boils down to an extra (so-called fifth)
force that is mediated by a new scalar field, and screening
in this context means suppression of the fifth force. In one
class of such theories, this is achieved by a coupling of the
scalar field to matter and a nonlinear self-interaction potential
of the scalar field. With appropriate choices of the coupling
and potential, the dynamics of the scalar field can ensure that,
in high density regions, the fifth force it mediates decays ex-
ponentially fast with distance, or becomes extremely small in
its amplitude. Chameleon theories [11, 12], with f(R) grav-
ity [13] (see also [14–16]) as a representative example, is an
instance of the former case, while the dilaton [20] and sym-
metron [21] models belong to the latter case. Amongst these
models, f(R) gravity is currently the most well-studied case,
and there exist numerous works investigating in detail its pre-
dictions for large-scale structure formation in the nonlinear
regime. This has been made possible by the continuous de-
velopment of N -body simulation codes [e.g., 22–26, 28–36].
An efficient code amongst these is ECOSMOG [37], based on
the publicly available N -body and hydro code RAMSES [38],
which makes large simulations for f(R) gravity feasible. Us-
ing the generic parametrisation for modified gravity theories
[39, 40], ECOSMOG was extended to incorporate chameleon,
dilaton and symmetron models [41, 42] in general. ECOS-
MOG has recently been compared with other codes developed
subsequently, including MG-GADGET [43], Isis [44] and MG-
ENZO [45] and very good agreement was found between all
these codes [46].

There are other modified gravity theories, such as the Dvali-
Gabadadze-Porrati [47] (DGP) brane-world model, in which
screening is achieved by nonlinear derivative self-couplings of
a scalar field. Well-studied examples include the K-mouflage
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[48, 49] and Vainshtein [50] mechanisms, the latter being orig-
inally studied in massive gravity theories as a means to sup-
press the extra helicity modes of massive gravitons so that GR
is recovered in the massless limit. In addition to the nonlin-
ear massive gravity [51–53] and braneworld models, the Vain-
shtein mechanism is also employed in general setups, such as
the Galileon models [54–59], which have been the subject of
various recent studies [e.g., 60–79].

The first two generations of modified gravity simulation
codes [e.g., 22, 27–29] were either not parallelised or had a
uniform resolution across the whole simulation box, resulting
in insufficient resolution and inefficiency. The current genera-
tion of codes, such as ECOSMOG, MG-GADGET, Isis and MG-
ENZO, are all efficiently parallelised. These codes solve the
nonlinear field equations in modified gravity on meshes (or
their equivalents), and employ the adaptive mesh refinement
(AMR) technique to generate ever finer meshes in high den-
sity regions to increase resolution. However, even with these
parallelised codes, modified gravity simulations currently are
still very slow compared to the fiducial GR case. As we shall
discuss below, this is partially due to the nonlinear nature of
the equations to be solved, and partly due to the specific nu-
merical algorithms used. The greater computational cost of
modified gravity simulations makes it difficult to achieve the
resolution and volume attained in state-of-the-art simulations
of standard gravity.

The coming decade will see a flood of high-precision ob-
servational data from a new generation of cosmological sur-
veys, such as eROSITA [80], the Dark Energy Spectroscopic
Instrument (DESI) [81–83], EUCLID [84] and the Large Syn-
optic Survey Telescope (LSST) [85]. These surveys will pro-
vide us with golden opportunities to perform cosmological
tests of gravity [see ref. 86, for a recent review] and seek
a better understanding of the origin of cosmic acceleration.
As things stand now, it is the lack of more powerful simu-
lation methods that limits the accuracy and size that mod-
ified gravity simulations can possibly attain, therefore pre-
venting us from fully exploiting future observations. This has
led to many attempts to speed up simulations using approx-
imate methods [e.g., 87, 88], or develop alternative methods
to predict theoretical quantities [e.g., 89–92]. These alterna-
tive methods are fast substitutes of full simulations and pow-
erful when quickly exploring a large parameter space is the
primary concern. However, simulations are nevertheless nec-
essary to calibrate these methods or when better (e.g., %-level)
accuracy is needed, as well as to study the impact of different
theories of gravity on galaxy formation.

In [88], an approximate method to speed up N -body simu-
lations of Vainshtein-type models was presented and shown to
reduce the overhead1 of solving the modified gravity equation
to the level of 50 ∼ 100%, with the errors in various cos-
mological quantities being controlled to well under ∼ 1% or

1 Throughout this paper, the term ‘overhead’ is used to refer to the extra com-
putational time (using the same machine and number of cores) involved in
running a modified gravity simulation compared to standard gravity. For
example, an overhead of 110% means that the modified gravity run requires
2.1× the CPU time of a ΛCDM simulation.

smaller (comparable to the discrepancies in the predictions of
different modified gravity simulation codes [46]). The same
method, however, does not work as accurately in chameleon-
type models (see Appendix A), the simulations for which are
much more expensive than those for the Vainshtein-type mod-
els. Given that chameleon models are a large class of modified
gravity models that are of interest to the theoretical and obser-
vational community, there is an equally urgent need for fast
simulation methods for them – this is precisely the purpose of
this paper.

Unlike the truncated simulation method in [88], which arti-
ficially suppresses the solver of the modified gravity equation
on higher refinement levels of the AMR meshes, and instead
interpolates the solution on lower (or coarser) refinement lev-
els to find approximate solutions on higher levels, the method
proposed here still solves the full modified gravity equations
on all levels. The improved efficiency comes instead from a
different way to discretise the equation on meshes, that makes
it less nonlinear and greatly enhances the rate of convergence
of the solution. The new scheme boosts the performance of
the code by a factor of 5 for a simulation with a periodic
box of size 512 Mpc/h and 5123 particles, and by a factor
of more than 20, for a higher resolution setup with a box size
of 128 Mpc/h and 5123 particles. The method has its own
limitation, namely that the existence of analytical solutions
is a particular property of Hu-Sawicki (HS) f(R) gravity –
as well as a few other examples of chameleon, symmetron
(see Appendix B) and dilaton – models. However, the generic
nature of the HS model (in the sense that with varying pa-
rameters it covers a wide range of cosmological behaviours
predicted by various other classes of models) and the lack of
a preferred fundamental model make a good argument for us-
ing this model as a testbed, given that it is both impossible and
unnecessary to study all chameleon-type models using simu-
lations.

This paper will be arranged as follows. In § II we briefly
describe the f(R) gravity model and the chameleon screening
mechanism. In § III we recap the method currently employed
in f(R) simulations and explain why it is inefficient, before
describing the new method. In § IV we perform some tests as
validation of this new method. Finally, we discuss and sum-
marise in § V.

Throughout the paper we shall follow the metric convention
(+,−,−,−), and set c = 1 except in the expressions where c
appears explicitly. Greek indices µ, ν, · · · run over 0, 1, 2, 3.
A subscript 0 denotes the present-day value of a quantity.

II. THE HU-SAWICKI f(R) GRAVITY MODEL

In this section, we briefly review the Hu-Sawicki design
[15] of f(R) gravity, which is currently the most widely stud-
ied one in the literature.
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A. The model

f(R) gravity is obtained by replacing the Ricci scalar R in
the standard Einstein-Hilbert action with an algebraic function
of R [see, e.g., ref. 13, for a review]:

S =
1

16πG

∫
d4x
√
|g| [R+ f(R)] +

∫
d4xLm, (1)

in which G is Newton’s gravitational constant, g the determi-
nant of the metric tensor gµν andLm is the Lagrangian density
for matter fields (including cold dark matter, baryons, radia-
tion and neutrinos).

The inclusion of f(R) in Eq. (1) changes the Einstein equa-
tion from second order to 4th order in derivatives of the metric
tensor. However, one can straightforwardly rewrite the equa-
tion into two second order ones by defining a new variable, a
scalar field, fR ≡ df(R)/dR. These include an equation of
motion that governs the dynamics of the scalar field:

�fR =
1

3
[R− fRR+ 2f(R)− 8πGρm] ≡ ∂Veff (fR)

∂fR
, (2)

and a modified Einstein equation:

Gµν = 8πGTmµν +Xµν , (3)

with

Xµν ≡ −fRRµν +

(
1

2
f −�fR

)
gµν +∇µ∇νfR, (4)

in which Tmµν is the matter energy-momentum tensor, ρm the
mass density of non-relativistic matter species,∇µ the covari-
ant derivative compatible with metric gµν , � the Laplacian
operator, Rµν the Ricci tensor and Gµν the Einstein tensor.

In the nonlinear regime of structure formation, assuming
the quasistatic [93] and weak-field approximations, Eq. (3)
simplifies to a modified Poisson equation,

∇2Φ =
16πG

3
δρm −

1

6
δR (fR) , (5)

which relates the gravitational potential Φ at a given position
to the density (δρm ≡ ρm − ρ̄m, where a bar denotes the
cosmic mean of a quantity) and curvature (δR ≡ R − R̄) at
that position.

Similarly, Eq. (2) reduces to

∇2fR =
1

3c2
[δR (fR)− 8πGδρm] . (6)

Eqs. (5) & (6) need to be solved in cosmological simulations
for f(R) gravity to predict the modified gravitational force
that is responsible for structure formation. It can be seen that
Eq. (6) has a similar form to the Poisson equation, but δR (fR)
is generally a nonlinear function of fR, and this makes it more
difficult to numerically solve this equation.

Of course, to fully specify a f(R) model one must fix the
functional form f(R). Without the guidance of a fundamental
theory, it is not hard to imagine that there is no unique, or even
preferred, way to do this. However, there are indeed practical
considerations that mean that the functional form cannot be

arbitrary either. This is because the choice of f(R) must serve
the purpose that it is originally designed for: namely, to ex-
plain the accelerated cosmic expansion. Moreover, as we shall
see below, the design of f(R) must ensure that any deviation
from GR is suppressed to an insignificant level in places such
as the Solar System, where numerous tests have confirmed
compatibility with GR to high precision. Indeed, it is known
[e.g., refs. 16–19] that for any f(R) model to pass Solar Sys-
tem gravity tests, the background evolution must be close to
(practically indistinguishable from) that of ΛCDM.

One functional form of f(R) is proposed by Hu & Sawicki
[HS, ref. 15], and has been shown to satisfy these require-
ments. It is given as:

f(R) = −m2 c1
(
−R/m2

)n
c2 (−R/m2)

n
+ 1

, (7)

where n, c1, c2 are dimensionless model parameters, and m is
another model parameter of mass dimension one. To relate fR
to R, we write:

fR = −nc1
c22

(
−R/m2

)(n+1)

[1 + (−R/m2)
n
]
2 ≈ −n

c1
c22

(
m2

−R

)(n+1)

, (8)

where in the approximation we have used the fact that:

−R̄ ≈ 8πGρ̄m − 2f̄(R) = 3m2

[
a−3 +

2

3

c1
c2

]
. (9)

Setting c1/c2 = 6ΩΛ/Ωm, this model reproduces a ΛCDM
background expansion history (in which Ωm, ΩΛ are, respec-
tively, the present-day fractional density of non-relativistic
matter and the cosmological constant for this background).
Taking the values of Ωm, ΩΛ from any preferred cosmology,
we get −R � m2. In what follows, we define ξ ≡ c1/c

2
2 for

brevity, and the background value of fR today, fR0, which can
be obtained from ξ.

B. Chameleon screening mechanism

In the absence of the chameleon screening mechanism
[11, 12], all f(R) gravity models would have been ruled out
by local gravity tests due to the enhanced strength of gravity.
The chameleon screening acts to suppress this enhancement,
thereby allowing f(R) gravity models like HS to pass experi-
mental constraints on deviations from GR.

The chameleon mechanism works as follows: because the
fifth force is mediated by a scalar field that has a nonzero mass
given by:

m2
fR ≡

∂2Veff(fR)

∂2fR
,

it is of Yukawa type and proportional to exp(−mfRr), where
r is the distance between two test particles. In high matter den-
sity environments, mfR is heavy and the suppression of the
fifth force becomes very efficient. In reality, this is equivalent
to having |fR| � 1 in high density regions, which therefore
suppresses the fifth force since it is proportional to ~∇fR (this
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can be seen most easily by eliminating the δR term in Eq. (5)
using Eq. (6), which shows that fR is essentially the potential
of the fifth force).

Hence, the functional form of f(R) is critical in determin-
ing if the fifth force can be sufficiently suppressed in dense
environments. For the HS model, it was shown by [15] that
|fR0| < 10−5 is required to screen the Milky Way. Currently,
the strongest constraint on the value of |fR0| in the HS model
comes from the screening of dwarf galaxies, which requires
|fR0| . 10−7 (95% C.L.) [94, 95]. This is a promising way
to constrain f(R) gravity, provided astrophysical systematics
are well controlled and the environmental impact on screen-
ing is modelled accurately (which itself will benefit from high
resolution simulations).

In cosmology, there are many constraints on fR0 as well,
and for recent reviews on this topic the readers are referred
to [96, 97]. In [98, 99], X-ray and weak lensing estimates
for the mass of the Coma cluster are combined to constrain
|fR0| . 10−4.2 (95% C.L.). Two of the strongest constraints
to date both come from cluster abundance. In [100] the authors
use X-ray cluster abundance while in [101] the counts of high-
significance weak lensing convergence peaks are used as a
proxy for cluster counts; both studies find that |fR0| . 10−5.2

after carefully accounting for systematics, even though the
data and analyses are very different. In [102], it was found
that stacked lensing tangential shear of cosmic voids could po-
tentially place constraints at a similar level. More recently, a
study by [103], which uses Planck Sunyaev-Zel’dovich clus-
ter counts, constrains |fR0| . 10−5.8, although the result is
quite sensitive to the halo mass function used in the analysis.
All the constraints are quoted at 95% confidence. There are
many other cosmological constraints in the literature but it is
beyond the scope of this paper to mention all of them (some
of these studies were carried out by using linear perturbation

theory, which underestimates the effectiveness of screening
and can therefore overestimate the strength of the constraints
on the model – this is why simulations that fully capture the
nonlinearity of the theories are useful).

III. N -BODY EQUATIONS AND ALGORITHM

In this section, we describe the N -body equations in appro-
priate code units and their discretised versions that ECOSMOG
solves in simulations.

A. The Newton-Gauss-Seidel relaxation method

Like its base code RAMSES [38], ECOSMOG adopts super-
comoving coordinates [104] to express the field equations in
terms of dimensionless quantities. The newly defined vari-
ables in these code units are summarised as follows (the tilded
quantities are those in the code units):

x̃ =
x

B
, ρ̃ =

ρa3

ρcΩm
, ṽ =

av

BH0
,

Φ̃ =
a2Φ

(BH0)2
, dt̃ = H0

dt

a2
, f̃R =

c2a2fR
(BH0)2

,

in which x is the comoving coordinate, ρc is the critical den-
sity today, and v the particle velocity. In addition, B is the co-
moving size of the simulation box in units of Mpc/h and H0

is the Hubble expansion rate today in units of 100h km/s/Mpc.
Note that with these conventions, the mean matter density is
˜̄ρ = 1. All the tilded quantities are dimensionless.

In terms of these variables, the Poisson and scalar field
equations (Eqs. 5 & 6) in the HS model can be rewritten as:

∇̃2Φ̃ = 2Ωm(ρ̃− 1)− 1

6
Ωma

4

[(
−na

2ξ

f̃R

) 1
n+1

− 3

(
a−3 + 4

ΩΛ

Ωm

)]
, (10)

∇̃2f̃R = − 1

c̃2
Ωma(ρ̃− 1) +

1

3c̃2
Ωma

4

[(
−na

2ξ

f̃R

) 1
n+1

− 3

(
a−3 + 4

ΩΛ

Ωm

)]
, (11)

in which we have used the relation m2 = ΩmH
2
0 , and defined

c̃ = c/(BH0), which is the speed of light in code units.

In principle, Eqs. (10) & (11) can be directly discretised on
a mesh and can then be solved numerically. For chameleon-
type models, however, there is a further subtlety: namely, the
value of −f̃R is very small at early times and in high density
regions. This property is desirable in order that the model can
pass Solar System tests of gravity by virtue of the chameleon
mechanism, but it also poses a challenge when numerically
solving Eq. (11). In the relaxation method that is employed
to solve the discrete version of this equation, −f̃R in each
mesh cell gets updated until the solution is close enough to

the true value (more details below). This updating procedure
is a numerical approximation, and it is possible that −f̃R can
acquire negative numerical values in some cells as a result.
Taking the case of the HS n = 1 model as an example: the
quantity (−f̃R)

1
n+1 is not physically defined if −f̃R < 0, and

the code then runs into trouble.
To overcome this numerical issue, in [22] Oyaizu proposes

to replace −f̃R with exp(u) in Eq. (11). As exp(u) can only
be positive, this guarantees that the nonphysical situation de-
scribed above will never appear. This change of variable has
since then been used in all simulation codes of chameleon
models to our knowledge [23–26, 28, 29, 37, 43–45].

In terms of this new variable, Eq. (11) can be discretised as:
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1

h2

[
bi+ 1

2 ,j,k
ui+1,j,k − ui,j,k

(
bi+ 1

2 ,j,k
+ bi− 1

2 ,j,k

)
+ bi− 1

2 ,j,k
ui−1,j,k

]
+

1

h2

[
bi,j+ 1

2 ,k
ui,j+1,k − ui,j,k

(
bi,j+ 1

2 ,k
+ bi,j− 1

2 ,k

)
+ bi,j− 1

2 ,k
ui,j−1,k

]
+

1

h2

[
bi,j,k+ 1

2
ui,j,k+1 − ui,j,k

(
bi,j,k+ 1

2
+ bi,j,k− 1

2

)
+ bi,j,k− 1

2
ui,j,k−1

]
+

1

3c̃2
Ωma

4
(
na2ξ

) 1
n+1 exp

[
− ui,j,k
n+ 1

]
− 1

c̃2
Ωma(ρi,j,k − 1)− 1

c̃2
Ωma

4

(
a−3 + 4

ΩΛ

Ωm

)
= 0, (12)

in which we have used the second order finite difference
scheme to calculate ∇̃2

(
−f̃R

)
. Taking the second order

derivative with respect to the x coordinate as an example, this
scheme gives:

∂2φ

∂x2
→ 1

h2
(φi+1,j,k − 2φi,j,k + φi−1,j,k) ,

where h is the size of the mesh cell and the subscript i,j,k
refers to the cell that is i-th in the x direction, j-th in the y
direction and k-th in the z direction. Note that the discrete
Laplacian in Eq. (12) looks slightly more complicated because
∇̃2 exp(u) ≡ ∇̃ ·

(
eu∇̃u

)
, and we have defined b ≡ exp(u)

such that:

bi+ 1
2 ,j,k

≡ 1

2
[exp (ui+1,j,k) + exp (ui,j,k)] ,

bi− 1
2 ,j,k

≡ 1

2
[exp (ui−1,j,k) + exp (ui,j,k)] .

Defining the left-hand side of Eq. (12) as the operator Lh,
where a superscript h is used to denote that the equation is
discretised on a mesh with cell size h, the equation can be
written symbolically as:

Lh(ui,j,k) = 0. (13)

This is a nonlinear equation for ui,j,k, and the most commonly
used method to solve it is relaxation, which begins with some
initial guesses of ui,j,k (for all mesh cells) and iteratively
improves the old guess to get a new guess according to the
Newton-Raphson method (same as the one used for solving
nonlinear algebraic equations):

uh,new
i,j,k = uh,old

i,j,k −
Lh
(
uh,old
i,j,k

)
∂Lh(uh,old

i,j,k )
∂uh

i,j,k

, (14)

until ui,j,k (for all mesh cells) is close enough to the true so-
lution or, equivalently, some all-mesh average of Lh (ui,j,k)
gets close enough to zero. A widely used definition of this

all-mesh average (the so-called residual) is given by:

Residual ≡

∑
i,j,k

[
Lh (ui,j,k)

]21/2

, (15)

where the summation is performed over all mesh cells on a
given refinement level.

The implementation of this method is fairly straightfor-
ward in principle, but in practice there are a number of sub-
tleties that need to be taken into account. For example, refined
meshes usually have irregular shapes and their boundary con-
ditions should be carefully set up by interpolating the values
of u from coarser levels. The relaxation method is also noto-
riously slow to converge (convergence here meaning that the
residual becomes smaller than some pre-fixed threshold) if it
is only done on a fixed level, and in practice the so-called
multigrid method is commonly used to remedy this [105].
This consists of moving the equation to coarser meshes, solv-
ing it there, and then using the coarse-mesh solutions to cor-
rect the fine-mesh one. These subtleties have been discussed
in detail in the literature; as they are not the main concern of
this paper, we refer interested readers to, e.g., [37], for a more
elaborate description.

Although the multigrid method improves convergence in
general, the rate of convergence is still very slow in f(R)
simulations, and the relaxation is some times unstable and di-
verges. One way to improve both the rate of convergence and
the stability of the Newton-Gauss-Seidel relaxation method is
to impose the condition:∣∣∣Lh(uh,new

i,j,k )
∣∣∣ < ∣∣∣Lh(uh,old

i,j,k )
∣∣∣ ,

i.e., requiring that the residual after the new iteration gets
monotonically smaller than in the previous one. When the
condition is not met, we retain the value of the scalar field
from the previous step (uh,old

i,j,k ). While satisfying this condi-
tion can be costly on each step, the overall efficiency of the
code can be significantly increased by the improved numeri-
cal stability and reduced number of iterations required to reach
convergence.

Finally, a similar discretisation can be done for the modified
Poisson equation:
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1

h2

(
Φi+1,j,k + Φi−1,j,k + Φi,j+1,k + Φi,j−1,k + Φi,j,k+1 + Φi,j,k−1 − 6Φi,j,k

)
= 2Ωma(ρi,j,k − 1)− 1

6
Ωma

4

[(
na2ξ

) 1
n+1 exp

(
− ui,j,k
n+ 1

)
− 3

(
a−3 + 4

ΩΛ

Ωm

)]
. (16)

This equation is solved after Eq. (12), by which time ui,j,k is
already known. As a result, this is a linear equation for Φi,j,k
which is easier to solve than Eq. (12), and we shall not dis-
cuss it further here. Structurally, Eq. (16) is the same as the
Poisson equation for standard gravity (with a modified source
term); hence, one may simply use the standard RAMSES im-
plementations for solving the Poisson equation.

B. The new method

The discretisation used in the scalar field equation (Eq. 12)
has a number of drawbacks:

• Depending on the value of ξ, the original scalar field
equation can be very nonlinear (when ξ is small, the

term involving
(
−f̃R

) 1
n+1

is large and non-negligible,
c.f. Eq. 8) or close to linear (when ξ is large, that term
is small and negligible so that the equation becomes
nearly linear in f̃R) 2. In the former case, introduc-
ing the new variable u = log(−f̃R) makes the equa-
tion even more nonlinear; in the latter case, it nonlin-
earises an almost linear equation. The high nonlinear-
ity makes the relaxation method very slow to converge,
which is why simulations of f(R) gravity are gener-
ally much more costly than ΛCDM simulations with
the same specifications. Indeed, even with parallelised

codes such as ECOSMOG, MG-GADGET, Isis and MG-
ENZO (Zhao et al. in prep.), very large-sized and high
resolution f(R) simulations are currently still difficult
to run, and this situation needs to be improved if we
want to compare future survey data to theoretical pre-
dictions to perform accurate tests of modified gravity.

• As we have already seen above, the discrete Laplacian
∇̃2eu is more complicated than the simple discretisa-
tion of ∇̃2Φ̃, resulting in a more complex equation that
needs to be solved.

• The code ends up with a lot of exp and log operations.
This is not optimal from a practical viewpoint, because
the cost of these operations is generally much higher
than that of simple arithmetic ones, such as summation,
subtraction and multiplication.

The method described here alleviates the nonlinearity prob-

lem by defining a new variable u =
(
−f̃R

)1/2

, so that the
scalar field equation for the HS model with n = 1 (the most
widely studied f(R) model in the literature) becomes a simple
cubic equation in u, which can be solved analytically instead
of resorting to the approximation in Eq. (14):

u3
i,j,k + pui,j,k + q = 0, (17)

where:

p ≡ h2

6c̃2
Ωmaρ̃i,j,k +

2h2

3c̃2
ΩΛa

4 − 1

6

(
u2
i+1,j,k + u2

i−1,j,k + u2
i,j+1,k + u2

i,j−1,k + u2
i,j,k+1 + u2

i,j,k−1

)
, (18)

q ≡ − h2

18c̃2
Ωma

4ξ1/2. (19)

Note that here we focus on the case of n = 1; other cases will
be discussed later.

While Eq. (17) can be solved analytically (and therefore
accurately), it has three branches of solutions and, depending
on the numerical values of p and q, all these branches can be
real. Therefore, extra care has to be taken to make sure that the

2 Note that, on first glance at Eq. (12), this may appear counter-intuitive.
This dependence of the degree of linearity of Eq. (12) on the size of ξ can
be explained by the fact that as ξ becomes smaller, the value of f̃R also
becomes smaller (c.f. Eq. 8), making Eq. (12) on the whole more nonlinear.
The converse is true when ξ is large.

correct branch of solutions is chosen. For this, let us define:

∆0 ≡ −3p,

∆1 ≡ 27q. (20)

As q < 0 is a constant in a given time step of the simulation,
we see that ∆1 < 0.

The case p > 0 can occur in high density regions where
u > 0 is small (and u2 smaller still) because of the chameleon
screening. In these cases, ∆0 < 0 and thus ∆2

1 − 4∆3
0 > 0.

The cubic equation then admits only one real solution, which
must be the one we choose:

ui,j,k = −1

3

(
C +

∆0

C

)
(21)
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with

C ≡
[

1

2

(
∆1 +

(
∆2

1 − 4∆3
0

)1/2)]1/3

. (22)

Note that Eq. (22) implies thatC = 0 only when ∆0 = p = 0.
This ensures that for the p > 0 case, C 6= 0 in Eq. (21), and
the solution is never undefined.

In the case of p = 0, the solution is simply:

ui,j,k = (−q)1/3. (23)

p < 0 can occur for density peaks in an overall low density
region (where u and hence u2 can be large). ∆2

1 − 4∆3
0 can

then take either positive or negative values. In the former case,
the solution in Eq. (21) still holds, while in the latter case the
equation has three real solutions:

ui,j,k = −2

3
∆

1/2
0 cos

[
1

3
Θ +

2

3
jπ

]
, (24)

where j = 0, 1, 2 and cos Θ ≡ ∆1/
(

2∆
3/2
0

)
. It is straight-

forward to decide which branch we should take: as ∆1 < 0,
we have cos Θ < 0 and so Θ ∈ (π/2, π). Given that we re-
quire ui,j,k to be positive-definite:

• If j = 0, ui,j,k ∼ − cos
(

1
3Θ
)
< 0 and is unphysical;

• If j = 1, ui,j,k ∼ − cos
(

1
3Θ + 2

3π
)
> 0 and is physi-

cal;

• If j = 2, ui,j,k ∼ − cos
(

1
3Θ − 2

3π
)
< 0 and is un-

physical.

This new method has a few interesting features:

• The discrete equation to be solved is significantly sim-
pler. In particular, q is the same in all cells, so it only
needs to be calculated once for a given time step and on
a given mesh refinement level.

• There is a substantial reduction of costly computer op-
erations as we get rid of operations. Some cos and
cos−1 operations are introduced, but they will not be
executed for all cells (depending on which branch of
solutions we take); even for cells in which they need
to be executed, they are only executed once. In the old
method, exp is executed on both the cell and its neigh-
bours.

• The cubic equation is solved analytically and a physi-
cal solution always exists. The variable redefinition in
the old method, f̃R = exp(u), was chosen so as to
the avoid the unphysical solution −f̃R < 0; the new
method avoids this situation automatically by selecting

the physical solution u =
(
−f̃R

)1/2

> 0 analytically.
As a result, we can expect this new method to be both

more stable (i.e., not suffering from catastrophic diver-
gences due to numerics) and more efficient (i.e., the so-
lution to Eq. (17) is exact for each Gauss-Seidel iter-
ation, while Eq. (14) implicitly uses the approximate
Newton-Raphson method and may need to be executed
many times to arrive at what the new method achieves
in one go).

Note that this new method does not really get rid of Gauss-
Seidel relaxation, because the quantity p in Eq. (17) depends
on the values of the scalar field in (the 6 direct) neighbouring
cells, which are not accurate values but temporary guesses.
It therefore still needs to do the Gauss-Seidel iterations (we
use the standard red-black chessboard scheme here). What it
does get rid of is the ‘Newton-Raphson’ part [Eq. (14)] of
the Newton-Gauss-Seidel (or nonlinear GS, or NGS) relax-
ation which updates the old guesses using a linear approx-
imation of the full nonlinear equation. The speedup is also
largely assisted by the simplicity of Eq. (18) compared to
Eq. (12), which comes about due to the new variable redef-
inition. Therefore, while Gauss-Seidel iterations are still re-
quired, the savings using the new method can still be signifi-
cant.

IV. TESTS AND SIMULATIONS OF THE NEW METHOD

In this section we present the results of several test runs
of the new ECOSMOG code. In what follows, we will only
consider the F6 model of f(R) gravity, in which the present-
day value of the scalar field is given by

∣∣f̄R0

∣∣ = 10−6. In
this model, the chameleon screening is particularly efficient,
meaning that deviations from GR are very small. To cap-
ture the effects of screening, accurately solving the nonlinear
scalar field equations is therefore necessary.

We have simulated the F6 model at three resolution lev-
els: ‘Low res’, ‘Medium res’ and ‘High res’ (the box size
and number of particles used in each of these runs are sum-
marised in Table I). In each case, we have also run a ΛCDM
simulation starting from the same initial conditions. The mesh
refinement criteria used for the ‘High res’ simulation allows
us to resolve small scales comparable to those in the Mil-
lennium simulation [106]. While the ‘Low’ and ‘High res’
runs use Planck 2015 [107] cosmological parameters (with
Ωm = 0.308,ΩΛ = 0.692, h = 0.6781, σ8 = 0.8149), the
cosmological parameters for the ‘Medium res’ run are ob-
tained from WMAP-7 [108] data (with Ωm = 0.271,ΩΛ =
0.729, h = 0.704, σ8 = 0.8092).

In Fig. 1, we compare the nonlinear matter power spec-
trum, Pδδ(k), from the ‘Medium res’ simulations using the old
and new methods. Pδδ(k) was computed using the publicly-
available POWMES code [109]. The solid and dashed curves
are Pδδ(k) computed at z = 0 and z = 0.5, respectively,
for F6. The results of the two methods are indistinguishable
at both redshifts, and this is quantified more clearly in the
bottom panel of Fig. 1, which shows the relative difference
between the old and new methods. The shaded grey band in
this panel represents a 1% error around zero; clearly, the new
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Name Model B Np Speed up Overhead
[Mpc/h] (new method)

Low res ΛCDM, F6 512 5123 5× 110%
Medium res ΛCDM, F6 250 5123 15× 180%

High res ΛCDM, F6 128 5123 > 20× 190%

TABLE I. Details of the simulations performed in this work. The
columns B and Np, respectively, refer to the comoving box size and
number of particles in each of these runs. The starting redshift in all
simulations was zini = 49. The second last column summarises the
factor by which the new method is faster than the old one in each
case. Note that the > 20× speedup for the ‘High res’ simulation is
an estimate - we have not run an F6 simulation at this resolution us-
ing the old method. The last column shows the percentage overhead
of the F6 simulations using the new method compared to ΛCDM.
The level of speedup that can be achieved in the F6 simulations de-
pends on the convergence criteria used: in all cases, convergence is
considered as achieved when the residual is < 10−8 on the domain
level, and < 10−7 on the fine levels.
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Dashed: z = 0.5

F6: old method

F6: new method
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FIG. 1. Top panel: Comparison of the nonlinear matter power spec-
tra at z = 0, 0.5 for the F6 model using the old method (yellow,
§ III A) and the new method (red, § III B) for solving the scalar field
equations of motion. The results shown are for the ‘Medium res’ sim-
ulation. Bottom panel: Ratio of the power spectra corresponding to
the upper panel. The shaded grey band represents a 1% error region.

and old methods agree to well below 1% at all scales resolved
in the simulation. The same is true even at higher redshift
(z = 1, 2, not shown). We have checked that the agreement
also holds in the case of the velocity divergence power spec-
trum, Pθθ(k), which, being just the first integral of the grav-
itational acceleration, would be more sensitive to differences
in the gravitational forces between the two methods. Agree-
ment for Pθθ(k), which is calculated in a volume-weighted
way, shows that the two methods agree well even in regions
of the cosmic web that are not mass-dominated. This is not un-

10−1 100 101

k [h/Mpc]

−0.02

0.00
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0.10

∆
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a = 0.5 (+ 45%)

a = 0.6 (+ 75%)

a = 0.7 (+ 110%)

a = 0.8 (+ 140%)

a = 0.9 (+ 160%)

a = 1.0 (+ 190%)

FIG. 2. Enhancement of the F6 matter power spectrum relative to
ΛCDM for the ‘High res’ simulation (B = 128 Mpc/h, Np =
5123). The different coloured curves show the relative difference at
different scale factors, as indicated in the legend. Alongside the leg-
end labels, we also note the percentage overhead associated with the
F6 run compared to the ΛCDM run at the same scale factor.

expected: after all, the new method solves the same equation
of motion, without needing to use the approximate and ineffi-
cient Newton-Raphson scheme. As a consequence, the simu-
lation is now significantly faster than before: the new method
boosts the speed of the F6 calculation by a factor of 15 relative
to the old implementation in ECOSMOG (see the last column
of Table I).

Two-point statistics such as the power spectrum offer a
complete description of clustering properties only for Gaus-
sian fields. Gravitational instability theory predicts that the
nonlinear evolution induced by gravity drives away the PDF
of these fields from Gaussianity at late times and small scales
[see e.g., refs. 110, 111]. This is reflected in growing skewness
and kurtosis of cosmic density and velocity fields. f(R) theo-
ries show systematic deviations from ΛCDM for these statis-
tics, and these can therefore be used as a test of the theory
[112]. We have computed PDFs and their higher-order mo-
ments for the density and velocity divergence fields to test
how well the old and new methods agree beyond simple two-
point statistics. We find that the differences are very small and
comparable to the differences seen in the P (k). As an addi-
tional test, we have also computed the Fourier mode deco-
herence functions [113, 114], defined as Pearson correlation
coefficients for the Fourier modes of the two fields:

C(k) ≡ 〈f1f
∗
2 〉

〈f2
1 〉1/2〈f2

2 〉1/2
,

where f1 and f2 are the density or velocity divergence fields
for the f(R) runs computed using the two methods. C(k) = 1
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when both fields being compared have Fourier modes at given
k that correspond exactly. The density and velocity divergence
fields for the F6 runs using the two methods take C(k) = 1
for almost the entire range of k, up until the Nyquist limit of
the simulations. These tests reassure us that the density and
velocity fields produced by the old and the new method are,
for all practical purposes, indistinguishable.

Results from the ‘High res’ simulations are shown in Fig. 2,
where we plot the relative difference in Pδδ(k) of F6 with
ΛCDM – only results using the new method are shown.
Curves of different colours represent the relative difference
at different scale factors, as labelled in the legend. The leg-
end labels also list the percentage overhead involved in the
F6 simulation compared to the ΛCDM run at the same scale
factor. With the new method, the F6 simulation is now only
∼ 45% slower than the ΛCDM run at a = 0.5 (z = 1), and
only ∼ 190% slower at the final time. Compared to F6 simu-
lations with comparable resolution using the old method [e.g.,
ref. 115], the new implementation is estimated to be more than
20× faster.

The degree to which the new method improves the effi-
ciency of ECOSMOG over the old one depends on resolution.
Indeed, in going from the ‘Low res’ to the ‘High res’ sim-
ulations, the gain in performance increases from a factor of
5 to a factor of over 20 (the overhead increases considerably
with resolution in the old method). The improved efficiency
of the numerical algorithm will enable us to run simulations
of chameleon models that would previously have been com-
putationally very expensive to perform. Future applications
of the method could include running hydrodynamical simu-
lations (where high resolution is required to follow accurately
the hydrodynamics and to resolve spatial scales important for
star formation and feedback), and running large numbers of
low resolution volumes to estimate the covariance matrix in
non-standard gravity.

V. SUMMARY AND DISCUSSIONS

Modified gravity models are an umbrella group of theories
seeking to explain the apparent accelerated cosmic expansion
by assuming modifications to the Einsteinian gravitational law
on cosmological scales. Usually, such modifications must be
small in high density environments in which gravity is known
to be accurately described by GR, and this can be achieved
by screening mechanisms, resulting in highly nonlinear field
equations. Studying the cosmological implications of these
theories and observational constraints on them is an active re-
search topic in cosmology, but the nonlinear nature of these
theories means that one has to resort to numerical simulations,
which can be prohibitively slow. This has, up until now, lim-
ited the scope of accurately testing gravity using precision ob-
servational data.

In this paper, we proposed and demonstrated the power of
a new and more efficient method to solve the nonlinear field
equation in one of the most popular modified gravity models
– the Hu-Sawicki variant of f(R) gravity. The current method
used to simulate this model is slow mainly because of a vari-

able redefinition aimed at making the relaxation algorithm nu-
merically stable, but has the negative side effect of making the
discrete equation even more nonlinear and, therefore, harder
to converge. As a result, modified gravity simulations which
match the size and resolution of the state-of-the-art ΛCDM
N -body or hydrodynamical simulations have thus far been be-
yond reach [but see refs. 116, 117].

The new method avoids the specific variable redefinition
used in the old method, and therefore does not further increase
the nonlinearity of the discrete equation to be solved. More
importantly, it enables the discrete equation to be written in a
form that is analytically solvable at each Gauss-Seidel itera-
tion. This is what ultimately makes the method efficient: com-
pare solving a highly nonlinear algebraic equation analytically
and solving the same equation using the Newton-Raphson it-
eration method (Eq. 14), and it is clear that the latter is gener-
ally much more inefficient.

We have performed test simulations using the new method,
and confirmed that it is indeed very efficient. The working
model for the tests is the F6 variant of Hu-Sawicki f(R)
gravity. The chameleon screening is very efficient in F6, and
it is therefore important that the nonlinear scalar field equa-
tions are solved accurately. In Fig. 1, we have confirmed that
the new and old methods agree at the sub-percent level when
comparing the nonlinear matter power spectrum, Pδδ(k). The
good agreement continues to hold at higher redshift, as well
as for the velocity divergence power spectra, Pθθ(k). Next, in
Fig. 2, we presented results from our ‘High res’ simulations,
which are comparable in resolution to the Millennium simula-
tion. The total overhead in the F6 simulation is ∼ 190% com-
pared to the equivalent ΛCDM run; this represents a boost in
performance of > 20× compared to an F6 simulation of sim-
ilar resolution using the old method.

The improved performance of the new simulation algorithm
compared to the old one serves to highlight the importance of
the way in which one discretises partial differential equations
for the efficiency of numerically solving them. This is partic-
ularly true for highly nonlinear equations, such as those en-
countered in many modified gravity theories. Our work high-
lights the following:

(1) There is not a single way of discretisation, and this usu-
ally depends on the specific equations to be solved. In general,
the discretisation should be chosen to preserve the original de-
gree of nonlinearity of the equation as much as possible, and
avoid further nonlinearising the equation.

(2) Where possible, exact solutions to the nonlinear discrete
equation should be used instead of the approximate solution
in Eq. (14). The latter, despite being commonly used in relax-
ation solutions to nonlinear differential equation, is a second
option only for cases where Lh (ui,j,k) = 0 has no analytical
solution in general.

The same observations and conclusions apply to other
classes of partial differential equations, such as those
involving higher order powers of the derivatives of
the scalar field (e.g.,

(
∇2ϕ

)2
, ∇i∇jϕ∇i∇jϕ,

(
∇2ϕ

)3
,

∇i∇jϕ∇j∇kϕ∇k∇iϕ), which are commonly encountered in
Vainshtein-type theories. In fact, in the most popular examples
of such models – the DGP, cubic Galileon and quartic Galileon
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models – we also found that the discretisation could be done
in a way such thatLh (ui,j,k) = 0 is a quadratic or cubic equa-
tion that can be solved analytically. This fact has been used in
[88, 118–120] to make simulations of these models possible,
more efficient and free from numerical instabilities.

Unfortunately, the new method does not apply to all non-
linear partial differential equations, because it relies on ui,j,k
being analytically solvable in the discrete equation. In the HS
f(R) model with n = 1, ui,j,k satisfies a cubic equation,
which does have analytical solutions. This neat property does
not hold for other models. However, this method will still be
very useful for the following reasons:

• At the moment, no specific functional forms of f(R) –
or more generally, no specific chameleon models – are
known to be fundamental. Different models often share
similar qualitative behaviours though the predictions
can be quantitatively different. For what it is worth, the
HS model serves as a great test case to gain insights
into the question ‘How much deviation from GR (in
the manner prescribed by the large class of chameleon
models) is allowed by cosmological data?’. Indeed, all
current observational constraints on modified gravity
are to be considered as attempts to answer this ques-
tion. In this context, the exact functional form of f(R)
is not critical, because whatever form we adopt, it is un-
likely to be the true theory. Actually, the HS model is
capable of reproducing the behaviours of many classes
of models, and is therefore a representative example.

• There are other models that this method can be applied
to. One example is the HS f(R) model with n = 2.
In this case Eq. (17) becomes a quartic equation, which
also has analytical solutions. A further example is the
logarithmic f(R) model studied in the literature [e.g.,
ref. 16]:

f(R) ∼ −2Λ− η log (R/R∗) ,

where Λ is the cosmological constant, and η and R∗ are
some model parameters. In this case, fR ∼ 1/R, and
we could define u = −f̃R so that Eq. (17) becomes
a quadratic equation. Moreover, looking beyond f(R)
gravity, there are also other chameleon models with
different coupling strengths from the value of 1/3 for
f(R) models, and can be simulated using this method
[42]. The method can also be applied to the symmetron
model [21], in which the equation Lh (ϕi,j,k) = 0 is
a cubic equation [121] for the symmetron field ϕ, and
certain variants of the dilaton model [20, 41], though
our initial tests showed that the improvement of the
efficiency is far smaller than in the f(R) case (Ap-
pendix B).

Efforts towards generalising the new method to the models
mentioned above, and to running large high resolution simu-
lations including baryonic physics, are currently ongoing and
will be the subject of future works.
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Appendix A: The poorer performance of the speed up
truncation method in chameleon models

In [88], the authors proposed a method to speed up N -
body simulations of modified gravity models with Vainshtein
screening. The speed up in this method is achieved by trun-
cating the Gauss-Seidel iterations of the scalar field above a
certain refinement level, and then computing the solution on
those fine levels by interpolating from coarser levels. This ap-
proximate method agrees very well with the results of the full
N -body calculation (see [88] for details) due to the fact that
in Vainshtein screening models, there is a correlation between
higher density regions (or, equivalently, higher refined regions
in the simulation box) and screening efficiency. Even when the
error induced on the fifth force on the refinements is large, it
does not propagate to the total gravitational force because the
amplitude of the fifth force is small/screened.

In chameleon models, however, the correlation between
high density regions and screening efficiency becomes less
marked because of the dependence on the environmental den-
sity (in Vainshtein models, the screening efficiency depends
on the local density only). For example, in f(R) models, a
low mass halo in a dark matter void constitutes an example
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FIG. 3. Relative difference in the matter power spectra
at z = 0, 0.5 & 1 between a full F5 simulation, and two
truncated runs where the Gauss-Seidel iterations of the scalar field
have been truncated on finer refinement levels (see the accompa-
nying text). The dashed and solid lines, respectively, correspond to
less and more aggressive truncation schemes; hc is the cell size of
the first truncated level in each simulation. The shaded grey band
represents the 1% error region around zero.

of a highly-refined region (the centre of the halo can be very
concentrated) that may not be screened (either by itself or by
the low density environment it lives in). It is therefore interest-
ing to determine whether or not the same truncation method,
which works well for Vainshtein models, works equally well
in chameleon-type theories.

Fig. 3 shows the relative difference of two truncated f(R)
simulations to a full (ie., not truncated) simulation. The sim-
ulation box used for this test is the same as the ‘Medium res’
setup in the main text, but with fR0 = −10−5 (the so-called
F5 model). The result is shown at three different redshifts and
the two labelled truncation schemes are as follows. The case
hc ≤ 0.24 Mpc/h indicates that the scalar field was only ex-
plicitly solved on the coarse level, with this solution being in-
terpolated to all finer levels. In the case of hc ≤ 0.06 Mpc/h,
the scalar field was explicitly solved on the coarse, first refine-
ment and second refinement levels, with the solution at the
second level being interpolated to all other finer levels. The
values 0.24 Mpc/h and 0.06 Mpc/h indicate the cell size
of the first truncated level in both these simulations, which
ran, respectively, ≈ 10 and ≈ 2 times faster than the full run.
For both these truncation criteria, the figure shows that the
error can be kept < 1% for k . 2 h/Mpc, but for higher
modes, it grows to unacceptably large values. For example, at
k ≈ 5 h/Mpc, the error is of ≈ 6%.

The result shown in Fig. 3 for f(R) should be contrasted

with the corresponding picture in the DGP model (which em-
ploys Vainshtein screening), in which for the same truncation
criteria, the error is always kept below 1% for k < 5 h/Mpc
(see e.g., Fig. 5 of [88]). Furthermore, the method described
in the main body of this paper results in comparable boosts
in performance compared to previous f(R) simulations, but
without any loss in accuracy. From this we can conclude that
the truncation scheme that works well in Vainshtein screening
models is not suitable for chameleon theories.

Appendix B: Performance of the new method for the symmetron
model

As a test of the performance of our new method for
other classes of screening mechanisms, we implemented our
method for the case of the symmetron model. The code used
in this case, Isis [44], is a modified version of RAMSES devel-
oped independently of ECOSMOG. Details of the symmetron
model and its implementation in Isis are described in [44].
Briefly, the equation of motion for the scalar field is given by:

∇2φ ∝ (Aρ− 1)φ+ φ3, (B1)

where the quantity A is a function of the parameters of the
symmetron model. While the equation is formally equivalent
to the f(R) in the main text (Eq. 6), the screening mecha-
nism operates differently. In the f(R) model, the scalar field
screens itself by becoming very massive. On the other hand,
in the symmetron model, the screening occurs when a partic-
ular symmetry is restored (i.e., when the factor in front of the
linear term of the source of Eq. (B1) becomes positive). Con-
sequently, the model behaves in a different manner to f(R).
For instance, negative solutions for the symmetron field, φ, are
allowed and, thus, the constraints implemented in the f(R)
case (§ III B) are not required. We refer the reader to [122] for
a summary of the complex phenomenology associated with
this property of the symmetron field.

The nonlinear modified gravity solver in Isis is very similar
to that of the f(R) model in ECOSMOG. The code uses an im-
plicit multigrid solver with full approximation storage, which
means that the code relies on a Newton-Raphson algorithm
to evolve the solution in every step of the Gauss-Seidel iter-
ations. As the discretised equation is cubic, the method pro-
posed in this paper can be applied in a straightforward man-
ner. As a check of the accuracy of the new method in solving
the symmetron field equations, we have repeated satisfactorily
the static test presented in the original Isis paper [Fig. 2 in ref.
44]. However, we find that there is no major difference in the
performance of the standard Isis implementation compared to
using the new method, either in terms of the run time, or the
convergence rate of the iterative solver.

In order to gauge the difference in computing time be-
tween the old and new methods for the symmetron model, we
have run a set of five different realisations of a box of size
150 Mpc/h on a side, containing 2563 particles. For each re-
alisation, there are three sets of simulations: ΛCDM and the
symmetron model using the old and new methods. Overall,
we do not find any improvement in the performance of Isis
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using the new method. For both the old and new methods,
the overhead compared the ΛCDM simulation is of the order
of ∼ 170% and, in fact, the run time using the new method
is actually ∼ 1% slower than using the default implementa-
tion - this is explained by the fact that ∼ 1% more iterations
were required for the whole set of five realisations using the
new method. The convergence criterion on the residual was set
to 10−6 for both symmetron runs; we find that, unlike in the
f(R) model, making the convergence criterion even stricter
does not impact the run time of the symmetron simulations by
a great amount.

The reason why the performance of the code appears to
be insensitive to the details of the iteration scheme is seem-
ingly related to the type of screening mechanism used by the
symmetron model. The symmetron mechanism is based on a
density threshold above which the solution very quickly ap-
proaches zero and thus decouples the scalar field from mat-
ter. This makes the solutions more stable and, therefore, not
strongly dependent on the details of the solver employed.
Since the default solver in Isis does not involve a nonlinear
change of variables to force a stable, positive solution (as in
the f(R) case), the performance is already similar to what
ECOSMOG can do for f(R) using the new method.
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