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Abstract

New systems werecreated toassist inmproving the energy efficiency afompressedAir

Systems (CASID fill gaps which wereidentified in the research.

A new mathematical model was created that coupled supply and demand sides for the first
time. The supply side producetieated and stored compressed air, while the demand side
delivered and consumed compressed @lmanges to pressure regulation and storage tank
size were evaluated Model Predictive Control (MPC) was comparedPtoportional
Integral(Pl)control and MP®ad a more stable and lower system pressure, and that would

result in some energy savings.

A discrete wavelet transform extracted information about shapesha supply side
pressure signathat were associated with events. High frequency events relatetbtus
were isolated from low frequency events associated with tank charging and discharging. A

nearest neighbour classifier was created to detect patterns generated by different tools.

Patterns in a regulated line were also investigated an algorithm br the automatic
identification of tools wasreated The algorithm segmented data into smaller sdtztions
containing patterns of interest. Two methods for classifying patterns were investigated, a

rule-based and a distangeased method.

Pneumatic toolswere also identifiedfrom their sounds. Audio was divided into four
categories: valve activation, cylinder activation, valve and cylinder simultaneous activation,
and no active toolSQumulative amplitudes within frequency stiands weregererated as
features using a Discrete Fourier Transform. A neural netwaskcreatedo identify tools

using the features

A condition monitoring and fault diagnossystem was created that compar@aditcomes
from the subsystems monitoring supply side pressalemand side pressure, acoustics and
the schedule of operations. That successfully demonstrated that faults in individual tools

or system faults could be detected, identified and solutions suggested.
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Introduction

Chapter 1:Introduction

The main objective of this research was to create new methods, tools and systems that
could help save energy in Compressed Air Systems (TA&S)esearch described in this
Dissertation investigated systems to monitor the operating condition of a CAStoand
automatically diagnose faults if abnormalities were detected. Such systems could improve

the performance and energy efficiency of a CAS.

Concerning changes in climate have been observed over the past few decades and that led
to an increased interest irenewable energies and energy efficien€he Engineering and
Physical Sciences Research Council (EPER&EYyy Research Partnership and Research
Councils UK recognised that reducing energy in industry is less developed than other
sectors, such asomestic and commercial building ener@anders et al., 2018)o achieve

0KS !'YQa | YoAUA2dz2z wnpn SySNHe GFNBSGZ !

financial and environmental.

CAS have beertommon in industrial facilities, but they have been known for being energy
inefficient. They account for a large share of the overall energy consumption of several
yIGAzyad C2N) SEFYLX Sz /1 { O2yadzySR opom:
than 10% of the US total industrial energy u&aidur et al., 2010)The objective of the
research presented in this Dissertation was to create systéha monitor the

performance of a CA&hd reduce energy consumption

1.1.Compressed Air Systems

A CAS is a combination of equipment that generates, treats, stores, and delivers
compressed air. Compressed air is air kept at a pressure higher than atmospheric pressure.
CAS have been common in industplants because air has some favourable characteristics
such as: transportability, storability, safety, and ease of(Bsmedetti et al., 2018; Nehler,
2018a) Compressed air powers tools used in industrial processels asylinders, valves,

and air motors. Some applications of compressed air in industry are providedsse

(2001) and Jagadeesha (2015)
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The preparation of compressed air for use by industrial equiprasaallyinvolved several
stages. Ambient aiwould be absorbed by an intake system and compezssn a
compressor. The compressafas usually attached to a driver that in most caseasan
electrical motor. Air at compressor discharge is hot and contains water vapour, which could
damage equipment. After compression, aiould becooled in a heat exanger. Water
vapour in the compressed air is removed with an air dryer. After thataitd bestored

in a storage tank. Finally, awould bedistributed through a piping system to easer
equipment whenever there was a demand for compressed air. ésgure regulator
upstream of the eneuser equipment adjust pressure of delivered air tonatch the

requirements of end user tools. Figure 1.1 shows a schematic diagram of a typical CAS.

Supply Side Demand Side
Pressure
Regulator ]
Compressor Tank = || Double Acting
P Drye r Q Actuator
Ammm . et —— Single Acting
' J '\, ' = H Actuator
Air
Cooler o i
Motor = %%D Ir Blower

Figure 11: Schematic Diagram of a typical CAS

It has been common to divide a CAS into two main sides: the supply side shown in the left
of Figure 1.1 and the demand side shown on the right of Figure 1.1. The supply side contains
the equipment responsible for the pduiction, treatment, and storage of compressed air.
The demand side contains equipment that distributes and consumes compressed air. In the
system shown in Figure 1.1, the supply side contains a motor driven compressor, an air
cooler, a dryer, and a tankh& demand side contains three air consuming tools, a double

acting cylinder, a single acting cylinder, and an air blower.

CAS are expensive from an energy efficiency perspective. For example, 6kW of electrica
energy were required to generate what is ecalent to 0.76kW output from an air motor,
which translated to an energy efficiency of 1Z%gadeesha, 20150 thermodynamic

analysis of the energy consumption in a CAS revealed that the typical efficiency of a system

Page2 of 252



Introduction

was between 220% depending on the system configuration and efficiemicindividual

componentg(Shi et al., 2019)

Energy accounts for 75% of the cost of running a CAS oveyeatlife gcle(Fridén et al.,
2012) Many of these systems could operate moreaéntly, leading to energy savings and
more reliable supply of compressed air. Improving energy performance of these systems
has been of interest to many researchers, with some studies claiming that savings of 20
50% may be achievab{®urphy & Kissock, 2015Reducing energy costs of CAS is also of
interest to the manufacturing sector. CAS have been major energy consumers in many
manufacturingfacilities (Moynihan & Barringer, 2017)The sector has been forced to
optimise its systems due to fierce global competiti@diu, 2017) Increasing energy
efficiencyand operational profitability required maximising the benefits extracted from
their assets while minimising downtime. This could be partially achieved by the
implementation of performance monitoring systems. One of the biggest challenges for CAS
users havbeen maintaining the energy efficiency of their systems. Monitoring and mining
data collected from a CAS and its surrounding could generate information to improve CAS

energy efficiencySalvatori et al., 2018)

1.2.Research Objectives Methodology

The main objectives of the research described in this Dissertation were to investigate how
dataO2f t SOGSR FNRY | /! { O2dzZ R 06S dziaAfAasSR
conditions, and to automatically diagnose faults if abnormalities were detected. This could
help create systems and tools that reduce energy consumption and monitorrpeafece

of CAS.

Traditional systems for monitoring the performance of CAS had been based on observing
changes in predefined performance indicators and comparing them to their values during
a baseline periodCanadian Standards Association, 20Bgrfamance indicators are
guantitative values that measure system performance. A baseline period is a period of time
during which reference values for the performance indicators were defined. Significant
deviation in the measured values of performance indicatioom the values defined in the

baseline period usually indicated a deterioration in CAS performance.
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Although these methods of monitoring could be effective in detecting CAS performance
deterioration, identifying the cause of this deterioration requirddrther research
(Santolamazza et al.,, 2018)he research presented in this Dissertation stigated
determining the condition of a CAS and diagnosing faults using data collected from a system
and its surroundings. The purpose of that was not to replace traditional CAS monitoring
systems, but rather to create new tools and methods that could eskdhe fault diagnosis

abilities of these monitoring systems.

Initially the research in this Dissertation started by investigating the different variables
influencing compressed air throughout its production, treatment, storage, and
consumption stages. Iresponse to research gaps identified in the literature review, this
developed into creating new physibssed mathematical models for the different
components in a CAS. Chaptersar®d 4 of this Dissertation present new research on
modelling and simulatin@ ASModels forheat recovery from a Heatingventilation and

Air Conditioning (HVAC) systenmo a CASwvere also modelledand are included in
Appendix D.

The research then moved towards creatangewcondition monitoring and fault diagnosis
systemfor a CASwhich was the main focus of this Dissertatibhe newsystemsombined

the output from individual monitoring systemsndividual systems for monitoring supply
pressure, demand pressure and acoustics in a £A&hematic diagram of the new system

is shown in Figure 1.Zhe outputs from the individual monitoring systems were combined,
alongside commands from the CAS coifiér, and fed into a knowledge management unit.
The knowledge management was a rblesed classifier that deduced the reahe
condition of a CAS (faulty or not faulty). In case a fault was detected, the knowledge
management would diagnose the causelod fault. The supply pressure, demand pressure
and acoustics monitoring systems are discussed in Chapters 5, 6 and 7 respectively. The
knowledge managemergnd the new condition monitoring and fault diagnosis system

presented in Chapter 8.

This reseath considered a CAS with a load/unload compressor control. The methods for
monitoring supply side pressure were designed for and tested on a CAS with load/unload

compressor control. Moreover, the new condition monitoring and fault diagnosis system
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requiredinput from the controller regarding the operating sequence of pneumatic tools,
and therefore this method for monitoring would be applicable when the operating

sequence is accessible beforehand.

Knowledge Management

Condition &
Diagnosis
\‘m
1>

Valve
Fault
Demand Valve

o Valve Leak in Demand
/’ Control No Tool Side
Output
1. Condition
2. Diagnosis

Figure 12: Newsystemfor condition monitoring and fault diagnosis of a CAS

1.3. Experimental Setup

An experimental setip for data collection and for testing the new systems and methods
was built and operated in the University of PortsmogithoP) This experimental saip is
referred to throughout this DissertatiaThe setup mimickeda CASand was formed of an
industrial compressqrcooler, dryer, storage tardnd a pneumaticircuit. The compressor
cooler, dryer, and storage tank were installed in the basement of AngleseanguidJoP
while the pneumatic circuit was installed in Lab 0.2thefsame buildingFigurel.3shows

a schematic representation of the experimental-set
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Demand Line

—  Supply Line IRmEs
Dryer Cooler Compressor

Lab Borders

Pressure sensor (X)—— DDQ Solenoid Valve

|

|

|

| P

| Pressure {; 7| Double Acting
| Regulator Ej/% - Cylinder

|

|

|

Cylinder

I i Fg Single Acting
Pressure sensor (X -] -

_— — —  — — — — — — — — — — — —_— —_— —_— —_——_——

Figure 1.3: Schematic representation of the experimental -sgt

The compressor was an Ingersoll Rand compressor with a capacity of/thihrand had
a load/unload control Air produced by the compressor was cabkend dried and then
stored in astorage tankthat was attached to the compressor. Figule4 shows a
photograph of the compressor and the storage tanke Ténk was connected ta piping

systemthat distributed compressed air acrossveral buildings the UoP.

dﬂj Ingersoll Rand

Figure 14: Photograph of the compressor and storage tank
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The pneumatic circuit used was connectedatsupply point in theeompressed air piping
system. Figurel.5and 1.6show a photograph of the pneumatic circainda photograph

of the fitting connecting pneumatic circuit to compressed air suppdspectively The
pneumatic circuit contained plastic tubes to distribute compressed air, a pressure
regulator, a solenoid valve, a single acting cylinder, and a doubteyamtiinder. The supply
pressure, demand pressure and sounds produced by the operation of pneumatic tools were
recorded. The supply and demand pressure were recorded using two GEMS 3100 pressure
sensor. To measure the supply pressure, the pressure sems®rconnected to a point
downstream the compressed air supply point, but upstream the pressure regulator. This
sensor basically measured the pressure of air supplied by the compressor. To measure the
demand pressure, the second pressure sensor was condextta point downstream the
pressure regulator. This sensor measured the pressure of compressed air delivered to the
pneumatic tools. The sounds produced by the operation of pneumatic tools were measured
with a standalone microphone placed next to the prmatic tools. A Picolog data logger

and a Raspberry Pi were used for data acquisition and control.

Demand Line R
Supply Line
Pressure

\ Regulator Solenoid Valves

Pressure

Figure 15: Photograph of the pneumatic circuit
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Figure 16: Photograph showinéjtting connecting pneumatic circuib compressed air supply

1.4. Research Claims

New and novel work presented in this Dissertation include the creation of:

U A newmathematicaimodel thatmodelledequipment in the supply and demand sides
of a CASThe modelestimated compressed air demand anithe resultingenergy
consumption. The performance of a CAS configuration was evaluated using the new

model (Chapter 3).

U A new algorithm for detecting and ckif/ing patterns appearing in the supply side
pressure of a CAS. The discrete wavelet transform was used for feature extraction and

a nearesneighbour classifier was used to classify patterns (Chd&yter

U A new algorithm that identified which tools wereeating patterns that appeared in
the demand side pressure signal. Two methods for classifying patterns in the demand
side pressure were created, a rdt@sed approach and a distanbased approach

(Chapter6).

U A new audio analysis system tha&cogniseddifferent pneumatic tools based on the

sounds they mad€Chapter7).
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i

A new system for condition monitoring and fault diagnosis in a CAS was created that
combined supply side pressure monitoring, demand side pressure monitoring and
acoustic monitoring into e system that mad@entified CAS conditiobased on the

combination ofoutputs from the different subsystems (Chap&r

The following contributionso knowledgewere made:

i

Papers in CAS literature were categorized into four research arealte@dgures to
improve CAS energy efficiend) Modelling and simulatin of CAS; (3Monitoring,
management and fault diagnosis in CA§Methods and equipment to determine air

leaksin CAS.
Research gaps were identified in each research area.

Features relevant to transient events, such as the activation of tools, were extracted
from decomposition levels corresponding to higher frequencies. Features associated
with other events, suctas a compressor switching on and off, were extracted from

decomposition levels that corresponded to lower frequency components.

A rulebased classifiefor monitoring thedemand side was shown to have a higher
classification accuracy and to be more robustsmall changes in regulated line
pressure sepoint than a distancédased classifier. The distanbased classifier was
shown to be less accurate; however, it was simpler to create, and the distance measure

could be used to quantify the health of a tool.

A suitable segmentation was obtained by continuously updating the threshold pressure
level because segmenting the demand side pressure signal based on changes from &
predefined threshold pressure level was not adequate, as it caused several events to

beincluded in a single segment.

It was found that different shapes and patterns appearing in the demand side pressure
signal were repeatable and their automatic recognition could be used in condition

monitoring and fault detection.

The following contributios were tested:

Page9 of 252



Introduction

U The new condition monitoring and fault diagnosis system was shown to effectively

detect abnormal operating conditions and diagnose the likely cause of the fault.

0 CAS performance withoth aModel Predictive ContrdMPQ andProportionatintegral
(P) control was simulated. It was shown that MPC maintain&tiASpressure at an

optimal and stable level and introduced energy saving compared to PI control.

1.5. List of Publications

The following publications resulted from the reseaddscribed in this Dissertation:
0 Journal Papers:

1 Thabet, M Sanders, B. Tewkesbury, @022, 'Mathematical model for a
compressed air system that couples demand and supplgurnal of Mathematical
Modelling and Numerical Optimisation vol. 12, no. 1, pp. -1
14. https://doi.org/10.1504/IIMMNO.2022.119780

1 Thabet, M, Sanders, D & Becerra2021,'Reducing risk and increasing reliability
and safety of compressed air systems by detecting patterns in pressure
signals, International Journal of Reliability, Ri&k Safety vol. 3, no. 2, pp. 81
89. https://doi.org/10.30699/IJRRS.3.2.10

U Book Chapters:

1 Thabet, M Sanders, D, Haddad, M, Bausch, N, Tewkesbury, G, Becerra, V, Barker, -
& Piner, J 2020Mlanagement of compressed air to reduce energy consumption
using intdligent systems in K Arai, S Kapoor & R Bhatia (elgglligent Systems
and Applications: Volume Bdvances in Intelligent Systems and Computing, vol.
1252, Springer, pp. 26817, Intelligent Systems Conference, London, United
Kingdom 3/09/20. https://doi.org/10.1007/9783-030-551902_16

1 Thabet, M Sanders, B Becerra, \2021,Analytical model for compressed air
system analysisin | Mporas, P Kourtessis, AHdbaibeh, A Asthana, V Vukovic & J
Senior (eds)Energy and Sustainable Futures:odg&edings of 2nd ICESF
2020.Springer Proceedings in Energy, vol. 34, Springer, ppl029 2nd

Pagel0of 252



Introduction

International Conference on Energy and Sustainable

Futures,10/09/20. https://doi.org/10.1007/9783-030-639167_13

1 Thabet, M Sanders, B. Bausch, N2021,Detedion of patterns in pressure signal
of compressed air system using wavelet transfarm | Mporas, P Kourtessis, A Al
Habaibeh, A Asthana, V Vukovic & J Senior (Edgygy and Sustainable Futures:
Proceedings of 2nd ICESF 2@&@¥inger Proceedings in éngy, vol. 34, Springer,
pp. 6167, 2nd International Conference on Energy and Sustainable
Futures,10/09/20. https://doi.org/10.1007/9783-030-639167_8

U Conference Papers:

1 Thabet, M Sanders, D, Becerra, V, Tewkesbury, G, Hadda&l, Barker, T
2020,Intelligent energy management of compressed air system$2020 IEEE
10th International Conference on Intelligent SystemsI@&E IS Proceedings Series,
IEEE, pp. 15858, 2020 IEEE 10th International Conference on Intelligent Systems,
Varna, Bulgari&8/08/20. https://doi.org/10.1109/1S48319.2020.9199977

1.6. Overview of the Dissertation

This Dissertation is divided as follows:

Chapter Two presentsutcomes from a review of the literature concerned with the
performance andenergy efficiency of CAS. The review identified research gaps and

established the rationale for this research project.

Chapter Three describes a mathematical model to forecastpressed air demand and
energy consumption. A new model that considers equipment in the supply and demand

sides of a CAS is presented. Two simulations tested the proposed model.

Chapter Four investigates utilising the model described in Chapter Threabloage CAS

performance wherProportionakintegral (P1) antlodel PredictiveControl (MPC) are used.

ChapterFivedescribes the monitoring of the supply side pressure of a CAS to understand
what useful information could be extracted. An algorithm that rgeises different

pneumatic tools based on supply side pressure measurements is presented.
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ChapterSixdescribes monitoring the demand side pressure to understand what useful
information could be extracted. A new algorithm that identifies which tools created the

patterns appearing in the demand side pressure signal is presented.

ChapterSevendescribes theanalysis of sounds generated by the operation of pneumatic
tools. A new audio analysis system is described. The system recognised different pneumatic

tools based on the sounds they made.

ChapterEightpresents a new system f@ASondition monitoring andault diagnosis. The
new system combines supply side pressure monitoring (presented in Chaptéhne
demand side pressure monitoring (presented in Chageand the acoustic monitoring
(presented in Chapter) into one system that madelentified CAS andition about the

operating conditions of a CAS and diagnosed faults when they were present.

Finally, ChapteNine presents main conclusions from the research and proposes future

work to improve the methods and systeraseated
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Chapter 2 Literature Review

Compressed air is often labelled the fourth utility as it is versatile and commonly used
across most manufacturing and processing indust(ideale & Kamp, 2009)Studies
indicated thatGCompressedAir Systems (C8) account for more than 10% of UK industrial
energy us€Sanders et al., 2018)his figure was also high in other industsedi countries:
T2NJ SEFYLX S5 /! { 02y adzy S Recapmed for ndofe thankLa%y | Q
of the US total industrial energy uégaidur et al., 2010The high energy intensity of these
systems may be explained by the fact that only 19%, or ldssnergy used to produce

compressed air was actually available to end ugBenedetti et al., 2018)

Investing time and effort in reducing compressed air cbsts beenmportant for three

main reasons. First it could help identify and eliminate wasted energy in the operation of
CAS. Secondly, it could improve system reliability and overall performance. Finally, it might
reduce environmental impact, by reducing energy consumption and consequemtpn
emissions. Improving the performance and efficiency of CAS has received considerable
attention, and it has been investigated by numerous researchers.(laigter presents
outcomes from a review of the literature concerned with the performance endrgy
efficiency of CAS. The review identified research gaps and establishes the rationlaée for

researchdescribed in this Dissertation

2.1. Literature Search

Papers identified in the CAS literature were categorised into one of four research areas

dependingon their main topic:

U Measures to improve CAS energy efficiency.

U Modelling and simulabn of CAS

U Monitoring, managment,andfault detectionin CAS.
U Methods todetermineair leakage

The literature within each research area was analysed and mesearch gaps were

identified.
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2.1.1. Measures tolmprove CASEnergy Efficiency

Energy has been identified as the highest cost associated with the operation of a CAS
(Fridén et al., 2012)CAS operators have not normally given attention to a system unless
normal operation of the planivasinterrupted due to some malfunction. Many industrial
facilities could operate more efficiently by applying simple energy conservation measures
with relatively short payback periodéMurphy & Kissock, 2015)The main energy
conservation measures reported in the literature, in addition to barriers to their

implementation, are reviewed in this section.

Saidur et al(2010)presented a comprehensive overview of energy saving measures for
CAS A systematic approach to identify the sources of waste and areas where energy
consumption could beeduced was suggested. The following measures and methods to
estimate potential savings were mentioned: using high efficiency motor Wathable
Seed Drive (VSD), preventing leaks, use of outside air at compressor intake, reducing
pressure drop, recovarg waste heat, keeping equipment clean and using efficient nozzles.
The study also stated that although engineering measures were essential for maintaining
high energy performance, behavioural and institutional changes were necessary for the

success of CAghergy improvement programs.

NeHer (2018) published a comprehensiveeview of academic contributions on energy
efficiency measures in industrial CAEhe energy efficiency measures reported in the
literature were categorised with respect to where in the system those measures could be
implemented. The CAS was divided into two main parts: the supply and the demand side,
which were then divided further into suparts. Around half of the supply side measures,
were related to the compressor, while for the demand side, measures focuseztianing
compressed air demand. The surveyed measures for supply and demand sides are
summarized inFigures 2.1 and 2.Z'he benefits resulting from the implementation of
energy efficiency measures beyond energy savings, referred to agmengy benefits,

were also reviewed. Neanergy benefits included improvements to productivity, reduced

CQ emissions, less operation and maintenance, and improved work environment.
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Sub-part Measures

. Reduce air inlet temperature
Airinlet . Upgrade performance of intake cooling
. Throttled inlet
. Shut off compressor(s) not in use
. Multiple compressor control
. Isolate parts of the system with specific
demands (e.g. very dry air or high pressure)
. Adjust compressor(s) to load demand
. Minimise over-compression
Compressor > * Install booster compressor(s)

. Avoid over-sized compressor(s)
. Trimming of compressor(s)
. Variable speed /frequency drive compressor
. Start/stop compressor
. Optimised operation of compressor(s)
. Optimised control of compressor(s)
. Energy-efficient compressor(s)
. Improved motor efficiency

Ancillary . Properly sized filters and dryers

equipment . Unload unnecessary ancillary equipment
. Extraair storage
. Upgrade performance on drying, filtering and

filter substitution
. Reduce pressure by flow controller
. Condenser coils on air dryers
. Use high quality filters
Heat
recovery P o Use of excess heat

Figure 2.1: Supply side energy efficiency measufidshler, 2018)

Similar to the works ofaidur et al(2010)and Nehler(2018) several other studiealso
reported energy efficiency measures for compressed air syst@thesrera et al., 2021;
bSFEFfS 9 YIFIYLEZ HandpT ~SOftA2k S |t dXT HAmy
2013) however the measures were the same. Other research papers discussed measures
to improve the performance of sp#ic componentsGoodarzia et al2017)investgated
energy saving opportunities in the drying process of compressed air, by introducing solid
desiccant wheel drying technologgambandam et a(2017)investigated energy saving
potential in Functions and elbows used in the distribution network of a CAS, and it was
concluded that proper selection ginctions can have significant impact on energy

consumption and C£emissions
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Sub-part Measures

Reduction of leaks

Reduce piping bottle necks

Minimise energy losses in the distribution
Install flow meters

Optimise tubing design

Minimise pressure drops

Distribution

. Convert to other type of equipment, eg.

electricdriven equipment

Efficient nozzles

Avoid open pipes

Minimise demand

Minimise inappropriate use

Elimination of the use of air for personnel

End-use cooling

equipment . Air amplification nozzles

. Shut off air-using equipment when not in use

. Eliminate open compressed air blowing
applications e.g. use special nozzles

. Install nozzles and valves in end-use
applications

v

Demand

Reduce system pressure

Flow control

Peak load management

Regulate all points of use

Add control storage

Install pressure monitors to get instant
information on the system

System
management

. Separate end-use locations in several parts
according to theirload

Figure 22: Demand side energy efficien@yehler, 2018)

Other researchers presented mathematical approaches for determining energy efficiency
measures in CA®indorf (2012)discussed simple mathematical expressions to estimate
the energy saving potential of different measures. The mathematical expressions evaluated
metrics such as compremsspecific power, annual energy costs, compressed air leaks and
pressure drop.Shiet al. (2019) presented a more comprehensive set of mathematical
expressions, focusing on evaluating energy distribution across different CAS components.
The paperconcluded that major energy savings could be achieved through isothermal

compression, redcing system pressure, elimination of pressure losses and air leakage.

Even though energy efficiency measuresl leeen well defined, they were not always
applied. To increase the implementation rate, it was necessary to evaluate barriers to

implementation.Main barriers in CAS were addressed in several research pajemiaa
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andBaker(1998)published a pager where they reported some of the barriers to adoption

of compressed air efficiency improvements based on their experience with the compressed
air market in CaliforniaUSA They reported that operation and maintenance managers
often lackedinformation about the real costs of operating their CAS, and they did not fully
understand factors affecting their CAS efficiency. This led them to adopt simple solutions
such as buying more horsepower rather than optimising their current system. Other
barriers were identified such as a lack of credible information about real savings from
improvement measures, a lack of skills for implementing measures and lack of budget for

regular system auditing.

CagnaandTrianni(2014)studied barriers to energy efficiency measures in Italian small and
mid-size enterprises. Their study investigated barriers to measures in -cuttasg
technologies, which refers to technologies thatre not specific to a particular production
process but that are used by different production systems within an industrial plant. This
included compressed aikeating Ventilation and Air Conditioning (HVAC)jghting and
electric motors. Similar to results frorlanna and Bakdi998) the study concluded that
main barriers for compressed air measures were the lack of information on costs and
benefits, unclear information from technology providers, and latkuwst in information

sources.

Nehler et al.(2018) also investigated the barriers to the implementation of energy
efficiency measures in CAS, with a focus on largesig@anies. The barriers were studied
from the perspective of compressed air users, CAS energy efficiency experts and suppliers
of CAS. The study concluded that the main barriers were economic, such as the lack of
access to capital, the high cost of ideyitiig energy saving opportunities and the high cost

of implementing measures. Other barriers related to behavioural or organisational nature
were identified and these included the absence of energy efficiency objectives, lack of skills
and lack of time. Dwvers for implementing energy efficiency measures were also
investigated, and it was concluded that energy management systems play a key role in
motivating management to implement energy efficiency measus@ge metering energy
consumption helps energy magers accurately demonstrate the extent of costs associated

with a CAS.
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Trianni et al.(2020) presented an innovative framework to supp industrial decision
makers when evaluating energy efficiency measures. The framework considered the most
relevant factors for decision making, including the impacts on resources and company
operation. The framework consisted of 22 factors, which werganised into three
different groups: operational, economic and contextual. To test the effectiveness of the
framework, it was applied to 11 different companies utilising CAS. The results indicated
that the suggested framework helped decision makers taskime of the critical issues
preventing them from making decision about energy efficiency measUnéasnni et al.
(2020) acknowledged hat the application sample was narrow and did not consider all

sectors where compressed air was used intensively.

The lack of easily accessible information for compressed air operators was one of the
identified barriers to applying energy efficiency measures. Some studies in the literature
investigated addressing this gap by creating a benchmarking system that cdpl€AS
operators compare their consumption to other consumeBenedetti et al.(2018)
suggested a benchmarking system based on an explorative stoelewlata was collected

from 15000 large and energy intensive industrial firms operating withime industrial
sectors. The benchmarking system categorised the efficiency of the CAS based on how wel
it performed in two metrics: energy consumed to proéwmmpressed air and an efficiency
ratio, defined as the ratio between the actual amount of energy consumed producing
compressed air and the amount that should have been consumed according to a baseline.
The authors stated that the number of companies atishg adequate energy monitoring

and management systems was still low, making the creation of a reliable and truly

representative benchmark challenging.

The analysis presented Benedetti et al(2018)was expanded b$alvatori et al(2018)

It analysed different performance indicators that provided a quantitative assessment of
CAS performance and could therefore be used to further develop aHmearking system.

A new benchmark for CAS energy was definednfoe different industrial sectors. The
benchmark could be considered by industries when comparing their energy performance
to similar plants, thus creating awareness about energy saving tjppbtes. Moreover,

the authors provided general guidelines about how monitoring and recording data

generated information that improved efficiency and overall performance.
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The reviewed literature regarding measures to increase efficiency of CAS indibated t
energy efficiency measures were well known and reported, however they were not always
implemented. The low implementation rate wasvestigated,and several barriers were
identified. Results reported in the literature indicated that barriers were nya@@onomic

and behavioural, such as lagkcapital, awareness about energy saving potential and clear
decisionmaking processs Performance indicators and benchmarks were researcted
increase awareness and reliability of information regarding energygapportunities in
different industrial sectors. Moreover, the decistamaking processoncerningenergy
saving measures was studied, and a framework for deciding on energy efficiency measures

was suggested.

Two main research gaps within this area watentified at the beginning of the research
described in this dissertation. The first was a need to develop a degersimg process or
mechanism for selecting energy efficiency measures. Thisvgapartially addressed by
Trianni et al(2020) however further research was still required to validate the suggested
methodology over a larger and more sector representative sample of companies. The
second research gapas the low rate operformance indicatorsneasurements$n industry.
Benedetti et al.(2018) and Salvatori et al(2018) based on their experience in Italy,
indicated that a low percentage of plants measured and monitored important performance
indicators, suctasenergy per volume focompressed air produced. Given the high energy
cost of CAS, this indicated that little attention was given to CAS energy management.
Further research was required to understand why performance indicators were not

measured and how installing monitoringssgms for CAS could be encouraged.

2.1.2. Modelling and Simulationof CAS

Measures and best practices for minimizing energy consumption in CAS required economic
investment and changes to system operation. Without a clear view of benefits, production
facilities hesitated to apply suggested best practice. Therefore, it was necessary to perform
an analysis that quantified the projected savings (in termk\Vih and £) and determined
associated costs. Modelling and simulation have been common tools in analysing the

performance of a CAS and evaluating the effectiveness and applicability of energy efficiency
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measures. ThiSection will review previous papers that investigated tools and methods for

simulating CAS.

Mathematical models for the supply side afsystem were stdied in the literature.
Maxwelland Rivera(2003)presented a basic dynamic model for the supply side of a CAS.
The components considered were a compressor, cooler, piping and tank. The model did
not consider the demand side, and to simulate a system, an arbitrary air demand profile
was assumed. Two diffent simulations were performed with the model. The first one
studied the effect of varying pressure control settings of the lead compressor when
multiple compressors were operated. Results showed that setting the pressure too low
caused operational probias, whereas setting it too high led wastedenergy. The second
simulation studied energy consumption as storage tank size was varied. Results showed

that increasing storage volume decreased energy consumption.

Similar studies that considered only the slypside were also reported in the literature. In
those studies, the demand side was either not considered, or values for air demand were
assumedKleiserand Rauth(2013)presented a dynamic model for the supply side, whic
was built using transient analytical expressions. Air demand profile was assumed similar to
one found in a typical industrial plant. Simulations focused on assessing different methods
to store compressed air in an industrial facili@happell(2011)and Azizifarand Banooni
(2016) modelled the supply side using thermodynamic expressi@isappell(2011)
presented thermodynamic models of systems with different compressor stype
(reciprocating and centrifugal), wheredgizifarand Banooni(2016) modelled a system

with a two-stage compressor and an intercooler. Both studies did not consider the demand
side.

Systems with multiple compressors were also investigated and modéfedohy and
Kissock2015) modelled the operation of a CAS consisting of multiple compressors and
simulatedthe performance of three different compressor control strategies: pressure band
control, network sequence control and automatic sequencer contrll. et al.(2017)
modelled CAS operation with multiple cpmessors. Their simulations focused on
evaluating systems with fixed and variable speed compressors. Both research papers

focused on the supply side and did not model the demand side.
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Anglani et al(2012)presented a new tool for modelling the supply side of a CAS. The tool
was calledODSCAand was designed using a modular approach, makisgiiablefor
studying systems efficiencfgr retrofits and for sizing distribution networks. Models for a
compressor, air cooler and a piping network were suggested. The tool simulated
compressed aigeneration, treatment and distributionAnglani et al.(2015) presented
further improvements toMODSCAThe improvements included new modules to model
filters, linear and circular distributiometworks, and different compressor control
strategies. The tool allowed modelling of a distribution network using an equivalent
electrical network. Three differentiraulations were reported. The first two compared
linear and circular distribution networks using phydiesed equations and an equivalent
electrical network. Results showed that losses in circular distribution networks loxees

than linear ones and thefore they were more efficient. In the third simulation,
Proportionatintegral control (Pl) and Model Predictive Control (MPC) for a compressor
were compared. Results showed that energy savings with MPC compared to Pl were low
(2.2%) and might not justifhe associated complexities of MPC contMODSCAlid not
model the demand side, and in all the reported simulations, an air demand profile was

assumed.

Few published papers focused on modelling compressed air consumption and demand
rather than the supplyside. It is important to differentiate between the two terms
(consumption and demand). Demand is the flow rate (i.e. flow per unit time) requirement
of a device in operation while air consumption (i.e. total flow) is the total quantity of air

consumed dung a time interval of operation.

Beater (2007) published a booldiscussingnodelling and control of air powered tools,
commonly referred to as pneumatic tools. To describe the flow rate through any pneumatic
tool, Beater recommend the ISO 6588w model Derivation of the ISO 6538 flow model

is provided in Appendix.AThe ISO 6538 model was sufficient to describe flow through
simple tools such as pipes and nozzles, however for more complex tools such as actuators
equations describing pressure, temperaterand frictionhad to be coupled with flow

equations to provide an accurate model.
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Parkkinenand Lappalainen1991)presented a model foa CAS demand side. The model
estimated pressurised air demand in a pneumatic system. Pneumatic tools were classified
into two main types: active and passigensumers. Tools with a continuous demand for

air, such as active air guns, open pipes and leaks were classified as passive consumers, whi
tools with periodic and sho#ived demand, such as actuators were classified as active
consumers. Demand of passitools was described usirilge ISO 6538 flow model, while
demand for actuators was modelled by considering the change of cylinder volume in a

typical cycle (extraction/retraction). No result validation was reported.

Harris et al(2013)presenteda similar model for the prediction of air demand in pneumatic
systems. Air demand in a linear cylinder during expansion and retraction strokes was
calculated sepately, while inParkkinerandLappalainerf1991)the demand was assumed
equal to the average demand per double stroke (one expanding stroke and one retracting
stroke).Harris et al(2013)used an extendedersion of the ISO 6358 model to describe
flow through a nozzle. To model the flow through a linear actuator, the extended 1SO 6358
model was used in addition to equations that described pressure and friction dynamics.
The results from the model were commeal to experimental results, and the error was

acceptable (713%).

Most of the reviewed papers either focused on modelling the supply side or the demand
sideonly, howeversomepapers considered a model that attempted to couple both sides
of a systemHyvarinenand Lappalainern(1995)considered both the supply and demand
side. Mathematical models for air production, distribution and consumption were
presented, however the overall consumption of all pneumatic tools was modelled with one
lumped parameter equation. Simulations considered systems made up of a distribution
network with multiple pressurised air centres containing compressor(s), storage tanks,
valves and air consumers. The model was useful for optimal dimensioning of distmibuti
pipes, evaluating system improvement and for general network analigiarinenand
Lappalainer{1996)used he models to create a computer program (simulator) to simulate

pneumatic networks.

Friedenstein et al(2018) presented a methodology to evaluate CAS energy efficiency

measures through simulation, in which both supply and demand were considered. The
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methodology divided the simulation process into three main steps: system investigation,
model development and exedon of simulation scenarios. Compressor and demand air
flow were modelled using previously collected data, rather than analytical expressions. The
methodology was applied to a case study of CAS in a mine. Since the model was mainly
data based, it was notear to what extent the model could accurately represent different

systems, new components, and new control strategies.

Eret et al.(2012) also modelled the supply and demand side. Expressions for modelling a
compressor, dryer and air consuming tools were presented. The model identified priorities
for optimizing compressed air use at an industrial facility. The model did not consider the
dynamic behaviour of the system, and compressed air demand was calculated based on

daily average for tool usage.

Vyas et al(2021)presented a new CAS model that considered both demand and supply

sides. The model simulated energy consumed for generating compressed air and for
operating other air consuming tools, more specifically a milling machine. Air demand was
obtained from manufacturer data rather than analytical expressions. The model was used
to analyse the effect of parameters such as pressure set points, size of systéeaksidn

CAS performance.

Modelling and simulation of CAS has been an effective tool for evaluating CAS performance
and for analysing system retrofits. Several papers in the literature researched this area,
although most papers discussing models for CAlsereifocused on the supply side or
demand side separately. The papers that discussed coupled models either (1) used a data
based approach, which cannot be reliably extrapolated, (2) combined the air demand from
all tools into one lumped parameter expressj@3) did not consider the dynamic nature of
compressed air demand or (4) assumed values for air demand. This was identified as a
research gap. A second research gap was the lack of models that coupled CAS with othe!
energy consuming technologies usudtiynd in an industrial facility. As an example, HVAC
has normally been an essential system in a manufacturing plant. Heat recovery has been
identified as a major energy efficiency measure, however a dynamic comprehensive model
that could simulate HVAC andAS did not appear to have been investigated in the

literature.
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2.1.3. Monitoring, Management and Fault Detection

Systems for monitoring, management and fault detection were slowly being introduced
into companies because of high economic and environmental costsergy exhaustive
processes, such as compressed air production and del(Bawyedetti et al., 2016)The

main role of such systems was to control energy consumption by assisting in the evaluation
of performance, identification of malfunctions or energy efficiency opportunities and the
recommendation of corrective actions. Tisction will review papers the literature that

investigated systems for monitoring, managing and detecting faults in CAS.

Cabello Eras et &020)proposed a methodology to monitor and control the electricity
consumption of a CAS. The methodology was based alrtinee monitoring of relevant
variables that were used to define performance indicators, produce rapid alerts and
identify inefficiencies in CAS. To detect inefficiencies, real time data and subsequent
performance indicators were compared to a baselirge Tethodology was implemented

in a battery manufacturing plant and resulted in 23% energy savings. Although the
suggested method identified inefficiencies, the association with proper causes was not

discussed and appears to have been done manually ugiSgeperts.

A series of papersvestigatedthe monitoring, intelligent control and anomaly detection

in CA§Santolamazza et al., 2018a, 2018b, 20$8@ntolamazza et 0189 presenteda
methodology to monitor energy performance of a CAS and detect anomalies. The main
factors thatinfluenced the performance of the system were used in creating an artificial
neural network (ANN) model that predicted healthy energy consumption. The output from
the ANN was compared to actual energy consumption to detect anomalies in performance.
A prelminary analysis to associate anomalies with their causes was performed, although

that required further research.

Santolamazza et a(2018b)evaluated three different methods to monitor and control
energy consumption in CAS: linear statistical regression, and two machine learning
approaches: ANN and support vector machines. The liesshowed that statistical
methods were simple and effective in determining main anomalies in common systems,
whereas machine learning techniques enabled the implementation of additional functions

such as failure analysis and prescriptive maintenance.stdtestical method was further
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tested in a case study involving a pharmaceutical manufacturing plant, where maintenance
related events were detected and energy savings of around 10% \aehgeved

(Santolamazza et al., 2019)

{Lyd2ftlYFTTIQ&a 62N)] &aK2¢gSR GKIFGd NBIFf RI
environmentcould assist in the detection of abnormalities (faults or energy inefficiencies)
and in the recommendation of suitable counter measures. However, the association of
these abnormalities with their possible causes, and the generation of a trdultisg

procedure, was not investigated thoroughly.

Other researchers investigated combining energy management systems with sensors and
information systems that collected and analysed daBoehm and Franke (2017)
introduced the concept o®yberPhysical CAS (CPCAS), which were industrial CAS equipped
with sensors, automation technology awdtificial Intelligence(Al) These systems would
capture basic operating parameters (such as pressure, volume, temperature, etc) and could
enable more efficient and flexible operation. For those systems to become available,
further researchwas required thetechnical characteristicef each componenand their

specifications.

CPCA®as also investigated by other research@kbela et al., 2020a, 2020bela et al.
(2020a)created a compressed air test bed equipped with an energy monitoring eyber
physical system. A 3D model of the test bed @vwahinFigure 2.3The test bed contained

a compressor, air storage unit, piping, regulator, an electrical control system and data
acquisition systemAbela et al(2020b)reported the results from experiments performed

to study energy performance and air flow rates when leaks of various diameters were
present ina piping system. Ultrasonic detectors were used to record acoustic emissions
from leaks. Data was used to createarelation between noise level and leak diameter.
The research did not investigate intelligent or data mining techniques to extract
information from the collected dataMoreover, the automatic diagnosis of faults was not

discussed.
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Figure 2.3: 3D model of a compressed air test b@tela et al., 2020a)
Dindorf and Wos (2021) presented a portale programmable device for monitoring and
diagnostics in CAS. The device had input ports for multiple sensors that could measure
pressure, flow and temperature. It also had a graphical interface to communicate with
users and the ability for wireless commigation. The device could be used for to research

CAS auditing.

Algorithms for monitoring and detecting faults in CAS were also reported eiiret al
(2009a; b)investigated monitoring a pneumatic network usiAf§jlN Data was collected

from pressure sensorg,linear potentiometer (position sensor) and electric switches. The
system was assumed to repeat identical sequences while in operaiemetgil al.
(200%) collected and analysedignals fromnormal and defective sequences. It was
concluded that defective andormal cases could be identified from the sensory signals
with a neural networkDemetgulet al. (200%) createdtwo neural networls, one using
adaptive resonance anchather ushgback propagation. The data was representative of
the normal case and several possible defects such as low pressure, no pressure, empty

magazine, etc. The results indicated that both neural networks performed well. The
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suggested methodology worked for stgms that kept repeating the same sequence,
however the neural network would require retraining if any changes occurred. Moreover,
the study focused on the demand side pressure, and did not consider the supply side

pressure.

Kosturkov et al(2021)investigated CAS monitoring and fault diagnosis using time series
analysis methoddata was collected from flow and pressure sensors in addition to control
signals fromProgrammable Logic ContrdPLQ. Different distance and correlation
measures were used as features. Raw data from the sensor was processed and no
transformations were aplied. The experimental setp, shown inFigure 2.4 was a

pneumatic network with a double acting cylinder.
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Figure 24: Experimental setip used inKosturkov et al., 2021, B and C correspond to locations
of simulated leaks.

Three types of leaks were simulated, each at different points in the system, as shown in
Figure 2.4 Resultsndicated that using the suggested method, the three different leaks
could be detectedKosturkov et al(2021)did not report testing the algorithm when more
than one air consuming tool was present. Moreover, the study only considered a regulated

pressure signal.

Instead of monitoring the regulated pressurBgsmetand Delore (2017) investigated

detecting faults in a CAS by analysing®y side pressure. A method based on a continuous
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wavelet transform and machine learning was presented. The method associated patterns
in the supply pressure with the activation of each@iwered tool. The pressure from the
supply side and the activain times of tools were measured and logged. A continuous
wavelet transform was applied to transform the pressure data into the tso@e domain.

The most informative scales were detected using a random forest algorithm. Results
showed that only a few sad were required for representing air consumption patterns.
Two anomaly detection methods were then explored: the first used an unsupervised
clustering approach, while the second used a neuoslvork approach. The study
concluded that the algorithms wereomplex and computationally expensive, and
therefore their implementation in redime applications required further research.
Moreover, the suggested approach was sensitive to minor changes tsygtem sincet

would most likely alter air consumption patterns.

Model based techniques for fault detection and diagnosis were also investigastuhan

et al. (2017)suggested a moddlased methodology for fault detection and isolation in
pneumatic systems. A lumped parameter mathematical model for compresseovaivils
created and then validated experimentally. Faults were introduced to a test bench and
were successfully detected using the suggested methodology. Future work required

considering more system components.

Czopek et al(2022) proposed an approach for identifying emgr losses in CAS using
acoustic recordings and a mathematical model. The model estimated leakage size based or
recorded noise levels. The approach was tested in a laboratory, where a compressed air
tank was emptied through holes of different diameters idiacharge pipe. To eliminate

the effect of background noise, measurements were made in affie@a-echo chamber.
Results showed the method was accurate in estimating leaks and associated energy losses

and therefore acoustic monitoring could be importdat CAS energy efficiency.

The literature indicated that systems and technologies for monitoring, managing and
detecting faults in CAS was an active field of research. Different methods and approaches
for monitoring and detecting faults had been proposddore powerful and flexible
hardware was being developed and becoming available. One of the research gaps identified

within this area was the development of systems and algorithms capable of associating
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faults with their causes. A second gap was CPCAS) veuuaired further research into its

components, functionalities, and projected benefits.

2.1.4. Methods to Determine Air Leakage

Leaks can be a significant source of energy waste in a CAS, estimated at around 20 to 309
of a compressor total outpufLawrence Berkeley, 2003n addition to wasting energy,
leaks drop system pressure which could interrupt normal plant operation. Leak detection
and elimination should be a routine procedure, achieved with appropriate inspection and
maintenance of CAS. Because most CAS aretiikbve or develop leaks, leak detection

and elimination has been a topic of interest in CAS literature. Several methods and
technologies for leak detection in CAS were investigated. In this Section, some of the

researchconcerninghis topic is reviewed.

Methods for detecting leaks without interrupting plant operation were reported in the
literature. POyhtnen et al(2018) presented a method to estimate air leakage rate in
variable speed drive CA%h the proposed method a sequence of operation was
implemented in the control scheme of\@riable eedDrive (VSD}hat was labour free.

The operation sequence hadid steps: a fill up phase where the system was pressurised,
and a leak phase where the system was allowed to leak so that pressure decreases to a
new value. The rate of pressure decay was used to deter a rate of leakage. The
feasibility of the approach was verified with laboratory measurements, where results

showed that estimated leakage rates differed from actual rates by up to 10%.

Doyle and Cosgrove(2018) presented a lowcost nonintrusive method for quantifying

leaks in a CAS. The proposed approach monitored the electrical energy of a CAS during
production and norproduction periods for analysis and for the quantification of system
leaks. Monitoring energy usage during normal production indicated the typical level of
energy used to support productiarelated activities while the level of energy usage during
non-production time indicated the amount of energy required to fill the reseér and keep

it filled when its pressure dropped due to leaks. A ratio was obtained by dividing the latter
by the first. The suggested method was technically simple and cheap however it was time

consuming.
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Dindorf et al.(2017)proposeda new compressed air leakage measurement device that
could be usedluringand outside production hours. The proposed device was independent
of receiver and compressor parameters, which was not the case with traditional methods
for measuring leaks by emphyg the receiver. The device estimated compressed air leakage
based on the pressure drop with and without flow at pipe outlet. The device could be used

to measure compressed air leakage in any part of a compressed air pipeline network.

Sincecompressed aileaks generated noises with frequencies in the audiblé>-sonic(0-
20 KHz) and ultrasonic (>20KHz) frequency ranges, the use of acoustic sensors for leakag

detection and localization in industrial CAS was the topic of several researcher papers.

GuentherandKroll (2016)presented an automated compressed air leak detection system
using ultrasonic measurements. Guenther and Kroll suggested that the ohaantages of

the system were its low cost, simplicity of maintenance and its overall low complexity,
while its main disadvantage was a relatively low detection speed. The suggested system
was made of two ultrasonic microphones, a gdhunit and a compuer. Results indicated

that the system was feasible in a laboratory environment, but further testing in an

industrial environment was required.

EretandMeskell(2012)studied an array of microphones for detecting leaks in an industrial
CAS. Since ultrasonic sounds had Highuencies, they tended to attenuate rapidly and
therefore ultrasonic detectors operatkat a close distance from suspected leak location.
An array of microphones to detect leak noises at frequencies below 20 kHz (audible range)
at larger distances was ggested. Beamforming, a method for generating noise maps was
tested as a tool for leak localization. Results showed that microphone arrays with
beamforming could be applicable concept for compressed air leak detection and

localization.

Dudi et al. comparal ultrasonic and infrared thermography for compressed air leakage
quantification6 5 dzZRA S S | f ®3 uThevpetdntials drid AndtatiGhs of thefsed >
technologies were analysed, as well as the reliability and accuracy of resultsembtain
Experiments were performed on a hose with different size punctured orifice2(0rBm
diameters) at different compressed air pressures. It was concluded that ultrasound

methods were suitable for detecting leaks of up to 1.3mm diameter however ultrasou
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methods couldnot differentiate between leaks of size greater than 1.3nmemsthe noise
level generated by a leak of 1.3mm and a leak of size 2.0 mm was similar. Infrared
thermography was better suited to differentiate between leaks of larger sizestégriéean
1mm). This was because infrared thermography relied on temperature contrast, which was

not always detectable in small size leaks.

Liaoand Cai(2011)proposed a method to improve conventional ultrasonic methods for
CAS leak localisation. Ultrasonic signals generated by a compressed air leak might be
reflected by a surface such as a wall. Traditional ultrasonic leak detection did not
differentiate between a real leak point and a signal reflection point, leading to errors and
misleading results when localizing leak sourc&o and Cai (2011) investigated the
differences between direct and reflected ultrasorsignals generated by a leak point.
Experiments to record the direct and reflected ultrasonic signals were performed as shown
in Figure 2.5The time domain signal of both ultrasonic waves was recorded, and asing
Fast FourierTransform, the correspondon frequency spectrum was obtained. Obvious
differences between the two spectrums could be identfiand an algorithm that

differentiated between direct and reflected signals was suggested.
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Figure 25: Experiment performed in (Liao and Cai, 2011) to analyse direct and reflected
ultrasonic signals from air leaks

Liao et al(2013)presented a portable ultrasonic leak @etion and localization tool. The
proposed detector was equipped with three ultrasonic sensors and it worked by estimating
the time delay between the readings from each pair of sensors. Unlike traditional
directivity-based leak detectors of that time, tHecation accuracy of the time delay leak

detector was not subject to the directivity of ultrasonic serssand therefore the new
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sensors were 6 to 8 times more accurateriltlae traditional ones. The accuracy of the time
delay detectors depended on the @l estimation error, and therefore requireatcurate

time delay estimators. Moreover, the leak localization error increased linearly with
distance from leak and therefore in operation the detectors had to be as close as possible
to the potential leak. Theuggested detector was not suitable for detecting leaks in hidden
areas ofapipe €.9., therear ofapipe). For such cases, detection methods that operate in

the audible frequency rang&ould have beemore suitable.

Instead of developing tools that relied directly on acoustic measurements, other
researchers investigated methods based on extracting feastfirom acoustic recordings.
Zhang et al(2004) studied the detection of leaksn a pneumatic system using a sound
detection system based on the Fourier transform and neural networks. The power
spectrum obtained from processing acoustic data with the Fourier transform were used as
features to train a neural network to detect leak&ielstudy concluded that using acoustic

features in addition to neural networks was effective in detecting leaks.

Similarly,Santos et al(2013 2014)investigated the detection of leaks in compressed air
pipes by capturing acoustic waves through a microphone installed inside the pipeline.
Signals obtained with microphone were analysed usiag-ourier transform, generating a
frequency spectrum that was used to characterise different operating situations. The
results indicated that leaks led to distinguishing peaks appearing in the frequency spectrum
that were notpresent in the case of no leak, concluding that it was possible to detect a leak
using the frequency spectrum of acoustic data. Using an ANN, the occurrence and
magnitude of leaks was predicted. The suggested method showed a high level of accuracy,

exceptfor small orifice leaks (>1mm).

Several studies discussed techniques used in detection, localisations and quantification of
leaks. A research gap identified was the lack of accuracy in ultrasonic and acoustic methods
when dealing with small leaks (orifisenaller than 1mm). Future research could investigate

ways to increase the range of leak sizes that are detectable with these techniques
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2.2.ldentified Research Gaps

This Section discusses the research gaps identified follctventiterature review at the

start of the research described in this Dissertation.

1- Measures to reduce energy consumption were well developed in the literafinrme
measures haa high energy saving potential aradlow initial investment costhowever

there were lowimplementation rates. The low implementation rateere further studied

and some barriers were identified. The typical way manufacturers investigatedgy
savingopportunities,wasthrough costly and tim&onsuming energy audits.eDeloping a
methodology to support decisiomakingregarding suitablenergy saving measur@sCAS

may result in a useful and innovative tool for improved energy efficiency. This gap appears
to have been partially addressed @&npaper published byTrianniet al. (2020) however
further researchwasstill required to validate the suggested methodology over a larger and
more sector representative sample of companiégernative tools to assist in the decision

making process could also be researched.

2- Modelling and simulating CAS played an important role in evaluating systems
performance and studying possible improvements. Most models in the literature either
focused on modelling the supply or demand side and the few that considered both supply
and demandequired further research. In addition, no models in the literature considered

integrating a CAS model with other energy consuming equipment normally found in
industrial plants,such asHVAC. Heat recovery has been identified as a major energy
efficiencymeasure and hence future research could investigate creating an integrated

model for simulating recovering heat from a CAS into an HVAC.

3- Performance monitoring and management of CA8 $&en interesting developments.
Machine learning and pattern recogion techniques were used for optimizing CAS
performance and detecting abnormalities. However, the association of abnormalities with
their causes and suitable troubleshooting proceduresd haot been investigated
thoroughly. Creating new systems and methatgpable of detecting abnormalities in
performance and associag them with their suitable causes to set up troubleshooting

procedures required further research.
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4- Several variables and system were considered when monitoring CAS. These variable:
included flow, energy consumption, pressure, acoustics, etc. Algorithms were then created
to extract information about the systems from the collected data. In the reviewed
literature, data streams from CAS were treated individually, #mel combination of
information extracted from different data signals was not investigated. Future research

could investigate a knowledge management system that combines several data streams.

5-The concept of CPCAMAs introduced and a few papers researched their capabilities.
CPCAZ&re equipped with components for sedtifficient control, such as sensors, actuators
and data processing. In addition, they were capable of exchanging information with other
devices, and therefore could play a role in improving CAS energy efficiencyvétothere

was a research gap regarding technical characteristics, functionalities and potential energy

savings of CPCAS.

6-Leak detection and elimination was identified as a major step in reducing CAS energy
waste. Technologies to quantify and locate leakere discussed. These technologies faced
several challenges such as: inability to operate during production, inaccuracy in sensors and
noise coming from operating environments. Moreover, technologies such as ultrasonic and
acoustic leakage detection wermt effective in identifying leaks from small size orifices.
Future research could focus on further developing these techniques to increase their

accuracy, range of applicability and ease of use.

Other researchgaps identifiedwere identified after themain research topic reported in
this Dissertation was defined. These gaps did not sway the direction of this research;
however, they did influence what the author of this Dissertation thinks future research

could investigate. They are mentioned here fongmetion.

1. Benedetti et al.(2018)and Salvatori et al(2018)indicated that a low percentage of
plants measured and monitored important performance indicators, such energy per
volume of compressed air produced. Given the high energy cost of GABdicated that
there was little attention given to CAS energy management. Further reseastequired

to understandthe main reasons why performance indicators were not properly measured

and how installing monitoring systems for CAS could be encodrage
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2. Model based techniques for fault detectiondhanly considered pneumatic components
in the demand side. Future research could investigate incorporating mussd fault

detection for the supply side.

3. One of the issues facday data-based methoddor monitoring and detecting faults in
CAS was that systestkept changing. This was often due to maintenance activities or
upgrades. Datdased algorithms required retraining or redefinition of signature patterns,
which was normally time consuming. Futunesearch could investigate techniques that

simplify adjusting datdased algorithms after planned changes to the system.

2.3. Literature Underpinning this PhD Research

ThisSection discusses how the research work presented in this [PisBertationextends

the knowledge in the literature.

2.3.1. Coupled Model

Creating a model that couples CAS supply and demand sides was identified as a researcl
gap. Most of the research papers investigating CAS modelling considered the supply and

demand sides separately. Few researchgra coupled supply and demand.

The work described in this Dissertation created a new coupled model based on dynamic
mathematical equations. The research paper Hyvarinen and Lappalaine(il995)
modelled air demand of all consumers with one lumped pagnequation The model
presented in this Dissertation considered each air consuming tool individually. Models
presented byFriedensteinet al. (2018)and Eret et al.(2012) were data based and not
dynamic. The model presented in this Dissertation is dynamic and based on analytical
expressions. Finallyyyaset al. (2021)presented a new CAS model that coupled supply and
demand, however the model focused on integrating tkeeergy consumption for
generating compressed air and for operating other air consuming tools. Air demand was
obtained from manufacturer data. The model presented in this Dissertation used

mathematical expressions to estimate air demand from different pnatictools.
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2.3.2.  Monitoring Supply Pressure

Monitoring a CAS by analysing and extracting information from a pressure sighadém
investigated in the literature, although most studies considered a regulated pressure at
pneumatic tools inlet. This pressureere referred to as demand side pressure, was
normally regulated to a constant value that only changed when a tool operated (or a
malfunction occurred)Only Desmetand Delore(2017)investigated supply side pressure

using a continuous wavelet transform.

The new work described in this Dissertationvestigated analysiand extracton of
information from the supply side pressure @CASDesmetand Delore(2017)processed
the pressure signal using a continuous wavelet transform, howeeerwork presentd in

this Dissertationnvestigated a discrete wavelet transform.

2.3.3.  Monitoring Demand Pressure

Air pressure at the inlet of pneumatic tools was normally regulated to satisfy production
requirements. When tools operated, patterns appeared in the pressureakigrnose
patterns could beused for monitoring and for extracting information about the signal.
Papers in the literature investigated extracting features from demand side pressure,
however they either assumed tools repeated the same sequence, or theyonsjdered

a single pneumatic tool connected &system.

The new work described in this Dissertatimvestigated extracting information about a
CAS demand side by analysing the regulated pressure of a pneumatic network with at least
two tools operating.Previous work ha either assumedan identical tool operation
sequencesuch(Demetgulet al, 200%; Demetgul et al., 2008, or considered a network

with only one tool, such adosturkov et al., 2021)

2.3.4.  Acoustics Monitoring

Previous research reported the use of acoustic data obtained from the ambient in which a
CAS operated for monitoring and detecting faults. Most of that research focused on leak

detection eitherusingultrasonic acoustic sensors or using machine learning algorithms.
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The new work described in this Dissertatiomestigated acoustic data for monitoring and
obtaining information about a CAS. Papers in the literature focused on detecting leaks using
acoustic datahowever thisnew work alsanvestigated recognising which tools operated

based on sounds generated.

2.3.5. Knowledge Management System

Information and knowledge gathered from a manufacturing environnveggan untapped
source for optimising energy use in a manufacturing process with a CAS. The literature
revealed systems and algorithms that collettiata such as air flow, energy consumption
and system pressure to extract information and create knowledgeaihe CAS. However,
each data streanwasanalysed individually, and combining the information extracted from
the different data streams was not investigatedhe new work described in this
Dissertationcreated a new knowledge management system that comtbithe knowledge
extracted from supply pressure, demand pressure and acoustic data streams to create

awareness about system and help save energy.

2.4.Discussion and Conclusions

CAS are responsible for a considerable share of the total industrial energynotisu in
many countries. These systems are inefficient, with only 19% or less of their energy input
beingdeliveredfor end use. To achieve future energy savings and reduce emissions, energy

consumption in CAS should be reduced.

ThisChapter presented resultfrom reviewing the literature concerned with CAS energy
efficiency.Papers were categorised into four different research areas depending on their
main topic (1) Measures to improve CAS energy efficiency, (2) Modelling and siorutzti

CAS, (3) Monitoring, management and fault detection in CAS, (4) Methods and Equipment

to Determine Air Leakage

Measures to reduce energy consumption were wklcumentedin the literature, with
numerous scientific papers, conference papers and ingusést practice guides covering
the subject. Even though these measubexsl been researchedseveral barriers stood in
the way of their implementation. Obtaining information about energy efficiency measures

required costly and periodic energy audits, whimightinterrupt plant operation. This
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reducedtheY I y I 3SYSyiQa Y2GA@l GdAaz2y G2 & SiBakingd dzOFf
mechanism that facilitad selecting suitable energy efficiency measures may encourage

implementation of these measures, and tieéore reduce CAS energy consumption.

CAS Modelling and simulation methods were reported in the literature. These methods
evaluated and justified technical and economic feasibility of energy efficiency measures.
Some of the reviewed models were more detdil and considered more system
components and variables. Main identified gapshiaresearch included the development
of more detailed models that considsat supply and demand sides in addition to other

aspects of energy consumption in a plant operatingCA

Literature on CAS monitoring, management and fault detection was reviewed. Different
methods for monitoring and detecting faults were reported. Further research into
associating faults with their causes and setting up a troubleshooting procedure was
required. Moreover, CAS equipped with sensors, automation technology Adnday
increase system efficiency and reliability, however more research was required to

understand their capabilities, technical requirements and potential energy savings.

Leaks were anajor source of waste in CAS. Methods and techniques used in detecting and
localising air leaks were reviewed. Several methods existade of which used ultrasonic,
acoustic and thermal monitoring. These methods did not intervene with normal CAS
operation andwere effective in terms of locating leaks when leak diameter was greater
than 1Imm. On the other hand, other methods measured the time required to fill and then
discharge a CAS storage tank. Those methods Vesvecost but they interfered with
normal operation, were time consuming and did not localise leaks. The main gap identified

within this research field wais finding methods taletect small size leaks.

The new work described in this Dissertation addressmue of the identified gap&irst a
CAS model that couples supply and demamds created. After that, extraction of
information from process data for monitoring and fault detectiovas investigated.
Systems for mining supply pressure, demand pressure and acousticveatacreated.
Then a knowledge management unit that condrthe three systemswas created to

generate knowledge about the system, save energy and improve performance.
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Chapter 3:Compressed Air System Coupled
Model

Experimental evaluatioof compressed air system (CAS) performance under different
operational conditionshas beerntime consuming, challenging and sometimes unfeasible.
An alternative was computerbased simulations. Computer simulations alélvthe

evaluation of changes to a $gm and operating conditions at a minimal cost. Researchers
and engineers often redd on models and computer simulations to evaluate and optimise

component design, control strategy and overall system performance.

Past models have either focused on moagjlthe supply side, demand side or individual
CAS components. These models were helpful in designing and optimistgms for
generation and consumption of compressed air; however, they did not capture the
dynamic interaction between the demand and suppldes. The model presented in this
chapter considers botthe demand and supply sideThe model is mathematical and based

on first principlesysing theideal gas equations and equation of air flow through a nozzle.
The objective of the mod&las to obain a better understanding of the interaction between

the demand of compressed air and the energy consumed in its generdtiermodel could

be used as a tool for evaluating changes to system components, for studying new control

strategies and for analysy CAS interaction with other equipment.

This Chapter is dividedinto five Sections Section3.1 presents an overview od CAS
configuration. SectioB.2models thesupplyside of a CAS. Secti8rB models the demand
side of a CAS. Secti@ presents thenew combined model along with simulations and

results. FinallySection3.5discusses results, model limitations and resulting conclusions.

3.1.Overview of CAS Configuration

A basic CABonfigurationwas consideredas shown in Figure 3.LAS have often been
divided into two major sections labelled the supply side &mel demand side(Nehler,
2018) The supply sidevas responsible for production, treatment and storage of

compressed air. The demand sighcludel distribution, pressure regulatioand end user
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consumption.In somereferences storage was included in the demand rather than supply

sidglLawrence Berkeley, 2003)

The supply side often included a compressor, air cooler, filter, water sepasad a
storage tank. Air intake into the compressor was filtered to prevent solid particles from
enteringthe compressor. A compressor, which was typically driven by an electric motor,
increased air pressure and consequently its energy content. The @ssipn process also

led to an increase in air temperature, which was undesirable in most applications. A cooler
wasoften installed to reduce air temperature. Coolingll® moisture condensatiorand

water particles were removed with a dryer/water sepasatFinally, the compressed and

cooled air was stored in a storage tank for supply to the demand side.

The demand side of a system included pressure control valves, pipes and pneumatic tools.
Different tools required air supplied at different pressuresed3ure regulatorbave been
installed upstream of tools to stabilise network pressure at the required levels. Pneumatic
tools, whichwere the main air consumers, transfoed energy in the compressed air into

mechanical work.

Supply Side Demand Side
Pressure
Regulator _ ‘
Compressor Tank B - ﬁ%DmmmAdmg
m = Actuator
) ?
i e 2 ﬂ Single Acting
oA = L Actuator
Air — 4

Cooler

Motor LQ ‘%D Air Blower

Figure 3.1: Schematiagepresentationshowing equipment found ia typical CAS

3.2.Modelling Supply Side

ThisSection presents the supply side mod#la CASThe components considered are a

compressor, an air cooler and a storagek.
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3.2.1. Compressor

Compressors increase the pressure of a fluid or a@aspressors have be@ategorised

into one of two broad typedased on their mode obperation Positive displacement
compressors and dynamic compressgrawrence Berkeley, 2003)he pressure of awas
increased via a compressor in one of two ways: either by decreasing the volume enclosing
the gas (positive displacement compressors) or by increasing the number of air molecules
within a given space (dynamic compressors). Evemghothese types of compressors
differed significantly in their build and mode of compression, they both performed three

common taskgkent, 1974)

1 Suction: Allowing air into the compressor.
1 Compression: Increasing pressure to discharge pressure.

1 Disclarge: Releasing compressed air into the discharge line.

Assuming air behaved like an ideal gad ignoring losses due to friction and heat transfer
the work requiredWeompC2o compress a volum&/iCof air from air inlet pressuréP Qo

discharge presure P,Qas calculated usingquation 3.1

Equation 3.1

where HQs the polytropic compression exponent. The process was assumed isentropic
(n=1.4). To calculate the power, volume flow rate per unit time was used instead of volume.

To estimate the electric power supplied to the compres#ds,QEquation3.2was used.

w -

Equation 3.2

where WysCand W Qepresent the efficiency of the drive system and the compressor respectively.
In this research both efficiencies were assumed to be constant and equal to 90% and 80%
respectively. The compressor efficiency would vary with discharpeessure, however, for

simplicity, compressor efficiency was assumed constant.
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Another important factor affecting compressor performance was the assigned compressor
control. In this study, a load/unload control was assurtbd compressed air flow was set

to zero when a maxinm pressure value was reached. After that, the compressor switched
to unload mode, where it operated at part load even though it was not delivering any
compressed air. After a period of time unloading, if the pressure in the system remained
above the minimm allowable limit, the compressor switched dffith this control mode,

when the compressor was on, it operated at its full rated capacity.

3.2.2. Air Cooler

The mechanical compression of air increh#e temperature, often reaching discharge
temperature in the range of 7200°C. Coolersveretypically installed after the final stage
of compression to reduce air temperature. Ignoring water vapour in the air, the

temperature of air at compressor dischar@eQvas estimated witfEquation 3.3

vy

C‘ll C-i

Equation 3.3

where ¥i,Qand PnQare the temperature and pressure of air at compressor inlet. Heat
transfer between the hot air in the heat exchanger and cooling air in the surrounding was
estimated using the effectivene$$TU method. Assuming a cross flow heat exchanger with
a constanteffectiveness¥Q the temperature of air leaving the cool&8:Qvas obtained
with Equation3.4. (Bergman et al., 2011)

ooy Y

Equation 34

Ambient air was assumed to be the cooling fluid and it assumed that the mass flow

rate of cooling fluid was larger than mass flow rate of compressed air.

3.2.3. Storage Tank

The purpose of a storage tank in a G#eS to store compressed air for process demand.
The storage tank pressure depestton the mass of air stored, its temperature and the
overall tank volume. The change of mass in the storage tank was obtained by assuming the
tank content to be a control volume and applying a mass balance, as shdzquation

3.5
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Qa
Q0o
Equation 35

where $hinCand YhouCare the mass flow rate of air entering and exiting the tank. The mass
of air entering the tank was obtained from the compressor capacity, and it was assumed
constant while the compressor was running, or zero when the compressor was not running
or unloaded Themass of air leaving the storage tank depended on the demand trbair
end user equipment. Modellinthe mass of air leaving the tank is discussedhi next
Section. The mass of air in the tank at a specific time instant was obtained Eguragion
3.6.

Equation 3.6

where $hoCls the mass of air in the tank at time t=0. Assuming air bethagean ideal gas,
and that the temperature of air in the tank was equalthe temperature of aileaving the
cooler¥sQthe pressure of air in the taitRankdf volumeWanvas obtained witfEquation
3.7, where'Ks the specific gas constant for air.
- a Y 'Y

W

Equation 3.7

3.3.Modelling Demand Side

This Sction presents the demand side model. The demand side model estimate
compressed air demand and consumption. Energy consumption GA&was highly
influenced by end users compressed air consuamptAttempts to model air flow through
pneumatic tools were reported in the literatufBeateZ2 H A AT T | I NNA A X
2013; Parkkinen & Lappalainen, 199T)}e new researchdescribed in this Chapter
modelled flow through a nozzlend a single and a double acting linear actuator. These
components were chosen since they were common in industrial faci(tesris et al.,
2013)
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Understanding the flow characteristics of pneumatic components was important to
evaluate their air consumpn. Beater(2007)recommended whatvasknown as the 1SO
6538 flow model for estimating mass flow rate through all pneumatic components.

Derivation of the ISO 6538 flow model is providedppendixA.

Flow through a nozzle was modelled with the ISO86®®del, which is given lquations

3.8and 3.9

— 0 = >
"y “6— w U >
” -~ (D
o o e — ’
Y & 0 o 0
Equation 3.8
e o o,
a L 0" — 5 w
V)
Equation 39

where WoQs the air density at atmospheric pressure and the subscripts 1 and 2 indicate
upstream and downstreanrespectively The parameters@Qand HQare the sonic
conductance and critical pressure ratiespectively Their value depended on ttaesign
of the component and typically they were determined experimentally or given in a

manufacturer data shegBeater, 2007)

Equations 8 and 8ouldalsobe used to estimate flow rate through other components that
operated at a constant downstream pressure, such as an open pipe or a leak. However, for
tools with variations in downstream pressure, such as linear cylinders, determining the
instantaneous masdglow rate required modelling pressure dynamics, which in turn
required modelling forces acting on cylinder bores, see for exalfiggater, 2007; Harris

et al., 2012; Krivts & Krejnin, 2006; Raisch et al., 2018; Richer & Hurmuzlu, 2000)

A simplified approach for modelling mass flow rate through linear cylinders was suggested
in (Parkkinen & Lappalainen, 199nd later used byarriset al. (2013 and @012) The
approach calculated the average mass flow rate per unit time by comsgldre mass of

air required to fill the cylinder bore and then multiplying it by the number of cycles per unit

of time.
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A schematic representation of a double acting linear cylinder is showigure 3.2 The
extension and retraction of the piston wasntmlled by a switching valve that inflates and

deflates the cylinder chamber.

Double Acting

Valve Linear Cylinder

Air Source -

> L]

Figure 32: Schematic representation of double acting pneumatic cylinder
Single acting cylinders have a similar build; however, they are equipped with a spring that
returns the piston to its initial position and therefore single acting linear actuators only
consume air on extension stroke, while for double acting, air is coadwon extension and
retraction strokes. The flow of air for a single acting and double acting linear cylinders was

modelled withEquations 3.10 and 3.1tespectively.

Equation 3.10

, . , i 'O . “ 'O “ 'Q . 11 'Q
o w 1 [ o
T T T T
Equation 311

where $hs{s the mass flow rate for a single acting cylindd.Qs mass flow rate for a
double acting cylindeMis the stroke length{PQs bore diameter4€ls tubing length #:Q
is tubing length#:Cs rod diameter Qs the number of strokes per unit tim&Cs the
number of double strokes per unit timéP1Qis the upstream pressure an@Qis the

downstream pressure.

Paged5 of 252



Chapter 3

3.4. The New CoupledModel

The supply and demand side models presented in the pred@ectsons were implemented

in MATLAB. The model was made sefparate functions that estimated the required
variables, such as compressor power consumption, air consumed by tools, temperature of
air leaving the heat exchanger and pressure of air in the tagkation 3.5which is a first
order differential equationwas solved numerically usitige Euler method. The remaining
equations were algebraic and their solution was straightforwardiagram representation

of the model algorithm is shown in Figure 3.3.

Tools Schedule

.

Pneumatic
Tools
PTank %
TTan k Mout

L v
Storage Tank

f

Tcooler

T

Compressor
Air Cooler Control
*
Air Inlet Pcomp, Tout, Mair

Conditions

Paim, Tambient—> COMmpressor <

Figure 3.3: Diagram representation of the model algorithm
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To run the model, a tool schedule defining the periods of operation for each pneumatic
tool was defined and supplied as initial input to the model. After that, compressed air
consumed $houQby the pneumatic tools was estimated based on the defined tools

schedule. Temperature of air at pneumatic consumer outlets was assumed equal to

temperature exiting the air cooler. Compressor control was determined based on air

pressure in the tank. Compressor power consumpt&pnQmass and temperature of air

suppled by the compressd#haiCand WouQvere calculated and their value depended on

air pressure and temperature at compressor inlet. Temperature of air at air cooler inlet was

assumed equal to temperature of air at compressor oufletperature of air irthe tank

was assumed equal to temperature of air leaving the air cooler.

3.4.1. Simulation and Results

A schedule for the operation of different pneumatic tools was assumed, as shdviguire

3.4

Valve

Double Cylinder

Single Cylinder

0 1000 2000

3000
Time (s)

4000

5000

6000

Figure 34: Assumed activation schedule for the three pneumatic tools
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A value of80n the activation profile indicated that the tool was inactive, while a value of
WQndicated the tool was active. A system with one compressor, cpeterage tank, a
double acting linear cylinder, a single acting linear cylinder amdhaewas modelled. A

schematic diagram of the system was showfrigure 3.1

The system performance with compressed air consumption was simulated. The role of
pressureregulating valves in reducing pneumatic tools air consumption and consequently
energy consumption by the compressor was studied. In addition to that, the impact of the
tank volume on system performance was analysed. The simulation parameters are

summarise inTable 3.1

Table 3.1: Parametersised in the simulatios

Variable Description Value (Unit)
Vi Compressor Flow Capacity 0.0042 (m3/s)
P Air inlet Pressure 101325 (Pa)
Po Compressor Discharge Pressure 900000 (Pa)
" ds Drive System Efficiency 0.9
"¢ Compressor Efficiency 0.8
n Polytropic compression exponent 1.4
Tamb Ambient Air Temperature 293 (K)
R Air Gas Constant 287 (J/kg-K)
"o Air density at atmospheric pressure 1.2754 (Kg/m3)
B Heat exchangeeffectiveness 0.95
Stroke Length 0.05 (m)
D Bore Diameter 0.025 (m)
dt Tubing Diameter 0.006 (m)
dr Rod Diameter 0.01 (m)
I Tubing length 0.48 (m)
C Blower Sonic Conductance 6x10%°(m3/s.Pa)
b Critical Pressure Ratio 0.4
a1 Single Strok&requency 1 (stroke/second)
a Double Stroke Frequency 1 (double strokes/second
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3.4.2. Pressure Regulation

Different tools operatd at different pressure levels. Normally, several tookre fed by a

single tank whose pressure ved depending on the compressor control strategy and air
consumption profile. To stabilise pressure of air reaching a tool, a pressure regulating valve
was normally installed upstream of the tool. In tiSsction, ar and energy consumption of

a system with and without pressure regulation was evaluated for the same tool activation

schedule.

The total mass consumption of the three pneumatic tools, the tank pressure and the total
compressor energy consumption are shoinrFigures 3.5, 3.6 and 3t&spectively Figure
3.5 compared unregulated (red curve) and regulated (blue curve) air consumption, and
results indicate that unregulated system consumed more compressed air over the course
of the simulation. This result waxpected sinc&quations 3.8, 3.9, 3.10 and 3ihdlicated

that air consumption was proportional to upstream pressure.

— Regulated
Unregulated

Mass of Air (Kg)

-1 T T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 35: Total mass of air consumed by all tools for a regulateduamdgulated supply of
compressed air
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The decrease in air consumption was reflectadhe air pressure in the tank and on
compressor energy consumptiofigure 3.6shows the tanks pressure for the unregulated
and regulated cases in blue and red respecyivElue to the decreased consumption for
the regulated case, it took longer for the tank pressure to decrease to the lowest allowable
pressure limit. Over a long period of operation, and assuming identical schedules, the
compressor would need to switch oesk often for the regulated case compared to the

unregulated, leading to some energy savings.

— Regulated
- — Unregulated

8.8

8.6

8.4 H

8.2

Pressure (Bar)

7.8

7.6 1

7.4

T I T I T I T I T I T I
0 1000 2000 3000 4000 5000 6000

Time (s)

Figure 36: Air pressure inside tank for regulated and unregulated air supply

The energyconsumption of the system is shown kigure 3.7 where cumulative energy
consumption for regulated and unregulated cases are shown in blue and red respectively.
Over the course of the simulatiothe system with unregulated pressure consutmaore

energy than the system with regulated pressure.
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—— Regulated
Unregulated
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Figure 3.7: Cumulative compressor energy consumption

3.4.3. Storage Tank Volume

The size of the storage tank was usually determined from the compreagaicity and air
consumption profile. Several other factors, such as number of compressors and type of
drive system impaed storage tank selectionSystem performance was studied as tank

volume changed for the assumed tool operation schedule and compreapacity.

Figure 3.&hows total energy consumption as a function of tank volume. The general shape
of the plot indicated that if the tank was too small or too thign thatled to a higher energy
consumption. For the tool operation schedule in this @i@tion, and the resulting air
demand profile, the optimal tank volume was around 3.5. A smaller tank would
consume more energy since it would require the compressor to constantly be on or
unloading. A larger tank would require the compressor to béooriong periods of time to
reach the required pressure levels. The optimal tank size would provide a balanced

performance and therefore a reduced energy consumption.
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1.6 Energy Consumption
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Figure 38: Energy consumption aank volume was varied

3.5. Discussion and Conclusions

A new CAS model that coupled supply and demand sides of the system was considered
The model was used to study compressed air consumption by end user tools in addition to
compressor energy consumption tcemerate air pressure. Two simulations to study

pressure regulation and tank volume were performed.

The supply side modalonsistedof a compressor, an air cooler and a storage tank.
Assumptiors were made to createsimplified models. The compression process was
assumed isentropic, i.e. losses due to friction and heat transfer into the air were neglected.
The air cooler was assumed to be a cross flow heat exchanger and was modelled with the
effectivenesaNTU method. Finally, ghstorage tank was modelled with the conservation

of mass equation. The main outputs from the supply side model were the energy consumed

to compress the air, mass of air supplied and temperature of air at cooler outlet.
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Although the assumption of isentropic compression simplified the theoretical modelling, it
had several disadvantages. One of its disadvantages was that it underestimated the
guantities of energy required to compress the air, because losses were negl€hiedvas
partially corrected by considering an efficiency for the compressor. Another disadvantage
was that the model did not incorporate the compressor rotational speed, wiieant that

the model could not be used to evaluate a compressor where speedavasl.However,
amore advanced model could address both limitations. An examwideicha model for a
reciprocating compressor was presented\dghammadiAmin et al. (2020and for a screw

compressor bystosic et al. (2005)

The demand side of a system was also modelled. The demand side contained a blower, &
double acting and a single acting linear cylinder. The blower was modelled as a hozzle with
the ISO 6538 model. The derivation of the ISO 6538 model is providggpamdix A. The

linear actuators were modelled using a simplifying approach that estimated air demand by
considering mass of air required to fill a cylinder bore and the number ¢dper unit

time. The main output from the demand side was air denehldy each pneumatic tool.

The demand and supply side models were then coupled.

Relatively simplend user equipmentvasconsidered by this research, however they form
the building block of more complex equipmer(Beater, 207) Developing models for
machines that consume compressed air, such as moulding and milling machines, could

facilitate the application of the proposed model in an industrial setting.

Two simulations were performed with the proposed model. A sequefoperation for a
blower, a single and a double acting cylinder were assumed. The first simulation analysed
the impact of pressure regulation on energy consumption. The results indicated that
regulation decreased energy consumption since less compregseds consumed by end

user equipment. The second simulation studied system performance when the volume of
a storage tank was varied. Results indicatkdt tank size was an important factor in
determining CA8nergy consumptionThe coupled model could hesed to determine the
optimal tank sizeakinginto consideration CAS size and configuration, in addition to end

user equipment characteristics and operating schedule. In the next Chapter, simulations
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that studied different compressor control strategiesteevaluated the use of heat recovery

from CAS to heat a building are described.
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Chapter 4 Investigation of Compressed Air

System Control

The capacity of a Compressed Air System (CAS) has usually been sized to meet th
maximum plant air demand, however, most systems operated at their full load only for
short periods of timgSaidur et al., 201(nd therefore the output of the compressor had

to be regulated to efficiently match system demand at gagd. CAS controls were one of

the main factors determining overall system energy efficie(@Quartarone & Anglani,
2014) In addition to compressor capacity control, the control system assisted in managing
compressed air supply in plants with multiple compressors by shutting off unneeded
compressors and delayingtarting additional compressors until needefl.awrence
Berkeley, 2003; Sanders et &000; Sanders, 2017)

Methods to control compressor capacity have been reported in the literai@iampaolo,
2010) Some of the control principles that were applicable to all compressor types included:
speed control, suction throttling, discharge throttling or recycle control. Othantrol
methods existed however they were only applicable to specific compressor types, such as
guide vane position for dynamic compressors and variable volume pockets for
reciprocating compressorgGiampaolo, 2010) The most common method to vary
compressor capacity was speed modulatiomgsa compressor with a variable speed drive
(VSD)Saidur et al., 2010)

This Chaptepresents a theoretical comparison of CAS performance veherodetbased
predictive control (MPC) aha Proportionalntegral (PI) controlleare usedo control the
compressor The air demand profile was forecastesing the demand side model
presented in Chapter Ihe compressor was assumed to be the VSD type andi#@ and

PI1 controlersmodulated its speed. Becaudeet compressor model presented in Chapter 3
only considered fixed speed compressaas empirical model for a variable speed screw
compressomwas createdThe empirical model estimatear flow from thecompressor and
power corsumed by the compressobata to build the empirical model wabtainedfrom

results of a screw compressor simulation published in the literaf8tesic, 1998)
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This Chapter is organized as follows. Secfidnpresents tle compressor model, the air
demand profile, and the tank model. Sectid? discusses the MPC algorithm, including
the predictive model, objective function and constrains. Sedli@presents the results of
the MATLAB simulation that compared MPC witled?itrol. Finally, section.4 presents a

discussion and main conclusions.

4.1. System Considered

The CAS considered in this Chapter had a variable speed screw compressor, a tank and en
user equipment. The end user equipmeransistedmainlyof linear actuatorsand nozzles

like the ones considered in Chapter 3. The system had 320 different air consuming tools.
The CAS had a control system that maintained the system pressure at a predefined set
point by varying the speed of the compressor and therefore increasingcreasing flow

rate exiting the compressor. The compressor was normally driven by an electrical motor,
however, for simplicity, the motor was not modelled, and the compressor speed was varied

directly without considering any drive system.

The compressr model presented in Chapter 3 was not suitable for a variable speed
compressor. In this Section an alternative compressor model is suggested. Then using the
demand side model in Chapter 3, air demand profile was generated. Finally, the tank model

presened in Chapter 3 was modified to accommodate the new compressor model.

4.1.1. Screw Compressor Model

Screw compressors are positive displacement compressors that compress a gas by
decreasing its volume within a compression chamber. Figureshows a cross section of
typical screw compressor. Two screws that rotate in opposite directions are arrangis insi

a casing, which has a gas inlet and gas discharge at oppositéBtods, 2006)The screws

or rotors were categosed as either male or female. The male rotor contains shapes, known
as lobes, extending in the radial direction, while the female rotor contains grooving knows

as interlobes.

Describing the performance of a screw compressor using phlyasesd equations ragred

solving a set of differential equations that coupled thermodynamic properties, fluid flow
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characteristics and machine geometBtosic et al. (2005ublished a book on modelling

screw compressors and described their performance.

Angular Contact
Axial Bearings

Oil Pump

Balancing Line

ety
nge
Slide Val Slide Valve
— Control Piston
Hyd mic
Radi Axial Load
et rings Balancing Piston

Figure 4.1: Cross sectional image of a typical rotary scoempressoiBloch, 2006)

The research in this Dissertation did not develop a physical based model for a screw
compressor, instead an empirical model was creattsic (1998presented the results

of modelling a screw compressor whose capacity was agggilby varyinghe compressor

shaft speed. Figurd.2 shows the results reported for compressor discharge flow as a
function of compressor speed, while Fig#& shows power consumption at different
compressor speed and air discharge pressures. Thetsguublished bystosic (1998 ere

used to develop empirical expressions describing air discharge volume and power
consumption as a function of compressor speed and air discharge pressure. The obtained
expressionforflowd@ K NASR FNRY X S 3021y LINGBDAGIRZANS yW v2 F
WO Aa IADSHYL AY 9lidz GAzZYy

0 7 MnpT I Y
Equation 4.1
Thelinear best fit line is shown in Figue2 alongside the simulated data fro(tosic,
1998) Similarly, a second order polynomial was obtained from fitting the compressor
L2 6 SN O2YyiAzY DG A2 yFday Ol A2y . @ Fl YOR YILNKIA R 2 AD &
Wt Qedpolyhdtnial is given by Equatidr? and is plotted as a surface plot in Figdra.
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Equation 4.2 was used to estimate the power consumed by the compressor for a given

speed and discharge pressure.

1 OR TP TE p TBITTMUIT G Up® qOp TBITT O T @ XKS P
Equation 4.2
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Figure 42: Data for flow as a function of compressor speed and corresponding linear fit
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Figure 43: Data for power consumption asfanction of pressure and flow and corresponding
best fit surface plot
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4.1.2. Air Demand

The air demand over a specific period was generated with the demand side model
proposed in Chapter 3. 320 air consuming toedsre assumed. A tool schedule that
resulted in amair demand profile that fluctuated considerably was assumed. The obtained

air demand over a period of 800 seconds is shown in Figydre

\7 Air Demand
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Figure 4 4: Air demand profile obtained with demand sidedel presented in Chapter 3

The fluctuating air demand profile was considered since a variable speed compressor was

more suitable for fluctuating demand whereas a fixed speed compressobbettes suited
to a more stable demand profile.

The air demand profile was used in an MPC aalar to make predictions over the future
state of the system. In previous studies that considered an MPC for a CAS, the air demanc
profile was either assumed, such as in (Quartarone et al., 2013), or generated using

historical data, such as in (Asl, 2018he research in this Dissertation generated the air
demand profile using an analytical model.
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4.1.3. Tank Model

A model for a compressed air tank was presented in Chapter 3. In this Chapter, the same
model is used, howevethe mass of air flowing into the tantas replaced with the
expression in Equatiod.l, which modded compressed air produced by the screw
O2YLINB&a2N ! a8dzYAy3 AN 0SKIF PSR @ F i K|
Ayadlryid w1Q ¢6la Z80GAYFGSR gAGK 9ljdzr GA2Y
0 Q iYi) o]
W
Equation 4.3
2 KSNBE WYwQ Aa (GKS &ALISOATAO 3Ira Oz2yaidlyid 2
WaQ Aa GKS G2aFt YIaa 2F AN AyapesSureliKS |
0KS fPaR] RELISYRSR Yl Ayfte 2y K26 (GKS Yl aa
tank volume, specific gas constant and air temperature were assumed constant. The mass
of air inside the tank was a function of air flowing into and outhef tank. The change of
LINS & adz2NB pRUQ G KISEa G201 Wy B8R oAGK 9ljdzZ GA2Y

" YUY )
Yo -7 U] U]
w

Equation 44

2 KSNRQ YwlR O NNBaLRyR G2 (GKS Jexiirdph8tarkt 2 4
NBaLSOGROSae dKY RSyaade 2F AN G %idd yRI
LINS&adz2NE 2F m FaGYOod ¢KS @20 davSa Tfo2id ANA SIRS
demand profile discussed earlier. The volume flow rafeleS NA y 3 QKB @l #p (¥
with Equatiordm @ wSLX F OAy 3 (#QS ASE LINEbated RrghuatienNI W
45.

. n@rnpf\("){1 Y'Y Y'Y
’ ’ %)

yU ”
w w
Equation 45

When(i KS G} Y1 wkONB &/ ERdzNIK SWtOK | y APawQA Y G0 Iy 10 A IS
werel Y26y X GKS GFy]l LINB&a&adaNB G GKS ySEG G
4.6. The tank model in Equatiah6 was used to formulate the predicévmodel in the MPC.
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~ 9 - - mtnp TtY'Y . Y'Y
5 Qp 0 @ —Of Y1 —”@g ;

Equation 4.6

4.2.Model Predictive Control (MPC)

The Basic idea @n MPC is that if a reasonably accurate model of a process is available,
model andexistingmeasurementsouldbe used to predict future values of the controlled
variable. Then appropriate changes in the manipulated variedalédbe calculatedSeborg

et al., 2017). The changes to the manipulated variable are coordinated after considering

the input-output relationship given by the processontel.

Anotheradvantageof using an MPC is that it captures the dynamic interactions between

input, output and disturbances through a predictive model. This allows the controller to

adjust control actions so that performance remains within a desired ramgaddition to

that, constraints on the input, input rate change and output are considered in a systematic

manner(Seborg et al., 2017)

In theresearch considered in this Dissertation, the CAS pressure was the controlled variable
and the compressor speed was the manipulated variable. Compressor model, air demand
profile and tank model were used to predict performance. Given the air demeirC
manipulated compressor speedo optimise compressed air generation so that tank
pressure remained as close as possible to a predefinedspresset point.Constraints
associated withphysical limitations b equipment, such as maximum and minimum
compressor speed and acceleration, awith restrictions on process requirements, such

as maximum and minimum allowable system pressueee considered

In this section, an MPC controller for a CAS is presented. The different elements that
formulate an MPC are discusséddiscrete state space predictive model is formulaset
an objective function that allows measuring the performance of the contralpresented.
Gonstraints associated with physical limitations of systems are discu8senbre detailed

and explicit formulation of the MPC elements is providedppendix B.
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4.2.1. Formation of aPredictive Model

Formulating the predictive model of an MPC gsim discrete state space approach was
convenient since a discrete state space model was effectively a one step ahead prediction
model(Rossiter,2018) DA @Sy (KS &aidl 4GS WEQ yR GKS Ay
Wi bmQ O2 dzf RossitS(201B)IEReht€limsrierdl form of a discrete state space
model as given by Equationg.7 and 4.8 which correspond to the state and output

equations respectively

~

WQ p O6WQ 607
Equation 4.7

wQ 6 aQ

Equation 4.8

Where¥EQ A& G(KS adl i8Sy weQ Aa GKS 2dziLidzisz
YFGNRE FyR W Q A& (KS 2 dziptewmittim¥ indiaNth [ e W1 ¢
research considereth 1 KA & 5A3aaASNUFGA2Y I KGEKSEdza (1JbzG S o@D
O2NNBELIZYRSR (2 wikK S KAYS] (LKANSS 3A&ydzBdBi Y2tk NA I 6
O2 YLING & &4 20N 39 BSIONRS &8 A v 3 (i K S4.6iinlity/state ¥pade imat2
results in Equationd.9 and4.10.

. - . mipt YY - "YY - Y'Y
i p 0 2R 0 Yy g ™E YV
w () w
Equation 49
0Q 07

Equation 4.10

Comparing Equatior$.9 and4.10 with the general state space model given by Equations
48anddT s GKS &aGF3dS YFGONRE W QF AyLdzi YI GNJ
a2NB20SNE | @SOG2N) WRQ O2NNBaLRYyRAy3d (2
addition to the constanterm in Equatiord.6 was also definedThe resulting values or
SELINBaarz2ya F2NI YFEOINRAOSE Wl QO Ww.Q YR W/
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Table 4.1: Results for stat& I G NA E  W! Q3 oukpyit Mdizili NX ¥ RNIDEB OW 20 WRQ

T8rmptTaM

In MPC, ivas convenient to express the state space model and consequently predictions

in term of input chang& QThis wasichievedoy introdugng a minor change to the state

space modeand defining the input variablél Cas an additional state variable. The input

changewasthe difference between the absolute value of the input at samples (k) and (k

1), as shown in Equatich1l

A new state space model representation, commonly referred to as the augmented state

space model was obtained as showrkfuations4.12 and 4.13.

1

Q

P
Q

7

Y

0 0

m p

~ ~ ~

Q 1 Q 1 Q
Equation 4.11

0 Q &
% Y
Q p P
Equation 412

Q
1T Qp
Equation 413

p C

0O m

p

~

Q

P
Tt

Q

Where AQBQY / a@ddQvere defined earlieand shown in Table 4.The matricesf.Q
B.and @Qhat correspond to the augmented state space moaed definedin Table 4.2

Table 422w S & dzf G A Y 30 %D GINRROSW/I ¢! O2 NNBaLRyR (2

model

iKS
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The augmented model given by Equatidgh$2 and 4.13was used topredict the future
value of the tank pressur@ A @Sy (KS aeaidSyYy kRDRBaaddis Y OINI
i KS v iBrie stepsivafpredicted. A more explicit model showing the ptagicnodel

F2NJ GKS ySEG WwyQ (GAYS aGSLlA A& 3IAGBSY Ay |

4.2.2. Function to Measure Controller Performance

The objective functiomprovideda numerical value that measuttecontrollerperformance
(Rossiter, 2018)The objective functiomasalso referred toas performance index or cost
function. The control actioni.e., compressor speed, wagically obtained by solving an

optimisation problem involving the objective function and systepecific constraints.

Typically, the objective functio W& basdd on a quadratic measure since thesgze
easier to work withRossiter, 2018nd it includel sums of squares of terms linked to the
output, input and inpti increment. Although several choices were possible, the most

common objective function used in MPC is shown in Equatib.

0 Y o _o
Equation 4.14
Where®Q A a4 (GKS RSAANBR yREBE& w8 PaLNS LEBES (B
pressure2 GSNJ 1KS ySEMAWIiAYENB (GSKIS YORNNBALRYRA
O2 YLINB & a 2 NJ a LYS S vebtovDE siz&Hx 1OM4C1$ aywRighting valuhat
was assumed equaltooné.KS LINBRAOGSR &d28aGSY LINB&adzNE
LINSRAOGADS Y2RStI gKSNBIFra (GKS RS&aANERR L
changes to compressor spetitl Quere determined using an optisation algorithm that
minimised the objective functionl G { Ay 3 Ayd2 O2yaARSNI GAZ

discussed in the next Stfection.

4.2.3. Constraints

One of the main advantages of MR@sits ability to handle constraints in a systematic
manner. Gonstraints were placed over the system pressurecompressor speed and
compressor acceleration (i.e., rate of speed changédpnsidering constraints on
compressor speed was necesssiryce all actuatoreadrestrictions on their maximum and

minimum values and on how quicklydin value could change. Also, processegere
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required to operate within specified limits, therefore justifying constraints system

pressure

Constrains on compressor speed were straightforwate dompressor was bounded to
operate between a maximut ma,¢and a minimum spee¥mnQ ® LY | R RiAeieA 2 y
was a limit on how much the compressmuldaccelerate or decelerate its speesh upper

W mafand lower® minQlimit for the compressor acceleratioWkQ 61 & | & & dzY S

CASwere normally desiged to operate within specific pressure limits. Increasing the
pressure beyond whawasrequired causd energy waste, artificial demand and potential
operational risksDecreasinghe pressure below the minimum requirements interrept
the normal operatiorof end user equipmeniConstrainton the pressuravere set so that

it remained between a maximuttaand minimum pressure limW#inQ

4.3. Simulation Results

The performance of a variable speed CAS with the MPC controller defined earlier was
evaluated through a MATLAB simulatidrhe compressed air demand profildefined in
Section 4.1.2 was used@he CAS performance with MPC was compared to a CAS with PI
control for the samedemand profile. It was assumed that for ender equipment to
operate properly, the air should be supplied at a minimum pressurengf<P bar). Other
parameters are defined in Table 4.3. Modelling and tuning of the PI controller aresistu

in Appendix C.

Figure 4.5 shows simulation results for system pressure when a Pl and an MPC were used
Pressure when MPC was used is shown as a solid line while pressure with a Pl is shown &
a dashed line. The s@bint for each controller is showrsa dotted line. Results indicated

that the pressuravhenthe PI controlleiwas usedluctuated considerablyaround the set

point (7.15 Bar)The pressure fluctuation was caused by the fluctuation demand profile.
The pressurevhen anMPCwas used remainedlose or slightly higher than its spoint,

regardless of large fluctuations in compressed air demand.
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Table 4.3: Parameters used in MATLAB Simulation

Variable Value Definition (Unit)
Ruir 287 Air Gas Constarfl/KgK)
Tair 293 Air TemperaturgK)
Vtank 3 Tank Volumen(3)
n 30 MPC Prediction HorizoiTifne samples
K max 35 Maximum Compressor AcceleratidRFM/seconil
K min -35 Maximum Compressor DeceleratioRFM/seconil
max 7000 Maximum Compressapeed RPN
min 0 Minimum Compressor spee®PN)
Pmax 8 Maximum System PressurBd})
Prmin 7 Minimum system Pressur@&ér
7.4
— MPC
- - PI
. 71.37
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Figure 45: System pressure when Pl and MPC were used

Page66 of 252




Chapter 4

Figured.6 shows flow from compressarhen MPC and Pl were usalbngside air demand
The flow when Pl was used is shown as a dotted line and the flow when MPC was used is
shown as solid line. Air demand profile is shown as a dashed line. The flow when MPC waz

usedand the air demand profile appear very close to each other.

— MPC
PI
- = Air Demand

Air Flow (m3/min)

T ! T ! T ! T ! T ! T ! T ! T 1
0 100 200 300 400 500 600 700 800
Time (Seconds)

Figure 46: Flow for Pl and MPC cases plotted alongside compressed air demand

Resultgndicate that the MPC matched air demand better tHalncontrol. Rapidnd large
OKIy3aSa oAyONBIaS 2NJ RSONBIFaSo Ay RSYIlIYR
example,at time 50 to 150 seconds250 to 350 secondsnd 650 to 750 secondbe
demand decreased sharplgince the PI required time to react to this decrease in demand,
system pressure increasel significantly above the sqtoint (see Figure4.5 at the
mentioned time instancgs Similarly, when flow demand increased quickly (time instance
350 to 450 seconds)the PI controller reaction time led system pressure to drop close to

minimum allowable pressure (see Figdrg time 350450 seconds).
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WhenMPCwas usedcompressed air supply perfectly matched compressed air demand,
despite large and sudden fluctuatignghich the controller anticipatthrough predictions

and therefore adjustd theflow accordingly.

Simulation results for the energyonsumed by the compressor to meet air demavith a

Pl and MPC is shown in Figdré. Results indicated that over th@uarse of the simulation,

the compressor consumed slightly less energy with an MPC compared to a Pl control. For
the MPC case, by the end of the simulation, the compressor had consumed (5.16 KWh)
while with the PI control it had consumed (5.26 KWh). Thidied that the compressor

with MPC consumed 1.86% less energy than the compressor with Pl control. This result is
in line with results found byuartarone et al(2013)where energy savings from MPC

compared to Pl aatrol were 3.56%.

— MPC

1.86% Energy Savings *

5—_ )

Energy Cosumed (KWh)

T I I I I I T I T I T 1
0 100 200 300 400 500 600 700 800
Time (Seconds)

Figure 4.7: Energy Consumed when MPC and PI were used

Page68 of 252



Chapter 4

4.4.Discussionand Conclusion

This Chapter investigated and compared Pl and MPC control in a CAS using a modelling an
simulation approach. The demasdle model presented in Chapter 3 was used to forecast
compressed air demand. MPC and PI control were usually installed for varia#d sp
compressors. The compressor model presented in Chapter 3 only considered fixed speed
compressors. In this Chapter, a model for a variable speed compressor was created by
fitting expressions for compressor flow output and power consumption. Data for
compressor performance at different speeds and pressure outputs was obtained from

(Stosic, 1998)

The MPC control algorithm consisted of a prediction model to estimate system pressure
within a prediction horizon\HQ an objectve function and systematically defined

constrairts. A state space modelling approach was adopted in developing the control
algorithm. Control actions were determined by solving a constrained quadratic

optimisation problem.

The CAS performance with an MP@swevaluated using a MATLAB simulation and
compared to PI control. Results indicated that MR&intainedthe system at its optimal
pressure, despite high and quick variations in air demahd.PI controller had to operate

at a higher pressure setting tovaid system pressure falling below a minimum allowable
pressure if a sudden and large increase in demand occurred. Operating at a slightly lower
pressure, allowed MPC to save %8 energy compared to Pl contr@imulation results
showedthat the main advatages of using MPC in CAS were pressure stability, reduced

system pressure and small reduction inmergy consumption.
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Chapter5: Supply Side Pressure Monitoring

This Chapteinvestigates the viability and usability wfonitoring supply side pressure of a
CAS using a Discrete Wavelet Transform (DWT) as a signal processiidytpiclCASs
divided into a supply and a demand sidg.some point in the system, usually aftidye

tank, a pressure regulator supplies end users with compressed air at a stable pressure. The
pressure upstream of the regulation point is referred to in this Dissertation as the supply
side pressure, while the pressure downstream of the regulator esmed to as the demand

side pressure.

The supply side pressure in a CAS depended on several factors including flow rate from
compressor, flow rate to end user equipment and compressor control strategy. When a
load/unload or on/off compressor control wased, the supply side pressure fluctuated
between two predefined upper and lower pressure limithis resuktdin apressure signal
resembling a sawtooth waveformin addition to that,consumption of compressed air in

the demand side led to a variation the supply side pressuiiea a manner that depended

on the properties of the air consuming tools

The researchvork coveredin thisChapterinvestigated the extraction of information from
the supply side pressure signal. The extracted information proMi®wledge regarding
system operation and could be used for condition monitoring and fault deteclibwe.
wavelettransform was used asultiresolution signal analysis tobkecausethe pressure
signal simultaneously contad events happening at a lowfrequency (i.e., pressure
charging and discharging) and at a higbguency (i.e., pressure drop due to a tool

activation)

This Chapter is divided as follows: Sect@f introduces and reviews the wavelet
transform theory. Sectiob.2 discusses the different experiments and the results obtained
when the continuous wavelet transform was used. Seci@discusses experiments and
results when the discrete wavelet transform was used. Finally, Sezdahiscusses results

obtained andpresents main conclusions.
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5.1. Wavelet Transform Theory

Monitoring of machines and process working conditidvas usuallybeen achievedoy
analysing signals collected by sensors and presented in the form of ssénes(Gao &
Yan, 2011)Interesting informatiorwasnot always observabla the time domain. Itwas
commonpracticeto applya signal processing technique to transform the signal from its
time domain representation intanother representation that revead information or

characteristics of interest.

The most widely applied signal processing tool in science and engindmsngeenthe
Fourier Transform(Gao & Yan, 2011)The Fourier Transform reveals the frequency
composition ofatime domain signal by transforming it into the frequency domain. A major
limitation of the Fourier Transfornvas that it did not reveal how a sign@é frequency
contert changel overtime. That made the Fourier transfornunsuitable for analysing nen

stationary signals

The Shoritime Fourier Transform (STFT) was introduteedvercome this limitationThe

process of computing the STFT of a sighkl Gillust@tedin Figure5.1 (Gao & Yan, 2011)
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Figure5. 1: lllustration of short time Fourier transformad A Ay I f WES GO Q 6 DI 2
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tKS {¢C¢ AYUNRRdZOSR | ¢6AyR2¢ TFTdzy OliAz2y W3
short enougtto be consideredstationary. The window function was moved by a srtiaie

aiSQ) 2MISNI GKS GAYS iseSAdli& dransfoynkRwas periodm¥dS This 2 O
was done until the whole length of the signal was covered. The result was a 2D

representation of the signal: the frequency content within each window was revealed.

The mairlimitation ofthe STFWasits time-frequency resolution, which depended mainly
on the width of the window functiort¥ 3 dAlsinglewindow size had to be selectefbr
analysinga signal,which meantthe time frequency resolution would biexed throughout
the analysisThismeantthe STFhad ngjor limitationswhen analysing signat®ntaining
patterns of different frequencieddigh frequency componentsormallylasted forshorter
time durations,and a narrower window wasnecessary to obtain a good time resolution.
However, a narrow window redald in a pooer frequency resolutiorwhen analysing low
frequency componentOn the other hand, low frequency componentymallylasted for
longer times and a wide windowwas required to obtain a good frequency resolutjon

however that wasat the cost of time resolutiofPolikar, 1999)

The limitations of the STFT motivated researsh® develop tools for analysing signals
with different frequency components. The wavelet transfomas one of those tools.
Unlike the STFT, the wavelet transforms a#dwvindow sizevariation to analy® the
different frequency components containedithin a signal. Thisvas achieved through a
LINPOS&aa 2F aoOFfAy3d FyR aKATFTOIAYy3I IAddisbra S 7
2017) Scaling expareti or compressd the wavelet function anaevas equivalent to varying

the width of the analysing window fution, whereas shifting the wavelet all@a varying

its location along the time axis. Scalas inversely proportional to frequency. Analysing

the signal with a largscale wavelet revead global features (low frequency components),

whereas small scalesveakd local features (high frequency components).

Three differenttypes ofwavelet transform are briefly discusseadSections$.1.1,5.1.2 and
5.1.3 the GontinuousWaveletTransforms (CWTjhe DiscreteWaveletTransforms (DWT)

and the Maximal Overlap Discrete Wavelet Transform (MODWT). A more detailed and
comprehensive treatment of the wavelet transforcanbe found inPercivaland Walden
(2000) Addison(2017)and Daubechie1995)
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5.1.1. Continuous Wavelet Transform

Awavelet transform is computed at variol@cations @ the signal and for various scales.
In the continuous wavelet transform, the location and scales at which the transform is

calculated are not selected arbitrary but over a continuous range.

The continuous wavelet transform of a sighét)Qvascalculated usingquation5.1.

... o0 T
0 w"'™Mnt I/Iﬁ wori—Qo
i

Equation5. 1
Where

CWT : Continuous Wavelet Transform Coefficients
S : Scaling parameter, s>0

_ : Shifting Parameter
x(t) :Time signal

. 0 ( : wavelet function

The process of computiregwvavelet transform is illustrated iRigure5.2 (Gao & Yan, 2011)
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Figure5. 2: Graphical Illustration of continuous wavelet transform computation
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Figureb.2 shows a functiort¥(t)Qvhose wavelet transform is to be computed. Initially, the
base wavelewas shifted along the time axis to compute the wavelet transform at different
time locations within the signal for a specific sciléQnce the whole length of the time
axiswas covered, the scalwas increased, and the shifting process repeated. Scaling and
shifting continuel until the required range of scales &een covered. liEquation5.1,the
wavelet function¥ 6 Qvas assumedeal. If it was complex, the complex conjugate®fo @ 0

would be used instead

In practice, the continuous wavelet transfonras computed with a computer, where the
scale and shiftould notbe varied continuouslynstead, the shift and scaleere variedby
sufficiently small steps so that the transforrould beconsidered continuousthe major
difference between the CWT and DWas how the scale and shift parametergere

discretsed. The CWT imposed a finer discs&tion compared to the DWT.

For slowlyoscillating components within a signal, a continuous wavelet transform resulted
in good frequency but poor time locsadition. On the contrary, for high frequency events
that tended to be short lived, a continuous wavelet transform resulted in good time but
poor frequency locagation. Most signals available in nature, including the pressure signal
of CAS, tend to be dominated by low frequency components with occasionallsteatt
high frequency events. This has made the continuous wavelet transform papidagnal

processing.

5.2.1. Discrete Wavelet Transform

Many coefficients obtained with the CWT could be redundant, and a more succinct version
of the CWT was desirabl€he DWTwasan attempt to subsample the CWT in a way that
preservel its key featuresinstead of the fine discretisation imposed by the CW& DWT

only consideredscales of the formi26 2 ' m I H Swasé dyéddic Gdnpliig of the scales.
Foreach dyadic scale of the form-2j the DWTwas obtained at times separatelly 2j

samples.

¢2 LISNF2N)Y 52¢ @Y (K3 AXSN SN RAYMerDf ol T S
e.N=2p ¢KS 52¢ O2STFTAOASFUASNIB Q2a@F Ay SR YBI
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Ydzt GALX AOFGA2Y Ay @2f @Ay 3 & HRAG FL.I TagNOVHI] dil2
YFEGNRE W2 Q O2yilAySR GKS a0ltSR YR &KATI

O w®
Equation5. 2
For atime serie¥Q 2F &A1 S WbhQs W2 @M d4lyaR i KBSl (INShaE
O2STFTFAOASY( @S O eNbsuHagDWK doétficient véagahgdd skth than Q @
the first W/2QDWT coefficientsvere associated with unit scalg§x1Q the next WN/4Q
coefficientscorresponded to &cale of 2 (j=2) anslo forth until coefficients Rzand Du2,
associated with a scale #/4Q The coefficientPnaQ  spaksociated with a scale $1/2Q

and finally coefficientBnQvasproportional to the average of all the data.

When the number of samples in a time series was large, Equatowas computationally
expensive. An alternative approach for obtaining DWT coefficients was using The pyramid
algorithm (Percival & Walden, 2000Jhe pyramid algorithm nde use of a wavelet and a
scaling filter. The wavelet filte¥ Iw@s in practice a higpass filter with a pass banaf
[1/4<|f|<1/2 ], while the scaling filte Dv&sa low pass filter with pass bawd[0<|f|<1/4 ].

In the first stagef computing the DWT coefficients akignalusing the pyramid algorithm,

the signalwascircularly filtered with the wavelet and scaling filters, then down sampled by

2 (i.e. retaining every other sample), resulting in wavelet and scaling coefficidradirst
ai13sS 2F GKS LIBNIYAR |t 32NAGKKYMOHNNRRARELIZ vV
was also referred to as first level decompositibmthe second and subsequent stages, the
scaling coefficients obtainedere similarly filtered and down sampled resulting in new
wavelet and scaling coefficientBigure5.3 shows aliagram ilustrating the computation

of the DWT coefficient¥ 2 NJ | { A YvEh thie $ydinill The ‘$talig and wavelet
O2STFTFTAOASYGaAa I SIFEOK RSO2 YORARKHRI AP a1LSO8 K
frequencies retained at each decompositi@vel are also shown.

The DWT coefficients could be used to define a Multi Resolution Analysis (M&SAGrwdl.

The MRA decompose signal into a set of approximatidfis<tand detail'BSoefficients

The detaild 2 S T T DQWeR yelatdd tdPvariatons inYat a specific scale, while the

approximationsBsQwere interpreted as smoothversionsof YQat a given scaleA signal
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could be synthesed by adding subsequent details and the final approximation at a specific

decompositionevel.

One of the limitations when using the DWhas that wavelet and MRAcoefficients
dependced critically onthe point where signal analysis started. Changing theyesmaktart
point could lead to considerable differences in the DWT and MRA coeffici€hgs.
difference stermed from the DWT coefficientbeing computed atpredetermined time
locations, and a change in the starting point afsignal wouldresult in consideably
different coefficientsThe time location of DWT and MRA coefficientsrebtl line up well
with features of interest in the time seriesignal, which was not desirable in a pattern
detection application where the time a specific pattern appeared ofasterest Some of
the limitations of the DWT weraddresed to a great extent bythe Maximal Overlap

DiscreteWaveletTransforms (MODWT).

X
Y Y
1/2
¥ \ 4

j=2 S2 Wo

1/4

Y A 4
j=3 S3 W3
0 1/16 1/8
Frequency

Figure5. 3: lllustration of Pyramid algorithm for a signal 'X'. Frequencies retained at each
decomposition level are also shown
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5.3.1. Maximal Overlap Discrete Wavelet Transform

The Maximal Overlap Discrete Wavelet Transform (MODM#S s modified version of the
DWT(Percival & Walden, 200ecause an analysis with the DWT depeddritically on
the starting point ororigin for analysidifferent DWTand MRAcoefficientswere obtained
for patterns thatwere practically identical in a time series. The choice of MORWiId
eliminate the impact of the starting point on the analydige the DWT he MODWTwas
computed using an efficient pyramid algorithm, whigbs also based on circularly filtering

the signal with a wavelet and a scaling filter.

Unlike the DWT, the MODWId not require the signal size to be a power of 2, and the
signal could be of any sizEor a signal of sizlQthe MODWT resudtd in MNQwvavelet and
scaling coefficients at eaathecompositionlevel W.2T'tee wavelet and scaling coefficients
computed withthe MODWTcouldalso be used to form a multiresolution analysis (MRA).
However, if the time seriesvas shifted, the details and smoothgere shifted by an
equivalent amountlt was therefore possible ttine up MODWBNd MRAcoefficientswith

features inthe original time series in a meaningful manner.

5.2. Experiments & Results with CWT

Experiments were performed and data representing the supply pressure was collected and
analysed. Results showed that the supply pressoontaired patterns that could be
assocated with operational events. For example, a compressor switchingaarid result

in compressed air supplied into the system, raising its pressure. Once the compressor was
off, the pressure decreased agaiRigure 5.4 shows the results from one of thetses
measuringhe oscillaion between a maximum and a minimum presstinait. The pressure
signal in Figur®.4, and subsequent pressure plots in this Chapter, were plotted after their

DC offset was removed.

In addition to the trends due tdhe compressor switching on and off, the supply side
pressure contaiad patterns associated with thactivation ofair consuming toolsn the
pneumatic circuit Figure5.5 shows the patterns appearing in the pressure sigha to

the extension/retractionof a double acting cylinder argitching on asolenoid valve at
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different times The patterns happesd over shorter periods of time compared to the

compressor switching on and off.

0.15 T T T

Compressor Compressor
0.1 Off Off

0.05

-0.05

Pressure Change (Bar)
(=]

-0.1 Compressor -
On Compressor Compressor
On On
015 il
| ! ! | ! ! |
200 250 300 350 400 450 500 550

Time (seconds)
Figureb. 4: Supply side pressure oscillation. The DC offset was removed before plotting

Because different events happed at different frequencies a multiscale analysis using
wavelet transform was suitable for the supply pressure signéilally, the CWT was used
for analysis, however the research then moved to consider DWT. The results obtained with

CWT and DWT are presented and analysed in Se&idasd5.3 respectively.
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Figure5. 5: Pressure signal with patterns appearing due to tool activation indicated

In the analysis athe pressure signal with the CWhree different cases were considered
and analysed. The first case had no tools activated, and the pressure slowly decreased due

to leaks from connections and other small leaks in the distribution network. In the second
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case pneumatic tools were activated, leading to decreases in the pressure that appeared
on the supply pressure signal. Finally, the third case corresponded to datadesl when

the system had a leaking filter and different compressor control pressure liifiis.
Dissertation labelled the first, second and third cases as Idle, Tool Activated and Faulty case
respectivelyln the next subsectionsthe analysis of thehree different cases with the CWT

will bediscussed

5.1.2. Idle Case

In the Idle case no known fauligere present and no tools in the pneumatic circuit were
activated The pressure decrease was due to leaks present in the sysfeite the pressure
increase was due to the compressor being acfiee presence of small am@rdto locate
leaks was not surprising, since a leak rate of 10% or less was considemewbn(Lawrence

Berkeley, 2003)Figure5.6 shows the pressursignalcorresponding to this case.

0.15

0.1

=4
=
[

Pressure Change (Bar)
=4
o
o o

0.1

045 ! \ ! ! !
0 50 100 150 200 250 300

Time (Seconds)

Figureb. 6: Pressuresignalin the Idle case

The compressor switched on when the system pressure decreased by ~ 0.2 bar, causing :
rapid increase in system pressufidie red circles corresportd filter cleaning pulseOnce

the highpressure level was reached, the compressor switched off and the pressure started
to decrease again. The pressure signal showfignre5.6 was transformed using a CWT,

and the results arshown as a 3D contour plot Figure5.7.
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Figure5. 7: Wavelet transform 3D contour plot for idle case. Red circles show high frequency
components introduced by a compressor ®liing on

On the zaxis,waveletcoefficient magnitudes instead of coefficient were plotted to make
visualsation easier. On the x and y axis, time and frequency are plotted, respeciiviy.
Morlet wavelet was used as a mother waveleaw frequency comgnents (~ 0.006 Hz)
had the highest coefficient magnitude and were presgmbughout signal durationThese
components corresponded to the overall saw tooth pattern of the signal, which had a
period of around ~170 seconds corresponding to a frequenc.0006 HzThe canpressor
switching on introduced higher frequency components that are encirclddguare5.7 for
demonstration. These components appeared mainly in the frequency rangeO®0Hz

with their magnitude peaking at ~ 0.0075 and disappeaater the compressorhad
switched off. Other high frequency components of low magnitude also appear, but those

were mainly due to noise in the signal and due to filter cleaning pulses.

5.2.2. Tool Activation Case

TheCWTof a signal whicleontainedpatterns due to tool activatiomas studied. A double
acting cylinder and a solenoid valve were used to simulate the activati pneumatic
tools. Figure5.8 shows a pressure signal during which the valve and the cylinder were

activatedrepeatedly
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Figure5. 8: Pressure signal whetools were activated

The CWTof the tool activation signal iRigure5.8 is shown as a 3D contour plot Figure

5.9. CWT results shown in Figus® indicated that, ike the idle case, patterns relevant to
the sawtoothshapeof the signahadthe highest magnitudesHoweverthe actvation of
toolsled to higher magnitudes digher frequendes The high frequency components from
tool activation appeared over a wide frequency range, however the highest magnitudes
that could be associated with the operation of tool were observed enftequency range
0.1-2 Hz. The activation of a valve led to high magnitudes in the frequency ranf2 614,

with the peak magnitudes observed in the frequency range0051Hz. The activation of a
cylinder led to higher magnitudes in the frequency ran@&-2Hz, with the peak
magnitudes observed in the range 6l% Hz. Figur&.10 shows the wavelet transform in

the frequency range 0-2Hz, and points some of the referred to peaks.
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Figure5. 9: Wavelet transform 3D contour plot for pressure signal where tools were activated
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Figureb5. 10: Same wavelet transform as the osbownin Figures.9, but only showing frequencies
between 0.1 and 2 Hz. Some peaks associated with valve and cylpefationare pointed

Time and frequency resolution of wavelet transformgere inversely proportional.

Components due to tool activation were better locatisen time at high frequencies,
however their frequency resolution was relatively podhe opposite was true for low
frequency components, which appeared well logadi in frequency but suffered from a

reduced time resolution.

5.3.2. Faulty Case

Datathat wasrecorded when the system had two different faultsas utilsed to analyse
faulty behaviour using &WT The faults werdoy design or part on experiment; they
were already present in the systdmefore sensor data was collected tbis research work.

A sanpling frequency of 1 Hz was being used at that time. The first fault was that pressure
control limits had been changed from recommended settings. The compressor switched on
when pressure decreased by ~0.7 Bar, instead of ~0.2 Bar. The second fault latigedyre
large leak in one of the filters, as shownFigure5.11. The pressure signal corresponding

to the faulty case is shown Figure5.12 alongside the idle case after faults were fixed.
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Figure5. 11: Leak found on filter

The pressure signal for the faulty case showed that the fault with compressor control
caused the pressure to drop to lowdran-expected levels, and the compressor had to be
switched on longer to depressurise the system. In additetihat, the leak accelerated the
consumption of compressed air, and the system was losing its pressure at a higher rate.
The combination of these faults meant the compressor had to be switched on for longer

periods of time and more frequently, leading tcreased energy consumption

Pressure (Bar)

0 50 100 150 200 250 300 350 400
Time (seconds)

Figure5. 12: Pressuresignal when system had fault§he idle pressursignalafter fault were
fixedis shown for comparison
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The pressure signal corresponding to the faulty case fudiser analysedwith the CWT

The wavelet transform of the faulty system signal is shown as a 3D contour lgfure

5.13. Because thamplitude of the pressure signal was relatively high (coragdo idle

and tool activationcases), the magnitude of theoefficients atlow frequendeswas also
higher (0.14 compared td0.030.045in the idle and tool activation casesphe faults
introduced components in the frequency range G@2 Hz that had magnitudes of 0:02
0.04. These components were present at all times in the faulty case. Similar components
appeared in the tool activation cases, but they only appeared during tistances when

a tool was operatedThese components in the faulty case were associated with the higher

discharge rate due to the leak, and the resulting fasbss of pressure ithe system
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012

0.1 +
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Figure5. 13: Wavelet Transform of faulty system pressure signal shown in Figlee

5.4.2. Classification into Idle or Faulty

Analysing the idle, tool activation and faulty signals with the CWT showed that different

operational events producedistinctfeaturesin the wavelet domaithat might enable the

Page84 of 252



Chapters

automaticrecognition of such eventn a first step to create an event @gnition system,
asupervised neural network algorithm that used wavelet coefficient magnitagdaaputs

was created witlthe objectiveof classifynga signahsidle or faulty.

The wavelet coefficient magnitudes at each time instant were groupedeatare vector

and used as input taneural network. The CWT was computed at 90 different scales, which
resulted in a feature vector having 90 different entries. A neural network with three layers
was created and trained. The input layer had 91 nodesgsponding to the magnitudes

at 90 different scales, in addition to one bias node. The hidden layer had 11 nodes, including
a bias node. The output layer contained only two nodes, representing the two possible

classes: Faulty or Idle

The neural network wasained with 14,400 samples. Half of those samples belonged to
the idle case, while the remaining half belonged to the faulty case. To test the accuracy of
the neural network on unseen data, a pressure signal with idle and faulty data was
synthesisedandthe resulting signas shown irFigure5.14. Results with the createdeural
network showed an accuracy of 98.3% while classifying the samples in the signalishown
Figure5.14. Samples in theegion between the two vertical red lines (time 1750 to 17970s
were classified as faulty, whehey should have been classified iade. Remaininglata in

the signal wasorrectly classified.
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Figureb. 14: Synthessed signakhowingmisclassifiedegion
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Pattern recognition usingeatures generated with the CWT was not researched further,
and instead an approach based on the DWT was adopted. CWT created many redundant
features which did not carry valuable information. For example, if classes corresponding to
the activation of two dferent tools (valve and cylinder) were to be included as outputs in
the neural network, a much larger data set would be required for training and validation.
Also, a neural network with 90 different inputs would be computationally expensive in a

monitoring system.

An alternative approach for detecting the most informative scale could be a feature
selection algorithm, however this approach wast pursued since it had already been
studied byDesmet and Deloré2017) This Dissertation instead researched analysing the
pressure signal using a DWT ths naturally produced fewer coefficients than a CWT
Because ligning wavelet features witthe positionin time they occured wasimportant

in an event recognition system, the MODWT was used.

5.3. Experiments and Results with MOW/T

Because the CWT producedasge number of coefficients, with many being redundant,
this research investigated an approach based on a MODWT. The MODWT was used instea
of the DWTbecausealigning wavelet features with where tli@ccurred in the pressure

signal was of interesfTheHaar wavelet was used as a mother wavelet.

A pressure signashown in Figur&.15, was analysed with a MODWT. The signal containing
trends and patterns corresponding éocompressor switch on, compressor off, valve dwitc

on/off and cylinder extesion'retraction.
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Figure5. 15: Supply side pressure signal analysed with the MODWT

An MRA based on the MODWT decomposedpfressure signal into approximation and
detail coefficients Figure5.16 showsa set of plots that correspond the detail coefficients

of decompositiorlevels 7 to 11, in addition to the approximation coefficients at level 11
The yaxis corresponds to the detail coefficients, while theaxxs corresponds to the
sample. Figur®.17 showsa similar set of plots that correspond to tlgetail coefficients

for decompositionlevel 1 through6. Table5.1 maps each decomposition I8~ WR&® & A

correspondingscale and frequency band when a sampling period of S0awsused.
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Figure5. 16: Plots for detaicoefficientscorresponding to levels-T1. Approximationcoefficients

at level 11 are also shown.
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- Plots showing detail coefficients corresponding to levefs 1
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Tableb. 1: Scales and frequency bands at different decomposition levels

DecLoerI\lglo(sj;tlon Scale §) Frequency Band (Hz)
1 1 [5-10]
2 2 [2.5-5]
3 4 [1.252.5]
4 8 [0.6251.25]
5 16 [0.31250.625]
6 32 [0.15620.3125]
7 64 [0.0780.1562]
8 128 [0.03920.078]
9 256 [0.01950.0391]
10 512 [0.00980.0195]
11 1024 [0.00490.0098]
12 2048 [0-0.0049]

The resultsn Figures$.16 and5.17 indicatedthat detail coefficients corresponding to the
first sixdecomposition levelsvere associated with activation of tools in addition to noise

in the signal.High spikes in the detail coefficientthat aligred well with cylinder
extensiorretraction and valveswitching wereseenin decomposition levels Ihtough®6.

As the decomposition levémcreasedo levels 7,8 and 9 the detail coefficients s&ato
smooth. Thesawtooth pattern due topressure variation staed to appear in the detail
coefficients oflevels 10 and 11 and in approximati@oefficients oflevel 11. The detall
coefficients corresponding to decomposition level 11 clearly show a smoother version of
the original pressure signal, indicating that a decomposition up until level 11 would be
suitabke for the given signaln the next Sections, decomposition levels 1 through 6 are
further analysed to investigate the coefficients due to the patterns produced by different

tools.

5.1.3. Decomposition Levels 16

The MRA analysis showed thagtdil coefficients & decomposition levels through 6
contaired transient components and noise. Thesecompositionlevels coveed the

frequency band starting at 0.1562 up to 10 Hz. This result was in line with results obtained
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with the CWT, where the activation of tools introduced higher wavelet coefficient

magnitude in the frequency band G2LHz.

Noise had to be eliminated or reduced properly analyse coefficients at level&6.1A
relatively simple denoising methdbat wastypically used for denoising in wavelet analysis
was reportedby (Ganesan et al., 2004)he method was based on a thineéd value. Detail
coefficients whose absolute valueere below that threshold were set to zero. The
threshold (j F2NJ RSO2YLI2aAlGA2Y Hu&®B. waQ gk a O

T, caE®
Equation5. 3
Where'Horresponds to the signal lengémd W;(s the standard deviation of the noise at
RSO2YLRaAlGA2Yy fS@St waQd ¢KS & dwagcBmpi# RS
with Equation5.4.

P

” _r[@ X _[
Equation5. 4

6 Q2 QEQW;

The denoised coefficients for decomposition levels 1 t@eBe obtained. The results are
shown n Figure5.18, which contains a stack of graphs showing the denoised coefficients
at decomposition levels 1 to 6, in addition to the original pressure sigied.denoising

method removed the noise effectively while retaining the underlying process information.

The detdicoefficients at levedl and 2 appeadto have a high magnitudehen a cylinder
wasactivated,while coefficients at levsl5 hal distinctive magnitudes when a valveas
either switched on or offln most of the cases there were no significant transient events,
and the coefficients appeard to be zero. Moreover, the coefficients algghwell in time

against the patterns appearing in the original pressure signal.

The detail coefficients produced lige valve and the cylinder were further compared.
Figure 5.19 shows a valve and a cylinder pattern in addition to their first six level
decompositionsThe results indicatthat detail coefficients corresponding to the cylinder
activationhad highest magtudesat decomposition levels 1,2 and 3. At those levels, the

detail coefficientsmagnitudesfor the valveat moment it switched off or onwere
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considerably lower than those corresponding to the cylinder. On the other hand, the detail
coefficientsmagnitude corresponding tahe valve at levels 5 andv@ere greater than detail

coefficients for cylinder activation at those levels.
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Figure5. 18: Denoised detail coefficient for decomposition levels 1 to 6
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Figure5. 19: Decompositions of the pattern left by the (a) valve and (b) cylinder

The details coefficients for the cylinder at levek6re zeroafter denoising The coefficients

for both tools at decomposition levelwere similar

Thedetail coefficientenergy contained at each decomposition level whke valve was
switched on/off, or a cylinder was extended/retracted walso studied. The energyas
calculatel within a window W0 2 F ¢ A R (EHuatior.6. The daadowivasa time
interval where an event of interest occurred. The objective of this analysis was to
understand to what extent the detail coefficient energy could be uiedeatures in a

clas#ication algorithm that recognigkthe different evens.

Equation5. 5
An example of the process of computing the detail coefficient energy for cylinder
activation is shown irigure5.20. Thegrey shaded area corresponds to the location of
the window where the detail coefficient energy was computed. The procedure was

repeated for the valve switch on, valve switch off and when there were no tools active.
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Figure5. 20: Plot showing cylinder pattern decomposition and window where coefficient energy
was calculated

Four basic events were considered: cylinder activation, valve switching on, valve switching
off and no tool activated. Ten different instances (40 in total) from each event were
analysed. The wavelet detail coefficient energy at each decomposition levell fthe

patterns considered are shown kigure5.21.

The results indicated that each event had unique characteristics in their wavelet detalil
decomposition that allowedhem to be distinguided from other events. The cylinder
detail coefficienthad mostenergy distributed among decomposition levels Wjth lower

but considereable energy at leveélsand 4. The energy at decompostion levels 5 ane 1@

significantly lower than the energy at the other decomposition levels.
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Figure5. 21: Wavelet detail coefficient energy at each decomposition level for all the patterns
considered

Results indicated that a valve switching on and a valve switching off had simialr energy
distribution accros each level, thereforan the remainder of this Chaptahey were
treated asthe sameevent. In general the valve had highest energy at levels 4 and 5 and
significantly loweenergy athe remaining levelsThe most distinctive differeze between
energy ofa valve and a cylinder was the energy at decompostion levels 1 and 2, where the
cylinder almost alwaybkad significantly higher energylhe results for no tool activated
showed that the energy across tB&levels were significantlpWer than energy seen with

cylinder and valve patterns, making it distinctively different from the other events.

Although the general attributes of the energy for each event category had distinctive
characteristics, the energy for patterns belonging to geme class showed statistical
variation.In the next Sectiora nearest neighbour classifier that wageatedto recognise

the different evens from their wavelet detail energy at each decomposition leigel

described
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5.2.3. Nearest Neighbour Classifier

The nearest neighbour classifier is a simple but effeatiassifier that could be used with

any data typg/Aggarwal, 2015 Gy | RI Gl @SOG2N) W- Q gK2a
the nearest neighbour classifier searched for the sample in the training data that was

Ot 2aSait G2 Ww-Q o6FaSR 2y | RAaGlyOS YSI ad
Mahalanobis was typicall@uS R® W- Q g2dzZ R 6S FaaA3daySR (2

sample.

In this research work the Eucledian distance was used as a distance measure. Each sampl
in the training data had 6 features, corresponding to the energy at the 6 decomposition

levek discussed earlier. In total, the training data had 202 samples distributed as follows:

1 61 samples corresponding to cylinder
1 67 samples corresponding to valve

1 74 samples corresponding to no tool

The nearest neighbour was then implemented in a tool redagmalgorithm.

5.3.3.  Tool Recognition Algorithm

An algorithm to classify different pattertisat appearedn the pressure signal was created.
The algorithm operated offline, meaning that pressure would be measured, stored as a

signal, processed, and then ansdyl.

A schematic representation of how the algorithm wedkis shown inFigure5.22. The
algorithm had five main steps. The first step was collecting pressure data from the supply
side of the system and storing it on a computer. In the second step, the mean of the
collected data was removed, and the resulting data was decomposed withRVIGnto
different scales. Since patterns left by tools were mainly seen in the first six decomposition
levels, the detail coefficients at the other scales were disregarded. The second step resulted
in six different time series, each corresponding to tle¢adl coefficients at a decomposition
level. In the third step, the detail coefficients were denoised using the approach discussed
in Section 3.1). In the fourth step, a sliding window was moved across the six

decomposition levels to calculate the energyeach level within a specific time interval.
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The length of the window was selected to be 20 samples, which corresponded to 1 second
since the sampling period was 50 ms. The sliding window was moved 10 samples each step
and therefore 10 samples overlapgpén between adjacent windows. In the fifth and final

step, the nearest neighbour classifier was used to classify the different patterns.

Step 1 : Data Collection ) ( Step 2: Data Processing
Supply side pressure J >L Mean Removal and Multiscale

Measurement and logging Decomposition with MODWT

Y

Step 3: Denoise

Step 4: Compute Energy 1

Sliding window to compute
energy in detail coefficients

Elimination of noise from
detail coefficients

Result

—> Cylinder

\

-
Step 5: Classification

Classify Patterns with » Valve
Nearest Neighbour classifier

Y

J/

— No Tool

Figure5. 22: Schematic representation of how classification algorithm worked
To evaluag its accuracy and effectiveness, the algorithm was tested on unseen data

containing patterns left by the cylinder and the valve. The obtained results are susachari

in the confusion matrix shown in Figuse23.

Valve Cylinder
Predicted Valve 42 0
Predicted Cylinder 0 45
Predicted No Tool 2 0
% Correct 95 100

Figure5. 23: Confusion Matrix
The results suggestl that the algorithm performed well, witlan accuracy rate 0B5%
when detecting a valve arth0% when detecting a cylinder. The testing was performed on
89 cases however, a largemumber of caseshould be considered to further test the

algorithm.
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A frequent error encountered was the misclassification of a valveepatas no tool. In

most of those cases, the valve pattern did not appear strongly enough in the time domain
pressure signal, as shown in Figare4.
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Figure5. 24: Valve pattern not appearing strongly in the time domain data leading to
misclassification

Another limitation was the misclassification when patterns partially fell within the sliding
window. This often occurred at the boundaries of a cylinder activataitempn. An example

is shown in Figurb.25, where the sliding window is shown at three different locations.

Window 3

Window 2

Window 1

Figure5. 25: Misclassification due to small parts of cylinder pattern falling within sliding window
boundaries

In Figure5.25, windows 1 and 2 were correctly classified as cylinder since most of the
cylinder pattern was within the boundaries of the sliding window. However, window 3 was

incorrectly classified as a valve. This was because part of the cylinder papenifically
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the part where pressure increased, fell within that window. This pattern resembled the

pressure increase due to a valve switch off, resulting in a misclassification.

5.4.3. Implementation in Reakltime Monitoring

In this Section, thémplementation of the proposed tool recognition algorithim a real

time monitoring systenis briefly discussedeailtime monitoring systems make decisions
based on the latest sampled data poii@anesan et al., 2d). One of the main challenges

for implementing wavelebased methods for monitoring was the time delay because
signals had to be of a certain size for decomposition. This had often restricted wavelet

based method to offline monitoring.

The algorithm poposed in this research was based on a MODWT. One of the advantages
2F dzaAy3a GKS ahb52¢ gl a AGa FoAftAGe G2 KI-
which required the sample size to be a power of two, i.e. W=2g KSNBE WWQ g4I
integer.C2NJ GKS 52¢3X RSO2YLIRAAYAS (I KS HOHZAIRE Rt SY
GKFY 2N Sljdz- £ G2 wwQo

lf 0K2dAK Ay G(GKS2NE (KA&a NBaINROG R WKIR & 2
f Saa GKI Yy (RekivabgWaldén, 2000) PWEA ANS WIVE NI G K4y 4
intuitive since it implied looking for changes in the time series over scales that were greater
than the time series itself. Because of that, the numbesamples required to reach a
specific decomposition level was restricted, even when a MODWT was used. This implied
that the minimum time duration of the signal before decomposing into the required level
was also restricted and depended on the sampling pmeridable 5.2 shows the
decomposition, minimum number of samples required, and the minimum signal duration

when a sampling period of 50 ms was used.

In the previous Sections, a $evel decomposition method was discussed for recognising
different pneumatictools. In Table5.2, it is indicated that the minimum sample size
required for performing a sibevel decomposition was 64 samples, which corresponded to

3.2 seconds when a sampling period of 50 ms was used.
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Table5. 2: Minimum number of sample and resinlg signal duration for different decomposition
levels

Decomposition Level Minimum Samples Signal Duration (seconds
1 2 0.1
2 4 0.2
3 8 0.4
4 16 0.8
5 32 1.6
6 64 3.2
7 128 6.4
8 256 12.8
9 512 25.6
10 1024 51.2
11 2048 102.4

5.4.Discussion and Conclusions

This Chapter presented the research that investigated extracting information from the
supply side pressure of a CAS.CAS with a load/unload compressor control was
considered. In such systems, the supphgssure signalvas madeof a low frequency
sawtooth waveform pattern that contained high frequency components associated with
the consumption of compressed air in the demand sidee Pressure signalkas non-
stationary, in the sense that different frequencies appeared at différéme instances.

This meant a Fourier transform was not suitable for analysing the signal, and instead a time
frequency signal processing tool was required. In this Dissertation, the wavelet transform

was used.

A brief review of the wavelet theory wasgsented. The review focused on three different
types of wavelet transforms: the CWT, the DWT and the MODWT. The main difference
between the CWT and the DWT was that CWT generated a significantly larger number of
coefficients than the DWT. The MODWT waesion of the DWT that the impact of the

starting point on the obtained coefficients.
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The supply side pressure was measured and analysed with a CWT. Three different case
were considered: a case with no faults, a case with tools being activated, asd whare

the system had known faults. The results indicated that increased air consumption, either
due to tool activation or faults, introduced large coefficients at higher frequencies. When

a tool was activated, air was consumed for short periods of tameé therefore the high
frequency components appeared for a short duration. When a leak was present, air was
discharged continuously from the system, and the higher frequency components were
present at all times. A classifier based on machine learning ngasecl, however it was not
developed further because it required considerable amounts of data for training. The

research instead considered the MODWT, which produced fewer coefficients than a CWT.

The supply side pressure signal was decomposed into appatinin and detail coefficients

with the MODWT. Results indicated that coefficients associated with tool activation and
noise appeared in the low detail decomposition levels, which corresponded to the higher
frequencies. Coefficients associated with sawtoovaveform of the pressure signal
appeared in the higher decomposition levels, which corresponded to the lower
frequencies. The levels containing high frequency components where further investigated.
After denoising, the detail coefficients obtained whendauble acting cylinder and a
solenoid valve were activated was analysed. The result indicated that the cylinder had

stronger detail coefficients magnitude at higher frequencies.

An algorithm for CAS usage pattern recognition was created. The algoritlenatedldata,

then performed a MODWT to extract the detail coefficient energy at different
decomposition levels. The nearest neighbour classifier was then used to recognise the tools
based on the energy at each decomposition level. The results indicatetht#halgorithm

was promising, however testing on a larger data sample was required. Moreover,
additionalresearch was required to address some limitations that appeared when testing
the algorithm. These limitations included patterns not appearing wellughoin the

pressure signal and partial patterns falling inside the analysing window.
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Chapter6: Monitoring Demand Pressure

In Chapter5 the supply side pressure was monitored and an algorithm for recognising
different tools was presented. In this Chapter, demand side pressareonsidered.
Demand side pressure refers to the pressure downstreafna pressure regulator. In a
typical CAS, the pressure supplied to a pneumatic wasregulated so thatompressed

air at aconstant pressurevasdelivered.A regulated linecould supply compressed air to

more than one pneumatic tool.

When a pneumatic tool operatk it consume compressed air, which decreak¢he
pressure in the line connected to the todhe amount by whichthe pressure decreask

and the time duration ofthe decrease deperetl on the characteristics of the tool. For
example, a valve consurdair for longer periodsof time (seconds or minutegjompared

to apneumatic cylinderwhich consumed afor fractionsof a secondWhen the pressure

in the regulated line supplying air to the tools was measured, patterns unique to each tool

were observed

This Chaptepresentsan algorithmto identify which toolscreatedthe patterns appearing

in the pressure data. Thegorithm could beusedfor monitoring the safe and efficient
running of a system and to identify problems such as leaks. The algorithm accomplished
two main functions. The first function was the segmentation of recorded data into smaller
sections containig the patterns of interest. The second function was the classification of
the identified patterns. Two different methods for classification were investigated, a

distancebasedmethod and a rulebasedmethod.

This Chapter is organised as follows: Sedidrnpresents the experiments performed and
the different patternsidentified. Section6.2 presents thepattern recognition algorithm
The segmentation method, and the two approaches for classification are disc&sssihn
6.3 presents and analyses the rdsuobtained with the algorithm when the different
classification approaches were usétinally, Sectiof.4 discusses the results and presents

conclusions.
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6.1. Experiments

An experimental setp was assembled consisting ofpaeumatic circuit containing a
solenoid valve, a single acting cylindgrouble acting cylindegnda pressure regulator.
The cylinders were connected to directional valves. A pressure sensor was connected
downstreamof the regulator. A Picolog data logger aadRaspbery Pi were used for data
acquisition and controlA sampling period of 10 milliseconds was usEde directional
control valves and the solenoid valves were connected to a relay that was controlled

through theRaspberryPi. Figure6.1 shows a schematic digam of thepneumaticcircuit

A Ay |
Solenoid Valve

Pressure s

| l Double Acting
Regulator ! -
gulator ||| |If = JL Cylinder

Pressure sensor (X)

E N Single Acting

# % Cylinder
{1

Figure6. 1: Schematic diagram showing the pneumatiicuit

6.1.1. Sensor Calibration

The pressure sensor connected to the regulated line was calibrated by comparing voltage
measurements to readings from a pressure gauge attached to the same line. The obtained
analogue pressure readings and their equivalent voltage reading are shown @6Iabl
The data was plotted and fitted to a linear equation as showRigure6.2. The obtained

Rvale was close to,Indicating the equation was a good fit.

Experiments involving the activation of the pneumatic tools were perfornwednalyse the
patterns appearing in the pressure sign@he patterns obtained are presented in the
following Sections, when no tools were activated and when a solenoid valve, a double
acting cylinder and a single acting cylinder were activaldek patterns observed when

multiple tools were operated are also discussed.
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Table6. 1: Pressure measurement for sensor calibration

Analogue Pressure Reading (Bar) Voltage Measured (Volts)
1 0.713
2 1.115
3 1.525
4 1.92
5 2.35
6 2.756
7 3.15
8
7 g
Pressure = 2.4521*Voltage0.7392
° R2 = 0.9999 L
g T
(&)
54 2
(2]
4 -
a3 e
2 e
1 o
0
0 0.5 1 15 2 2.5 3 35

Voltage (Volts)

Figure6. 2: Plot showing pressure reading on the analogue regulator (in Bars) against sensor
reading in (Volts)

6.1.2. No Tools Activated

Pressure in the regulated line was measured when no tools were actizatddhere were
no faults in the systemThe obtained measurementireshown inFigure6.3. The pressure
was around 6 Bar, which was a user definedm@nt pressure of the regulated line.

Pressure in the regulated line remained constant when no tool was used. The constant

Pagel04of 252



Chapter6

pressure wadecausea pressure regulator was connected to the line indetd at the same
time no air was consumed by any tools attached to the [irfe2 pressure was regulated at
a level close to 6 Bar, however it could dlenged by changing the presswset point on

the regulator.

—— Demand Line

6.4 -

6.2 -

Pressure (Bar)
(o))
1

5.8 -

5.6

20 0 20 40 60 80 100 120 140 160 180 200
Time (Seconds)

Figure6. 3: Pressure in regulated linghen no tools were activated

6.1.3. Solenoid Valve

The change in the regulated line pressure after allowing air to flow from the solenoid valve
was studied. The solenoid valve was connected to a relay, which was contoglled
RaspberryR. Flow was allowed through the valve for 5 seconds. The resultiegspre

measurements for this case are showrFigure6.4.
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Figure6. 4: Pressure imegulated line when valve was activated
Activating the valvalischargecair F N2 Y (1 KS ¢ ticd &sad the pressureSn
theline to decrease and settle at a new value. Once the valve was cftsedtopped and

the pressure in the line recovered to the initial value.

The level of pressurdrop after the valvewas switched ordepended on therate of air
discharged at the valveozzle, which depended on the geometry of tredveoutlet. Also,
the pressure droglepended on thepressurein the regulated linesinceair dischargerate
was directly proportional to pressure differencdhe duration of thepressure drop
depended orhow long the valve was switched pwhichwould normallybe determined

by auseror a sequencing program.

6.1.4. Double Acting Cylinder

A double acting cylinder was connected to a-#/@y directional control valve, which was
connected to a relagontrolled by theRaspberryP. Properties of the double acting cylinder

are summamsed inTable6.2.

The double acting cylinder consurthair on both extension and retraction strokeBigure

6.5 showsa 10 second pressure signal correspondintheopressure in the regulated line
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when the cylinder was extendedt timeF2.5 secondsand then retracted again at tink8&

seconds No other tools were actated when the measurements where recorded.

Table6. 2: Doubleacting cylinder properties

Symbol Description Value
D Chamber Diameter (mm) 25
S Stroke (mm) 100
Pd Downstream Pressure (Ba 1.01325

5.8 | | .

o
[=2]
T
I

L4
F-Y
T
I

Pressure (Bar)

5.2 .

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
Time (Seconds)

Figure6. 5: Pressure in regulated linghen thecylinderwas extended and then retracted

Measurements indicated that cylinder extension and retraction caused a sharp decrease in
the regulated line pressure. The pressure then increasadklio its initial level. The
patterns generated by the double acting cylinder happened over a short time interval,

consistent with the high speed of the cylinder.

The repeatability of the patterns created by the cylinder was studiéguress.6 and6.7
show 0.5 seconds of pressure signals containthg patterns created by8 different
extensiors and retractionspverlaid on one anotheiResults confirmed that each time the
cylinder was extended or retracteda similar pattern appeared in the pssure

measurements.
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Figure6. 6: Pattern appearing in pressure measurements after cylinder extension
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Figure6. 7: Pattern appearing in pressure measurements after cylinder retraction
The pressure drop profile due to cylinder extension and retraction were compBrgdre
6.8 shows the average pattern obtained after extension and retractidwo minor
differences betveen the patterns were identified. For clarification, the differences within
the pressure drop profilare circledand shown in Figur6.8. The first difference was that
during extension, the average pressure drop was higheit decreased td.9 (Bar), while
for the retraction, the pressure reached 5 (Bar). The second difference was the small
pressure increase seen in the retraction pattern immediately after presbeganto

decrease. This increase was absent from the extension pattern mlydappeared during

retraction.
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Figure6. 8: Averaged extension and retraction pressure profiles in regulated line

An explanation for the difference in pressure drop between extension and retrastisn

obtained by analysinghe geometry of the double acting cylinder, alongside the physical
characteristicglictating its operation.

The pressure drop during extension was higher than during retrackimure6.9 shows a
schematic representation of a double acting cylinder. Sthege was a rod inside the
cylinder chamber tte volume of air required to fill the chamber during extens(@ension
was larger than that required during retractiqiVietraction). The larger volumeequired a

larger quantity of air to fill theeorrespondingchamber, and thereforéhere was ahigher
flow of air andpressure drop in the regulated line.

Vext%‘nsion ROd

@ -

—

Vretraction Rod

L—
g

ORERE

Figure6. 9: Schematic representation of a double acting cylindaj rod pogion after extension,
(b) rod position after retraction
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Asecond difference was analysed. When tdomtrol commandor a cylinder retraction or
extension was sent, air quickly didl the tubing connecting the directional valve to the
double acting cylindechamber leading to the sharp pressure decrease. When pressurised
air hitthe piston surface area, a force pushthe cylinder either to extend or retract. This
force firsthad toovercome the statidriction between the piston and the cylinder bore.
The force exerted by the air on the pistars directly proportional to piston surface area.
Since the surface area on the retraction sradessmaller(because of the rod)t tooklonger

for the cylinder to overcome its static pressure aodstart moving. This cauddghe flow

to stop for fractions of a second, allowing the regulated line to gain some pressure. The
samewas observedluring extension, however since the foras larger, he time it took

to overcome the static frictiowas smaller, and therefore the pressure increasss not as

visible as in the retraction case.

Although the extension and retraction patterns were slightly different, for simplicity, this
research did not defie separate patterns for each case. Instead, the research focused on
identifying a double acting cylinder pattern, regardless of whether it was an extension or

retraction.

6.1.5. Single Acting Cylinder

In addition to the double actingylinder, a single actingytinder was considered. The main
difference between single and double actings thatthe singleacting cylindehad a spring
inside its chamber, so no compressedvaisconsumedduring the return stroke. The single
acting cylinder was connected to a 28y directional control valve, which was connected
to a relay thatwas controlled throughthe RaspberryPR. Properties of the single acting

cylinder are summased inTable6.3.

Table6. 3: Single Acting Cylinder Properties

Symbol Description Value
D Chamber Diameter (mm) 25
S Stroke (mm) 50
Pd Downstream Pressure (Bar) 1.01325
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Figure6.10 showsa 10 second pressure signal showing regulated line pressure thieen

cylinder was extended. No other tools were activated whenghessurewasmeasured
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Figure6. 10: Pressure in regulated linghen singleactingcylinderwasactivated

Thecylinderonly consumed air during extension, the retraction strale not consume

any air and ihad no impact on the measured pressufée single acting cylinder activation
causal a sharp decrease in line pressure. The resulting pattern lasted for fractions of a
second, and eventually the pressure returned to its initial vaigure6.11 shows a set of
0.25 seconds pressure signals contairthng patterns obtained from the strokef a single

acting cylinder The pressure signals in Figérél confirmthe repeatability of the pattern.
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Figure6. 11: Patterns appearing after single acting cylinder strokes
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Theaveragepatterns createdby the single and double acting cylinders were compared.
The patterns were plotted next to each other, as showirigure6.12. The figure shows
that the amplitude of pressure drop was higher for the double acting cylinder. This was
mainly due to the difference in size between the cylinders. The stroke length and
subsequently the cylinder chamber of the double acting cylingas larger, requiring a

largervolume ofcompressed air at each strokeshich caused sharper pressure drop.
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Figure6. 12: Patterns from single acting and double acting cylinders

6.1.6. Multiple Tools

Patternswere investigated when multiple tools operated. An example is showkigare

6.13, where a valve was switched on, then a double acting cylinder was activated 4 times
(two extensions and two retractions) before the valve switched off. The pattern duesto th
valve activation seen in stgection6.1.3 was interrupted by the activation of the cylinder,

and new shapes seen in the pressure readings could be associated with a valve being active

Figure6.14 shows the same pressure signal shown in Figr@ butwithout the patterns
due to cylinder activation, and the patterns at the start and end of the signal where no tools

were active Only patterns associated with the valve are shown.

Patterns (1), (2) and (3) are associated with a valve switching on, switoffior being
active, respectively. Pattern (1) was a step decrease in pressure caused by the valve
switching on. Pattern (2), which appears 3 times in the signal shown in Bidg4drevas the

pressure being constant at a new level, and it appeared whemawylinder was operated
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more than once while the valve was activattérn (3) was a step increase in presswansd

wasdue tothe valveswitching off after a cylinder was activated

6.5 - 7

Valve
On

Pressure (Bar)
5
5

4.5 T

1 1 1 1 1 1 1
5 10 15 20 25 30 35
Time (s)

Figure6. 13: Pressure Signal whesralve was switched on, cylinder activated 4 time, then valve
switched off
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Figure6. 14: Samepressure signal shown in Figued.3 but without the patterns due tthe
cylinder. Patterrs (1), (2) and (3)vere associated with a valve operation.
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6.1.7. |dentified Patterns

This Section summarises and presents the different patterns identified during the
experiments. Seven patterns of interest were identified. Haattern wasassociated with

one of the following gents:

No Tools Active
Valve Activation
Valve Switching On
Valve Switching Off
Valve Already Active

Double Acting Cylinder

> > > > > > D>

Single Acting Cylinder

Figure6.15 shows a pressure signal containing the pattern corresponding to the case of no
tools active. This pattern was characterised by: (1) pressure being equal to regulated line

setpoint pressure and (2) no significant variation in the pressure.

6.4 r
—~0637
T

862l No Tool Active

<N
-

PR SPEFEF W O PR WP T | TP P

L=

Pressure (B
g o
(== { =]

oon
o~

1 2 3 4 5 6
Time (s)
Figure6. 15: Pressure signal containing the pattecorresponding to no tools active
Four different patterns were associated with tbperation of a valveThe first pattern was
obtainedwhen a valve was activated while no other tewmiterrupted its operationFigure

6.16 showsa pressure signal that corites this pattern¢ KS LI G G SNY &1 a f
I OQOGADEGA2Y QO
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Figure6. 16: Pressure signal containing thatpern corresponding to valve activation
Figure6.17 showsa signal containing the second pattesiesociated with the operation of

a valve. This pattern was obtained when a valve switching on was followed by the activation
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Figure6. 17: Pressure signal containing the pattern corresponding to valve switching on

Figure6.18 showsa signal containing the third pattern associated with the operation of a
valve. This pattern was obtained when a valve was switched off after the operation of

anol KSNJ G22f d® ¢KAA LI GGSNY o1 a tFroStftSR w¢
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Figure6. 18: Pressure signal containing the pattern corresponding to valve switching off

Figure6.19 showsa signal containing the fourth pattern associated with the operation of

valve. This pattern was obtained whenever the valve activation was interrupted by the
repeated activation of another tool. The pattern corresponds to the pressure signal
between the fist and second operation of the other tool. An example for this case was

given in subsection6®d M dT & ¢ KA A& LI GGSNYy ¢Fa fFroSffSR
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Figure6. 19: Pressure signal containing the pattern corresponding to valve on
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Figures6.20 and6.21 contain pressure signals with patterns thairrespond to a double
and a single acting cylinder, respectively. Both patterns had a similar shape, however, the
pressuredrop for double acting cylinder was larger. For the single acting, the pressure

dropped by ~0.7Bar while for the double acting the pressure drop was close to ~1.1 Bar.

The signals in Figuré20and6.21do not show noise as much as the other signals beea
the length of the signal is relatively short. For example, the signal in Féglisecontains
considerable noise, while the signals in Figug@€ and6.21 appear smoother. That was
mainly because signals kigures6.16 and6.17 contain 25 samples,hile the signal in
Figure6.15 contains 600 samples. Becausefijares have similar dimensiofigures with
larger number of samples appear to contain more noise, even thoughighees contain

signals collected with the same sens@ing thesame samphg period.

6t .
59 | Double Cylinder
=58 T
@ 5.7 :
~ 5.6 1
S 54| :
? 530 :
D52 1
o 517 T
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49 | | | | | ]

0 0.05 0.1 0.15 0.2 0.25
Time (s)

Figure6. 20: Pressure signal with a pattern corresponding to double acting cylinder

Pagell7of 252



Chapter6

Single Cylinder

=

Pressure (Bar)
g hn On G Ch
th o =l 00 W0

on
=

N
X

0 0.05 0.1 0.15 0.2 0.25
Time (s)

Figure6. 21: Pressure signal with a pattern correspondingtsingleacting cylinder

The patterns presented in this si#ection were used in creating a reb@sed classifier and
a distancebased classifier. Next Section will present and discuss new pateagnition

algorithms.

6.2. Pattern Recognition Algorithm

Pattern recognition algorithms were investigatetihe algorithm consistl of two main
parts: segmentation angattern classificationSegmentation deteotd the start and the
end point of eventsClassitation assignedachpatternto its proper category. A schematic

representation of the algorithm is shown ngure6.22.

Pressure measurements were collected from the regulated éind fed as input to a
segmentation algorithm that dissected the pressureasurementsinto shorter sub
segments where each segment contained a pattern associated with a tool activation.
These subsegments were then classified into their most likely category. Two approaches
for classification were investigated, a rdtased anda distancebased approachln the

following Sectionsthe details of the segmentation and patteclassificatiorare discussed.

Pagel18of 252



Chapter6

Raw Data

v

Segmentation

Segment 1 : Segment 2 | Segment 3
. 1
.......-.: : : "_-M.
-!—-i-—-‘i‘*—!l‘--‘ .
I § .
' | .
b
Classification
—— R at e ]
R — o
; b el
T F
v \ v
Valve Double Valve
Switch On  Acting Cylinder  Switch Off

Figure6. 22: Schematicepresentationof the suggested algorithm

6.2.1. SignalSegmentation

Segmentation of time serielsas beenconsidered an essential pygocessing step for a

wide variety of temporal data analysis tagksi, 2011 he simplest method for segmenting

Pagel19of 252



Chapter6

a time seriesvasto use a fixed length window. However, a fixed length windeas too
simplefor complexsignals. Thisvasbecause patterns within a time series typicallydh
different lengths, and using a fixed length window, a segment may contain more than one
meaningful pattern, or it may split a pattern across time, causing patterns to be mixed or

to be missed. For thisason,avariable size windowasmore effective.

Several segmentation methods, also known as change point detection methods, have been
reported in the literature. Methods were divided into two main categories: online and
offline methods(Truong et al., 2020)In online methods, the objectiveras to detect
changes as soon akdy occur. Offline methods detead changes after all samples dha
been collected. Several monographs and papers provided reviews on different change
point detection methods. In this study, an offline segmentation approach was adppted
because in principlesreating an offline segmentation method was simpler than creating
an online one An offline segmentation would lead to a delay in detecting events, unlike
online segmentation which detected events as soon as they occurred. In most compressed
air systemsa delay of few seconds or minutes in detecting events, such as a leak or damage
to a tool, would be acceptable, and therefore an offline segmentation approach was

justified.

The algorithm for detecting meaningful changes in the data evaatedby the auttors so
that it suited the nature of the problem. Thereationof the segmentation method went
throughtwo iterations. An initial method wasreated however ihad some limitationsThe
method wasimprovedto address those limitations. Both methods are refed here &:

(A) Segmentation Method Onand (B)Segmentation Method Two

A. Segmentation MethodOne

The pressure in the regulated limeas constant at a prelefined valie determined by the
functional requirements of the process. This valgereferredto here as thedemand

pressureset point Whenever an air consuming tool was operatedwais discharged from
the demandline through the activated tool, causing a tempordrgp in the line pressure.

Once air consumption stopped, pressure in the line increased back to thmosdt

A flow chart depicting how Segmentation Method One worked is shown in FegB8e
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Pressure Data
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Figure6. 23: Flow chart demortsating how Segmentation Method One worked

Segmentation Method Onéetected the starbrtheendofaa SIYSy G G &l YL
by evaluatingaveragedeviation fromthe pressuresetpoint WeQ o0& | &aLISOA F.
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¢ KS ydzyYo SNJ 21Ty Ra FaYKL

SBKNBaEX 2f R whQ gSANB R
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Segmentation Method One was tested on a pressure signal where a single tool was
activated. Figuré®dnn aK2¢a GKS LINBaadzZNS aAiraylt dzas
aSO02yRax (KSYy &a¢gAdOKSR 2FF |G G Aowégaimat a4 S C
GAYSFcon aSO2yRasx (GKSYy &agAiGOKSR 2FF I
segments started or ended were identified with Segmentation Method One and the results
are shown on Figuré 24, as dotted lines. The dotted lines basically shidwere the original

pressure signal was broken down into smaller segments.

Initially, the results obtained with Segmentation Method One appeared to be accurate,
since each pressure segment contained patterns associated with different events. For
example, N a8 a4 dzNE aS3ayYSyid 61 a4 ARSYGAFTASR 0SS
identification was correct, since this pressure segment was associated with a valve
activation, unlike the segment just before it and just after it, which both corresponded to

no tools being active.

This segmentation methodvorked well when only one tool was activatédwever, it
performed poorly when more than one tool was operated at the same tifigure6.25
showsa pressure signal where a valve switching on was followed shortlg bylinder
extension and then the valve switching ofthe dotted lines indicate different segments
obtained when method one was used for segmentation. The original pressure signal was
broken into three segments. However, this result was incorrect, since the middle segment

contained two events, a valve, and a cylinder operation.
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Figure6. 24: Pressure signal collected when one tool was activabedted lines $iow pressure
segments identified wittgegmentationMethod One
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Figure6. 25: Pressure signal collected wharvalve and cylinder operatebotted lines show
pressure segments identified witiegmentationMethod One

In this case, Segmentation Method One gave an incorrestilt becausavhen the valve
wasswitched on the pressure dropped significantly below tregulated line pressurset
point. When the cylinder was activated, the starting pressure was already below the set

point, so the start of the cylindgrattern was not detected. Similarly, the end of cylinder
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pattern was not detected since pressure did not recover bacgetbpointwhile the valve

was still active.

The signal shown in Figu®25 demonstrates the major limitation of Segmentation
Method One, which wags inability to detectpatterns happening & different pressures
than the predefined sepoint. As shown in the example éfigure6.25, the pressure at
which asegmentstarted or ended was variable andvas notnecessarilyequal to the
regulated pressurset point Another segmentation method thaddressel this limitation
was created. The methodllowed the pressure threshold¥ ht®@be regularly updated

instead ofusing a single predefined pressure threshold

B. Segmentation MethodTwo

The main difference between Segmentation Methods One and Two was that method one
searched for deviations from a rigid user defined pressetpoint while method two

searched for deviations from a pressure threshold that was regularly updated.

The startof a segmentvas normally precded by the pressure in the regulated line being
almost constant. Similarlghe end of a segment wdsllowed by the pressure reaching a
new (or the same) constant value. Methtdo identified regions in the data where the
pressure hd a relatively small varianc&ecause of the small variangewas reasonable

to assume that in those regions, there was no major changes in the pressure, and therefore
no new events had occurredhe mean pressure value in these regimasthen computed

and used aa new pressure threshold for detecting the start or end of segméntssimilar
fashionto method one, methodtwo detectedthe start of asegment when theressure
decreased from the correspondimgessure threshold, whiléhe endof a segmentwas

detectedonce the pressure reackea new constant.

Figure6.26 shows the same exampbes shown inFigure6.25, but with method two used

for segmentation The results indicated that method two addressed the limitations of
method one by sumessfully detecting segments containing patterns watvents that
happered at a pressurwerthan the regulated lin@ressure Segmentation Method Two

was used in the remainder of this Dissertation.
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Figure6. 26: Results when methotlvo was used to detect events happening at pressure below

regulated line pressure

6.2.2. Event Classification

Segmentation dsected the pressure data into smaller sections containing patterns
associated with events of interest. This Secti@scribegattern classification, whictvas
the process of assigning each pattern to a category. The categories were malimedvith

the pattern naming used in Secti@nl.7.

In this Sectiontwo methods used to classify the patternare presented. The first
classification methoavasbased on ries defined after observing the characteristics of the
different patterns. The second classification methwds based on a pattern matching
approach that estimated the distance between the pattern and a set of reference patterns,

assigning the pattern tave class of with the smallest distance.

A. Rule-based Classification

A rule-based approach for classifying the patterns was investigated. An algorithm
containing a sequential set of rules that examined distinctive characteristics to classify the
patterns wascreated. The characteristics were obtained directly from the patterns
presented in SectioB.1.7 and included properties such as the time duration of a pattern

and the amplitude of the pressure drop it created. The algorithm took the pressure
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segments idetified by the segmentation and the pressuset pointin the regulated line

as inputs. Figuré.27 shows the sequential set of rules forming the +odéesed classifier.

( Pressure Segment & Pggy

<0.1 Bar

>0.1 Bar Pset - Segment

Average Pressure

Y A 4

Segment contains tool pattern J No Tool

How long was the pattern duration ?

>0.5 seconds <0.5 seconds

Pattern is Cylinder

Pattern is Valve

How much was the pressure drop?

Which samples were larger?

Last 10
Samples

First 10

First & Last
samples

10 samples

v h 4 \ 4 Y
Cylinder Valve ’ Valve ’ Cylinder Single Acting Double Acting
Switch On Activation On Switch Off Cylinder Cylinder

Figure6. 27: Sequential set of rules forming thiale-based classification algorithm

First the algorithm checked if the pressure segment contained a pattern corresponded to
a tool, by comparing the segment average pressure to thegegtt pressure (pressure in

the regulated line). If the average presswas lower than sepoint pressure by 0.1 bar or
more, the algorithm decided that the pattern corresponded to a tool activation, otherwise,

the pattern corresponded to no tool.
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If the outcome of the first step was that the pattern belonged to a tool, #hgorithm
identified which tool it was. This was achieved based on the duration of the pattern. The
algorithm decided that a tool pattern was a cylinder if it lasted less than 0.5 seconds, and
it was a valve pattern if it lasted more than 0.5 seconds. Tidlatassumed a valve always

operated for more than 0.5 seconds.

If the algorithm detected that pattern belonged to a cylinder, the next step identified
whetherit was a single or a double acting cylindenis was achieved based on the pressure
drop inthe pattern. The double acting cylinder had a larger cylinder bore, and caused a
pressure drop of ~1.1 bar, while single acting cylinder caused a pressure drop closer to ~0.7
bar. If the pressure drop was greater than 1 bar, the algorithm classified titerpas a
double acting cylinder. If the pressure drop was less than 1 bar, the pattern was classified

as single acting.

If the algorithm decided the pattern belonged to a valve, the next step was to identify which
valve patterns it was. If the averageessure of the first 10 samples in the pattern was
larger by more than 0.1 Bar than the average pressure of the next 10 samples, the pattern
was classified as valve switch on. If the average pressure of the last 10 samples in the
pattern was larger by mor¢han 0.1 Bar than the average pressure of the 10 samples
preceding them, the pattern was classified as valve switch off. If both conditions were true,
the pattern was a valve activation. Finally, if none of these conditions were true, the pattern

was clasgied as valveon.

B. Distance-based Classification

A distancebasedclassification approach was investigatédtterns most indicative of a
class were stored agferencesand used for comparisoagainst new patternshat had to

be classified. The classifiestimated the distance between the patterns to be classified
and the reference patterns and then assigned the class with the smallest distance. The

patterns defined in Sectio6.1.7 were used as reference templates.

A suitable distance measungas needed d quantify the distance between the reference
patterns and patterns that required classificatid®everal distance measur&s compare

time series data had beaeported in the literaturg(Abanda et al., 2019; Xing et al., 2010)
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One of the simplest and most intuitive measurgasthe Euclidian distance, wth was
based on aampleby-sample comparisariThe main advantages of the Euclidean distance
were its simplicity and computational efficiency, however it had major limitations such as
its sensitivityto distortions in the time dimension and the fact tharequired both series

to be of the same length.

A distance measur¢hat addressd the limitations of the Euclidean distance/as the
Dynamic Time Warping (DTW) distance. DTithhdt require the time series to be of the
same length nowasit limited by digortions in time, however it was more complex and
computationally expensiveThe DTW has been the standard distance measure for
comparing time series dat@Bagnall et al., 2017Because of that, the DTW distance was

used in this research.

The DTW and its computation are debed inBagnall et a(2017), Giorgino(2009, Mitsa
(2010 andMdller (2015) DTWwasparticularly useful for comparing time series thvegre
visually similar, howevesome distortions in time introduckY A & f A Ay YSydd K
the distance between the two seri€blitsa, 2010)DTW mapped elements of one series to
the elements of another, creating an alignment betweemritrelements. The alignment
had commonlybeenknown asa warping path.An example of two similar but misaligned
time series is shown in Figuée28, reproduced fron(Giorgino, 2009)The alignment of
elements from one series into the other with a DWT algorithm is also shokageneral
objective of the DTW algorithmvas to find the optimal alignment between two tinseries
under certain restrictions. Once the optimal alignmevas identified, a distance measure
between two time series, known as DTW distarveascomputed,andthe two seriesould

then be compared
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Figure6. 28: Example showing the alignment of two time seriggh a DTWGiorgino, 2009)

The DTW algorithm conset of three main computational steps. The first steas
computing the local difference between each pair of elementshim time series being
compared.The second steprasidentifying all possible alignments between the elements
of a series that satisfied certain restrictioria.the classical DTW algorithm, an alignment
satisfied three main restrictions: Boundary conditiomonotonicitycondition, and step size

condition

The boundary condition aligul the first elements and last elements of the time series.
Monotonicity implied that the alignmentdid not move backwardsA step size codition
ensuredcontinuity and that no elementswere skipped. Also, this condition ensutéhat
there were no replicates (the same indicesuld notbe assigned to each other more than

once).

¢KS GKANR YR FAYyLIf adSLI gl a ARSylltwas Ay 3
possible thatseveral alignments satisfl the boundary, monotonicity, and step size
conditions However, not all the alignmentsere of the samefualityQ The quaty of an
alignmentwas measured witha total warping cost, whiclwas the sum of the local cost
measure for each pair of elements included in #tignment. A highvarping cosindicated

the alignmentwas of poor quality. Alternativelya low warping costindicated a good

alignment quality
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The optimal alignmenhadthe minimal total warping cost. The minimal total warping cost
wasalso known as the DTW distance. When comparing two series using the DTW distance,
a low DTW distance value indicdthigh simiarity between the series. In contrast, a high

DTW distance value indicatéigh dissimilarity.

Initial results with the classical DTW algorithm showed that two modifications were
necessary for the recognition of the patterns considered in tGisapter. The first
modification was limiting the number of samples a single sample could be mapped to, so
that singularities were avoided. The second modification was removing the mean from the

patterns. Both modifications are considered in the next subegs.

B.1.Singularities

Using the classical DTW distaramuld produce illogical results certain situationsvhere

the algorithm tried to explain variability in th@ressure(y-axis) by warping the time axis (x
axis)(Keogh & Pazzani, 2001y such situations, alignments would make little sense as a
single point in one time series would be mapped to a large subsectiamather time
series. Thseundesirable behavioswereO f £ SR W {KegfE&Harzal 20015 & Q

An exampleghat demaonstrates the issue of singularitiespsesented Consider comparing
a pressure pattern corresponding to a valve activation to the pattern of a single acting

cylinder, and a valve switching on. The three patterns are showkigare6.29.
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Figure6. 29: Example demonstration the issue of singularities when valve activation, valve on,
and cylinder patterns were compared
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By visually inspecting the patterns shown in Figbl&9, it was concludel that the valve
activationand valve switchingon patterns weremore similarto each otherthan the valve
activationandsingle cylindepatterns were Whenthe classical DTW distance was used as
basis for comparison, the opposit®as concluded.Figures6.30 show alignment and
distanceobtained whenvalve activatiorandsingle cylindepatterns were compared with

a DTW.Similarly, Figuré.31 show the results obtained wheralve activationrand valve

switching on patterns were compared with a DTW.

Valve Activation

6~ . -
W ----- Single Cylinder
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o
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I
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57 I

I One data sample in the single cylinder pattern was mapped to more
than one hundred data samples in the valve activation pattern
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Figure6. 30: DTW alignmenand distancavhenvalve activation angdingle acting cylinder
patterns were compared
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Figure6. 31: DTW alignmenand distancevhenvalve activation and vah@&vitching orpatterns
were compared

The DTW distance fdhe pairvalve activatiorvalve onwas 10.17]arger thanthe DTW
distance for thevalve activatiorsinglecylinder, which was 7.53This result wasounter
intuitive andwould lead to dalse conclusion that vahectivationpattern wasmore similar
to single cylindepattern. AsFigure6.30 shows, the low DTW distance wamainlydue to
onesamplepoint in the singleylinderpattern being mapped to mamnsample points ithe
valve activation patternThis example deonstrated how singularities could lead to errors

and misclassifications.

Severabpproaches have been suggested to overcome the issue of singularities, including
a variant of the DTW algorithm, called the Derivative Dynamic Time Wafiigagh &
Pazzani, 2001)A simple approachwas to limit the possible warping paths by adding a
restriction on the number of times a singl®ipt could be aligned. This approach was
applied to the previous example leading to a significant increase in the DTW distance for
valve activatiorsingle cylinder while the DTW distance for valve activatialve on
remained almost constantThe number oftimes a single point could be aligned was

determined by trial and error. A value of 50 gave acceptable results and was selected

The newDTWalignments and distances are shownHigures6.32 and6.33. The DTW
distance with the single acting increased smerably from 7.53 to 127 while that with the

valveswitchingon had a minimal increase from 10'to 10.2
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Figure6. 33: Modified DTW alignment between valve activation data valve turn on template

B.2.Mean Removal

The second modification was removing the mean from the patterns. Comparing two
patterns of identical shape and amplitude but with an offgelveresults indicating the
patternswere dissimilarn(Batista et al., 2014)Therewere few scenarios whereraoffset
could exist betweera pressure patterrcreatedby a tool and its corresponding reference
template. Examples of su@scenarioncludewhen the pressure in the regulated limeas
changed to a pressure different than the one used to define the templates, or when a tool

was activaed while a valve was already active. In such cases the offset existing with the
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template might confuse the DTW algorithm and cause incorrect pattern matching. Gustavo
et al suggested i(Batista et al., 2014)normalsing the data to remove the variance cause
by the offset.

Z-normalisation has beenone of the most used prprocessing methods andas been
effective in handling offsets. Wasbased on the idea of centring and scaling data to have
a mean of 0 and a standard deviation of 1. However, usmgymalsing for offset renoval

in the case of pneumatic tools might increase the pattelassificatiorerror.

As an example, the normalisation of the patternsaoflouble and single acting cylinder
shown inFigure6.34, was considered hebiggest differencéetween both pattens is the
larger drop in pressure seen in the double acting cylindlbe patterns after-normalising
are shown in Figuré.35. Results showed thatrormalising the data scaled thpressure
drop so that both patterns become almost identical. Tivas not desirable,after z
normalising, the biggest difference between both patterns disappeamed therefore it
would be more challenging for a classification algorithm to differentiate betweertwo
patterns. This scenario would also occurtlife patterns belonging tdwo valves with

different air discharge ratewere z normalised
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Figure6. 34: Patterns of a single and double acting cylinders without nosatdin
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Figure6. 35: Patterns of a single and double acting cylinder aftapormalisation

An alternative to normalsing that would remove the offset while allowing the patterns
to maintain most of their unique featurasasmean removalMean removalvasachieved
by first calculating the mean of the pattern, and then subtracting-igure6.36 below
shows the patterns féer their means were removedshowing that the differentiating

featureswere maintained.
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Figure6. 36: Patterns of a single and double acting cylinder afean removal normalisation
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6.3. Results

The accuracy of thproposed algorithm was testewith data collected from a variety of
possible operating sequencésat involvedfour pneumatic tools. The tools were a single
acting cylinder, a double acting cylinder and two identical solenoid valves. The dimension
and spedications of the tools were given in Sectiérl. The resultsvhen the distance

based and ruldbased classification were used are reportedhe followingsub-sections

6.3.1. Results from a Distancebased Classifier

The performance of the algorithm with the distanbased classifier was studied. Inputs to

the classifier were the pressure signal segment identified by the segmentation algorithm,
in addition to the reference patterns identified in Secti@il.7. The disthcebased
classifier was tested with 164 pressure signal segments, of which 152 were classified
correctly while 12 were misclassified. The breakdown of the real pattern in each pressure

segment and their classification results are summarised in Table

Results indicated thathe distanced 8 SR Of 84 A FASNJ LISNF 2 N¥SR
2yQ YR Wy2 (22f{QF gKSNB (KS I f 3ANKviakK Y
because both patterns had the same shape. Fighi®” shows two pressure sigls
O2NNBaLRyRAYy3 (2 0GKS LI GGSNya 2F WwWy2 G2;
aKFLISsE odzi GKS WwWy2 (G22t{Q LI GGSNY KIR | K.
removed, the pressure in both patterns became the same, causing the algoti

misclassify them.

Although mean removal normalisation was preferred overommalisation because it
preserved some of the patterns unique features, result indicated that when the patterns
had the same shape, mean removal normalisation would alsotteatsclassifications. A
possible work around would be to consider additional features, such as average pressure

before normalisation.
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Table6. 4: Classification results when distanbased classifier was used

RealValue
. Valve Valve Valve
CSII?ngollir (I;D c;it:]t()jlgr Activatio| Switch Switch Vglr\]/e No Tool
y y n On Off
Single
Cylinder 15 0 0 0 0 0 0
Double 0 34 0 0 0 0 0
Cylinder
i
S
S| Vale 0 0 12 0 0 0 0
o Activation
5
= Valve
8 Switch On 0 0 0 16 0 0 0
=
‘0 Valve
& | Switch 0 0 0 0 18 0 0
O Off
Valve On 0 0 0 0 0 5 5
No Tool 0 0 0 0 0 7 52

No Tool
Valve Active

Pattern (1)

IR S TR T BEETY RO PRy WY | PP ST

Pressure (Bar)
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|

Pattern (2)

Time (s)

Figure6. 37: Pressure signal containing patterns corresponding to valve on and no tool
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For the remaining cases, the distadsased algorithm performed welland the DTW
distance quantified how well two patterns matche@iable6.5 shows the average DTW
distance obtaind when comparing patterns obtained from tools to the reference
templatesp t F GG SNy a O2NNBalLRyRAy3 (2 Wy2 G22f
the high rate of misclassificationThe results confirred the suitability of DTW for
measuring the simility between pressure patterns, as the smallest DTW distance was
obtained with the pattern corresponding to the same tool. In addition to that, the DTW
distance appeared to increase proportionally with the level of dissimilarity between the
compared pattens. For example, the DTW distance between single cylinder data and the
template corresponding to double acting wds9Q whereas DTW distance witvalve
activation template was@25Q This indicated thathe pattern was more similar to double

acting cyinder than it is to a valve activation.

Theproposedalgorithmwas tested when small changes to a tool operation wagrplied.
The defined reference patterns were not changed. Figér88 shows new data
corresponding to a pressure sigvahere a valve waactivated for 10 secondd he valve

activation reference pattern, which last for 5 seconds, is also shown.

Table6. 5: DTW distance for combination of tools and reference patterns stored in the algorithm

Reference Pattern
Valve Single Double Valve switch| Valve switch
Activation Cylinder Cylinder on Off
Valve
) .
o Single
k=) Cylinder 125 0.64 1.9 131.2 129.7
n
S Double
O Cylinder 131.9 2.37 0.58 130.4 136.8
c
© | Valve switch
% on 14 130.9 125.3 1.1 17.7
(A -
Valve switch
Off 7.8 134.6 132.8 12.2 3.5
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Figure6. 38: New pressure signal showirnglveactivated for 10 seconds comparedive
activation reference pattern, which is 5 seconds long

The distancébased classifier correctly identified the new pressure signal as a valve
activation. The DTW distances obtained when the new pressure sigradlamgpared with

the reference patterns are shown irable6.6.

An important observation was that the DTW distance between the new pressure signal and
0KS @It @dS OGAGIGA2Y NBFSNBYyOS LI G4SNy
distance when comparing 5 second valve activation pressure signal to the valve activation
reference pattern (see Tab&5). This implied that as a given pressure signal deviated from
the expected pattern, the DTW distance increased. This result suggested that the DTW
distanceO2 dzf R 6S dzaSR a I WKSIFfGKQ AYyRAOLIG2N
was to the expected or ideal performance.

Table6. 6: DTW distances obtained when the new pressure signal was compared with the
reference patterns

Reference Pattern

Valve Single Double Valve Valve
Activation Cylinder Cylinder switchon switch off

Valve

Activation 7.7 174.5 265 10 108

Tool

Pagel39of 252



Chapter6

6.3.2. Results from a Rulebased Classifier

The rulebased classifier was also tested. Inputs to the classifier were the pressure
segments identified by the segmentation algorithm and the presseepointin the
regulated line. The same 164 pressure signal sggsused in testing the distandmsed
classifier were used to test the rulmsed classified. The rubesed classifier correctly
classified all the pressure segment. The breakdofie segments and their classification

results are summarised in Talger.

Table6. 7: Classification results when distanbased classifier was used

Real Value
Sinale Double Valve Valve Valve
C Iingder Cvlinder Activatio | Switch Switch | Valve On| No Tool
y y n On Off
Single
Cylinder 15 0 0 0] 0] 0] 0
Double 0 34 0 0 0 0 0
Cylinder
i
=
@ | Vale 0 0 12 0 0 0 0
o Activation
5
= Valve
8 Switch On 0 0 0 = 0 0 0
=
‘n Valve
& | Switch 0 0 0 0 18 0 0
&) Off
Valve On 0 0 0 0 0 12 0
No Tool 0 0 0 0 0 0 57

The rulebased classifier had higher classification accuracy than the distahesed
classifier. This was mainly because the +hésed classifier differentiated between
pressure segment that had the same shape but had a different pressure level. These cases

were often misclassified #i the proposed distance basedassifier.
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The rulebased classifier was robust to small changes in the regulated line pressure set
point. Since the sepoint was one of its inputs, the rueased classifier showed good
results when sepoint pressure wadifferent from the one used to initially create its rules.
Moreover, the classifier performed well when small changes to tool operation happened,
for example the classifier successfully identified valve patterns, regardless of how long the

valve was actiated for.

Unlike the distancdvrased classifier, the ruleased classifier did not quantify the quality of
LI GGSNYya&a yR O2dZ R y2G 06S dzaSR (2 YSI adzN
with the DTW distance.

6.4.Discussion and Conclusions

ThisChaptelinvestigated the automatic recognition of patterpsoducedby air consuming

tools in the pressure measurements obtained in a regulated line. Unlike diimestly
connected tothe supplyside of a compressed air systethe pressure iraregulatedline

was set to a constant value, determined by process requirements. A compressed air system
made of pneumatic tools was built and experiments were perfornida pneumatic tools
considered were a solenoid valve, a double acting cylinder, and a siriglg aglinder.

Each tool was activated, and tlshapes appearing in the pressure measurements were
recorded. Results indicated that th&hapes were repeatable and could be treated as

patternsthat wereunique for each tool.

An algorithm for the automatiaentification of patterns wasreated The algorithmaok

as input the pressure measurements collected from the regulateddingit identified the
tools that caused the patterns. The algorithm perf@atwo main functions: segmentation
and patternclassificationThe algorithm could be used on pneumatic tools, irrespective of
their type or brand, as long as a unique signature appearing in #ggspre signal could be

associated with their operation.

Segmentation divided pressure measurements into smaller subsecteath containing a
pattern. Two methods for segmentation were investigated. The first method detected the
start of an event whenevepressure fell below a predefined pressure-peint, and the

end of an event whenever the pressure increased back to the predefineposat This
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method did not properly detect events starting or ending below the pressat@oint This
limitation wasaddressed by looking into deviations from a regularly updated pressure
threshold, instead of a rigid predefined presssiet point Results demonstrated that the
method was suitable and efficient in segmenting the pressure signal so that individual

patterns were isolated.

The classification of pressure signal segments obtained with the segmented was
investigated. The objective of the classification was to identify which tool created the
pattern in the signal. Two different methods for classification weregtigated, a rule

based and a distandeased method.

The rulebased classifier was made up of a sequential set of conditional statements that
examined qualitative and quantitative properties of a pressure signal segment. The
quantitative properties inclued the time duration and average pressure, while the
qualitative properties included the presence of a step increase or decrease in the pressure.
The rulebased classifier had a higher classification accuracy than the distasesl

classifier.

The rulebased classifier had some disadvantages. The first disadvantage was that the
number of rules required depended on the number of possible patterns. Three different
tools were considered, however if the number of tools was higher, the number of rules
required would increase, which could make creating a fodesed classifier impractical.
Another disadvantage was that the proposed rbkesed classifier did not provide a means
for assessing the quality of a pattern, which could be used in monitoring the gradual

deANI RIFGA2Yy 2F | (22t Q& ljdzftAdeod

A distancebased classifier was also investigated. This classifier estimated the similarity
between a pressure segment to be classifiathd a set of reference patterns, and then
classified a segment to the most similar refece pattern. The set of reference patterns
included all possible patterns identified in the experiments. The similarity between
patterns was quantified with a distance measure. In this research, DTW was used as a
distance measure because it compared sequesnof different length andompensate for
misalignments inthe time axis Mean removal normadation was applied to pressure

segments ® remove offses due totools operating atifferent pressures.
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The results with the distaneleased classifier showedtssfactory performance, except
when two different patterns had the same shape. This was because the didbasee

method classified patterns based on the similarity of their shagbe DTW distance
appeared to increase as the dissimilarity betweampattern and reference template
increased suggestinghe DTW distance could be usamquantify the quality of a pattern

Y G§OKZ yR O2yaSldsSyidte (KS WKSIFIfIiKQ 27F |

Using dynamic time warping as a distance measure allowed the algorithm to perform well
when the duration of tool operation changed. Moreover, the algorithm showed robustness

to variations in operating pressure, mainly due to the mean removal which allowed pattern
shapes to be compared. However, mean removal created a limitation when comparing
similar pattern shapes that belonged to different tools. This could be solved by considering

other features such as average pressure.

One of the advantages of the distanbased classifier was its simplicity. Creating the
classifier required identificatiorof all the possible patterns and storing representative
reference templates to be used for comparison. This was less laborious than creating a set
of rules such as the ones used in the rhlesed classifier. The distanbased classifier

might be more pratical when a larger number of tools operate.

Future work to improve the presented algorithm could focus on several of its limitations.
To reduce the manual effort required for creating a classifier, algorithms that automatically
identify patterns and assaates them with events could be investigated. The events could
be obtained from the control commands and the algorithm would identify patterns
appearing when specific control commands were issued. Future work could also investigate
other distance measuregnore complex air consuming tooklnd sequences and the

implementation of the algorithm in a more complicated industrialgpt
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Chapter7: Acoustic Monitoring of Pneumatic

Tools

This Chapterinvestigatesa sound analysis system for identifying the pneumatic tools from
the sound generated during tool operatioRrevious research reported the use of acoustic
data for detecting leaks ira compressed air system (CAS®)ost of that research was
focused on leaketectionusingultrasonic acoustic sensors or machine learning algorithms.
Alternatively, in thisChapter,acoustic datawere used for monitoring and obtaining
information regarding the demand side of a CAS. A simple pneumatic network that
mimicked the @mand side of a CAS was used to generate audio recordings that contained
the sound of tools operating. The frequency spectrum was obtained from the recordings
and features were extracted for classification. A neural netweeak built to classify audio

sigrals generated by tools.

The remaining parts of thi€hapterare divided as followsSection 7.1 presentsthe
methodology and the proposed audio analysis systeBection 7.2 discussesthe
experimental seup. Sections7.3 and 7.4 discuss signal processingdaclassification
methods used, respectively. Sectidn presents the results obtained wheime proposed

system was tested-inally,Section 7.6 includes main conclusiorand discussions.

7.1.Proposed System

Sound is the result of displacements and oscillations of air molecules. Such displacements
lead to local regions of air compression and rarefication that travel through air as
alternating pressure wave@vitller, 2015) When these waves reach an electroacoustic
transducer such as a microphone, they are recorded as an electric §igrtahen et al.,

2018) These recordingvere represented graphically with a pressdtime plot, that
showed the deviation of air pressure from the average air pressure in the region
surrounding the microphone. The pressdnme representation of a sound is known as a
waveform.Figure7.1, reproduced fromMiiller, 2015) shows a schematic representation

of sound wave propagation, recording and graphical representation.
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Pneumatic tools typically generatdoud sounds when thewere operated. ThisChapter
presentsa sound analysis system for identifyiagpneumatic tool from the sounds it
generated. ThisSection presems the approach and underlying methods used by the

proposed sound analysis system.

Figure7.2 shows a schematic representation of theoposedsound analysis system. The
system was made up dfiree main components: a pneumatic network, a data acquisition
unit and processing and classification algorithms. The operation of pneumatic tools
generated sounds that were captured by a microphone. The microphone was connected to
a Raspberry Pi which stored the collected dataadio files. The analysief acousticdata

was rarely based on the audio signal itself, but rather on acoustic features thatalfow

a compact representation of the acoustic signal. To extract the acoustic features, the audio
file was passed through an audio processing algorithm that etivile audio file into
frames and thergeneratedacoustic features. The features weselectedso that enough
information for detecting or classifying a sound was obtained. Finally, a machine learning
algorithm automatically classified sounds into theirresponding class. The details of

each subsystem and their underlying methods are discussed next.
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Figure?. 2: Schematic diagram showing suggested sound analysis system
7.2. ExXperiments

The experimental setip used in theprevious chapters was used in this one téor the
experiments in this Chaptgiwo pneumatic toolsvere used, aolenoid valve and a double
acting cylinder. Both tools were connected to relays and controlled via the Raspberry Pi.

Figure7.3 shows aschenatic representatiorof the experimental setip.

The sounds produced when the pneumatic tools operated were recorded using a
microphone and a Raspberry Pi. The microphone used was a standalone model with a USE
connection, and the Raspberry Pi was ar 8ibdel. Both tools are shown iRigure7.4.

Cdzy OtlA2ya FTNRY &XK&/ R HRRGAGN@ b dblleShe audio
recording program
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The pneumatic network was fed through a compressed air supplythaéwas located at

far distancefrom the compressed air generation point and consequently rsgsaerated

by the compressor and other equipment in the supply side (such as dryers, cooler, etc.)
were not recorded angvere notconsidered byhis research In addition, the experimental
setup was placed in a location that minisad the impact of external noisas much as

possible(e.g. nearby personnel, outside environment, etc.)

A B e
Solenoid Valve

—, () Microphone

Double Acting
Cylinder

VAl

Figure?. 3: Schematic diagram showing th&perimental setup

Figure7. 4: USB microphone and Raspberry Pi used for data acquisition
Four different categories of audio signals were then investigaidée first sound category
was the audigenerated afteavalve dischargd compressed air. The second category was
the audio due tahe extension or retraction o cylinder. The third category was the audio
where the sound ofa valve discharging air and cylinder extending or retracting
overlapped,meaning that theyhappened at the same time. Finally, the fourth category

was the audio that did not include any tools.
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The waveforms corresponding to each of sk@udio categoriesare shown inFigure7.5.

Fa the case of the valve, the waveforlastedfor as long as the valve was discharging
compressed air. On the other hand, the waveform of the cylinder sound was identical each
time. The waveform obtained when a valve and cylinder operation overlappedialee

+ cylindef was practically indistinguishable in the figure from the waveform obtained
when a valve operated alond-inally, when no tools operated, the amplitude of the

waveform was negligible.

Valve

Cylinder
0 | P " ' T =

Valve
o+

Cylinder

Amplitude

|
1 2 3 4 5 6

No Tool

Time (s)

Figure?. 5: Waveformof the 4 different audio categories

7.3. Audio Signal Processing

Analysing a sound signal in its waveform representation for the purpose of identifying or
differentiating sound events/as in most situations not feasib{(¥irtanen et al., 2018)An
example is thendistinguistable waveformcorresponding tan active valvendan active
valvewith a cylinderlt was common to transform the sound signal to its frequency domain
or frequencytime domain representation and to extract features that alkxv
differentiation between diferent acoustic events. These featumgerethen used as input

to a machine learning algorithm for classification. In tBestion, the methods used for

processing the acoustic data and for extracting features are discussed
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7.3.1. Frame Blocking and Windowing

Audio signals change rapidly with time and consequently their frequency content
constantly changs Because of that, audio signalgere analysed usingshort term
processing techniques, whidbroke down the audio signal into overlapping shairne
windows (frames) that alloed capturing the signal in a quastationary statg(Virtanen et
al., 2018)When the DFT was applied to the frames, the approach was equivalent to a short

term Fourier transform.

The signalWwas broken down into frames using a moving window hemue, then the
frameswere processed using a transform such as the Fourier transform. The process of
breaking a large audio file into shorter overlapping frames known as frame blocking

and is depicted ifrigure?.6.

Frame 1

B e e Tt

Frame 2 Frame 3 Frame M

....................

Original
Audio
Signal

Frames

Frame 1 Frame 2 Frame M

Figure?. 6: Frame blocking process

Short term processing techniquéscusedeach processing step anspecific frame of the
original signal, while the remaining framesere ignored. Thiswas implemented
mathematically by multiplying the sound signal by a windowing function whidtahalue
of zero outside the frame of interest. At each processing step, the windowing fureéien

shifted so that the next frameas analysed.

Therewere severalpossible choices for the windowing function, with the simplest choice

being a rectangular function. However, a rectangular window function reduft abrupt
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changes at the frame boundaries that cadsendesired distortions in the frequency
domain represatation. For that reason, aotherwindow functionwasselected so that the
obtained frame boundariesvere smoothe. Typical window functions that satisfl this
condition includel the Hamming window, Bartlett window and the Hanning window

(Giannakopoulos & Pikrakis, 2014)

The mathematical implementation of the frame blocking and winshgware discussed
nextw [ SG - 0S Iy IFdzZRA2 &A3yl O2y il AyAy3
frequency E The T frame Xat the it" processing step was obtained by multiplying the

original audio signal X by a windowing function W(n), as given in EquUation

¢ pfs &
Q& WE wE A&
Q pB &

Equation7.1
The window function had Bamples anavas shifted by rsamples at each processing step
The value of ndepended on the window step size S and on the signal sampling frequency
Fs. At thei processing step, the number of samples by which the windowingtion was

shifted was obtained with Equation?2.

a Q%Y O

Equation7. 2
The degree of overlap between successive frames depended on the window step size S anc
on total window length W Typically, an overlap of 50% between consecutive franeess
selected(Virtanen et al., 2018)The ratio of overlapdrapbetween successive framess

obtained with Equatior?.3. The windowing operation was implemented in MATLAB
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Equation7. 3

7.3.2. Discrete Fourier Transform (DFT)

Analysing a sound signabs usually done in thigeequency domair{(Virtanen et al., 2018)
The Discrete Fourier Transform (DRM@s a signal processing tool commonly used for
transforming the representation of discrete signal from the time to the frequency domain.
DFTwas widely used in the analysis of acoustic signal since the majority of important
features used in analysing acoustiontent were defined in the frequency domain
(Giannakopoulos & Pikrakis, 201%e DFT was applied to each windowed frame extracted

from the original audio signal. In this section, the calculation of the DFT is discussed.

Consider an audio fram¥(n)with a total length of n=1,% bsamples. Its corresponding

DFT, X(k), was obtained wiEquation/.4.

M0 B w&Q T E mhpHA&888h.

Equation7.4
The output of the transform was a sequenceNooefficiens, X(k) which in generalvere
complex numbergGiannakopoulos & Pikrakis, 201#) Equation7.4, k is an integer that
represened a frequency inde number from which the analogdesquency in Hz could
be deducedvith Equation?7.5.

M O E mhpHA&888h.
Equation7.5

In Equation’.5, kis the sampling frequency and N is the total number of samples in each
frame. Increasing the number of samples N for a given sampling frequency would increase
the number of frequency indices, and therefore would produce a finer representation of

the signain the frequency domaifGiannakopoulos & Pikrakis, 2014)
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The calculated DFT coefficients were complex numbers and therefore plotting them against
frequency indices was not convenient. An alternative was to obtain the magnitude of each
coefficient, which would be a real number rather than a complex one, and genarhat

Is known as an amplitude spectrum, which was obtained with Equdti&n

O -WQs E mhp#H&88h.

Equation7. 6

The amplitude spectrum was a plot showing the amplitudatfeach frequency index k.

To simplify the analysis, the frequency indices were converted to analogue frequencies
using Equation/.5. An interpretation of the amplitude spectrum that was particularly
useful for sound event analysis was that the amplitatgasured how present a respective
frequency was in an audio frame x(n). A high amplitude at a specific frequency indicated a
strong participation of that frequency in signal x(n). On the contrary, a low amplitude at a

specific frequency indicated a weakrpaipation of that frequency in signal x(n).

7.3.3. Feature Extraction

Several possible features could be extracted from an audio signal. Depending on the signal
representation used to extract features from, feature®re classified into two broad
categories: ime domain features and frequency domain featur@girtanen et al.,
2018Giannakopoulos & Pikrakis, 2014) general, frequency domain featunesrewidely

used in audio analysis tasks, and in this study, features based on frequency domain were

used.

Todevelop an accurate and computationally efficient recognition/classification algorithm,
the featureshad tohave low variability when extracted from audio signals belonging to the
same class/categoryt the same timefeatures extracted from audio sigrsabelonging to
different classe$iad tohave high variability allowing for the distinction between different
classes. In addition to tha& small number ofeatureswas preferred since allowed for a

computationally efficient algorithm.

The amplitude spctrum of audio frames belonging to tieur different categories of audio

investigated in this study are shownkigures7.7, 7.8, 7.9 and7.10.Only frequencies up
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to the Nyquist frequeng are shown.The amplitude spectrum revealed that each of the
categories had enough differentiating characteristics that justified using features based on
the amplitude spectrum. Theain differentiating characteristics of each audio class are

summarsed inTable7.1.

Table 7. 1: Main Differentiating characteristics of the amplitude spectrums

Audio Category Major Differentiating Characteristics

-Low amplitudes in frequency band-{(000 Hz)
Valve -Moderate amplitudes in frequency band,(®0-6,000 Hz)
-High amplitudes in frequency band @60-7,800 Hz)

-Moderate amplitudes in frequency band-{{000 Hz)
Cylinder -Low amplitudes in frequency band,@R0-6,000 Hz)
-Moderate amplitudes in frequency band,060-7,800 Hz)

-Moderate amplitudes in frequency band-(Q000 Hz)

Valve+Cylinder -Moderate amplitudes in frequency band,(®0-6,000 Hz)
-High amplitudes in frequency band @60-7,800 Hz)
No Tool -Low amplitudes across the whole spectrum
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Figure?. 7: Amplitude spectrum cylinder extension
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Figure7. 10: Amplitude spectrum for the case with no tools active

Pagel54of 252



Chapter7

The valve frequency spectrum had low amplitudes in the frequency baiigO{HZ],
moderate amplitudes in the band [2,08)000Hz] and high amplitudes in thand [6,000
7,800Hz]. The cylinder spectrum had moderate amplitudes in the frequency bands [0
1,000Hz] and [6,00@,800Hz], but low amplitudes in the band [2,60@00Hz]. When the
valve and cylinder operated at the same time, moderate amplitudes wererwadan the
frequency bands [@,000Hz] and [2,008,000Hz], while high amplitudes were seen in the
frequency band [6,000,800Hz]. When no tools operated, the amplitudes were low across

the whole spectrum.

The amplitude spectrum satisfied the variabilsoperties of efficient features; however,
their dimension was relatively large. For an audio sampling rate 4D@#z, and an audio
frame size of 1 seconds, each frame corgdi®4,100 samples and applying the DFT
resultedin amplitudes at 44.00 different frequency bins. If all the frequencies higher than
the Nyquist frequencies were ignored, amplitudes at0B® different frequency bins
remaired. A feature with such a high dimensiamas computationally expensive and

therefore reducing the number of feates was necessary.

The first step in reducing the number of features was to disregard amplitudes at
frequencies higher than 1000Hz. The amplitude spectrums fgures7.7, 7.8, 7.9 and

7.10 showed that frequencies higher than J000Hz did not contain any valuable
information that could differentiate between the different categories of audio signals
considered, and therefore eliminating those frequencies as features would reduce feature
dimension considerably without having any significant impact on anticipated classifier

accuracy.

The second step in reducing the number of features was to divide the frequency spectrum
into subbands and compute a cumulative amplitude for each -bahd. Sincethe
discriminative information for each audio category was concentratedistantfrequency
bands grouping the frequencies into stiands would reduce the number of features,
while allowing the differentiation between the different categories. Each-lsarid W
would have a cumulative amplitude Cdalculated by summing the amplitudes of the
individual frequencies;@ontained within the sutband. The™ cumulative amplitude GA

at thei frequency sukband SBwvas calculated with Equation?.
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66 B & £ phcé88.

Equation7.7

Each frequency suband contained\ frequency bins. The total number of silands was
obtained by dividing the number of frequencies considered, by the number of frequency
bins contained in a frequency sdttand. For example, if 10000 frequenglues from the
spectrum were considereé@nd tre number of frequency bins per sdtand was set to 100,

atotal of 100sub-bandswas obtained

Figuresr.11,7.12,7.13 and7.14 show the cumulative amplitude of 100 frequency bands
for each of the audio categories. Theerall shape of the frequency sgaam in Figures
7.11,7.12,7.13 and7.14with 100 fequency bands wasimilar to theoverall shapef the
amplitude spectrum with 2250 frequency bins, shown Figures?.7,7.7, 7.9 and7.10.
This suggested that the feature reductioapproach reduceé the number of features

without significantly impacting the effectiveness of the features.
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Figure7. 11: Cumulative amplitude spectrufior audio signal corresponding to valve
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Figure7. 12: Cumulative amplitude spectrufior audio signal corresponding to cylinder
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Figure7. 14: Cumulative amplitude spectruffior audio signal corresponding to no tools being
active

7.4. Audio Signal Classification

The previousctions presented the approach adopted for audio file processing, feature
extraction and dimension reduction. Thi&ction discusss developing a classifier that
takes the features as inputs and outputs a class label indicating wdotlyenerated the
sownd. The classifier was based on supervised machine learning. Other machine learning
methods, such as unsupervised learning and saupiervised learning were possible,
however, for the analysis of sound events, supervised learning metiveds the most

frequently usedVirtanen et al., 2018)

Supervised machine learning methodsre generally categosed into two main groups:
generative and discriminativé&enerative methods determirgewhich clases most likely
generated a given input. Generative learning methods inaiu@aussian mixture models,
hidden Markov models and naive Bayes classifiiternatively,discriminative methods
modeled the boundaries between the different classes asiablisheda direct mapping
between inputsfeatures and target outputs. Some of thestablished discriminative
methods includd neural networks, decision trees and support vector machines. For
applications involving sound classification, discriminative learning methods have been

preferred over generative method¥irtanen et al., 2018)
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In thisreseard), a neural network algorithm was selected for the classification. Data for
neural network training and validation was collected using the experimentaliset
described inSection 2.1. Each training sample was a eserondlong audio signal
processed as deribed inSection 3. The nextSection will present the neural network

architectureandtrainingphase.

7.4.1. Neural Networks

Neural networks are a class of supervised machine learning algorithms. In supervised
learning, the user providkinput datawith their correct class label so that the algorithm
learned a mapping modelOnce trained, hen the algorithmwas presented with new

unseen inputsandthe most likdy classwas determined

The algorithm considered in thresearch used feature vector coniningthe cumulative
amplitude evaluated at 100 frequencub-band. The outputswere a class label that
corresponadto one of four possible events: 1) valve, 2) cylinder, 3) both valve and cylinder

and 4) no tool.

A specific class of neural networks thead proven to be of great practical valweas the
multi-layer perceptron(Bishop, 2006)The structure of a neural network contathan
input laye, an output layer and at least one hidden layer. The first layes known as the
input layer, and its main rolevas to transfer the inputs to the next layer, known as the
hidden layer. A neural networkould have more than one hidden layer, however itsha
been shown that a neural network with a single hidden layes usually enouglPolikar,
2006) Finally, the output layawas where the final computationsere performed before

assigning a class to the input.

Each of the mentioned layers contaihseveralnodes. The number of nodes in thepirt
layerwere equal to the number of elements in the features vector, whickthis research

was 100 features, and therefore 100 input nodes. The number of nodes in the output layer
wasequal to the number of possible classes, whickhia research waur outputs The
number of nodes in the hidden laygrasa free parameter of the algorithm, and in this
researcha hidden layer with 25 nodes was selected. Each node in a specifioviayéully

connected to each node in the next layer through weighting parameters.
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7.4.2. Neural Network Training

The learningvas achieved through a computational algorithm that alémithe model to

learn the relationship between the input feature vectors and the corresponding class
labelVirtanen et al., 2018)Thiswas achieved by an iterative computational process that
adjusted the weight parameters so that a cost functisras minimsed. The error, whit

was obtained using a cost function, is an indication of how accurate the neural network
was in predicting the label of the inputs. In this study, the logistic regression cost function

given byEquation7.8 was used to compute the err@Polikar, 2006)

- HAaEQQ  p ©aé® Q0
Equation7. 8
Where
N Number of training examples
K Number of possible classes
YK Output of example i for class k (0 or 1)

The cost function was minisgd by adjusting the weight parameters using a gradient
descent algorithm. This process was completed over three main steps: first step, known as
forward propagation, computed the cost function with the current values of the weight
parameters. The secondegi, backpropagation, computed the gradient of the cost function
with respect to each weight. In the third step, the weights were updated using the gradient
calculated in step 2. The abotleee steps were repeated until the cost function converged

to a minmum, or until the algorithm completed a predetermined number of iteratiortse

neural network algorithm was implemented with MATLAB.

7.5. Results

Acoustic data samples corresponding to the different tools in the experimentalseere
generated. The data was contained 1,758 samples, of which 1,066 (61%) were no tool, 610
(35%) were valve, 41 (2 %) were cylinder and 41 (2 %) were both a cylirdiealas.
Because the duration of a cylinder operation was considerably shorter than a valve, it was

normal that the percentage of data corresponding to a cylinder was lower than that
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corresponding to a cylinder. Moreover, a large number of samples comelsaioto no tool
since the data contained instances where no tools were activated. This data was used to

evaluate the performance of the classifier.

The collected samples were collected, processed and classified using the methods
described in Sectiong.3 and 7.4. The classification results are presented as a confusion
matrix, shown in Figuré.15. Rows correspond to thelass the proposed classifier assigned

the data sample towhile columns correspond to thteue class of the data sample

The results indimted that the classifier performed wellyith the accuracy for all classes
being 100% except for the valve which was 99%. The high accuracy irdlitatethe
classifier differentiated the differentlasses wh the used featuresAnother factor that
contributed to the high accuracy was the fact ththere wereno noises when data was
collected and therefore the audio signalseing classified were almost identical to the

signals used for classifier training.

True Class
. Valve+
Valve Cylinder Cylinder No Tool

0 Valve 608 0 0 0
ki
© Cylinder 0 41 0 0
3
o Valve+
B Cylinder 2 0 e 0
o

No Tool 0 0 0 1066

Accuracy 99 100 100 100

(%)

Figure?. 15: Confusion matrix

The impact of random sounds that could be generated in the vicinity of pneumatic tools
was analysed. Acoustic data generated from three knocks on a table and from a casual
conversation were recorded. The waveforms obtained from each sound are shown in

Figue 7.16.
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Figure7. 16: Waveform for sounds corresponding to knocking on a table and a casual conversation.

The knocking and conversation sounds were processed and classified with the proposed
algorithm. Results indicated th#tte proposed algorithm confused random noises with the
activation of tools. The frames coinciding with knocks were classified as cylinder. Moreover,
several of the frames in the conversation waveform were classified as a cylinder. These
sounds were class#d as cylinder because their DFT was more like that of a cylinder than
that of a valve or no tool. If other noises with a DFT like that of a valve were considered,

the algorithm would classify the noises as a valve.

7.6.Discussions and Conclusion

ThisChaptempresented a audioanalysis system fanonitoring the demand side of a CAS.
The system detected the operation of a pneumatic tivom the sound generated during
their operation. Thegroposed system included equipment and methodsdfata collection,

signal processing, feature extraction and finally classification.

A simple pneumatic network with a valve and cylinder was tsatmulate tool operation
Tools were operated andudio samples wereecorded with a microphone and a raspberry

Pi. Recorded audiincluded four different operationsralve discharging compressed air,
extension or retraction of the cylinder, valve discharging air and the cylinder extending or
retractingat the same timeandfinally, no took activated. The audio was processed using

a shortterm processing approach where the audio signal was divided into smaller frames
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that were windowed and then processed using the DFT. Features based on the cumulative

amplitudes within frequency subands were generated

A neural network classifiewascreated and trainedThe input to the neural network was

a feature vector containing the cumulative amplitudes at different frequencylmrils.

The output was a category indicating which tool activity generated the sodimgsresults
indicated that he suggestedystem wasffective in identifying operating tools based on
audio recordings. Thclassifier showed high accuracy against the four possible operations

considered.

The high accuracy of the classifier was because the considered classes wigre eas
separable, and because the data collection process minimised the impact of external noise

from pneumatic tools environment.

One of the advantages of the suggested system was its simplicity. The hardware and
softwareusedwere relativelyinexpensive easy to install and operate. Another advantage
was thea & & ( 8oWitQ o identify overlapping events, such as the case of cylinder
activation while valve was activ€he waveform shown in Figure5 demonstrated that it

was difficult to differentiate betwen the case where only the valve was active, and the
case where the valve and a cylinder operated at the same time. Using the suggested feature
extraction approach, the system could differentiate between the two cases with an

accuracy of 99%.

However, theclassifier was based on supervised machine learning and therefore the
complexity of classifier training depended on the number of tools the pneumatic network
had. In dargerindustrial setup, the number of toolsvould besignificantly larger than the
number consideredby this researchimplementing an audio monitoring system similar to
the one proposed by this research in an industrial setting would require large efforts to
collect, label and train a supervised classifier. A workaround for this limitatcarid be
either an unsupervised classification approach, or to automate the process of data

collection, labelling and training.

The proposedsystemwasnot capable of differentiating betweesimilartools, for example

between twosimilarvalves or twasimilar cylinders.Similartools placed at close distances
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would generatesimilarsounds, and therefore the system might not be able to differentiate

between them without considering other variables.

Results showed that the proposed system performed poorly when other sounds were
generated.Soundssuch aknocking on a tabler casual onversation were misclassified as
cylinder operatios. The impact of external noise generated by nearby activities, personnel
or the outside environment was minisa&d, but that might not be possible inleindustrial

settings assounds from nearby manufaating activities or operators might be inevitable.

This does not mean the proposed system would not be useful in industrial settings. Sounds
that form part of an industrial process, such as tool operation, are generally repeatable.
Classes would be definem the neural network for them. Other sounds woule
occasional orandom,but they might lead to misclassification. They would not occur often
and could just be disregarded. If a misclassificgpiersistedthen it could be an indication

that somethingabnormal was happening around the monitored tools.

The audio analysis system could be combined with the tool schedule and with other
monitoring systems to reduce errors. In the next Chapter, the acoustic monitoring system
is combined withthe tool schedw and with demand and supply pressure monitoring to

create a new Condition Monitoring & Fault Diagnosis System for CAS.
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Chapter8: Condition Monitoring and Fault

Diagnosis System

This Chapter describes feamework for condition monitoring and fault diagnosis in a
compressed air system (CAS). praposedframeworkcombined the control schedule, the
supply side pressure monitoring presented in Chapierthe demand side pressure
monitoring presented in Chapted and the acoustic monitoring presented in Chapter
Knowledge management mda sense of the outputs from the pressuand acoustic
monitoring systems to determine the condition of a CAS, and to diagnose faults in case an

abnormal operating condition was determined.

The details of the proposddameworkand the knowledge management unit are discussed.
Five experiments ere performed to analyse performance under normal operating
conditions and when faults appeared in the system. The results demonstrate how the
proposedframeworkcould detect and diagnose faults in a CAS. The use of Dynamic Time

Warping (DTW) distance asaol health indicator is also discussed.

This Chapter is divided as follows: Sect®h presents the proposeframework and
discusses its architecture, main components, and the knowledge management. S=2tion
discusses five experiments that demonstraite operation of the new proposed system
when different events occur. Secti@?3 discusses how the DTW distance could improve
the performance of the new system. Finally, Sect®h presents discussion and main

conclusions.

8.1.Proposed System

The new systendescribed in this Chapter combined information from multiple data
sources to achieve conclusions that could not be achieved by a single source. Researcher
have shown thasystemswith a single data source had a limited classification or prediction
capady, whichwasnot enough in certain applicatior(®iu, 2017) The fusion of multiple

data sources haé been successfully used in solving complex pattern recognition and

prediction taskgMessina, 2020; Niu, 2017; Xanthoula et al., 20R0)he next subsections,
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the architecture & the proposed system and the methods used tetermining CAS

conditions are discussed.

8.1.1. System Architecture

Three common métods for data fusiorhad been reported in the literaturedata level
fusion, feature level fusion andecision level fusioiLiggins et al., 2009; Niu, 2017he
major difference between those three methods was the level at which data was combined.

The threemethods are listed and explained.

1 Data level fusion: In this method raw sensor data from all measured quantities were
combined directly, and a new feature was obtained from the fused data. The sensors
used in this method measured similar physical phenoaemd the use of this method
was not optimal in environments where different physical phenomena were
considered.

1 Feature level fusion: In this method raw data from each sensor was extracted and
processed to generate features. Features were then combinddrn a single feature
vector, which was then used in a suitable classification or pattern recognition algorithm.

1 Decision level fusion: In this method feature extraction and classification were applied
independently for each sensor. Then, thetcomefrom each sensor were combined

into one vector, which was used to mastetermine the system conditian

The research reported in this Dissertation considered different physical phenomena, such
as acoustics and pressure. In such cases, data level fusion waginudl. Systems created
throughout this research performed data collection, feature extraction and classification
on each physical phenomenon independently, amdoatcomewas obtained from each
physicalphenomenon Because of that, a decision level fusion method was more suitable

than afeature level fusion.

Figure8.1 shows the architecture of the condition monitoring and fault diagnosis system.
The system was made up of four main units: data collection, data psoug Knowledge
management and a user interface. Each data source and its corresponding feature
extraction and classification unit formed a ssystem. The system had four sapstems

that considered the control schedule, acoustic data, supply pressurel@mand pressure.
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The output of each subystem was information about the CAS, which was then fed into a
knowledge management unit. Knowledge management made sense of the information to
determine the CAS condition and diagnose faults in case they wereneSystem
condition identifiedby the knowledge management umitould then be communicatedo

the user.

Data Collection Data Processing |Knowledge Management User Interface

sub-system 1

Data Analysis and

Classification

Control Schedule Output 1

sub-system 2

Human Machine Interface

Data Analysis and

Classification

Acoustic Data

! Output 2

sub-system 3 -System condition

-Fault Di i
Data Analysis and ault Diagnosis

Classification

Output 3

Supply Pressure

sub-system 4

Data Analysis and

: Output 4
Classification i

Demand Pressure

Figure8. 1: Architecture of the condition monitoring and fault diagnosis system

8.1.2. Subsystems Considered

The system had four different subystems for data collection, features extraction and

classification.

Subsystem one collected data from a control schedule and determined which tools should
be operating and at what timedhe control schedule was defined inmécrocontroller. A

ProgrammableLogicController (PLC) might be used in an industrial unit. The schedule was
converted into a format to be used directly by the knowledge management unit. The output

from subsystem one was which tools operated and at wtiatte.

Subsystem two was the audio analysis system presented in Chapter 8. Tlsy/Shgin
collected acoustic data via a microphone and identified if and which tools operated based
on the sounds generated. The audio waveforms collected were processed wsitbra

term discrete Fourier transform. A neural network classified the different waveforms into

the tools that generated them.
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Subsystem three was the supply side pressure monitoring system presented in Chapter 6.
The subsystem collected the pressure tte supply side of the CAS and determined which
tools operated based on patterns in the supply pressure signal. The data used by this sub
system was collected with a pressure sensor connected to the supply side of the CAS. A
discrete wavelet transform wassed to decompose the pressure signal at different scales.

A Knearest neighbour classifier determined which tools the seen patterns belonged to.

Subsystem four was the demand side pressure monitoring system presented in Chapter 7.
The subsystem colleatd the pressure at the demand side of the CAS and determined
which tools operated based on patterns in the demand pressure signal. The data used was
collected with a pressure sensor connected to the demand side of the CAS. The pressure
signal was segmentdd isolate the different patterns appearing in the pressure signal. The
isolated patterns were then classified using the rhbesed classifier presented in Chapter

6.

For simplicity, only three possible outputs from each-sybtem were considered: No tbo
operation, valve operation and cylinder operatioBnce theoutcome from eachsub
systemwas obtained, knowledgmanagementdetermined CAS conditiomnd diagnosed

faults.

8.1.3. Knowledge Management

The outputs from the four subystems were fed into a knowledge management unit where
the system condition was determined, and faults were diagnosed. The knowledge
management unit consisted of a rdbased classifier that mapped the combination of
outputs from the subsystems into a system condition and diagnosis. A total of 81 rules
were defined. The set of rules were creatdthsed ondomain knowledge. Tabl&.1
summarises the 81 rule$he system condition was either faulty or not faulty. The diagnosis
was the most likely cause of the fault. When the system was not faulty, the diagnosis
identified if any of the sulsystems had a misclassification. Once the system condition and
diagnosis were determined, the output was communicated through a simple usefaoe.

The next Section presents and discusses experiments that demonstrate some of the rules.
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Table8. 1: Summary of all possible stdystem outcomeshowingcorrespondingystemconditionand diagnosis

sub-system Output Condition & Diagnosis Output Condition & Diagnosis Output | Condition & Diagnosis Output | Condition & Diagnosis Output | Condition & Diagnosis Output | Condition & Diagnosis Output | Condition & Diagnosis
Acousies | No Tool NoFeuls Cyinder Faul No Tool No Faul Ve, Faul Cvinder Faul Ve NoFaul Cyinder Fault
DSeL:Egerd Eg 122: No toolsactive C\;ﬁ:]\;eer Leak in supply side C\);gllw\;jeer Classification Error ﬁi’)”_?gglr Faulty cylinder g;)“;gzlr Faulty Valve C\;?:]\::ieer Classification error Ez 123: Error with control
Acousics | Mo Tool NoFeults Cyinder Faul No Tool Faul Ve, No Faul Coinder No Faul No'Toal No Faul e, Faul
Dselﬁgg 3 2‘;;33 classification error \\;::zg Leak in demand side N\(/)a‘:'\i)eol Faulty Cylinder gz:::gz: Classificatin error N\?a.:-:em Classification error gz:::gz: Classification error N\(/)a'll'voeol Faulty cylinder
Acousics | No Tool Faut e, No Feut No Toa No Feul Ve Faut Cyinder Faut Cpinder Feut vane NoFauit
DSeL:Eglr? q N\(/)a-:—\:)e()l Leak in demand side Eg 123: Classification error C\;?L\;Zr Classification Error C\ig:;ieer Faulty cylinder (’ii”.?gzlr Faulty Valve N\ga':'\:)eol Leak in supply side N\ga#voem Classification error
e I O L L e TR IN T
Dsel:gglgd ﬁ)(/)”_rl]_g;r classification error 2‘;;32'{ Leak in demand side \\;2:32 Faulty Cylinder N\ga"ll'\gil Faulty cylinder gi::’:ﬁ:r Faulty Valve (’;‘;;ZZ: Faulty cylinder x::\\i Classification error
Acousics | No Tool Faul Nae. Faul Crinder Fault Vane. Feul Cyinder Feul Soinder Fault No Too No Feul
DSeL:Eglr? q gz:::g:: Leak in demand side N\(/)a-:—fem Leak in demand side mg Igg: Error with control C\;?L\;Zr Faultycylinder C\);g::jeer Faulty Valve C\);g::jeer Leak in Demand side E‘g?gi{ Classification error
Acousis | NoTool Faul Nae. Faul Cyinder No Faul Vane. Faul Cyinder Faul No Tool Fault vaie Fault
Dseurgglg q C\);Li‘?\:‘:r Leak in demand side (’\:‘)é”_?g;r Leak in supply side 2‘;;82: Classification Error xz::g Faulty cylinder N\ga'll'\i)eol Faulty Valve N\ga'll'\i)eol Faulty Valve gz:::gz: Faulty Valve
Acousics | No Tool Faul e, Faul Crinder Faul NoToo Faul Cyinder Faul NoToo Faul vaie NoFaul
Dseurgglr{ g N\n/)a‘ll'\i)eol Leak in supply side gi:::g:: Leak in demand side N\?aneOI Faulty Cylinder mg igg: Faultycylinder C\;ﬁ%eer Faulty Valve C\;ﬁ%eer Faulty Valve C\);!?Vd:r Classification error
e R O T O O T
DSeL:Eglg ] C\;?L\;Zr Leak in supply side C\);!T\fj:r Leak in demand side ﬁ{)”?_gzlr Classification Error 2‘;’”}:32: Faulty Valve x::zz Classification error g;i;szlr Classification error x::\\;: Faulty cylinder
= A A e I T T T
Dseurgglr{ g x::;i Leak in Demand side N\c/)a‘lr\;eol Leak in supply side gz:::g:; Cylinder Activation N\?aneOI Classification eor mg Igg: Error with control N\?a‘:-\?:l Faulty Cylinder mg igg: Error with control
Acousics | Cyinder No Faul e, Faul Cyindr No Faul NoToo Faul Vate Faul Svinder No Feult Cyinder Foult
DSeL:Eglg q Eg Igg: Classification Error C\;ﬁ:;zr Leak in Demand side C\);gr:\:!eer Classification error ﬁ{)”?_gzlr Faulty Valve g;i;szlr Faulty Valve E{mz[ Classification Error gz:::gz: Error with control
Acousics | Cyinder No Feui Nae. Foul Crinder Foul No Too Foul Vawe NoFaui Vawe Foult NoToo NoFaul
Dsel:gglr{ ] g;iIZZIr Classification Error x::zi Leak in Demand side N\ga‘lr\;eol Faulty cylinder gi:::g:; Faulty Valve N\?a}-:ed’ Classification error Eﬁ”?g;r Faulty Valve C\);!Tvd:r Classification error
Acousics | Cytnder Faul No Tool Faul Crinder No Faul Vaie No Faul
Dseurgg:wy q N\?a-:—:ed Leak in Demand side Eg Igg: Error with Control C\;ﬁl:g; Classification error x::zi Valve Operation
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8.2. Experimental Evaluation

Five experiments wereonducted toevaluate the performance of the CAS condition

monitoring and fault diagnosis system.
U Experiment one simulated CAS operation when no faults were present.

U Experiment two simulated a sudden leak in themandside of the CAS. The leak was

simulated by manually activating the sliding valve shown in Fig2re

U Experiment three simulated a sudden leak in gplyside of the CAS. The sliding
valve was alsosed to simulate the leak. Experiment three was similar to experiment
two, except that in experiment three, the sliding valve was connected downstream of
the pressure regulator (supply side), whereas in experiment two it was connected

upstream (demand side)

U Experiment four simulated CAS operation when there was a fault in the control of the

pneumatic tools.
U Experiment five simulated the presence of noises not related to CAS operation.

The data collected and the outcome from the different smystems forthe five

experiments are discussed in the following séztions

e
B =

Figure8. 2: diding Valve used to simulate the occurrence of a lesgale leak
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8.2.1. Experiment One No Faults Present

In experimentonethe knowledge management system was testdaen CAS did not have
faults. A double acting cylinder and a valve wartivated Figure8.3 containsfour plots

showingdata collected from the controllegudio analysissupply,and demandoressures.
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Figure8. 3: Data collected ifexperimentOne A Controller; B. Microphone C. Qupply side
pressure and D Demandside pressure

Graph A in Figur8.3 shows thecontrol commands sent by the controller. A value'#f
indicated an activation command and a value ‘@Rindicated that no command for
activationwassent. The cylinder was extended at tinfdlb seconds, while the valve was
switched on at timefi25 seconds andhen switched off at timef30 secondsNo other

tools were operated.

The effect of operating the pneumatic tools was seen in the acoustic and pressure
measurements. Graph B shows the acoustic waveform collected during this experiment.
The amplitude of theacoustic waveform changezignificantlywhen the pneumatic tools

were active. Graphs C anddbow the supply and demand side pressures respectively.
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When the cylinder and valve were activated, the patterns corresponding to each tool

appeared in the signal.

Table8.2 shows theoutputs from the subsystems during the instances when no tools were
activated. The audio, supply pressure and demand pressursystbms did not detect the
FOQOGAGAGE 2F Lye (G223 | yR (KSA NDtBednidoeyS ¢
of the control command and therefore it was concluded that the CAS had no faults and that

there were no tools active.

Table8. 2: Output from subsystems in Experimef@neduring instances of no tool activation

Subsystem Output Condition & Diagnosis
o Control command No Tool
5 No Faults
% Acoustics No Tool
£ Supply No Tool
g No Tool Active
o0 Demand No Tool

Tables8.3 and 8.4 show theoutputs from the different suksystems during the instances
when thevalve and the cylinder were activated, respectivd@lye control commands and
the outputsfrom the audio, supply and demand sslstemswere consistent. When the
controller requested adol to operate, its operation wasorrectlydetectedby all the sub

systems These results indicated that there were no faults in the system.

Table8. 3: Output from subsystems in Experimef@neduring instances of valve activam

Subsystem Output Condition & Diagnosis
) Control command Valve
5 No Faults
= Acoustics Valve
(O]
£ Supply Valve
Q Valve Activated
5 Demand Valve
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Table8. 4: Output from subsystems in Experime@neduring instances of cylinder activation

Subsystem Output Condition & Diagnosis
Q Control command Cylinder
O No Faults
g Acoustics Cylinder
E Supply Cylinder
8 Cylinder Activated
0 Demand Cylinder

The cases shown in Tabigg, 8.3 and 8.4 are examples of rules thatere defined in the
knowledge managemeninit to map the combination of outcomes twn-faulty operating

conditions.

8.2.2. Experiment Two: Leak in Demand Side

Experimenttwo consideredhe casewherea leakoccurredin the demand side dhe CAS
Theoccurrence of deak was simulated by manually opening the sliding valve at #ig&t
seconds The sliding valve was connected to a pipe located downstream of the pressure
regulator.Figure8.4 shows plotscorrespondng to the data collected from the controller,

supply pressure, audio analysis and demand pressure.

Graph A in Figur8.4 shows the commands sent by the contro]lerhich was a constant
zero, indicating that no commands for the activation of tools was geraph B shows the
acoustic waveformamplitude. The waveform amplitude started to vary considerably at
time tF8.5 seconds, which was when the sliding valve washed.Graphs C and D show
the supply and demand side pressures respectivBbth pressures had a step decrease

after the sliding valve was opened.

The data collected after the sliding valve opening was analysed with the condition
monitoring and fault diagosis system. Results are summarised in Tabler@& controller

RAR y20 NBIljdzSaid GKS [OGAGlIGAZ2Y 2F lye (2:
dzZRA2 |ylfeara e¢ta WOt @gSQ YSHyAy3a Al R
output from the supply and demand pressure siite 4 4 SYa 6SNB WGl f @S¢
operating the sliding valve generated sounds and created a step decrease in the pressure

like those obtained when a solenoid valve was activated.
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Figure8. 4: Data collected ifexperimentTwo:A. Controller; B. Microphone C Supply side
pressure and D Demandside pressure

Table8. 5: Output from subsystems in Experimeffiwoatfter the sliding valve was opened

Subsystem Output Condition & Diagnosis
g Control command No Tool
[ . Fault
% Acoustics Valve
£ Supply Valve
S Leak in Demand Side
o Demand Valve

SOl dzaS (GKS 2dziLizi FNRY GKS O2yiNRf AyYRAC
systems detected the operation of a valve, it was logical to conclude that air was being
discharged from the CAS. Since the valve operation was detected in bothppl @nd
demand pressure, it was concluded that air was being discharged from somewhere in the

demand side and hence the fault was diagnosed as a leak in the demand side.
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8.2.3. Experiment Three: Leak in Supply Side

Experimentthree consideredhe caseof aleak in thesupplyside.The leak was simulated
by manually openingsliding valve at timefil1.5secondsThe sliding valve was connected
to a pipe upstream of the pressure regulatbrgure8.5 shows plotorrespondngto data

collectedfrom the controller, supply pressure, audio analysis and demand pressure.
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Figure8. 5: Data collected ifexperimentThree A Controller; B. Microphone C Supply side
pressure and D Demandside pressure

GraphA in Figure3.5 shows the commands sent by the controllehich were always zero,
indicating that no commands for the activation of tools had been s8raph B shows the
acoustic waveformwhich demonstrated a variation in amplitude after the sliding valve was
opened.Graphs C and D show the supply and demand side pressures respedthely.
supply pressure had a step decrease once the sliding valve was opened. On the other hand
the demard pressure did not show any significant change. At the instant the sliding valve

was opened, the demand pressure increased 0.03 Bar, wasttonsidered negligible.

Data collected after the sliding valve opening was analysed with the condition monitoring

and fault diagnosis systen@utputs from the subsystens are shown inTable 8.6. The
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controller did not request the activation of any tool; however, the supply side and acoustic
monitoring subsystems detected the operation of a valve. The demand side toramgy

sub-system did not detect the operation of any tools.

Table8. 6: Output from subsystems irExperimentThreeafter the sliding valve was opened

Subsystem Output Condition & Diagnosis
@ Controlcommand No Tool
< Fault
2 Acoustics Valve
[}
£ Supply Valve _ _
L Leak in Supply Side
4 Demand No Tool

This combination of outputs suggested the presence of a fault in the system, as the outputs
from the different subsystems were not consistent. Because firessure in the supply

side decreased, while the pressure in the demand side did not change, it was concluded
that air was being discharged from the supply side of the CAS. Since the controller did not

command the operation of any tool, a sensible diagaegs a leak in the supply side.

8.2.4. Experiment Four: Controller Error

Experimentfour consideredhe casevhere a malfunction in the control of pneumatic tools
occurred. The electric wires connecting the directional valve of the double acting cylinder
to a relay were disconnected. The relay was connected to a microcontroller (Raspberry Pi)
to execute control ommands.Figure8.6 shows plotcorrespondngto the data collected

from the controller, supply pressure, audio analysis and demand pressure.

Graph A in Figur8.6 shows thecontrol commands sent by the controlleAt time #15
seconds, a control commandrfthe activationof the cylinder was senGraplsB, C and D
show the acoustic waveform amplitudéhe supply side pressure, and the demand side
pressure, respectivelyGrapls B, C and D did not show any of the patterns or shapes

consistent with the actiation of a cylinder.
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Figure8. 6: Data collected ifexperimentFour. A Gontroller; B. Microphone C Supply side
pressure and D Demand Side Pressure

The outputsobtained from the four sub-systens after the command forthe cylinder

activation was sentra shown inTable8.7.

Table8. 7: Output from subsystems irExperimentFourafter the command for cylinder
activation was sent

Subsystem Output Condition & Diagnosis
5 Control command Cylinder
L Fault
Y Acoustics No Tool
(O]
£ Supply No Tool
g Error with control
o Demand No Tool

Results indicated that the control commands requested the activation of the cylinder,
however the acoustics monitoring, supply side pressure and demand side pressdre sub

a2aidsSya RAR y2i RSGSOG lFye G22f 2LISatidnd A 2y

of outputs suggested that the cylinder activation command was not executed. This was
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either due to a fault with the cylinder itself or with the controller. Since the pressure and
acoustic monitoring did not detect any compressed air discharge otoahpperation, the
possibility of a fault with the cylinder was less likely. All these factors suggested that the
control command was executed with the system, and it was deduced that the most likely

diagnosis was an error with the controller.

8.2.5. Experiment Five: External Noises

Experiment five considered the case whesgernalnoisescaused by thetrikingof a piece
of metalwere generated close to the microphone of the audio analysis system. Riglire
shows plots corresponding to the data collected fridra controller, supply pressure, audio

analysis and demand pressure.

Graph A in Figur8.7 shows the control commands sent by the controller, which indicate

that no commands for tools operation was sent.

Figure8. 7: Data collected ifexperimentFive A Controller; B. Microphone C Supply side
pressure and D Demand Side Pressure
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