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Abstract 

New systems were created to assist in improving the energy efficiency of Compressed Air 

Systems (CAS) to fill gaps which were identified in the research. 

A new mathematical model was created that coupled supply and demand sides for the first 

time. The supply side produced, treated and stored compressed air, while the demand side 

delivered and consumed compressed air. Changes to pressure regulation and storage tank 

size were evaluated. Model Predictive Control (MPC) was compared to Proportional-

Integral (PI) control and MPC had a more stable and lower system pressure, and that would 

result in some energy savings. 

A discrete wavelet transform extracted information about shapes in the supply side 

pressure signal that were associated with events. High frequency events related to tools 

were isolated from low frequency events associated with tank charging and discharging. A 

nearest neighbour classifier was created to detect patterns generated by different tools. 

Patterns in a regulated line were also investigated and an algorithm for the automatic 

identification of tools was created. The algorithm segmented data into smaller sub-sections 

containing patterns of interest. Two methods for classifying patterns were investigated, a 

rule-based and a distance-based method.  

Pneumatic tools were also identified from their sounds. Audio was divided into four 

categories: valve activation, cylinder activation, valve and cylinder simultaneous activation, 

and no active tools. Cumulative amplitudes within frequency sub-bands were generated as 

features using a Discrete Fourier Transform. A neural network was created to identify tools 

using the features. 

A condition monitoring and fault diagnosis system was created that compared outcomes 

from the subsystems monitoring supply side pressure, demand side pressure, acoustics and 

the schedule of operations. That successfully demonstrated that faults in individual tools 

or system faults could be detected, identified and solutions suggested. 
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Introduction 

Page 1 of 252 
 

Chapter 1: Introduction  

The main objective of this research was to create new methods, tools and systems that 

could help save energy in Compressed Air Systems (CAS). The research described in this 

Dissertation investigated systems to monitor the operating condition of a CAS, and to 

automatically diagnose faults if abnormalities were detected. Such systems could improve 

the performance and energy efficiency of a CAS. 

Concerning changes in climate have been observed over the past few decades and that led 

to an increased interest in renewable energies and energy efficiency. The Engineering and 

Physical Sciences Research Council (EPSRC), Energy Research Partnership and Research 

Councils UK recognised that reducing energy in industry is less developed than other 

sectors, such as domestic and commercial building energy (Sanders et al., 2018). To achieve 

ǘƘŜ ¦YΩǎ ŀƳōƛǘƛƻǳǎ нлрл ŜƴŜǊƎȅ ǘŀǊƎŜǘΣ ¦Y LƴŘǳǎǘǊȅ ƴŜŜŘǎ ǘƻ ǊŜŘǳŎŜ ƛǘǎ ŜƴŜǊƎȅ ŎƻǎǘΣ ōƻǘƘ 

financial and environmental. 

CAS have been common in industrial facilities, but they have been known for being energy 

inefficient. They account for a large share of the overall energy consumption of several 

ƴŀǘƛƻƴǎΦ CƻǊ ŜȄŀƳǇƭŜΣ /!{ ŎƻƴǎǳƳŜŘ фΦп҈ ƻŦ /ƘƛƴŀΩǎ ŜƭŜŎǘǊƛŎƛǘȅ ŀƴŘ ŀŎŎƻǳƴǘŜŘ ŦƻǊ ƳƻǊŜ 

than 10% of the US total industrial energy use (Saidur et al., 2010). The objective of the 

research presented in this Dissertation was to create systems that monitor the 

performance of a CAS and reduce energy consumption. 

1.1. Compressed Air Systems 

A CAS is a combination of equipment that generates, treats, stores, and delivers 

compressed air. Compressed air is air kept at a pressure higher than atmospheric pressure. 

CAS have been common in industrial plants because air has some favourable characteristics 

such as: transportability, storability, safety, and ease of use (Benedetti et al., 2018; Nehler, 

2018a). Compressed air powers tools used in industrial processes such as cylinders, valves, 

and air motors. Some applications of compressed air in industry are provided in Hesse 

(2001) and Jagadeesha (2015). 
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The preparation of compressed air for use by industrial equipment usually involved several 

stages. Ambient air would be absorbed by an intake system and compressed in a 

compressor. The compressor was usually attached to a driver that in most cases was an 

electrical motor. Air at compressor discharge is hot and contains water vapour, which could 

damage equipment. After compression, air would be cooled in a heat exchanger. Water 

vapour in the compressed air is removed with an air dryer. After that, air could be stored 

in a storage tank. Finally, air would be distributed through a piping system to end-user 

equipment whenever there was a demand for compressed air. A pressure regulator 

upstream of the end-user equipment adjusts pressure of delivered air to match the 

requirements of end user tools. Figure 1.1 shows a schematic diagram of a typical CAS. 

Compressor

Motor

Air
Cooler

Tank Double Acting 
Actuator

Supply Side Demand Side

Single Acting 
Actuator

Air Blower

Pressure 
Regulator

Dryer

 

Figure 1. 1: Schematic Diagram of a typical CAS 

It has been common to divide a CAS into two main sides: the supply side shown in the left 

of Figure 1.1 and the demand side shown on the right of Figure 1.1. The supply side contains 

the equipment responsible for the production, treatment, and storage of compressed air. 

The demand side contains equipment that distributes and consumes compressed air. In the 

system shown in Figure 1.1, the supply side contains a motor driven compressor, an air 

cooler, a dryer, and a tank. The demand side contains three air consuming tools, a double 

acting cylinder, a single acting cylinder, and an air blower. 

CAS are expensive from an energy efficiency perspective. For example, 6kW of electrical 

energy were required to generate what is equivalent to 0.76kW output from an air motor, 

which translated to an energy efficiency of 12% (Jagadeesha, 2015). A thermodynamic 

analysis of the energy consumption in a CAS revealed that the typical efficiency of a system 
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was between 2-20% depending on the system configuration and efficiency of individual 

components (Shi et al., 2019). 

Energy accounts for 75% of the cost of running a CAS over a 10-year life cycle (Fridén et al., 

2012). Many of these systems could operate more efficiently, leading to energy savings and 

more reliable supply of compressed air. Improving energy performance of these systems 

has been of interest to many researchers, with some studies claiming that savings of 20-

50% may be achievable (Murphy & Kissock, 2015). Reducing energy costs of CAS is also of 

interest to the manufacturing sector. CAS have been major energy consumers in many 

manufacturing facilities (Moynihan & Barringer, 2017). The sector has been forced to 

optimise its systems due to fierce global competition (Niu, 2017). Increasing energy 

efficiency and operational profitability required maximising the benefits extracted from 

their assets while minimising downtime. This could be partially achieved by the 

implementation of performance monitoring systems. One of the biggest challenges for CAS 

users has been maintaining the energy efficiency of their systems. Monitoring and mining 

data collected from a CAS and its surrounding could generate information to improve CAS 

energy efficiency (Salvatori et al., 2018). 

1.2. Research Objectives & Methodology 

The main objectives of the research described in this Dissertation were to investigate how 

data ŎƻƭƭŜŎǘŜŘ ŦǊƻƳ ŀ /!{ ŎƻǳƭŘ ōŜ ǳǘƛƭƛǎŜŘ ǘƻ ŎǊŜŀǘŜ ŀǿŀǊŜƴŜǎǎ ŀōƻǳǘ ŀ ǎȅǎǘŜƳΩǎ ƻǇŜǊŀǘƛƴƎ 

conditions, and to automatically diagnose faults if abnormalities were detected. This could 

help create systems and tools that reduce energy consumption and monitor performance 

of CAS.  

Traditional systems for monitoring the performance of CAS had been based on observing 

changes in predefined performance indicators and comparing them to their values during 

a baseline period (Canadian Standards Association, 2016). Performance indicators are 

quantitative values that measure system performance. A baseline period is a period of time 

during which reference values for the performance indicators were defined. Significant 

deviation in the measured values of performance indicators from the values defined in the 

baseline period usually indicated a deterioration in CAS performance. 



Introduction 

Page 4 of 252 
 

Although these methods of monitoring could be effective in detecting CAS performance 

deterioration, identifying the cause of this deterioration required further research 

(Santolamazza et al., 2018). The research presented in this Dissertation investigated 

determining the condition of a CAS and diagnosing faults using data collected from a system 

and its surroundings. The purpose of that was not to replace traditional CAS monitoring 

systems, but rather to create new tools and methods that could enhance the fault diagnosis 

abilities of these monitoring systems. 

Initially the research in this Dissertation started by investigating the different variables 

influencing compressed air throughout its production, treatment, storage, and 

consumption stages. In response to research gaps identified in the literature review, this 

developed into creating new physics-based mathematical models for the different 

components in a CAS. Chapters 3 and 4 of this Dissertation present new research on 

modelling and simulating CAS. Models for heat recovery from a Heating, Ventilation and 

Air Conditioning (HVAC) systems into a CAS were also modelled and are included in 

Appendix D. 

The research then moved towards creating a new condition monitoring and fault diagnosis 

system for a CAS, which was the main focus of this Dissertation. The new systems combined 

the output from individual monitoring systems. Individual systems for monitoring supply 

pressure, demand pressure and acoustics in a CAS. A schematic diagram of the new system 

is shown in Figure 1.2. The outputs from the individual monitoring systems were combined, 

alongside commands from the CAS controller, and fed into a knowledge management unit. 

The knowledge management was a rule-based classifier that deduced the real-time 

condition of a CAS (faulty or not faulty). In case a fault was detected, the knowledge 

management would diagnose the cause of the fault. The supply pressure, demand pressure 

and acoustics monitoring systems are discussed in Chapters 5, 6 and 7 respectively. The 

knowledge management and the new condition monitoring and fault diagnosis system are 

presented in Chapter 8.  

This research considered a CAS with a load/unload compressor control. The methods for 

monitoring supply side pressure were designed for and tested on a CAS with load/unload 

compressor control. Moreover, the new condition monitoring and fault diagnosis system 
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required input from the controller regarding the operating sequence of pneumatic tools, 

and therefore this method for monitoring would be applicable when the operating 

sequence is accessible beforehand.  

 

Figure 1. 2: New system for condition monitoring and fault diagnosis of a CAS 

1.3. Experimental Set-up 

An experimental set-up for data collection and for testing the new systems and methods 

was built and operated in the University of Portsmouth (UoP). This experimental set-up is 

referred to throughout this Dissertation. The set-up mimicked a CAS and was formed of an 

industrial compressor, cooler, dryer, storage tank and a pneumatic circuit. The compressor 

cooler, dryer, and storage tank were installed in the basement of Anglesea Building in UoP 

while the pneumatic circuit was installed in Lab 0.24 of the same building. Figure 1.3 shows 

a schematic representation of the experimental set-up. 
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Figure 1. 3: Schematic representation of the experimental set-up 

The compressor was an Ingersoll Rand compressor with a capacity of 2.2 m3/min and had 

a load/unload control. Air produced by the compressor was cooled and dried and then 

stored in a storage tank that was attached to the compressor. Figure 1.4 shows a 

photograph of the compressor and the storage tank. The tank was connected to a piping 

system that distributed compressed air across several buildings in the UoP. 

 

Figure 1. 4: Photograph of the compressor and storage tank 
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The pneumatic circuit used was connected to a supply point in the compressed air piping 

system. Figures 1.5 and 1.6 show a photograph of the pneumatic circuit and a photograph 

of the fitting connecting pneumatic circuit to compressed air supply, respectively. The 

pneumatic circuit contained plastic tubes to distribute compressed air, a pressure 

regulator, a solenoid valve, a single acting cylinder, and a double acting cylinder. The supply 

pressure, demand pressure and sounds produced by the operation of pneumatic tools were 

recorded.  The supply and demand pressure were recorded using two GEMS 3100 pressure 

sensor. To measure the supply pressure, the pressure sensor was connected to a point 

downstream the compressed air supply point, but upstream the pressure regulator. This 

sensor basically measured the pressure of air supplied by the compressor. To measure the 

demand pressure, the second pressure sensor was connected at a point downstream the 

pressure regulator. This sensor measured the pressure of compressed air delivered to the 

pneumatic tools. The sounds produced by the operation of pneumatic tools were measured 

with a standalone microphone placed next to the pneumatic tools. A Picolog data logger 

and a Raspberry Pi were used for data acquisition and control. 

 

Figure 1. 5: Photograph of the pneumatic circuit 
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Figure 1. 6: Photograph showing fitting connecting pneumatic circuit to compressed air supply  

1.4. Research Claims 

New and novel work presented in this Dissertation include the creation of: 

ü A new mathematical model that modelled equipment in the supply and demand sides 

of a CAS. The model estimated compressed air demand and the resulting energy 

consumption. The performance of a CAS configuration was evaluated using the new 

model (Chapter 3). 

ü A new algorithm for detecting and classifying patterns appearing in the supply side 

pressure of a CAS. The discrete wavelet transform was used for feature extraction and 

a nearest neighbour classifier was used to classify patterns (Chapter 5). 

ü A new algorithm that identified which tools were creating patterns that appeared in 

the demand side pressure signal. Two methods for classifying patterns in the demand 

side pressure were created, a rule-based approach and a distance-based approach 

(Chapter 6). 

ü A new audio analysis system that recognised different pneumatic tools based on the 

sounds they made (Chapter 7). 
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ü A new system for condition monitoring and fault diagnosis in a CAS was created that 

combined supply side pressure monitoring, demand side pressure monitoring and 

acoustic monitoring into one system that made identified CAS condition based on the 

combination of outputs from the different subsystems (Chapter 8). 

The following contributions to knowledge were made: 

ü Papers in CAS literature were categorized into four research areas: (1) Measures to 

improve CAS energy efficiency; (2) Modelling and simulation of CAS; (3) Monitoring, 

management and fault diagnosis in CAS; (4) Methods and equipment to determine air 

leaks in CAS.  

ü Research gaps were identified in each research area. 

ü Features relevant to transient events, such as the activation of tools, were extracted 

from decomposition levels corresponding to higher frequencies. Features associated 

with other events, such as a compressor switching on and off, were extracted from 

decomposition levels that corresponded to lower frequency components. 

ü A rule-based classifier for monitoring the demand side was shown to have a higher 

classification accuracy and to be more robust to small changes in regulated line 

pressure set-point than a distance-based classifier. The distance-based classifier was 

shown to be less accurate; however, it was simpler to create, and the distance measure 

could be used to quantify the health of a tool. 

ü A suitable segmentation was obtained by continuously updating the threshold pressure 

level because segmenting the demand side pressure signal based on changes from a 

predefined threshold pressure level was not adequate, as it caused several events to 

be included in a single segment. 

ü It was found that different shapes and patterns appearing in the demand side pressure 

signal were repeatable and their automatic recognition could be used in condition 

monitoring and fault detection. 

The following contributions were tested: 
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ü The new condition monitoring and fault diagnosis system was shown to effectively 

detect abnormal operating conditions and diagnose the likely cause of the fault. 

ü CAS performance with both a Model Predictive Control (MPC) and Proportional-Integral 

(PI) control was simulated. It was shown that MPC maintained CAS pressure at an 

optimal and stable level and introduced energy saving compared to PI control. 

1.5. List of Publications 

The following publications resulted from the research described in this Dissertation: 

ü Journal Papers: 

¶ Thabet, M, Sanders, D & Tewkesbury, G 2022, 'Mathematical model for a 

compressed air system that couples demand and supply', Journal of Mathematical 

Modelling and Numerical Optimisation, vol. 12, no. 1, pp. 1-

14. https://doi.org/10.1504/IJMMNO.2022.119780 

¶ Thabet, M , Sanders, D & Becerra, V 2021, 'Reducing risk and increasing reliability 

and safety of compressed air systems by detecting patterns in pressure 

signals', International Journal of Reliability, Risk & Safety, vol. 3, no. 2, pp. 81-

89. https://doi.org/10.30699/IJRRS.3.2.10 

ü Book Chapters: 

¶ Thabet, M, Sanders, D, Haddad, M, Bausch, N, Tewkesbury, G, Becerra, V, Barker, T 

& Piner, J 2020, Management of compressed air to reduce energy consumption 

using intelligent systems. in K Arai, S Kapoor & R Bhatia (eds), Intelligent Systems 

and Applications: Volume 3. Advances in Intelligent Systems and Computing, vol. 

1252, Springer, pp. 206-217, Intelligent Systems Conference, London, United 

Kingdom, 3/09/20. https://doi.org/10.1007/978-3-030-55190-2_16 

¶ Thabet, M, Sanders, D & Becerra, V 2021, Analytical model for compressed air 

system analysis. in I Mporas, P Kourtessis, A Al-Habaibeh, A Asthana, V Vukovic & J 

Senior (eds), Energy and Sustainable Futures: Proceedings of 2nd ICESF 

2020. Springer Proceedings in Energy, vol. 34, Springer, pp. 99-104, 2nd 
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International Conference on Energy and Sustainable 

Futures, 10/09/20. https://doi.org/10.1007/978-3-030-63916-7_13 

¶ Thabet, M, Sanders, D & Bausch, N 2021, Detection of patterns in pressure signal 

of compressed air system using wavelet transform. in I Mporas, P Kourtessis, A Al-

Habaibeh, A Asthana, V Vukovic & J Senior (eds), Energy and Sustainable Futures: 

Proceedings of 2nd ICESF 2020. Springer Proceedings in Energy, vol. 34, Springer, 

pp. 61-67, 2nd International Conference on Energy and Sustainable 

Futures, 10/09/20. https://doi.org/10.1007/978-3-030-63916-7_8 

ü Conference Papers: 

¶ Thabet, M, Sanders, D, Becerra, V, Tewkesbury, G, Haddad, M & Barker, T 

2020, Intelligent energy management of compressed air systems. in 2020 IEEE 

10th International Conference on Intelligent Systems (IS). IEEE IS Proceedings Series, 

IEEE, pp. 153-158, 2020 IEEE 10th International Conference on Intelligent Systems, 

Varna, Bulgaria, 28/08/20. https://doi.org/10.1109/IS48319.2020.9199977 

1.6. Overview of the Dissertation 

This Dissertation is divided as follows: 

Chapter Two presents outcomes from a review of the literature concerned with the 

performance and energy efficiency of CAS. The review identified research gaps and 

established the rationale for this research project.  

Chapter Three describes a mathematical model to forecast compressed air demand and 

energy consumption. A new model that considers equipment in the supply and demand 

sides of a CAS is presented. Two simulations tested the proposed model.  

Chapter Four investigates utilising the model described in Chapter Three to evaluate CAS 

performance when Proportional-Integral (PI) and Model Predictive Control (MPC) are used. 

Chapter Five describes the monitoring of the supply side pressure of a CAS to understand 

what useful information could be extracted. An algorithm that recognises different 

pneumatic tools based on supply side pressure measurements is presented.  
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Chapter Six describes monitoring the demand side pressure to understand what useful 

information could be extracted. A new algorithm that identifies which tools created the 

patterns appearing in the demand side pressure signal is presented. 

Chapter Seven describes the analysis of sounds generated by the operation of pneumatic 

tools. A new audio analysis system is described. The system recognised different pneumatic 

tools based on the sounds they made. 

Chapter Eight presents a new system for CAS condition monitoring and fault diagnosis. The 

new system combines supply side pressure monitoring (presented in Chapter 5), the 

demand side pressure monitoring (presented in Chapter 6) and the acoustic monitoring 

(presented in Chapter 7) into one system that made identified CAS condition about the 

operating conditions of a CAS and diagnosed faults when they were present. 

Finally, Chapter Nine presents main conclusions from the research and proposes future 

work to improve the methods and systems created. 
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Chapter 2: Literature Review 

Compressed air is often labelled the fourth utility as it is versatile and commonly used 

across most manufacturing and processing industries (Neale & Kamp, 2009). Studies 

indicated that Compressed Air Systems (CAS) account for more than 10% of UK industrial 

energy use (Sanders et al., 2018). This figure was also high in other industrialised countries: 

ŦƻǊ ŜȄŀƳǇƭŜΣ /!{ ŎƻƴǎǳƳŜŘ фΦп҈ ƻŦ /ƘƛƴŀΩǎ ŜƭŜŎǘǊƛŎƛǘȅ ŀƴŘ accounted for more than 10% 

of the US total industrial energy use (Saidur et al., 2010). The high energy intensity of these 

systems may be explained by the fact that only 19%, or less, of energy used to produce 

compressed air was actually available to end users (Benedetti et al., 2018). 

Investing time and effort in reducing compressed air costs has been important for three 

main reasons. First it could help identify and eliminate wasted energy in the operation of 

CAS. Secondly, it could improve system reliability and overall performance. Finally, it might 

reduce environmental impact, by reducing energy consumption and consequently carbon 

emissions. Improving the performance and efficiency of CAS has received considerable 

attention, and it has been investigated by numerous researchers. This Chapter presents 

outcomes from a review of the literature concerned with the performance and energy 

efficiency of CAS. The review identified research gaps and establishes the rationale for the 

research described in this Dissertation. 

2.1. Literature Search 

Papers identified in the CAS literature were categorised into one of four research areas 

depending on their main topic: 

ü Measures to improve CAS energy efficiency. 

ü Modelling and simulation of CAS. 

ü Monitoring, management, and fault detection in CAS. 

ü Methods to determine air leakage. 

The literature within each research area was analysed and main research gaps were 

identified. 
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2.1.1. Measures to Improve CAS Energy Efficiency 

Energy has been identified as the highest cost associated with the operation of a CAS 

(Fridén et al., 2012). CAS operators have not normally given attention to a system unless 

normal operation of the plant was interrupted due to some malfunction. Many industrial 

facilities could operate more efficiently by applying simple energy conservation measures 

with relatively short payback periods (Murphy & Kissock, 2015). The main energy 

conservation measures reported in the literature, in addition to barriers to their 

implementation, are reviewed in this section. 

Saidur et al. (2010) presented a comprehensive overview of energy saving measures for 

CAS. A systematic approach to identify the sources of waste and areas where energy 

consumption could be reduced was suggested. The following measures and methods to 

estimate potential savings were mentioned: using high efficiency motor with Variable 

Speed Drive (VSD), preventing leaks, use of outside air at compressor intake, reducing 

pressure drop, recovering waste heat, keeping equipment clean and using efficient nozzles. 

The study also stated that although engineering measures were essential for maintaining 

high energy performance, behavioural and institutional changes were necessary for the 

success of CAS energy improvement programs. 

Nehler (2018) published a comprehensive review of academic contributions on energy 

efficiency measures in industrial CAS. The energy efficiency measures reported in the 

literature were categorised with respect to where in the system those measures could be 

implemented. The CAS was divided into two main parts: the supply and the demand side, 

which were then divided further into sub-parts. Around half of the supply side measures, 

were related to the compressor, while for the demand side, measures focused on reducing 

compressed air demand. The surveyed measures for supply and demand sides are 

summarized in Figures 2.1 and 2.2. The benefits resulting from the implementation of 

energy efficiency measures beyond energy savings, referred to as non-energy benefits, 

were also reviewed. Non-energy benefits included improvements to productivity, reduced 

CO2 emissions, less operation and maintenance, and improved work environment. 



Chapter 2 

Page 15 of 252 
 

 

Figure 2. 1: Supply side energy efficiency measures (Nehler, 2018) 

Similar to the works of Saidur et al. (2010) and Nehler (2018), several other studies also 

reported energy efficiency measures for compressed air systems (Herrera et al., 2021; 

bŜŀƭŜ ϧ YŀƳǇΣ нллфΤ ~ŜǑƭƛƧŀ Ŝǘ ŀƭΦΣ нлмуΤ ~ŜǑƭƛƧŀ Ŝǘ ŀƭΦΣ нлмсΤ ¢ŜǊǊŜƭƭΣ мфффΤ ½ƘŀƴƎ Ŝǘ ŀƭΦΣ 

2013),  however the measures were the same. Other research papers discussed measures 

to improve the performance of specific components. Goodarzia et al. (2017) investigated 

energy saving opportunities in the drying process of compressed air, by introducing solid 

desiccant wheel drying technology. Sambandam et al. (2017) investigated energy saving 

potential in T-junctions and elbows used in the distribution network of a CAS, and it was 

concluded that proper selection of junctions can have significant impact on energy 

consumption and CO2 emissions. 
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Figure 2. 2: Demand side energy efficiency (Nehler, 2018) 

Other researchers presented mathematical approaches for determining energy efficiency 

measures in CAS. Dindorf (2012) discussed simple mathematical expressions to estimate 

the energy saving potential of different measures. The mathematical expressions evaluated 

metrics such as compressor specific power, annual energy costs, compressed air leaks and 

pressure drop. Shi et al. (2019) presented a more comprehensive set of mathematical 

expressions, focusing on evaluating energy distribution across different CAS components. 

The paper concluded that major energy savings could be achieved through isothermal 

compression, reducing system pressure, elimination of pressure losses and air leakage. 

Even though energy efficiency measures had been well defined, they were not always 

applied. To increase the implementation rate, it was necessary to evaluate barriers to 

implementation. Main barriers in CAS were addressed in several research papers. Hanna 
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and Baker (1998) published a paper where they reported some of the barriers to adoption 

of compressed air efficiency improvements based on their experience with the compressed 

air market in California, USA. They reported that operation and maintenance managers 

often lacked information about the real costs of operating their CAS, and they did not fully 

understand factors affecting their CAS efficiency. This led them to adopt simple solutions 

such as buying more horsepower rather than optimising their current system. Other 

barriers were identified such as a lack of credible information about real savings from 

improvement measures, a lack of skills for implementing measures and lack of budget for 

regular system auditing. 

Cagno and Trianni (2014) studied barriers to energy efficiency measures in Italian small and 

mid-size enterprises. Their study investigated barriers to measures in cross-cutting 

technologies, which refers to technologies that were not specific to a particular production 

process but that are used by different production systems within an industrial plant. This 

included compressed air, Heating Ventilation and Air Conditioning (HVAC), lighting and 

electric motors. Similar to results from Hanna and Baker (1998), the study concluded that 

main barriers for compressed air measures were the lack of information on costs and 

benefits, unclear information from technology providers, and lack of trust in information 

sources. 

Nehler et al. (2018) also investigated the barriers to the implementation of energy 

efficiency measures in CAS, with a focus on large size companies. The barriers were studied 

from the perspective of compressed air users, CAS energy efficiency experts and suppliers 

of CAS. The study concluded that the main barriers were economic, such as the lack of 

access to capital, the high cost of identifying energy saving opportunities and the high cost 

of implementing measures. Other barriers related to behavioural or organisational nature 

were identified and these included the absence of energy efficiency objectives, lack of skills 

and lack of time. Drivers for implementing energy efficiency measures were also 

investigated, and it was concluded that energy management systems play a key role in 

motivating management to implement energy efficiency measures, since metering energy 

consumption helps energy managers accurately demonstrate the extent of costs associated 

with a CAS. 
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Trianni et al. (2020) presented an innovative framework to support industrial decision 

makers when evaluating energy efficiency measures. The framework considered the most 

relevant factors for decision making, including the impacts on resources and company 

operation. The framework consisted of 22 factors, which were organised into three 

different groups: operational, economic and contextual. To test the effectiveness of the 

framework, it was applied to 11 different companies utilising CAS. The results indicated 

that the suggested framework helped decision makers tackle some of the critical issues 

preventing them from making decision about energy efficiency measures. Trianni et al. 

(2020) acknowledged that the application sample was narrow and did not consider all 

sectors where compressed air was used intensively. 

The lack of easily accessible information for compressed air operators was one of the 

identified barriers to applying energy efficiency measures. Some studies in the literature 

investigated addressing this gap by creating a benchmarking system that could help CAS 

operators compare their consumption to other consumers. Benedetti et al. (2018) 

suggested a benchmarking system based on an explorative study where data was collected 

from 15,000 large and energy intensive industrial firms operating within nine industrial 

sectors. The benchmarking system categorised the efficiency of the CAS based on how well 

it performed in two metrics: energy consumed to produce compressed air and an efficiency 

ratio, defined as the ratio between the actual amount of energy consumed producing 

compressed air and the amount that should have been consumed according to a baseline. 

The authors stated that the number of companies installing adequate energy monitoring 

and management systems was still low, making the creation of a reliable and truly 

representative benchmark challenging. 

The analysis presented by Benedetti et al. (2018) was expanded by Salvatori et al. (2018). 

It analysed different performance indicators that provided a quantitative assessment of 

CAS performance and could therefore be used to further develop a benchmarking system. 

A new benchmark for CAS energy was defined for nine different industrial sectors. The 

benchmark could be considered by industries when comparing their energy performance 

to similar plants, thus creating awareness about energy saving opportunities. Moreover, 

the authors provided general guidelines about how monitoring and recording data 

generated information that improved efficiency and overall performance. 
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The reviewed literature regarding measures to increase efficiency of CAS indicated that 

energy efficiency measures were well known and reported, however they were not always 

implemented. The low implementation rate was investigated, and several barriers were 

identified. Results reported in the literature indicated that barriers were mainly economic 

and behavioural, such as lack of capital, awareness about energy saving potential and clear 

decision-making processes. Performance indicators and benchmarks were researched to 

increase awareness and reliability of information regarding energy saving opportunities in 

different industrial sectors. Moreover, the decision-making process concerning energy 

saving measures was studied, and a framework for deciding on energy efficiency measures 

was suggested. 

Two main research gaps within this area were identified at the beginning of the research 

described in this dissertation. The first was a need to develop a decision-making process or 

mechanism for selecting energy efficiency measures. This gap was partially addressed by 

Trianni et al. (2020), however further research was still required to validate the suggested 

methodology over a larger and more sector representative sample of companies. The 

second research gap was the low rate of performance indicators measurements in industry. 

Benedetti et al. (2018) and Salvatori et al. (2018), based on their experience in Italy, 

indicated that a low percentage of plants measured and monitored important performance 

indicators, such as energy per volume of compressed air produced. Given the high energy 

cost of CAS, this indicated that little attention was given to CAS energy management. 

Further research was required to understand why performance indicators were not 

measured and how installing monitoring systems for CAS could be encouraged. 

2.1.2. Modelling and Simulation of CAS 

Measures and best practices for minimizing energy consumption in CAS required economic 

investment and changes to system operation. Without a clear view of benefits, production 

facilities hesitated to apply suggested best practice. Therefore, it was necessary to perform 

an analysis that quantified the projected savings (in terms of kWh and £) and determined 

associated costs. Modelling and simulation have been common tools in analysing the 

performance of a CAS and evaluating the effectiveness and applicability of energy efficiency 
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measures. This Section will review previous papers that investigated tools and methods for 

simulating CAS. 

Mathematical models for the supply side of a system were studied in the literature. 

Maxwell and Rivera (2003) presented a basic dynamic model for the supply side of a CAS. 

The components considered were a compressor, cooler, piping and tank. The model did 

not consider the demand side, and to simulate a system, an arbitrary air demand profile 

was assumed. Two different simulations were performed with the model. The first one 

studied the effect of varying pressure control settings of the lead compressor when 

multiple compressors were operated. Results showed that setting the pressure too low 

caused operational problems, whereas setting it too high led to wasted energy. The second 

simulation studied energy consumption as storage tank size was varied. Results showed 

that increasing storage volume decreased energy consumption. 

Similar studies that considered only the supply side were also reported in the literature. In 

those studies, the demand side was either not considered, or values for air demand were 

assumed. Kleiser and Rauth (2013) presented a dynamic model for the supply side, which 

was built using transient analytical expressions. Air demand profile was assumed similar to 

one found in a typical industrial plant. Simulations focused on assessing different methods 

to store compressed air in an industrial facility. Chappell (2011) and Azizifar and Banooni 

(2016), modelled the supply side using thermodynamic expressions. Chappell (2011) 

presented thermodynamic models of systems with different compressor types 

(reciprocating and centrifugal), whereas Azizifar and Banooni (2016) modelled a system 

with a two-stage compressor and an intercooler. Both studies did not consider the demand 

side. 

Systems with multiple compressors were also investigated and modelled. Murphy and 

Kissock (2015) modelled the operation of a CAS consisting of multiple compressors and 

simulated the performance of three different compressor control strategies: pressure band 

control, network sequence control and automatic sequencer control. Hu et al. (2017) 

modelled CAS operation with multiple compressors. Their simulations focused on 

evaluating systems with fixed and variable speed compressors. Both research papers 

focused on the supply side and did not model the demand side. 



Chapter 2 

Page 21 of 252 
 

Anglani et al. (2012) presented a new tool for modelling the supply side of a CAS. The tool 

was called MODSCA and was designed using a modular approach, making it suitable for 

studying systems efficiency, for retrofits and for sizing distribution networks. Models for a 

compressor, air cooler and a piping network were suggested. The tool simulated 

compressed air generation, treatment and distribution. Anglani et al. (2015) presented 

further improvements to MODSCA. The improvements included new modules to model 

filters, linear and circular distribution networks, and different compressor control 

strategies. The tool allowed modelling of a distribution network using an equivalent 

electrical network. Three different simulations were reported. The first two compared 

linear and circular distribution networks using physics-based equations and an equivalent 

electrical network. Results showed that losses in circular distribution networks were lower 

than linear ones and therefore they were more efficient. In the third simulation, 

Proportional-Integral control (PI) and Model Predictive Control (MPC) for a compressor 

were compared. Results showed that energy savings with MPC compared to PI were low 

(2.2%) and might not justify the associated complexities of MPC control. MODSCA did not 

model the demand side, and in all the reported simulations, an air demand profile was 

assumed. 

Few published papers focused on modelling compressed air consumption and demand 

rather than the supply side. It is important to differentiate between the two terms 

(consumption and demand). Demand is the flow rate (i.e. flow per unit time) requirement 

of a device in operation while air consumption (i.e. total flow) is the total quantity of air 

consumed during a time interval of operation. 

Beater (2007) published a book discussing modelling and control of air powered tools, 

commonly referred to as pneumatic tools. To describe the flow rate through any pneumatic 

tool, Beater recommend the ISO 6538 flow model. Derivation of the ISO 6538 flow model 

is provided in Appendix A. The ISO 6538 model was sufficient to describe flow through 

simple tools such as pipes and nozzles, however for more complex tools such as actuators, 

equations describing pressure, temperature and friction had to be coupled with flow 

equations to provide an accurate model. 
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Parkkinen and Lappalainen (1991) presented a model for a CAS demand side. The model 

estimated pressurised air demand in a pneumatic system. Pneumatic tools were classified 

into two main types: active and passive consumers. Tools with a continuous demand for 

air, such as active air guns, open pipes and leaks were classified as passive consumers, while 

tools with periodic and short-lived demand, such as actuators were classified as active 

consumers. Demand of passive tools was described using the ISO 6538 flow model, while 

demand for actuators was modelled by considering the change of cylinder volume in a 

typical cycle (extraction/retraction). No result validation was reported. 

Harris et al. (2013) presented a similar model for the prediction of air demand in pneumatic 

systems. Air demand in a linear cylinder during expansion and retraction strokes was 

calculated separately, while in Parkkinen and Lappalainen (1991) the demand was assumed 

equal to the average demand per double stroke (one expanding stroke and one retracting 

stroke). Harris et al. (2013) used an extended version of the ISO 6358 model to describe 

flow through a nozzle. To model the flow through a linear actuator, the extended ISO 6358 

model was used in addition to equations that described pressure and friction dynamics. 

The results from the model were compared to experimental results, and the error was 

acceptable (7-13%). 

Most of the reviewed papers either focused on modelling the supply side or the demand 

side only, however some papers considered a model that attempted to couple both sides 

of a system. Hyvarinen and Lappalainen (1995) considered both the supply and demand 

side. Mathematical models for air production, distribution and consumption were 

presented, however the overall consumption of all pneumatic tools was modelled with one 

lumped parameter equation. Simulations considered systems made up of a distribution 

network with multiple pressurised air centres containing compressor(s), storage tanks, 

valves and air consumers. The model was useful for optimal dimensioning of distribution 

pipes, evaluating system improvement and for general network analysis. Hyvarinen and 

Lappalainen (1996) used the models to create a computer program (simulator) to simulate 

pneumatic networks. 

Friedenstein et al. (2018) presented a methodology to evaluate CAS energy efficiency 

measures through simulation, in which both supply and demand were considered. The 
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methodology divided the simulation process into three main steps: system investigation, 

model development and execution of simulation scenarios. Compressor and demand air 

flow were modelled using previously collected data, rather than analytical expressions. The 

methodology was applied to a case study of CAS in a mine. Since the model was mainly 

data based, it was not clear to what extent the model could accurately represent different 

systems, new components, and new control strategies. 

Eret et al. (2012) also modelled the supply and demand side. Expressions for modelling a 

compressor, dryer and air consuming tools were presented. The model identified priorities 

for optimizing compressed air use at an industrial facility. The model did not consider the 

dynamic behaviour of the system, and compressed air demand was calculated based on 

daily average for tool usage. 

Vyas et al. (2021) presented a new CAS model that considered both demand and supply 

sides. The model simulated energy consumed for generating compressed air and for 

operating other air consuming tools, more specifically a milling machine. Air demand was 

obtained from manufacturer data rather than analytical expressions. The model was used 

to analyse the effect of parameters such as pressure set points, size of system and leaks on 

CAS performance. 

Modelling and simulation of CAS has been an effective tool for evaluating CAS performance 

and for analysing system retrofits. Several papers in the literature researched this area, 

although most papers discussing models for CAS either focused on the supply side or 

demand side separately. The papers that discussed coupled models either (1) used a data-

based approach, which cannot be reliably extrapolated, (2) combined the air demand from 

all tools into one lumped parameter expression, (3) did not consider the dynamic nature of 

compressed air demand or (4) assumed values for air demand. This was identified as a 

research gap. A second research gap was the lack of models that coupled CAS with other 

energy consuming technologies usually found in an industrial facility. As an example, HVAC 

has normally been an essential system in a manufacturing plant. Heat recovery has been 

identified as a major energy efficiency measure, however a dynamic comprehensive model 

that could simulate HVAC and CAS did not appear to have been investigated in the 

literature. 
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2.1.3. Monitoring, Management and Fault Detection 

Systems for monitoring, management and fault detection were slowly being introduced 

into companies because of high economic and environmental costs in energy exhaustive 

processes, such as compressed air production and delivery (Benedetti et al., 2016). The 

main role of such systems was to control energy consumption by assisting in the evaluation 

of performance, identification of malfunctions or energy efficiency opportunities and the 

recommendation of corrective actions. This Section will review papers in the literature that 

investigated systems for monitoring, managing and detecting faults in CAS. 

Cabello Eras et al.(2020) proposed a methodology to monitor and control the electricity 

consumption of a CAS. The methodology was based on real-time monitoring of relevant 

variables that were used to define performance indicators, produce rapid alerts and 

identify inefficiencies in CAS. To detect inefficiencies, real time data and subsequent 

performance indicators were compared to a baseline. The methodology was implemented 

in a battery manufacturing plant and resulted in 23% energy savings. Although the 

suggested method identified inefficiencies, the association with proper causes was not 

discussed and appears to have been done manually using CAS experts. 

A series of papers investigated the monitoring, intelligent control and anomaly detection 

in CAS (Santolamazza et al., 2018a, 2018b, 2019). Santolamazza et al. (2018a) presented a 

methodology to monitor energy performance of a CAS and detect anomalies. The main 

factors that influenced the performance of the system were used in creating an artificial 

neural network (ANN) model that predicted healthy energy consumption. The output from 

the ANN was compared to actual energy consumption to detect anomalies in performance. 

A preliminary analysis to associate anomalies with their causes was performed, although 

that required further research. 

Santolamazza et al. (2018b) evaluated three different methods to monitor and control 

energy consumption in CAS: linear statistical regression, and two machine learning 

approaches: ANN and support vector machines. The results showed that statistical 

methods were simple and effective in determining main anomalies in common systems, 

whereas machine learning techniques enabled the implementation of additional functions 

such as failure analysis and prescriptive maintenance. The statistical method was further 
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tested in a case study involving a pharmaceutical manufacturing plant, where maintenance 

related events were detected and energy savings of around 10% were achieved 

(Santolamazza et al., 2019). 

{ŀƴǘƻƭŀƳŀȊȊŀΩǎ ǿƻǊƪ ǎƘƻǿŜŘ ǘƘŀǘ ǊŜŀƭ Řŀǘŀ ƻōǘŀƛƴŜŘ ŦǊƻƳ ŀ /!{ ŀƴŘ ƛǘǎ ƻǇŜǊŀǘƛƴƎ 

environment could assist in the detection of abnormalities (faults or energy inefficiencies) 

and in the recommendation of suitable counter measures. However, the association of 

these abnormalities with their possible causes, and the generation of a troubleshooting 

procedure, was not investigated thoroughly.  

Other researchers investigated combining energy management systems with sensors and 

information systems that collected and analysed data. Boehm and Franke (2017) 

introduced the concept of Cyber Physical CAS (CPCAS), which were industrial CAS equipped 

with sensors, automation technology and Artificial Intelligence (AI). These systems would 

capture basic operating parameters (such as pressure, volume, temperature, etc) and could 

enable more efficient and flexible operation. For those systems to become available, 

further research was required the technical characteristics of each component and their 

specifications.  

CPCAS was also investigated by other researchers (Abela et al., 2020a, 2020b). Abela et al. 

(2020a) created a compressed air test bed equipped with an energy monitoring cyber-

physical system. A 3D model of the test bed is shown in Figure 2.3. The test bed contained 

a compressor, air storage unit, piping, regulator, an electrical control system and data 

acquisition system. Abela et al. (2020b) reported the results from experiments performed 

to study energy performance and air flow rates when leaks of various diameters were 

present in a piping system. Ultrasonic detectors were used to record acoustic emissions 

from leaks. Data was used to create a correlation between noise level and leak diameter. 

The research did not investigate intelligent or data mining techniques to extract 

information from the collected data. Moreover, the automatic diagnosis of faults was not 

discussed. 
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Figure 2. 3: 3D model of a compressed air test bed (Abela et al., 2020a) 

Dindorf and Wos (2021) presented a portable programmable device for monitoring and 

diagnostics in CAS. The device had input ports for multiple sensors that could measure 

pressure, flow and temperature. It also had a graphical interface to communicate with 

users and the ability for wireless communication. The device could be used for to research 

CAS auditing.  

Algorithms for monitoring and detecting faults in CAS were also reported. Demetgul et al. 

(2009a; b) investigated monitoring a pneumatic network using ANN. Data was collected 

from pressure sensors, a linear potentiometer (position sensor) and electric switches. The 

system was assumed to repeat identical sequences while in operation. Demetgul al. 

(2009a) collected and analysed signals from normal and defective sequences. It was 

concluded that defective and normal cases could be identified from the sensory signals 

with a neural network. Demetgul et al. (2009b) created two neural networks, one using 

adaptive resonance and another using back propagation. The data was representative of 

the normal case and several possible defects such as low pressure, no pressure, empty 

magazine, etc. The results indicated that both neural networks performed well. The 
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suggested methodology worked for systems that kept repeating the same sequence, 

however the neural network would require retraining if any changes occurred. Moreover, 

the study focused on the demand side pressure, and did not consider the supply side 

pressure. 

Kosturkov et al. (2021) investigated CAS monitoring and fault diagnosis using time series 

analysis methods. Data was collected from flow and pressure sensors in addition to control 

signals from Programmable Logic Control (PLC). Different distance and correlation 

measures were used as features. Raw data from the sensor was processed and no 

transformations were applied. The experimental set-up, shown in Figure 2.4, was a 

pneumatic network with a double acting cylinder.  

 

Figure 2. 4: Experimental set-up used in (Kosturkov et al., 2021). A, B and C correspond to locations 
of simulated leaks. 

Three types of leaks were simulated, each at different points in the system, as shown in 

Figure 2.4. Results indicated that using the suggested method, the three different leaks 

could be detected. Kosturkov et al. (2021) did not report testing the algorithm when more 

than one air consuming tool was present. Moreover, the study only considered a regulated 

pressure signal. 

Instead of monitoring the regulated pressure, Desmet and Delore (2017) investigated 

detecting faults in a CAS by analysing supply side pressure. A method based on a continuous 
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wavelet transform and machine learning was presented. The method associated patterns 

in the supply pressure with the activation of each air-powered tool. The pressure from the 

supply side and the activation times of tools were measured and logged. A continuous 

wavelet transform was applied to transform the pressure data into the time-scale domain. 

The most informative scales were detected using a random forest algorithm. Results 

showed that only a few scales were required for representing air consumption patterns. 

Two anomaly detection methods were then explored: the first used an unsupervised 

clustering approach, while the second used a neural-network approach. The study 

concluded that the algorithms were complex and computationally expensive, and 

therefore their implementation in real-time applications required further research. 

Moreover, the suggested approach was sensitive to minor changes to the system since it 

would most likely alter air consumption patterns. 

Model based techniques for fault detection and diagnosis were also investigated. Rahman 

et al. (2017) suggested a model-based methodology for fault detection and isolation in 

pneumatic systems. A lumped parameter mathematical model for compressed air flow was 

created and then validated experimentally. Faults were introduced to a test bench and 

were successfully detected using the suggested methodology. Future work required 

considering more system components.  

Czopek et al. (2022) proposed an approach for identifying energy losses in CAS using 

acoustic recordings and a mathematical model. The model estimated leakage size based on 

recorded noise levels. The approach was tested in a laboratory, where a compressed air 

tank was emptied through holes of different diameters in a discharge pipe. To eliminate 

the effect of background noise, measurements were made in a free-from-echo chamber. 

Results showed the method was accurate in estimating leaks and associated energy losses, 

and therefore acoustic monitoring could be important for CAS energy efficiency. 

The literature indicated that systems and technologies for monitoring, managing and 

detecting faults in CAS was an active field of research. Different methods and approaches 

for monitoring and detecting faults had been proposed. More powerful and flexible 

hardware was being developed and becoming available. One of the research gaps identified 

within this area was the development of systems and algorithms capable of associating 
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faults with their causes. A second gap was CPCAS, which required further research into its 

components, functionalities, and projected benefits. 

2.1.4. Methods to Determine Air Leakage 

Leaks can be a significant source of energy waste in a CAS, estimated at around 20 to 30% 

of a compressor total output (Lawrence Berkeley, 2003). In addition to wasting energy, 

leaks drop system pressure which could interrupt normal plant operation. Leak detection 

and elimination should be a routine procedure, achieved with appropriate inspection and 

maintenance of CAS. Because most CAS are likely to have or develop leaks, leak detection 

and elimination has been a topic of interest in CAS literature. Several methods and 

technologies for leak detection in CAS were investigated. In this Section, some of the 

research concerning this topic is reviewed. 

Methods for detecting leaks without interrupting plant operation were reported in the 

literature. Pöyhönen et al. (2018) presented a method to estimate air leakage rate in 

variable speed drive CAS. In the proposed method a sequence of operation was 

implemented in the control scheme of a Variable-Speed Drive (VSD) that was labour free. 

The operation sequence had two steps: a fill up phase where the system was pressurised, 

and a leak phase where the system was allowed to leak so that pressure decreases to a 

new value. The rate of pressure decay was used to determine a rate of leakage. The 

feasibility of the approach was verified with laboratory measurements, where results 

showed that estimated leakage rates differed from actual rates by up to 10%. 

Doyle and Cosgrove (2018) presented a low-cost non-intrusive method for quantifying 

leaks in a CAS. The proposed approach monitored the electrical energy of a CAS during 

production and non-production periods for analysis and for the quantification of system 

leaks. Monitoring energy usage during normal production indicated the typical level of 

energy used to support production-related activities while the level of energy usage during 

non-production time indicated the amount of energy required to fill the reservoir and keep 

it filled when its pressure dropped due to leaks. A ratio was obtained by dividing the latter 

by the first. The suggested method was technically simple and cheap however it was time 

consuming. 
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Dindorf et al. (2017) proposed a new compressed air leakage measurement device that 

could be used during and outside production hours. The proposed device was independent 

of receiver and compressor parameters, which was not the case with traditional methods 

for measuring leaks by emptying the receiver. The device estimated compressed air leakage 

based on the pressure drop with and without flow at pipe outlet. The device could be used 

to measure compressed air leakage in any part of a compressed air pipeline network. 

Since compressed air leaks generated noises with frequencies in the audible sub-sonic (0-

20 KHz) and ultrasonic (>20KHz) frequency ranges, the use of acoustic sensors for leakage 

detection and localization in industrial CAS was the topic of several researcher papers. 

Guenther and Kroll (2016) presented an automated compressed air leak detection system 

using ultrasonic measurements. Guenther and Kroll suggested that the main advantages of 

the system were its low cost, simplicity of maintenance and its overall low complexity, 

while its main disadvantage was a relatively low detection speed. The suggested system 

was made of two ultrasonic microphones, a pan-tilt unit and a computer. Results indicated 

that the system was feasible in a laboratory environment, but further testing in an 

industrial environment was required. 

Eret and Meskell (2012) studied an array of microphones for detecting leaks in an industrial 

CAS. Since ultrasonic sounds had high frequencies, they tended to attenuate rapidly and 

therefore ultrasonic detectors operated at a close distance from suspected leak location. 

An array of microphones to detect leak noises at frequencies below 20 kHz (audible range) 

at larger distances was suggested. Beamforming, a method for generating noise maps was 

tested as a tool for leak localization. Results showed that microphone arrays with 

beamforming could be applicable concept for compressed air leak detection and 

localization. 

Dudiŏ et al. compared ultrasonic and infrared thermography for compressed air leakage 

quantification ό5ǳŘƛŏ Ŝǘ ŀƭΦΣ нлмнΤ 5ǳŘƛŏ Ŝǘ ŀƭΦΣ нлмоύ. The potentials and limitations of these 

technologies were analysed, as well as the reliability and accuracy of results obtained. 

Experiments were performed on a hose with different size punctured orifices (0.5-2.0mm 

diameters) at different compressed air pressures. It was concluded that ultrasound 

methods were suitable for detecting leaks of up to 1.3mm diameter however ultrasound 
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methods could not differentiate between leaks of size greater than 1.3mm (as the noise 

level generated by a leak of 1.3mm and a leak of size 2.0 mm was similar. Infrared 

thermography was better suited to differentiate between leaks of larger sizes (greater than 

1mm). This was because infrared thermography relied on temperature contrast, which was 

not always detectable in small size leaks.  

Liao and Cai (2011) proposed a method to improve conventional ultrasonic methods for 

CAS leak localisation. Ultrasonic signals generated by a compressed air leak might be 

reflected by a surface such as a wall. Traditional ultrasonic leak detection did not 

differentiate between a real leak point and a signal reflection point, leading to errors and 

misleading results when localizing leak source. Liao and Cai (2011) investigated the 

differences between direct and reflected ultrasonic signals generated by a leak point. 

Experiments to record the direct and reflected ultrasonic signals were performed as shown 

in Figure 2.5. The time domain signal of both ultrasonic waves was recorded, and using a 

Fast Fourier Transform, the corresponding frequency spectrum was obtained. Obvious 

differences between the two spectrums could be identified and an algorithm that 

differentiated between direct and reflected signals was suggested. 

 

Figure 2. 5: Experiment performed in (Liao and Cai, 2011) to analyse direct and reflected 
ultrasonic signals from air leaks 

Liao et al. (2013) presented a portable ultrasonic leak detection and localization tool. The 

proposed detector was equipped with three ultrasonic sensors and it worked by estimating 

the time delay between the readings from each pair of sensors. Unlike traditional 

directivity-based leak detectors of that time, the location accuracy of the time delay leak 

detector was not subject to the directivity of ultrasonic sensors and therefore the new 
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sensors were 6 to 8 times more accurate than the traditional ones. The accuracy of the time 

delay detectors depended on the delay estimation error, and therefore required accurate 

time delay estimators. Moreover, the leak localization error increased linearly with 

distance from leak and therefore in operation the detectors had to be as close as possible 

to the potential leak. The suggested detector was not suitable for detecting leaks in hidden 

areas of a pipe (e.g., the rear of a pipe). For such cases, detection methods that operate in 

the audible frequency range would have been more suitable. 

Instead of developing tools that relied directly on acoustic measurements, other 

researchers investigated methods based on extracting features from acoustic recordings. 

Zhang et al. (2004) studied the detection of leaks in a pneumatic system using a sound 

detection system based on the Fourier transform and neural networks. The power 

spectrum obtained from processing acoustic data with the Fourier transform were used as 

features to train a neural network to detect leaks. The study concluded that using acoustic 

features in addition to neural networks was effective in detecting leaks. 

Similarly, Santos et al. (2013; 2014) investigated the detection of leaks in compressed air 

pipes by capturing acoustic waves through a microphone installed inside the pipeline. 

Signals obtained with a microphone were analysed using a Fourier transform, generating a 

frequency spectrum that was used to characterise different operating situations. The 

results indicated that leaks led to distinguishing peaks appearing in the frequency spectrum 

that were not present in the case of no leak, concluding that it was possible to detect a leak 

using the frequency spectrum of acoustic data. Using an ANN, the occurrence and 

magnitude of leaks was predicted. The suggested method showed a high level of accuracy, 

except for small orifice leaks (>1mm). 

Several studies discussed techniques used in detection, localisations and quantification of 

leaks. A research gap identified was the lack of accuracy in ultrasonic and acoustic methods 

when dealing with small leaks (orifice smaller than 1mm). Future research could investigate 

ways to increase the range of leak sizes that are detectable with these techniques 
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2.2. Identified Research Gaps 

This Section discusses the research gaps identified following the literature review at the 

start of the research described in this Dissertation. 

1- Measures to reduce energy consumption were well developed in the literature. Some 

measures had a high energy saving potential and a low initial investment cost, however 

there were low implementation rates. The low implementation rates were further studied 

and some barriers were identified. The typical way manufacturers investigated energy 

saving opportunities, was through costly and time-consuming energy audits. Developing a 

methodology to support decision making regarding suitable energy saving measures in CAS 

may result in a useful and innovative tool for improved energy efficiency. This gap appears 

to have been partially addressed in a paper published by Trianni et al. (2020), however 

further research was still required to validate the suggested methodology over a larger and 

more sector representative sample of companies. Alternative tools to assist in the decision-

making process could also be researched. 

2- Modelling and simulating CAS played an important role in evaluating systems 

performance and studying possible improvements. Most models in the literature either 

focused on modelling the supply or demand side and the few that considered both supply 

and demand required further research. In addition, no models in the literature considered 

integrating a CAS model with other energy consuming equipment normally found in 

industrial plants, such as HVAC. Heat recovery has been identified as a major energy 

efficiency measure and hence future research could investigate creating an integrated 

model for simulating recovering heat from a CAS into an HVAC. 

3- Performance monitoring and management of CAS had seen interesting developments. 

Machine learning and pattern recognition techniques were used for optimizing CAS 

performance and detecting abnormalities. However, the association of abnormalities with 

their causes and suitable troubleshooting procedures had not been investigated 

thoroughly. Creating new systems and methods capable of detecting abnormalities in 

performance and associating them with their suitable causes to set up troubleshooting 

procedures required further research. 
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4- Several variables and system were considered when monitoring CAS. These variables 

included: flow, energy consumption, pressure, acoustics, etc. Algorithms were then created 

to extract information about the systems from the collected data. In the reviewed 

literature, data streams from CAS were treated individually, and the combination of 

information extracted from different data signals was not investigated. Future research 

could investigate a knowledge management system that combines several data streams. 

5-The concept of CPCAS was introduced and a few papers researched their capabilities. 

CPCAS are equipped with components for self-sufficient control, such as sensors, actuators 

and data processing. In addition, they were capable of exchanging information with other 

devices, and therefore could play a role in improving CAS energy efficiency. However, there 

was a research gap regarding technical characteristics, functionalities and potential energy 

savings of CPCAS. 

6-Leak detection and elimination was identified as a major step in reducing CAS energy 

waste. Technologies to quantify and locate leaks were discussed. These technologies faced 

several challenges such as: inability to operate during production, inaccuracy in sensors and 

noise coming from operating environments. Moreover, technologies such as ultrasonic and 

acoustic leakage detection were not effective in identifying leaks from small size orifices. 

Future research could focus on further developing these techniques to increase their 

accuracy, range of applicability and ease of use. 

Other research gaps identified were identified after the main research topic reported in 

this Dissertation was defined. These gaps did not sway the direction of this research; 

however, they did influence what the author of this Dissertation thinks future research 

could investigate. They are mentioned here for completion. 

1. Benedetti et al. (2018) and Salvatori et al. (2018) indicated that a low percentage of 

plants measured and monitored important performance indicators, such energy per 

volume of compressed air produced. Given the high energy cost of CAS, this indicated that 

there was little attention given to CAS energy management. Further research was required 

to understand the main reasons why performance indicators were not properly measured 

and how installing monitoring systems for CAS could be encouraged. 
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2. Model based techniques for fault detection had only considered pneumatic components 

in the demand side. Future research could investigate incorporating model-based fault 

detection for the supply side. 

3. One of the issues faced by data-based methods for monitoring and detecting faults in 

CAS was that systems kept changing. This was often due to maintenance activities or 

upgrades. Data-based algorithms required retraining or redefinition of signature patterns, 

which was normally time consuming. Future research could investigate techniques that 

simplify adjusting data-based algorithms after planned changes to the system. 

2.3. Literature Underpinning this PhD Research 

This Section discusses how the research work presented in this PhD Dissertation extends 

the knowledge in the literature. 

2.3.1. Coupled Model 

Creating a model that couples CAS supply and demand sides was identified as a research 

gap. Most of the research papers investigating CAS modelling considered the supply and 

demand sides separately. Few research papers coupled supply and demand. 

The work described in this Dissertation created a new coupled model based on dynamic 

mathematical equations. The research paper by Hyvarinen and Lappalainen (1995) 

modelled air demand of all consumers with one lumped parameter equation. The model 

presented in this Dissertation considered each air consuming tool individually. Models 

presented by Friedenstein et al. (2018) and Eret et al. (2012) were data based and not 

dynamic. The model presented in this Dissertation is dynamic and based on analytical 

expressions. Finally, Vyas et al. (2021) presented a new CAS model that coupled supply and 

demand, however the model focused on integrating the energy consumption for 

generating compressed air and for operating other air consuming tools. Air demand was 

obtained from manufacturer data. The model presented in this Dissertation used 

mathematical expressions to estimate air demand from different pneumatic tools. 
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2.3.2. Monitoring Supply Pressure 

Monitoring a CAS by analysing and extracting information from a pressure signal had been 

investigated in the literature, although most studies considered a regulated pressure at 

pneumatic tools inlet. This pressure, here referred to as demand side pressure, was 

normally regulated to a constant value that only changed when a tool operated (or a 

malfunction occurred). Only Desmet and Delore (2017) investigated supply side pressure 

using a continuous wavelet transform. 

The new work described in this Dissertation investigated analysis and extraction of 

information from the supply side pressure of a CAS. Desmet and Delore (2017) processed 

the pressure signal using a continuous wavelet transform, however new work presented in 

this Dissertation investigated a discrete wavelet transform. 

2.3.3. Monitoring Demand Pressure 

Air pressure at the inlet of pneumatic tools was normally regulated to satisfy production 

requirements. When tools operated, patterns appeared in the pressure signal. Those 

patterns could be used for monitoring and for extracting information about the signal. 

Papers in the literature investigated extracting features from demand side pressure, 

however they either assumed tools repeated the same sequence, or they only considered 

a single pneumatic tool connected to a system. 

The new work described in this Dissertation investigated extracting information about a 

CAS demand side by analysing the regulated pressure of a pneumatic network with at least 

two tools operating. Previous work had either assumed an identical tool operation 

sequence, such (Demetgul et al., 2009a; Demetgul et al., 2009b), or considered a network 

with only one tool, such as (Kosturkov et al., 2021). 

2.3.4. Acoustics Monitoring 

Previous research reported the use of acoustic data obtained from the ambient in which a 

CAS operated for monitoring and detecting faults. Most of that research focused on leak 

detection either using ultrasonic acoustic sensors or using machine learning algorithms. 



Chapter 2 

Page 37 of 252 
 

The new work described in this Dissertation investigated acoustic data for monitoring and 

obtaining information about a CAS. Papers in the literature focused on detecting leaks using 

acoustic data, however this new work also investigated recognising which tools operated 

based on sounds generated.  

2.3.5. Knowledge Management System 

Information and knowledge gathered from a manufacturing environment was an untapped 

source for optimising energy use in a manufacturing process with a CAS. The literature 

revealed systems and algorithms that collected data such as air flow, energy consumption 

and system pressure to extract information and create knowledge about the CAS. However, 

each data stream was analysed individually, and combining the information extracted from 

the different data streams was not investigated. The new work described in this 

Dissertation created a new knowledge management system that combined the knowledge 

extracted from supply pressure, demand pressure and acoustic data streams to create 

awareness about a system and help save energy. 

2.4. Discussion and Conclusions 

CAS are responsible for a considerable share of the total industrial energy consumption in 

many countries. These systems are inefficient, with only 19% or less of their energy input 

being delivered for end use. To achieve future energy savings and reduce emissions, energy 

consumption in CAS should be reduced. 

This Chapter presented results from reviewing the literature concerned with CAS energy 

efficiency. Papers were categorised into four different research areas depending on their 

main topic: (1) Measures to improve CAS energy efficiency, (2) Modelling and simulation of 

CAS, (3) Monitoring, management and fault detection in CAS, (4) Methods and Equipment 

to Determine Air Leakage 

Measures to reduce energy consumption were well documented in the literature, with 

numerous scientific papers, conference papers and industry best practice guides covering 

the subject. Even though these measures had been researched, several barriers stood in 

the way of their implementation. Obtaining information about energy efficiency measures 

required costly and periodic energy audits, which might interrupt plant operation. This 
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reduced the ƳŀƴŀƎŜƳŜƴǘΩǎ ƳƻǘƛǾŀǘƛƻƴ ǘƻ ǎŜŜƪ ǎǳŎƘ ǎŜǊǾƛŎŜǎΦ 5ŜǾŜƭƻǇƛƴƎ ŀ ŘŜŎƛǎƛƻƴ-making 

mechanism that facilitated selecting suitable energy efficiency measures may encourage 

implementation of these measures, and therefore reduce CAS energy consumption. 

CAS Modelling and simulation methods were reported in the literature. These methods 

evaluated and justified technical and economic feasibility of energy efficiency measures. 

Some of the reviewed models were more detailed and considered more system 

components and variables. Main identified gaps in the research included the development 

of more detailed models that considered supply and demand sides in addition to other 

aspects of energy consumption in a plant operating CAS. 

Literature on CAS monitoring, management and fault detection was reviewed. Different 

methods for monitoring and detecting faults were reported. Further research into 

associating faults with their causes and setting up a troubleshooting procedure was 

required. Moreover, CAS equipped with sensors, automation technology and AI may 

increase system efficiency and reliability, however more research was required to 

understand their capabilities, technical requirements and potential energy savings. 

Leaks were a major source of waste in CAS. Methods and techniques used in detecting and 

localising air leaks were reviewed. Several methods existed, some of which used ultrasonic, 

acoustic and thermal monitoring. These methods did not intervene with normal CAS 

operation and were effective in terms of locating leaks when leak diameter was greater 

than 1mm. On the other hand, other methods measured the time required to fill and then 

discharge a CAS storage tank. Those methods were low cost, but they interfered with 

normal operation, were time consuming and did not localise leaks. The main gap identified 

within this research field was in finding methods to detect small size leaks. 

The new work described in this Dissertation addressed some of the identified gaps. First a 

CAS model that couples supply and demand was created. After that, extraction of 

information from process data for monitoring and fault detection was investigated. 

Systems for mining supply pressure, demand pressure and acoustic data were created. 

Then a knowledge management unit that combined the three systems was created to 

generate knowledge about the system, save energy and improve performance. 
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Chapter 3: Compressed Air System Coupled 

Model 

Experimental evaluation of compressed air system (CAS) performance under different 

operational conditions has been time consuming, challenging and sometimes unfeasible. 

An alternative was computer-based simulations. Computer simulations allowed the 

evaluation of changes to a system and operating conditions at a minimal cost. Researchers 

and engineers often relied on models and computer simulations to evaluate and optimise 

component design, control strategy and overall system performance. 

Past models have either focused on modelling the supply side, demand side or individual 

CAS components. These models were helpful in designing and optimising systems for 

generation and consumption of compressed air; however, they did not capture the 

dynamic interaction between the demand and supply sides. The model presented in this 

chapter considers both the demand and supply sides. The model is mathematical and based 

on first principles, using the ideal gas equations and equation of air flow through a nozzle. 

The objective of the model was to obtain a better understanding of the interaction between 

the demand of compressed air and the energy consumed in its generation. The model could 

be used as a tool for evaluating changes to system components, for studying new control 

strategies and for analysing CAS interaction with other equipment. 

This Chapter is divided into five Sections: Section 3.1 presents an overview of a CAS 

configuration. Section 3.2 models the supply side of a CAS. Section 3.3 models the demand 

side of a CAS. Section 3.4 presents the new combined model along with simulations and 

results. Finally, Section 3.5 discusses results, model limitations and resulting conclusions. 

3.1. Overview of CAS Configuration 

A basic CAS configuration was considered as shown in Figure 3.1. CAS have often been 

divided into two major sections labelled the supply side and the demand side (Nehler, 

2018). The supply side was responsible for production, treatment and storage of 

compressed air. The demand side included distribution, pressure regulation and end user 



Chapter 3 

Page 40 of 252 
 

consumption. In some references, storage was included in the demand rather than supply 

side(Lawrence Berkeley, 2003). 

The supply side often included a compressor, air cooler, filter, water separator and a 

storage tank. Air intake into the compressor was filtered to prevent solid particles from 

entering the compressor. A compressor, which was typically driven by an electric motor, 

increased air pressure and consequently its energy content. The compression process also 

led to an increase in air temperature, which was undesirable in most applications. A cooler 

was often installed to reduce air temperature. Cooling led to moisture condensation, and 

water particles were removed with a dryer/water separator. Finally, the compressed and 

cooled air was stored in a storage tank for supply to the demand side.  

The demand side of a system included pressure control valves, pipes and pneumatic tools. 

Different tools required air supplied at different pressures. Pressure regulators have been 

installed upstream of tools to stabilise network pressure at the required levels. Pneumatic 

tools, which were the main air consumers, transformed energy in the compressed air into 

mechanical work. 

Compressor

Motor

Air
Cooler

Tank Double Acting 
Actuator

Supply Side Demand Side

Single Acting 
Actuator

Air Blower

Pressure 
Regulator

 

Figure 3. 1: Schematic representation showing equipment found in a typical CAS 

3.2. Modelling Supply Side 

This Section presents the supply side model of a CAS. The components considered are a 

compressor, an air cooler and a storage tank. 
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3.2.1. Compressor 

Compressors increase the pressure of a fluid or a gas. Compressors have been categorised 

into one of two broad types based on their mode of operation: Positive displacement 

compressors and dynamic compressors (Lawrence Berkeley, 2003). The pressure of air was 

increased via a compressor in one of two ways: either by decreasing the volume enclosing 

the gas (positive displacement compressors) or by increasing the number of air molecules 

within a given space (dynamic compressors). Even though these types of compressors 

differed significantly in their build and mode of compression, they both performed three 

common tasks (Kent, 1974):  

¶ Suction: Allowing air into the compressor.  

¶ Compression: Increasing pressure to discharge pressure.  

¶ Discharge: Releasing compressed air into the discharge line.  

Assuming air behaved like an ideal gas and ignoring losses due to friction and heat transfer, 

the work required ΨWcompΩ to compress a volume ΨViΩ of air from air inlet pressure ΨPiΩ to 

discharge pressure ΨPoΩ was calculated using Equation 3.1. 

ὡ ὖ ὠ
ὲ

ὲ ρ

ὖ

ὖ
ρ 

Equation 3. 1 

where ΨnΩ is the polytropic compression exponent. The process was assumed isentropic 

(n=1.4). To calculate the power, volume flow rate per unit time was used instead of volume. 

To estimate the electric power supplied to the compressor ΨWsupΩ, Equation 3.2 was used. 

ὡ
ὡ

– –
 

Equation 3. 2 

where Ψ́dsΩ and Ψ́cΩ represent the efficiency of the drive system and the compressor respectively. 

In this research, both efficiencies were assumed to be constant and equal to 90% and 80% 

respectively. The compressor efficiency would vary with discharge pressure, however, for 

simplicity, compressor efficiency was assumed constant.  
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Another important factor affecting compressor performance was the assigned compressor 

control. In this study, a load/unload control was assumed; the compressed air flow was set 

to zero when a maximum pressure value was reached. After that, the compressor switched 

to unload mode, where it operated at part load even though it was not delivering any 

compressed air. After a period of time unloading, if the pressure in the system remained 

above the minimum allowable limit, the compressor switched off. With this control mode, 

when the compressor was on, it operated at its full rated capacity. 

3.2.2. Air Cooler 

The mechanical compression of air increased its temperature, often reaching a discharge 

temperature in the range of 70ς200 oC. Coolers were typically installed after the final stage 

of compression to reduce air temperature. Ignoring water vapour in the air, the 

temperature of air at compressor discharge ΨT2Ω was estimated with Equation 3.3. 

Ὕ Ὕ
ὖ

ὖ
 

Equation 3. 3 

where ΨTinΩ and ΨPinΩ are the temperature and pressure of air at compressor inlet. Heat 

transfer between the hot air in the heat exchanger and cooling air in the surrounding was 

estimated using the effectiveness-NTU method. Assuming a cross flow heat exchanger with 

a constant effectiveness ΨʁΩ, the temperature of air leaving the cooler ΨT3Ω was obtained 

with Equation 3.4. (Bergman et al., 2011). 

Ὕ ‐Ὕ Ὕ Ὕ 

Equation 3. 4 

Ambient air was assumed to be the cooling fluid and it was assumed that the mass flow 

rate of cooling fluid was larger than mass flow rate of compressed air. 

3.2.3. Storage Tank 

The purpose of a storage tank in a CAS was to store compressed air for process demand. 

The storage tank pressure depended on the mass of air it stored, its temperature and the 

overall tank volume. The change of mass in the storage tank was obtained by assuming the 

tank content to be a control volume and applying a mass balance, as shown in Equation 

3.5. 
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Equation 3. 5 

where ΨminΩ and ΨmoutΩ are the mass flow rate of air entering and exiting the tank. The mass 

of air entering the tank was obtained from the compressor capacity, and it was assumed 

constant while the compressor was running, or zero when the compressor was not running 

or unloaded. The mass of air leaving the storage tank depended on the demand of air from 

end user equipment. Modelling the mass of air leaving the tank is discussed in the next 

Section. The mass of air in the tank at a specific time instant was obtained using Equation 

3.6. 

άὸ ά ά Ὠὸά  

Equation 3. 6 

where Ψm0Ω is the mass of air in the tank at time t=0. Assuming air behaved as an ideal gas, 

and that the temperature of air in the tank was equal to the temperature of air leaving the 

cooler ΨT3Ω, the pressure of air in the tank ΨPtankΩ of volume ΨVtankΩ was obtained with Equation 

3.7, where ΨRΩ is the specific gas constant for air. 
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Equation 3. 7 

3.3. Modelling Demand Side 

This Section presents the demand side model. The demand side model estimated 

compressed air demand and consumption. Energy consumption of a CAS was highly 

influenced by end users compressed air consumption. Attempts to model air flow through 

pneumatic tools were reported in the literature (BeaterΣ нллтΤ IŀǊǊƛǎΣ hΩ5ƻƴƴŜƭƭΣ Ŝǘ ŀƭΦΣ 

2013; Parkkinen & Lappalainen, 1991). The new research described in this Chapter 

modelled flow through a nozzle, and a single and a double acting linear actuator. These 

components were chosen since they were common in industrial facilities (Harris et al., 

2013).  
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Understanding the flow characteristics of pneumatic components was important to 

evaluate their air consumption. Beater (2007) recommended what was known as the ISO 

6538 flow model for estimating mass flow rate through all pneumatic components. 

Derivation of the ISO 6538 flow model is provided in Appendix A.  

Flow through a nozzle was modelled with the ISO 6538 model, which is given by Equations 

3.8 and 3.9. 
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Equation 3. 8 
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Equation 3. 9 

where Ψ́0Ω is the air density at atmospheric pressure and the subscripts 1 and 2 indicate 

upstream and downstream respectively. The parameters ΨCΩ and ΨbΩ are the sonic 

conductance and critical pressure ratio respectively. Their value depended on the design 

of the component and typically they were determined experimentally or given in a 

manufacturer data sheet (Beater, 2007). 

Equations 8 and 9 could also be used to estimate flow rate through other components that 

operated at a constant downstream pressure, such as an open pipe or a leak. However, for 

tools with variations in downstream pressure, such as linear cylinders, determining the 

instantaneous mass flow rate required modelling pressure dynamics, which in turn 

required modelling forces acting on cylinder bores, see for example (Beater, 2007; Harris 

et al., 2012; Krivts & Krejnin, 2006; Raisch et al., 2018; Richer & Hurmuzlu, 2000).  

A simplified approach for modelling mass flow rate through linear cylinders was suggested 

in (Parkkinen & Lappalainen, 1991) and later used by Harris et al. (2013) and (2012). The 

approach calculated the average mass flow rate per unit time by considering the mass of 

air required to fill the cylinder bore and then multiplying it by the number of cycles per unit 

of time. 
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A schematic representation of a double acting linear cylinder is shown in Figure 3.2. The 

extension and retraction of the piston was controlled by a switching valve that inflates and 

deflates the cylinder chamber.  

 

Figure 3. 2: Schematic representation of double acting pneumatic cylinder 

Single acting cylinders have a similar build; however, they are equipped with a spring that 

returns the piston to its initial position and therefore single acting linear actuators only 

consume air on extension stroke, while for double acting, air is consumed on extension and 

retraction strokes. The flow of air for a single acting and double acting linear cylinders was 

modelled with Equations 3.10 and 3.11, respectively. 
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Equation 3. 10 
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Equation 3. 11 

where ΨmsaΩ is the mass flow rate for a single acting cylinder, ΨmdaΩ is mass flow rate for a 

double acting cylinder, ΨsΩ is the stroke length, ΨDΩ is bore diameter, ΨlΩ is tubing length, ΨdtΩ 

is tubing length, ΨdrΩ is rod diameter, Ψa1Ω is the number of strokes per unit time, Ψa2Ω is the 

number of double strokes per unit time, ΨP1Ω is the upstream pressure and ΨP2Ω is the 

downstream pressure. 
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3.4. The New Coupled Model 

The supply and demand side models presented in the previous Sections were implemented 

in MATLAB. The model was made of separate functions that estimated the required 

variables, such as compressor power consumption, air consumed by tools, temperature of 

air leaving the heat exchanger and pressure of air in the tank. Equation 3.5, which is a first 

order differential equation, was solved numerically using the Euler method. The remaining 

equations were algebraic and their solution was straightforward. A diagram representation 

of the model algorithm is shown in Figure 3.3. 
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Tcooler
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Figure 3. 3: Diagram representation of the model algorithm 
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To run the model, a tool schedule defining the periods of operation for each pneumatic 

tool was defined and supplied as initial input to the model. After that, compressed air 

consumed ΨmoutΩ by the pneumatic tools was estimated based on the defined tools 

schedule. Temperature of air at pneumatic consumer outlets was assumed equal to 

temperature exiting the air cooler. Compressor control was determined based on air 

pressure in the tank. Compressor power consumption ΨPcompΩ, mass and temperature of air 

supplied by the compressor ΨmairΩ and ΨToutΩ were calculated and their value depended on 

air pressure and temperature at compressor inlet. Temperature of air at air cooler inlet was 

assumed equal to temperature of air at compressor outlet. Temperature of air in the tank 

was assumed equal to temperature of air leaving the air cooler. 

3.4.1.  Simulation and Results 

A schedule for the operation of different pneumatic tools was assumed, as shown in Figure 

3.4. 
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Figure 3. 4: Assumed activation schedule for the three pneumatic tools 
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A value of Ψ0Ω in the activation profile indicated that the tool was inactive, while a value of 

Ψ1Ω indicated the tool was active. A system with one compressor, cooler, storage tank, a 

double acting linear cylinder, a single acting linear cylinder and a valve was modelled. A 

schematic diagram of the system was shown in Figure 3.1. 

The system performance with compressed air consumption was simulated. The role of 

pressure regulating valves in reducing pneumatic tools air consumption and consequently 

energy consumption by the compressor was studied. In addition to that, the impact of the 

tank volume on system performance was analysed. The simulation parameters are 

summarised in Table 3.1. 

Table 3. 1: Parameters used in the simulations 

Variable Description Value (Unit) 

Vi Compressor Flow Capacity 0.0042 (m3/s) 

Pi Air inlet Pressure 101325 (Pa) 

Po Compressor Discharge Pressure 900000 (Pa) 

d́s Drive System Efficiency 0.9 

ć Compressor Efficiency 0.8 

n Polytropic compression exponent 1.4 

Tamb Ambient Air Temperature 293 (K) 

R Air Gas Constant 287 (J/kg·K) 

0́ Air density at atmospheric pressure 1.2754 (Kg/m3) 

 ʁ Heat exchanger effectiveness 0.95 

s Stroke Length 0.05 (m) 

D Bore Diameter 0.025 (m) 

dt Tubing Diameter 0.006 (m) 

dr Rod Diameter 0.01 (m) 

l Tubing length 0.48 (m) 

C Blower Sonic Conductance 6x10-10 (m3/s.Pa) 

b Critical Pressure Ratio 0.4 

a1 Single Stroke Frequency 1 (stroke/second) 

a2 Double Stroke Frequency 1 (double strokes/second) 
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3.4.2. Pressure Regulation 

Different tools operated at different pressure levels. Normally, several tools were fed by a 

single tank whose pressure varied depending on the compressor control strategy and air 

consumption profile. To stabilise pressure of air reaching a tool, a pressure regulating valve 

was normally installed upstream of the tool. In this Section, air and energy consumption of 

a system with and without pressure regulation was evaluated for the same tool activation 

schedule.  

The total mass consumption of the three pneumatic tools, the tank pressure and the total 

compressor energy consumption are shown in Figures 3.5, 3.6 and 3.7 respectively. Figure 

3.5 compared unregulated (red curve) and regulated (blue curve) air consumption, and 

results indicate that unregulated system consumed more compressed air over the course 

of the simulation. This result was expected since Equations 3.8, 3.9, 3.10 and 3.11 indicated 

that air consumption was proportional to upstream pressure. 
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Figure 3. 5: Total mass of air consumed by all tools for a regulated and unregulated supply of 
compressed air 
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The decrease in air consumption was reflected in the air pressure in the tank and on 

compressor energy consumption. Figure 3.6 shows the tanks pressure for the unregulated 

and regulated cases in blue and red respectively. Due to the decreased consumption for 

the regulated case, it took longer for the tank pressure to decrease to the lowest allowable 

pressure limit. Over a long period of operation, and assuming identical schedules, the 

compressor would need to switch on less often for the regulated case compared to the 

unregulated, leading to some energy savings.  
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Figure 3. 6: Air pressure inside tank for regulated and unregulated air supply 

The energy consumption of the system is shown in Figure 3.7, where cumulative energy 

consumption for regulated and unregulated cases are shown in blue and red respectively. 

Over the course of the simulation, the system with unregulated pressure consumed more 

energy than the system with regulated pressure. 
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Figure 3. 7: Cumulative compressor energy consumption 

3.4.3. Storage Tank Volume 

The size of the storage tank was usually determined from the compressor capacity and air 

consumption profile. Several other factors, such as number of compressors and type of 

drive system impacted storage tank selection. System performance was studied as tank 

volume changed for the assumed tool operation schedule and compressor capacity.  

Figure 3.8 shows total energy consumption as a function of tank volume. The general shape 

of the plot indicated that if the tank was too small or too big then that led to a higher energy 

consumption. For the tool operation schedule in this simulation, and the resulting air 

demand profile, the optimal tank volume was around 3.5 m3. A smaller tank would 

consume more energy since it would require the compressor to constantly be on or 

unloading. A larger tank would require the compressor to be on for long periods of time to 

reach the required pressure levels. The optimal tank size would provide a balanced 

performance and therefore a reduced energy consumption. 
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Figure 3. 8: Energy consumption as tank volume was varied 

3.5. Discussion and Conclusions 

A new CAS model that coupled supply and demand sides of the system was considered. 

The model was used to study compressed air consumption by end user tools in addition to 

compressor energy consumption to generate air pressure. Two simulations to study 

pressure regulation and tank volume were performed.  

The supply side model consisted of a compressor, an air cooler and a storage tank. 

Assumptions were made to create simplified models. The compression process was 

assumed isentropic, i.e. losses due to friction and heat transfer into the air were neglected. 

The air cooler was assumed to be a cross flow heat exchanger and was modelled with the 

effectiveness-NTU method. Finally, the storage tank was modelled with the conservation 

of mass equation. The main outputs from the supply side model were the energy consumed 

to compress the air, mass of air supplied and temperature of air at cooler outlet. 
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Although the assumption of isentropic compression simplified the theoretical modelling, it 

had several disadvantages. One of its disadvantages was that it underestimated the 

quantities of energy required to compress the air, because losses were neglected. This was 

partially corrected by considering an efficiency for the compressor. Another disadvantage 

was that the model did not incorporate the compressor rotational speed, which meant that 

the model could not be used to evaluate a compressor where speed was varied. However, 

a more advanced model could address both limitations. An example of such a model for a 

reciprocating compressor was presented by Mohammadi-Amin et al. (2020) and for a screw 

compressor by Stosic et al. (2005). 

The demand side of a system was also modelled. The demand side contained a blower, a 

double acting and a single acting linear cylinder. The blower was modelled as a nozzle with 

the ISO 6538 model. The derivation of the ISO 6538 model is provided in appendix A. The 

linear actuators were modelled using a simplifying approach that estimated air demand by 

considering mass of air required to fill a cylinder bore and the number of cycles per unit 

time. The main output from the demand side was air demanded by each pneumatic tool. 

The demand and supply side models were then coupled. 

Relatively simple end user equipment was considered by this research, however they form 

the building blocks of more complex equipment (Beater, 2007). Developing models for 

machines that consume compressed air, such as moulding and milling machines, could 

facilitate the application of the proposed model in an industrial setting. 

Two simulations were performed with the proposed model. A sequence of operation for a 

blower, a single and a double acting cylinder were assumed. The first simulation analysed 

the impact of pressure regulation on energy consumption. The results indicated that 

regulation decreased energy consumption since less compressed air was consumed by end 

user equipment. The second simulation studied system performance when the volume of 

a storage tank was varied. Results indicated that tank size was an important factor in 

determining CAS energy consumption. The coupled model could be used to determine the 

optimal tank size taking into consideration CAS size and configuration, in addition to end 

user equipment characteristics and operating schedule. In the next Chapter, simulations 
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that studied different compressor control strategies and evaluated the use of heat recovery 

from CAS to heat a building are described. 
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Chapter 4: Investigation of Compressed Air 

System Control 

The capacity of a Compressed Air System (CAS) has usually been sized to meet the 

maximum plant air demand, however, most systems operated at their full load only for 

short periods of time (Saidur et al., 2010) and therefore the output of the compressor had 

to be regulated to efficiently match system demand at part-load. CAS controls were one of 

the main factors determining overall system energy efficiency (Quartarone & Anglani, 

2014). In addition to compressor capacity control, the control system assisted in managing 

compressed air supply in plants with multiple compressors by shutting off unneeded 

compressors and delaying starting additional compressors until needed.(Lawrence 

Berkeley, 2003; Sanders et al., 2000; Sanders, 2017)  

Methods to control compressor capacity have been reported in the literature (Giampaolo, 

2010). Some of the control principles that were applicable to all compressor types included: 

speed control, suction throttling, discharge throttling or recycle control. Other control 

methods existed however they were only applicable to specific compressor types, such as 

guide vane position for dynamic compressors and variable volume pockets for 

reciprocating compressors (Giampaolo, 2010). The most common method to vary 

compressor capacity was speed modulation using a compressor with a variable speed drive 

(VSD) (Saidur et al., 2010). 

This Chapter presents a theoretical comparison of CAS performance when a model-based 

predictive control (MPC) and a Proportional-Integral (PI) controller are used to control the 

compressor. The air demand profile was forecasted using the demand side model 

presented in Chapter 3. The compressor was assumed to be the VSD type and the MPC and 

PI controllers modulated its speed. Because the compressor model presented in Chapter 3 

only considered fixed speed compressors, an empirical model for a variable speed screw 

compressor was created. The empirical model estimated air flow from the compressor and 

power consumed by the compressor. Data to build the empirical model was obtained from 

results of a screw compressor simulation published in the literature (Stosic, 1998).  
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This Chapter is organized as follows. Section 4.1 presents the compressor model, the air 

demand profile, and the tank model. Section 4.2 discusses the MPC algorithm, including 

the predictive model, objective function and constrains. Section 4.3 presents the results of 

the MATLAB simulation that compared MPC with PI control. Finally, section 4.4 presents a 

discussion and main conclusions. 

4.1. System Considered 

The CAS considered in this Chapter had a variable speed screw compressor, a tank and end 

user equipment. The end user equipment consisted mainly of linear actuators and nozzles 

like the ones considered in Chapter 3. The system had 320 different air consuming tools. 

The CAS had a control system that maintained the system pressure at a predefined set-

point by varying the speed of the compressor and therefore increasing or decreasing flow 

rate exiting the compressor. The compressor was normally driven by an electrical motor, 

however, for simplicity, the motor was not modelled, and the compressor speed was varied 

directly without considering any drive system. 

The compressor model presented in Chapter 3 was not suitable for a variable speed 

compressor. In this Section an alternative compressor model is suggested. Then using the 

demand side model in Chapter 3, air demand profile was generated. Finally, the tank model 

presented in Chapter 3 was modified to accommodate the new compressor model. 

4.1.1. Screw Compressor Model 

Screw compressors are positive displacement compressors that compress a gas by 

decreasing its volume within a compression chamber. Figure 4.1 shows a cross section of 

typical screw compressor. Two screws that rotate in opposite directions are arranged inside 

a casing, which has a gas inlet and gas discharge at opposite ends (Bloch, 2006). The screws 

or rotors were categorised as either male or female. The male rotor contains shapes, known 

as lobes, extending in the radial direction, while the female rotor contains grooving knows 

as interlobes. 

Describing the performance of a screw compressor using physics-based equations required 

solving a set of differential equations that coupled thermodynamic properties, fluid flow 
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characteristics and machine geometry. Stosic et al. (2005) published a book on modelling 

screw compressors and described their performance.  

 

Figure 4. 1: Cross sectional image of a typical rotary screw compressor (Bloch, 2006) 

The research in this Dissertation did not develop a physical based model for a screw 

compressor, instead an empirical model was created. Stosic (1998) presented the results 

of modelling a screw compressor whose capacity was regulated by varying the compressor 

shaft speed. Figure 4.2 shows the results reported for compressor discharge flow as a 

function of compressor speed, while Figure 4.3 shows power consumption at different 

compressor speed and air discharge pressures. The results published by Stosic (1998) were 

used to develop empirical expressions describing air discharge volume and power 

consumption as a function of compressor speed and air discharge pressure. The obtained 

expression for flow disŎƘŀǊƎŜŘ ŦǊƻƳ ǘƘŜ ŎƻƳǇǊŜǎǎƻǊ ΨvinΩ ŀǎ ŀ ŦǳƴŎǘƛƻƴ ƻŦ ŎƻƳǇǊŜǎǎƻǊ ǎǇŜŜŘ 

Ψ̟Ω ƛǎ ƎƛǾŜƴ ƛƴ 9ǉǳŀǘƛƻƴ 4.1. 

ὗ  πȢππρτ πȢρψ 

Equation 4. 1 

The linear best fit line is shown in Figure 4.2 alongside the simulated data from (Stosic, 

1998). Similarly, a second order polynomial was obtained from fitting the compressor 

ǇƻǿŜǊ ŎƻƴǎǳƳǇǘƛƻƴ ΨΩ̡ ŀǎ ŀ ŦǳƴŎǘƛƻƴ ƻŦ ŎƻƳǇǊŜǎǎƻǊ ǎǇŜŜŘ ΨΩ̟ ŀƴŘ ŀƛǊ ŘƛǎŎƘŀǊƎŜ ǇǊŜǎǎǳǊŜ 

ΨtΩΦ ¢Ƙe polynomial is given by Equation 4.2 and is plotted as a surface plot in Figure 4.3. 
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Equation 4.2 was used to estimate the power consumed by the compressor for a given 

speed and discharge pressure. 

 ὖȟ πȢπψτςρὖ πȢπππυτςψὖ ρȢυςψὖ πȢππσσφφ χȢχςρ 

Equation 4. 2 

 

Figure 4. 2: Data for flow as a function of compressor speed and corresponding linear fit 

 

Figure 4. 3: Data for power consumption as a function of pressure and flow and corresponding 
best fit surface plot 
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4.1.2. Air Demand 

The air demand over a specific period was generated with the demand side model 

proposed in Chapter 3. 320 air consuming tools were assumed. A tool schedule that 

resulted in an air demand profile that fluctuated considerably was assumed. The obtained 

air demand over a period of 800 seconds is shown in Figure 4.4. 
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Figure 4. 4: Air demand profile obtained with demand side model presented in Chapter 3 

The fluctuating air demand profile was considered since a variable speed compressor was 

more suitable for fluctuating demand whereas a fixed speed compressor was better suited 

to a more stable demand profile. 

The air demand profile was used in an MPC controller to make predictions over the future 

state of the system. In previous studies that considered an MPC for a CAS, the air demand 

profile was either assumed, such as in (Quartarone et al., 2013), or generated using 

historical data, such as in (Asl, 2018). The research in this Dissertation generated the air 

demand profile using an analytical model. 
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4.1.3. Tank Model 

A model for a compressed air tank was presented in Chapter 3. In this Chapter, the same 

model is used, however the mass of air flowing into the tank was replaced with the 

expression in Equation 4.1, which modelled compressed air produced by the screw 

ŎƻƳǇǊŜǎǎƻǊΦ !ǎǎǳƳƛƴƎ ŀƛǊ ōŜƘŀǾŜŘ ŀǎ ŀƴ ƛŘŜŀƭ ƎŀǎΣ ǘƘŜ ǇǊŜǎǎǳǊŜ ƻŦ ŀƛǊ ƛƴ ŀ ǘŀƴƪ ΨttankΩ ŀǘ ŀƴ 

ƛƴǎǘŀƴǘ ΨƪΩ ǿŀǎ ŜǎǘƛƳŀǘŜŘ ǿƛǘƘ 9ǉǳŀǘƛƻƴ 4.3. 

ὖ Ὧ
ὙὝ

ὠ
ὓ Ὧ 

Equation 4. 3 

²ƘŜǊŜ ΨwΩ ƛǎ ǘƘŜ ǎǇŜŎƛŦƛŎ Ǝŀǎ Ŏƻƴǎǘŀƴǘ ƻŦ ŀƛǊΣ Ψ¢Ω ƛǎ ŀƛǊ ǘŜƳǇŜǊŀǘǳǊŜΣ Ψ±Ω ƛǎ ǘŀƴƪ ǾƻƭǳƳŜ ŀƴŘ 

ΨaairΩ ƛǎ ǘƘŜ ǘƻǘŀƭ Ƴŀǎǎ ƻŦ ŀƛǊ ƛƴǎƛŘŜ ǘƘŜ ǘŀƴƪ ŀǘ ŀ ǘƛƳŜ ƛƴǎǘŀƴǘ ΨƪΩΦ ¢ƘŜ ŎƘŀƴƎŜ ƻŦ pressure in 

ǘƘŜ ǘŀƴƪ ΨɲPtankΩ ŘŜǇŜƴŘŜŘ Ƴŀƛƴƭȅ ƻƴ Ƙƻǿ ǘƘŜ Ƴŀǎǎ ƻŦ ŀƛǊ ƛƴǎƛŘŜ ǘƘŜ ǘŀƴƪ ŎƘŀƴƎŜŘΣ ǎƛƴŎŜ 

tank volume, specific gas constant and air temperature were assumed constant. The mass 

of air inside the tank was a function of air flowing into and out of the tank. The change of 

ǇǊŜǎǎǳǊŜ ƛƴ ǘƘŜ ǘŀƴƪ ΨɲPtankΩ ǿŀǎ ƻōǘŀƛƴŜŘ ǿƛǘƘ 9ǉǳŀǘƛƻƴ 4.4. 

Ўὖ
ὙὝ

ὠ
” ὗ ὗ  

Equation 4. 4 

²ƘŜǊŜ ΨvinΩ ŀƴŘ ΨvoutΩ ŎƻǊǊŜǎǇƻƴŘ ǘƻ ǘƘŜ ǾƻƭǳƳŜ Ŧƭƻǿ ǊŀǘŜ ŜƴǘŜǊƛƴƎ ŀƴŘ exiting the tank, 

ǊŜǎǇŜŎǘƛǾŜƭȅΦ ΨáirΩ ƛǎ ǘƘŜ ŘŜƴǎƛǘȅ ƻŦ ŀƛǊ ŀǘ ǎǘŀƴŘŀǊŘ ŎƻƴŘƛǘƛƻƴǎ ό¢ŜƳǇŜǊŀǘǳǊŜ ƻŦ нр/o and 

ǇǊŜǎǎǳǊŜ ƻŦ м ŀǘƳύΦ ¢ƘŜ ǾƻƭǳƳŜ Ŧƭƻǿ ǊŀǘŜ ƭŜŀǾƛƴƎ ǘƘŜ ǘŀƴƪ ΨvoutΩ ǿŀǎ ƻōǘŀƛƴŜŘ ŦǊƻƳ ǘƘŜ ŀƛǊ 

demand profile discussed earlier. The volume flow rate eƴǘŜǊƛƴƎ ǘƘŜ ǘŀƴƪ ΨvinΩ ǿŀǎ ƻōǘŀƛƴŜŘ 

with Equation 4.мΦ wŜǇƭŀŎƛƴƎ ǘƘŜ ŜȄǇǊŜǎǎƛƻƴ ŦƻǊ ΨvinΩ ƛƴ 9ǉǳŀǘƛƻƴ 4.4 resulted in Equation 

4.5. 

Ўὖ
πȢππρτὙὝ

ὠ
” 

πȢρψὙὝ

ὠ
”

ὙὝ

ὠ
” ὗ  

Equation 4. 5 

When ǘƘŜ ǘŀƴƪ ǇǊŜǎǎǳǊŜ ΨttankΩ ŀƴŘ ǘƘŜ ŎƘŀƴƎŜ ƛƴ ǘŀƴƪ ǇǊŜǎǎǳǊŜ ΨɲPtankΩ ŀǘ ŀ ǘƛƳŜ ƛƴǎǘŀƴǘ ΨƪΩ 

were ƪƴƻǿƴΣ ǘƘŜ ǘŀƴƪ ǇǊŜǎǎǳǊŜ ŀǘ ǘƘŜ ƴŜȄǘ ǘƛƳŜ ƛƴǎǘŀƴǘ ΨƪҌмΩ ǿŀǎ ŘŜǘŜǊƳƛƴŜŘ ǿƛǘƘ 9ǉǳŀǘƛƻƴ 

4.6. The tank model in Equation 4.6 was used to formulate the predictive model in the MPC.  
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ὖ Ὧ ρ ὖ Ὧ
πȢππρτὙὝ

ὠ
” Ὧ

πȢρψὙὝ

ὠ
”

ὙὝ

ὠ
” ὗ Ὧ 

Equation 4. 6 

4.2. Model Predictive Control (MPC) 

The Basic idea of an MPC is that if a reasonably accurate model of a process is available, 

model and existing measurements could be used to predict future values of the controlled 

variable. Then appropriate changes in the manipulated variable could be calculated (Seborg 

et al., 2017) . The changes to the manipulated variable are coordinated after considering 

the input-output relationship given by the process model. 

Another advantage of using an MPC is that it captures the dynamic interactions between 

input, output and disturbances through a predictive model. This allows the controller to 

adjust control actions so that performance remains within a desired range. In addition to 

that, constraints on the input, input rate change and output are considered in a systematic 

manner (Seborg et al., 2017). 

In the research considered in this Dissertation, the CAS pressure was the controlled variable 

and the compressor speed was the manipulated variable. Compressor model, air demand 

profile and tank model were used to predict performance. Given the air demand, MPC 

manipulated compressor speed to optimise compressed air generation so that tank 

pressure remained as close as possible to a predefined pressure set point. Constraints 

associated with physical limitations of equipment, such as maximum and minimum 

compressor speed and acceleration, and with restrictions on process requirements, such 

as maximum and minimum allowable system pressure were considered.  

In this section, an MPC controller for a CAS is presented. The different elements that 

formulate an MPC are discussed. A discrete state space predictive model is formulated and 

an objective function that allows measuring the performance of the controller is presented. 

Constraints associated with physical limitations of systems are discussed. A more detailed 

and explicit formulation of the MPC elements is provided in Appendix B. 
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4.2.1. Formation of a Predictive Model 

Formulating the predictive model of an MPC using a discrete state space approach was 

convenient since a discrete state space model was effectively a one step ahead prediction 

model (Rossiter, 2018)Φ DƛǾŜƴ ǘƘŜ ǎǘŀǘŜ ΨȄΩ ŀƴŘ ǘƘŜ ƛƴǇǳǘ ΨǳΩ ŀǘ ƛƴǎǘŀƴǘ ΨƪΩΣ ǘƘŜ ǎǘŀǘŜ ŀǘ ƛƴǎǘŀƴǘ 

ΨƪҌмΩ ŎƻǳƭŘ ōŜ ǇǊŜŘƛŎǘŜŘΦ Rossiter (2018) presented a general form of a discrete state space 

model as given by Equations 4.7 and 4.8, which correspond to the state and output 

equations, respectively. 

ὼὯ ρ ὃὼὯ ὄόὯ 

Equation 4. 7 

ώὯ ὅὼὯ 

Equation 4. 8 

Where ΨȄΩ ƛǎ ǘƘŜ ǎǘŀǘŜΣ ΨȅΩ ƛǎ ǘƘŜ ƻǳǘǇǳǘΣ ΨǳΩ ƛǎ ǘƘŜ ƛƴǇǳǘΣ Ψ!Ω ƛǎ ǘƘŜ ǎǘŀǘŜ ƳŀǘǊƛȄΣ Ψ.Ω ƛǎ ǘƘŜ ƛƴǇǳǘ 

ƳŀǘǊƛȄ ŀƴŘ Ψ/Ω ƛǎ ǘƘŜ ƻǳǘǇǳǘ ƳŀǘǊƛȄΦ ΨƪΩ ŎƻǊǊŜǎǇƻƴŘǎ ǘƻ ǘƘŜ present time instant. In the 

research considered in ǘƘƛǎ 5ƛǎǎŜǊǘŀǘƛƻƴΣ ǘƘŜ ǎǘŀǘŜ ǾŀǊƛŀōƭŜ ΨȄΩ ŀƴŘ ǘƘŜ ƻǳǘǇǳǘ ǾŀǊƛŀōƭŜ ΨȅΩ 

ŎƻǊǊŜǎǇƻƴŘŜŘ ǘƻ ǘƘŜ ǘŀƴƪ ǇǊŜǎǎǳǊŜ ΨttankΩ ǿƘƛƭŜ ǘƘŜ ƛƴǇǳǘ ǾŀǊƛŀōƭŜ ΨǳΩ ŎƻǊǊŜǎǇƻƴŘŜŘ ǘƻ ǘƘŜ 

ŎƻƳǇǊŜǎǎƻǊ ǎǇŜŜŘ ΨΩ̟Φ 9ȄǇǊŜǎǎƛƴƎ ǘƘŜ ǘŀƴƪ ƳƻŘŜƭ ƻŦ 9ǉǳŀǘƛƻƴ 4.6 in its state space format 

results in Equations 4.9 and 4.10.  

ὖὯ ρ ὖὯ
πȢππρτ” ὙὝ

ὠ
Ὧ

” ὙὝ

ὠ
ὗ Ὧ

πȢρψ” ὙὝ

ὠ
 

Equation 4. 9 

ὖὯ ὖὯ 

Equation 4. 10 

Comparing Equations 4.9 and 4.10 with the general state space model given by Equations 

4.8 and 4.тΣ ǘƘŜ ǎǘŀǘŜ ƳŀǘǊƛȄ Ψ!ΩΣ ƛƴǇǳǘ ƳŀǘǊƛȄ Ψ.Ω ŀƴŘ ƻǳǘǇǳǘ ƳŀǘǊƛȄ Ψ/Ω ǿŜǊŜ ŘŜŘǳŎŜŘΦ 

aƻǊŜƻǾŜǊΣ ŀ ǾŜŎǘƻǊ ΨŘΩ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ ǾƻƭǳƳŜǘǊƛŎ Ŧƭƻǿ ƻŦ ŀƛǊ ƭŜŀǾƛƴƎ ǘƘŜ ǘŀƴƪ ƛƴ 

addition to the constant term in Equation 4.6 was also defined. The resulting values or 

ŜȄǇǊŜǎǎƛƻƴǎ ŦƻǊ ƳŀǘǊƛŎŜǎ Ψ!ΩΣ Ψ.Ω ŀƴŘ Ψ/ΩΣ ŀƴŘ ǾŜŎǘƻǊ ΨŘΩ ŀǊŜ ǎǳƳƳŀǊƛǎŜŘ ƛƴ ¢ŀōƭŜ пΦмΦ 
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Table 4. 1: Results for state ƳŀǘǊƛȄ Ψ!ΩΣ ƛƴǇǳǘ ƳŀǘǊƛȄ Ψ.Ω, output ƳŀǘǊƛȄ Ψ/Ω ŀƴŘ ǾŜŎǘƻǊ ΨŘΩ 

! ρ # ρ 

"
πȢππρτʍ24

6
 Ä

ʍ 24

6
1 Ë

πȢρψʍ 24

6
 

 

In MPC, it was convenient to express the state space model and consequently predictions 

in term of input change Ψҟ Ω. This was achieved by introducing a minor change to the state 

space model and defining the input variable ΨΩ as an additional state variable. The input 

change was the difference between the absolute value of the input at samples (k) and (k-

1), as shown in Equation 4.11. 

ЎὯ Ὧ Ὧ ρ 

Equation 4. 11 

A new state space model representation, commonly referred to as the augmented state 

space model was obtained as shown in Equations 4.12 and 4.13. 

ὖὯ ρ
Ὧ

ὃ
π
ὄ
ρ

ὖὯ
Ὧ ρ

ὄ
ρ
ЎὯ

ρ
π
ὨὯ 

Equation 4. 12 

ὖὯ ὅ π
ὖὯ
Ὧ ρ

 

Equation 4. 13 

Where ΨAΩ, ΨBΩ, Ψ/ΩΣ and ΨdΩ were defined earlier and shown in Table 4.1. The matrices ΨAaΩ, 

ΨBaΩ and ΨCaΩ that correspond to the augmented state space model are defined in Table 4.2.  

Table 4. 2: wŜǎǳƭǘƛƴƎ ƳŀǘǊƛŎŜǎ Ψ!aΩΣ Ψ.aΩ ŀƴŘ Ψ/aΩ ǘƘŀǘ ŎƻǊǊŜǎǇƻƴŘ ǘƻ ǘƘŜ ŀǳƎƳŜƴǘŜŘ ǎǘŀǘŜ ǎǇŀŎŜ 
model 

!
! "
π ρ

 # # π 

"
"
ρ
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The augmented model given by Equations 4.12 and 4.13 was used to predict the future 

value of the tank pressure. DƛǾŜƴ ǘƘŜ ǎȅǎǘŜƳ ǇǊŜǎǎǳǊŜ ŀǘ ŀƴ ƛƴǎǘŀƴǘ ΨkΩΣ ǎȅǎǘŜƳ ǇǊŜǎǎǳǊŜ ŦƻǊ 

ǘƘŜ ƴŜȄǘ ΨƴΩ time steps was predicted. A more explicit model showing the predictive model 

ŦƻǊ ǘƘŜ ƴŜȄǘ ΨƴΩ ǘƛƳŜ ǎǘŜǇǎ ƛǎ ƎƛǾŜƴ ƛƴ !ǇǇŜƴŘƛȄ .Φ  

4.2.2. Function to Measure Controller Performance 

The objective function provided a numerical value that measured controller performance 

(Rossiter, 2018). The objective function was also referred to as performance index or cost 

function. The control action, i.e., compressor speed, was typically obtained by solving an 

optimisation problem involving the objective function and system specific constraints. 

Typically, the objective function ΨWΩ ǿŀs based on a quadratic measure since these were 

easier to work with (Rossiter, 2018) and it included sums of squares of terms linked to the 

output, input and input increment. Although several choices were possible, the most 

common objective function used in MPC is shown in Equation 4.14. 

ὐ Ὑ ὖO ‗ЎO  

Equation 4. 14 

Where ΨRΩ ƛǎ ǘƘŜ ŘŜǎƛǊŜŘ ǇǊŜǎǎǳǊŜ ǎŜǘ Ǉƻƛƴǘ ŦƻǊ ǘƘŜ ƴŜȄǘ ΨƴΩ ǘƛƳŜ ǎǘŜǇǎ, ΨPΩ ƛǎ ǘƘŜ ǇǊŜŘƛŎǘŜŘ 

pressure ƻǾŜǊ ǘƘŜ ƴŜȄǘ ǘƛƳŜ ǎǘŜǇ ΨƪΩ and Ψҟ Ω ŀǊŜ ǘƘŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ƛƴŎǊŜƳŜƴǘǎ ǘƻ ǘƘŜ 

ŎƻƳǇǊŜǎǎƻǊ ǎǇŜŜŘΦ ΨwΩΣ ΨtΩ ŀƴŘ Ψҟ Ω were vectors of size Ψnx1Ω. Ψ˂Ω is a weighting value that 

was assumed equal to one. ¢ƘŜ ǇǊŜŘƛŎǘŜŘ ǎȅǎǘŜƳ ǇǊŜǎǎǳǊŜ ΨtΩ ǿŀǎ ŘŜǘŜǊƳƛƴŜŘ ǳǎƛƴƎ ǘƘŜ 

ǇǊŜŘƛŎǘƛǾŜ ƳƻŘŜƭΣ ǿƘŜǊŜŀǎ ǘƘŜ ŘŜǎƛǊŜŘ ǇǊŜǎǎǳǊŜ ǎŜǘ Ǉƻƛƴǘ ΨwΩ ǿŜǊŜ ǳǎŜǊ ŘŜŦƛƴŜŘΦ The 

changes to compressor speed Ψҟ Ω were determined using an optimisation algorithm that 

minimised the objective function ΨJΩ ǘŀƪƛƴƎ ƛƴǘƻ ŎƻƴǎƛŘŜǊŀǘƛƻƴ ǎȅǎǘŜƳ ŎƻƴǎǘǊŀƛƴǎΣ ǿƘƛŎƘ ŀǊŜ 

discussed in the next Sub-Section. 

4.2.3. Constraints 

One of the main advantages of MPC was its ability to handle constraints in a systematic 

manner. Constraints were placed over the system pressure, compressor speed and 

compressor acceleration (i.e., rate of speed change). Considering constraints on 

compressor speed was necessary since all actuators had restrictions on their maximum and 

minimum values and on how quickly their value could change. Also, processes were 
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required to operate within specified limits, therefore justifying constraints on system 

pressure. 

Constrains on compressor speed were straightforward. The compressor was bounded to 

operate between a maximum Ψ̟maxΩ and a minimum speed Ψ̟minΩΦ Lƴ ŀŘŘƛǘƛƻƴ ǘƻ ǘƘŀǘΣ there 

was a limit on how much the compressor could accelerate or decelerate its speed. An upper 

Ψҟ maxΩ and lower Ψҟ minΩ limit for the compressor acceleration ΨҟΩ ǿŀǎ ŀǎǎǳƳŜŘΦ 

CAS were normally designed to operate within specific pressure limits. Increasing the 

pressure beyond what was required caused energy waste, artificial demand and potential 

operational risks. Decreasing the pressure below the minimum requirements interrupted 

the normal operation of end user equipment. Constraints on the pressure were set so that 

it remained between a maximum ΨtmaxΩ and minimum pressure limit ΨtminΩ. 

4.3. Simulation Results 

The performance of a variable speed CAS with the MPC controller defined earlier was 

evaluated through a MATLAB simulation. The compressed air demand profile defined in 

Section 4.1.2 was used. The CAS performance with MPC was compared to a CAS with PI 

control for the same demand profile. It was assumed that for end-user equipment to 

operate properly, the air should be supplied at a minimum pressure of (Pmin=7 bar). Other 

parameters are defined in Table 4.3. Modelling and tuning of the PI controller are discussed 

in Appendix C. 

Figure 4.5 shows simulation results for system pressure when a PI and an MPC were used. 

Pressure when MPC was used is shown as a solid line while pressure with a PI is shown as 

a dashed line. The set-point for each controller is shown as a dotted line. Results indicated 

that the pressure when the PI controller was used fluctuated considerably around the set-

point (7.15 Bar). The pressure fluctuation was caused by the fluctuation demand profile. 

The pressure when an MPC was used remained close or slightly higher than its set-point, 

regardless of large fluctuations in compressed air demand. 
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Table 4. 3: Parameters used in MATLAB Simulation 

Variable Value Definition (Unit) 

Rair 287 Air Gas Constant (J/KgK) 

Tair 293 Air Temperature (K) 

Vtank 3 Tank Volume (m3) 

n 30 MPC Prediction Horizon (Time samples) 

ҟ max 35 Maximum Compressor Acceleration (RPM/second) 

ҟ min -35 Maximum Compressor Deceleration (RPM/second) 

max 7000 Maximum Compressor speed (RPM) 

min 0 Minimum Compressor speed (RPM) 

Pmax 8 Maximum System Pressure (Bar) 

Pmin 7 Minimum system Pressure (Bar) 
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Figure 4. 5: System pressure when PI and MPC were used 
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Figure 4.6 shows flow from compressor when MPC and PI were used alongside air demand. 

The flow when PI was used is shown as a dotted line and the flow when MPC was used is 

shown as solid line. Air demand profile is shown as a dashed line. The flow when MPC was 

used and the air demand profile appear very close to each other. 
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Figure 4. 6: Flow for PI and MPC cases plotted alongside compressed air demand 

Results indicate that the MPC matched air demand better than PI control. Rapid and large 

ŎƘŀƴƎŜǎ όƛƴŎǊŜŀǎŜ ƻǊ ŘŜŎǊŜŀǎŜύ ƛƴ ŘŜƳŀƴŘ ǿŜǊŜ ǘƘŜ Ƴƻǎǘ ΨǇǊƻōƭŜƳŀǘƛŎΩ ŦƻǊ tL ŎƻƴǘǊƻƭΦ CƻǊ 

example, at time 50 to 150 seconds, 250 to 350 seconds, and 650 to 750 seconds the 

demand decreased sharply. Since the PI required time to react to this decrease in demand, 

system pressure increased significantly above the set-point (see Figure 4.5 at the 

mentioned time instances). Similarly, when flow demand increased quickly (time instance 

350 to 450 seconds), the PI controller reaction time led system pressure to drop close to 

minimum allowable pressure (see Figure 4.5 time 350-450 seconds). 



Chapter 4 

Page 68 of 252 
 

When MPC was used, compressed air supply perfectly matched compressed air demand, 

despite large and sudden fluctuations, which the controller anticipated through predictions 

and therefore adjusted the flow accordingly.  

Simulation results for the energy consumed by the compressor to meet air demand with a 

PI and MPC is shown in Figure 4.7. Results indicated that over the course of the simulation, 

the compressor consumed slightly less energy with an MPC compared to a PI control. For 

the MPC case, by the end of the simulation, the compressor had consumed (5.16 KWh) 

while with the PI control it had consumed (5.26 KWh). This implied that the compressor 

with MPC consumed 1.86% less energy than the compressor with PI control. This result is 

in line with results found by Quartarone et al. (2013) where energy savings from MPC 

compared to PI control were 3.56%. 
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Figure 4. 7: Energy Consumed when MPC and PI were used 
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4.4. Discussion and Conclusion 

This Chapter investigated and compared PI and MPC control in a CAS using a modelling and 

simulation approach. The demand side model presented in Chapter 3 was used to forecast 

compressed air demand. MPC and PI control were usually installed for variable speed 

compressors. The compressor model presented in Chapter 3 only considered fixed speed 

compressors. In this Chapter, a model for a variable speed compressor was created by 

fitting expressions for compressor flow output and power consumption. Data for 

compressor performance at different speeds and pressure outputs was obtained from 

(Stosic, 1998). 

The MPC control algorithm consisted of a prediction model to estimate system pressure 

within a prediction horizon ΨnΩ, an objective function and systematically defined 

constraints. A state space modelling approach was adopted in developing the control 

algorithm. Control actions were determined by solving a constrained quadratic 

optimisation problem. 

The CAS performance with an MPC was evaluated using a MATLAB simulation and 

compared to PI control. Results indicated that MPC maintained the system at its optimal 

pressure, despite high and quick variations in air demand. The PI controller had to operate 

at a higher pressure setting to avoid system pressure falling below a minimum allowable 

pressure if a sudden and large increase in demand occurred. Operating at a slightly lower 

pressure, allowed MPC to save 1.86% energy compared to PI control. Simulation results 

showed that the main advantages of using MPC in CAS were pressure stability, reduced 

system pressure and a small reduction in energy consumption. 
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Chapter 5: Supply Side Pressure Monitoring 

This Chapter investigates the viability and usability of monitoring supply side pressure of a 

CAS using a Discrete Wavelet Transform (DWT) as a signal processing tool. A typical CAS is 

divided into a supply and a demand side. At some point in the system, usually after the 

tank, a pressure regulator supplies end users with compressed air at a stable pressure. The 

pressure upstream of the regulation point is referred to in this Dissertation as the supply 

side pressure, while the pressure downstream of the regulator is referred to as the demand 

side pressure.  

The supply side pressure in a CAS depended on several factors including flow rate from 

compressor, flow rate to end user equipment and compressor control strategy. When a 

load/unload or on/off compressor control was used, the supply side pressure fluctuated 

between two predefined upper and lower pressure limits. This resulted in a pressure signal 

resembling a sawtooth waveform. In addition to that, consumption of compressed air in 

the demand side led to a variation in the supply side pressure in a manner that depended 

on the properties of the air consuming tools.  

The research work covered in this Chapter investigated the extraction of information from 

the supply side pressure signal. The extracted information provided knowledge regarding 

system operation and could be used for condition monitoring and fault detection. The 

wavelet transform was used as multiresolution signal analysis tool because the pressure 

signal simultaneously contained events happening at a low frequency (i.e., pressure 

charging and discharging) and at a high frequency (i.e., pressure drop due to a tool 

activation). 

This Chapter is divided as follows: Section 5.1 introduces and reviews the wavelet 

transform theory. Section 5.2 discusses the different experiments and the results obtained 

when the continuous wavelet transform was used. Section 5.3 discusses experiments and 

results when the discrete wavelet transform was used. Finally, Section 5.4 discusses results 

obtained and presents main conclusions. 
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5.1. Wavelet Transform Theory 

Monitoring of machines and process working conditions has usually been achieved by 

analysing signals collected by sensors and presented in the form of a time-series (Gao & 

Yan, 2011). Interesting information was not always observable in the time domain. It was 

common practice to apply a signal processing technique to transform the signal from its 

time domain representation into another representation that revealed information or 

characteristics of interest. 

The most widely applied signal processing tool in science and engineering has been the 

Fourier Transform (Gao & Yan, 2011). The Fourier Transform reveals the frequency 

composition of a time domain signal by transforming it into the frequency domain. A major 

limitation of the Fourier Transform was that it did not reveal how a signalΩs frequency 

content changed over time. That made the Fourier transform unsuitable for analysing non-

stationary signals. 

The Short-time Fourier Transform (STFT) was introduced to overcome this limitation. The 

process of computing the STFT of a signal ΨȄόǘύΩ is illustrated in Figure 5.1 (Gao & Yan, 2011).  

 

Figure 5. 1: Illustration of short time Fourier transform on a ǎƛƎƴŀƭ ΨȄόǘύΩ όDŀƻ ϧ ¸ŀƴΣ нлммύ 
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¢ƘŜ {¢C¢ ƛƴǘǊƻŘǳŎŜŘ ŀ ǿƛƴŘƻǿ ŦǳƴŎǘƛƻƴ ΨƎόǘύΩ ǘƘŀǘ Ŏǳǘ ǘƘŜ ǎƛƎƴŀƭ ƛƴǘƻ ǎŜƎƳŜƴǘǎ ǘƘŀǘ ǿŜǊŜ 

short enough to be considered stationary. The window function was moved by a small-time 

ǎǘŜǇ ΨΩ̱ ƻǾŜǊ ǘƘŜ ǘƛƳŜ ǎŜǊƛŜǎ ŀƴŘ ŀ ǘƛƳŜ ƭƻŎŀƭised Fourier transform was performed. This 

was done until the whole length of the signal was covered. The result was a 2D 

representation of the signal: the frequency content within each window was revealed.  

The main limitation of the STFT was its time-frequency resolution, which depended mainly 

on the width of the window function ΨƎόǘύΩ. A single window size had to be selected for 

analysing a signal, which meant the time frequency resolution would be fixed throughout 

the analysis. This meant the STFT had major limitations when analysing signals containing 

patterns of different frequencies. High frequency components normally lasted for shorter 

time durations, and a narrower window was necessary to obtain a good time resolution. 

However, a narrow window resulted in a poorer frequency resolution when analysing low 

frequency components. On the other hand, low frequency components normally lasted for 

longer times, and a wide window was required to obtain a good frequency resolution, 

however that was at the cost of time resolution (Polikar, 1999). 

The limitations of the STFT motivated researchers to develop tools for analysing signals 

with different frequency components. The wavelet transform was one of those tools. 

Unlike the STFT, the wavelet transforms allowed window size variation to analyse the 

different frequency components contained within a signal. This was achieved through a 

ǇǊƻŎŜǎǎ ƻŦ ǎŎŀƭƛƴƎ ŀƴŘ ǎƘƛŦǘƛƴƎ ŀ ōŀǎŜ ŦǳƴŎǘƛƻƴ ŎŀƭƭŜŘ ǘƘŜ ƳƻǘƘŜǊ ǿŀǾŜƭŜǘ ˕όǘύ (Addison, 

2017). Scaling expanded or compressed the wavelet function and was equivalent to varying 

the width of the analysing window function, whereas shifting the wavelet allowed varying 

its location along the time axis. Scale was inversely proportional to frequency. Analysing 

the signal with a large-scale wavelet revealed global features (low frequency components), 

whereas small scales revealed local features (high frequency components). 

Three different types of wavelet transform are briefly discussed in Sections 5.1.1, 5.1.2 and 

5.1.3: the Continuous Wavelet Transforms (CWT); the Discrete Wavelet Transforms (DWT); 

and the Maximal Overlap Discrete Wavelet Transform (MODWT). A more detailed and 

comprehensive treatment of the wavelet transform can be found in Percival and Walden 

(2000), Addison (2017) and Daubechies (1995). 
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5.1.1. Continuous Wavelet Transform 

A wavelet transform is computed at various locations on the signal and for various scales. 

In the continuous wavelet transform, the location and scales at which the transform is 

calculated are not selected arbitrary but over a continuous range.  

The continuous wavelet transform of a signal Ψx(t)Ω was calculated using Equation 5.1. 

ὅὡὝ ίȟ†
ρ

Ѝί
ὼὸ

ὸ †

ί
Ὠὸ 

Equation 5. 1 

Where 

CWT : Continuous Wavelet Transform Coefficients 

s : Scaling parameter, s>0 

 ̱ : Shifting Parameter 

x(t) : Time signal 

˕όǘύ : wavelet function 

The process of computing a wavelet transform is illustrated in Figure 5.2 (Gao & Yan, 2011).  

 

Figure 5. 2: Graphical Illustration of continuous wavelet transform computation  
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Figure 5.2 shows a function Ψx(t)Ω whose wavelet transform is to be computed. Initially, the 

base wavelet was shifted along the time axis to compute the wavelet transform at different 

time locations within the signal for a specific scale ΨǎΩ. Once the whole length of the time 

axis was covered, the scale was increased, and the shifting process repeated. Scaling and 

shifting continued until the required range of scales had been covered. In Equation 5.1, the 

wavelet function Ψ̞ όǘύΩ was assumed real. If it was complex, the complex conjugate of Ψ̞ όǘύΩ 

would be used instead. 

In practice, the continuous wavelet transform was computed with a computer, where the 

scale and shift could not be varied continuously. Instead, the shift and scale were varied by 

sufficiently small steps so that the transform could be considered continuous. The major 

difference between the CWT and DWT was how the scale and shift parameters were 

discretised. The CWT imposed a finer discretisation compared to the DWT.  

For slowly oscillating components within a signal, a continuous wavelet transform resulted 

in good frequency but poor time localisation. On the contrary, for high frequency events 

that tended to be short lived, a continuous wavelet transform resulted in good time but 

poor frequency localisation. Most signals available in nature, including the pressure signal 

of CAS, tend to be dominated by low frequency components with occasional short-lived 

high frequency events. This has made the continuous wavelet transform popular in signal 

processing.  

5.2.1. Discrete Wavelet Transform 

Many coefficients obtained with the CWT could be redundant, and a more succinct version 

of the CWT was desirable. The DWT was an attempt to subsample the CWT in a way that 

preserved its key features. Instead of the fine discretisation imposed by the CWT, the DWT 

only considered scales of the form 2j-1 όƧҐмΣнΣоΧύΦ ¢Ƙƛǎ was a dyadic sampling of the scales. 

For each dyadic scale of the form 2j-1, the DWT was obtained at times separated by 2j 

samples. 

¢ƻ ǇŜǊŦƻǊƳ 5²¢ ƻƴ ŀ ǘƛƳŜ ǎŜǊƛŜǎ Ψ·tΩΣ ǘƘŜ ǎŜǊƛŜǎ ǎŀƳǇƭŜ ǎƛȊŜ ΨbΩ ƘŀŘ to be a power of two, 

i.e. N=2JΦ ¢ƘŜ 5²¢ ŎƻŜŦŦƛŎƛŜƴǘǎ Ψ5Ω ƻŦ ŀ ǘƛƳŜ ǎŜǊƛŜǎ Ψ·tΩ ǿŜǊŜ ƻōǘŀƛƴŜŘ ǘƘǊƻǳƎƘ ŀ ƳŀǘǊƛȄ 
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ƳǳƭǘƛǇƭƛŎŀǘƛƻƴ ƛƴǾƻƭǾƛƴƎ ŀ 5²¢ ƳŀǘǊƛȄ Ψ²Ω ŀƴŘ Ψ·tΩΣ ŀǎ ǎƘƻǿƴ ƛƴ 9ǉǳŀǘƛƻƴ 5.2. The DWT 

ƳŀǘǊƛȄ Ψ²Ω ŎƻƴǘŀƛƴŜŘ ǘƘŜ ǎŎŀƭŜŘ ŀƴŘ ǎƘƛŦǘŜŘ ŘƛǎŎǊŜǘƛǎŜŘ ǾŜǊǎƛƻƴǎ ƻŦ ǘƘŜ ǿŀǾŜƭŜǘǎΦ 

Ὀ ὡὢ 

Equation 5. 2 

For a time series Ψ·tΩ ƻŦ ǎƛȊŜ ΨbΩΣ Ψ²Ω ǿŀǎ ŀ ƳŀǘǊƛȄ ƻŦ ǎƛȊŜ ΨbȄbΩ ŀƴŘ ǘƘŜ ǊŜǎǳƭǘƛƴƎ 5²¢ 

ŎƻŜŦŦƛŎƛŜƴǘ ǾŜŎǘƻǊ Ψ5Ω ƘŀŘ ŀ ǎƛȊŜ ΨbȄмΩΦ The resulting DWT coefficient was arranged such that 

the first ΨN/2Ω DWT coefficients were associated with unit scale Ψj=1Ω, the next ΨN/4Ω 

coefficients corresponded to a scale of 2 (j=2) and so forth until coefficients DN-3 and DN-2, 

associated with a scale of ΨN/4Ω; The coefficient ΨDN-1Ω ǿŀs associated with a scale of ΨN/2Ω 

and finally coefficient ΨDNΩ was proportional to the average of all the data. 

When the number of samples in a time series was large, Equation 5.2 was computationally 

expensive. An alternative approach for obtaining DWT coefficients was using The pyramid 

algorithm (Percival & Walden, 2000). The pyramid algorithm made use of a wavelet and a 

scaling filter. The wavelet filter ΨIΩ was in practice a high-pass filter with a pass band of 

[1/4<|f|<1/2 ], while the scaling filter ΨDΩ was a low pass filter with pass band of [0<|f|<1/4 ]. 

In the first stage of computing the DWT coefficients of a signal using the pyramid algorithm, 

the signal was circularly filtered with the wavelet and scaling filters, then down sampled by 

2 (i.e. retaining every other sample), resulting in wavelet and scaling coefficients. The first 

ǎǘŀƎŜ ƻŦ ǘƘŜ ǇȅǊŀƳƛŘ ŀƭƎƻǊƛǘƘƳ ŎƻǊǊŜǎǇƻƴŘŜŘ ǘƻ ΨƧҐмΩ ŀƴŘ ŀ ǎŎŀƭŜ ΨǎҐнj-1ҐмΩΦ ¢ƘŜ first stage 

was also referred to as first level decomposition. In the second and subsequent stages, the 

scaling coefficients obtained were similarly filtered and down sampled resulting in new 

wavelet and scaling coefficients. Figure 5.3 shows a diagram illustrating the computation 

of the DWT coefficients ŦƻǊ ŀ ǘƛƳŜ ǎŜǊƛŜǎ Ψ·Ω with the pyramid. The scaling and wavelet 

ŎƻŜŦŦƛŎƛŜƴǘǎ ŀǘ ŜŀŎƘ ŘŜŎƻƳǇƻǎƛǘƛƻƴ ƭŜǾŜƭ ΨƧΩ ŀǊŜ ǊŜŦŜǊǊŜŘ ǘƻ ŀǎ Ψ{jΩ ŀƴŘ Ψ²jΩΣ ǊŜǎǇŜŎǘƛǾŜƭȅΦ ¢ƘŜ 

frequencies retained at each decomposition level are also shown. 

The DWT coefficients could be used to define a Multi Resolution Analysis (MRA) of a signal. 

The MRA decomposed a signal into a set of approximation ΨAsΩ and detail ΨDsΩ coefficients. 

The detail ŎƻŜŦŦƛŎƛŜƴǘǎ ΨDsΩ were related to variations in ΨxΩ at a specific scale, while the 

approximations ΨAsΩ were interpreted as smooth versions of ΨxΩ at a given scale. A signal 
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could be synthesised by adding subsequent details and the final approximation at a specific 

decomposition level. 

One of the limitations when using the DWT was that wavelet and MRA coefficients 

depended critically on the point where signal analysis started. Changing the analysis start 

point could lead to considerable differences in the DWT and MRA coefficients. The 

difference stemmed from the DWT coefficients being computed at predetermined time 

locations, and a change in the starting point of a signal would result in considerably 

different coefficients. The time location of DWT and MRA coefficients did not line up well 

with features of interest in the time series signal, which was not desirable in a pattern 

detection application where the time a specific pattern appeared was of interest. Some of 

the limitations of the DWT were addressed to a great extent by the Maximal Overlap 

Discrete Wavelet Transforms (MODWT). 

 

Figure 5. 3: Illustration of Pyramid algorithm for a signal 'X'. Frequencies retained at each 
decomposition level are also shown 
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5.3.1. Maximal Overlap Discrete Wavelet Transform 

The Maximal Overlap Discrete Wavelet Transform (MODWT) was a modified version of the 

DWT (Percival & Walden, 2000). Because an analysis with the DWT depended critically on 

the starting point or origin for analysis, different DWT and MRA coefficients were obtained 

for patterns that were practically identical in a time series. The choice of MODWT could 

eliminate the impact of the starting point on the analysis. Like the DWT, the MODWT was 

computed using an efficient pyramid algorithm, which was also based on circularly filtering 

the signal with a wavelet and a scaling filter. 

Unlike the DWT, the MODWT did not require the signal size to be a power of 2, and the 

signal could be of any size. For a signal of size ΨNΩ, the MODWT resulted in ΨNΩ wavelet and 

scaling coefficients at each decomposition level ΨƧΩ. The wavelet and scaling coefficients 

computed with the MODWT could also be used to form a multiresolution analysis (MRA). 

However, if the time series was shifted, the details and smooths were shifted by an 

equivalent amount. It was therefore possible to line up MODWT and MRA coefficients with 

features in the original time series in a meaningful manner.  

5.2. Experiments & Results with CWT 

Experiments were performed and data representing the supply pressure was collected and 

analysed. Results showed that the supply pressure contained patterns that could be 

associated with operational events. For example, a compressor switching on would result 

in compressed air supplied into the system, raising its pressure. Once the compressor was 

off, the pressure decreased again. Figure 5.4 shows the results from one of the tests 

measuring the oscillation between a maximum and a minimum pressure limit. The pressure 

signal in Figure 5.4, and subsequent pressure plots in this Chapter, were plotted after their 

DC offset was removed. 

In addition to the trends due to the compressor switching on and off, the supply side 

pressure contained patterns associated with the activation of air consuming tools in the 

pneumatic circuit. Figure 5.5 shows the patterns appearing in the pressure signal due to 

the extension/retraction of a double acting cylinder and switching on a solenoid valve at 
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different times. The patterns happened over shorter periods of time compared to the 

compressor switching on and off. 

 
Figure 5. 4: Supply side pressure oscillation. The DC offset was removed before plotting 

Because different events happened at different frequencies, a multiscale analysis using 

wavelet transform was suitable for the supply pressure signal. Initially, the CWT was used 

for analysis, however the research then moved to consider DWT. The results obtained with 

CWT and DWT are presented and analysed in Sections 5.2 and 5.3 respectively. 

 
Figure 5. 5: Pressure signal with patterns appearing due to tool activation indicated 

In the analysis of the pressure signal with the CWT three different cases were considered 

and analysed. The first case had no tools activated, and the pressure slowly decreased due 

to leaks from connections and other small leaks in the distribution network. In the second 
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case pneumatic tools were activated, leading to decreases in the pressure that appeared 

on the supply pressure signal. Finally, the third case corresponded to data recorded when 

the system had a leaking filter and different compressor control pressure limits. This 

Dissertation labelled the first, second and third cases as Idle, Tool Activated and Faulty case, 

respectively. In the next sub-sections, the analysis of the three different cases with the CWT 

will be discussed. 

5.1.2. Idle Case 

In the Idle case no known faults were present and no tools in the pneumatic circuit were 

activated. The pressure decrease was due to leaks present in the system, while the pressure 

increase was due to the compressor being active. The presence of small and hard to locate 

leaks was not surprising, since a leak rate of 10% or less was considered common (Lawrence 

Berkeley, 2003) . Figure 5.6 shows the pressure signal corresponding to this case.  

 

Figure 5. 6: Pressure signal in the Idle case.  

The compressor switched on when the system pressure decreased by ~ 0.2 bar, causing a 

rapid increase in system pressure. The red circles correspond to filter cleaning pulses. Once 

the high-pressure level was reached, the compressor switched off and the pressure started 

to decrease again. The pressure signal shown in Figure 5.6 was transformed using a CWT, 

and the results are shown as a 3D contour plot in Figure 5.7. 
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Figure 5. 7: Wavelet transform 3D contour plot for idle case. Red circles show high frequency 
components introduced by a compressor switching on 

On the z-axis, wavelet coefficient magnitudes instead of coefficient were plotted to make 

visualisation easier. On the x and y axis, time and frequency are plotted, respectively. The 

Morlet wavelet was used as a mother wavelet. Low frequency components (~ 0.006 Hz) 

had the highest coefficient magnitude and were present throughout signal duration. These 

components corresponded to the overall saw tooth pattern of the signal, which had a 

period of around ~170 seconds corresponding to a frequency of ~0.006 Hz. The compressor 

switching on introduced higher frequency components that are encircled in Figure 5.7 for 

demonstration. These components appeared mainly in the frequency range 0.01-0.2 Hz 

with their magnitude peaking at ~ 0.0075 and disappeared after the compressor had 

switched off. Other high frequency components of low magnitude also appear, but those 

were mainly due to noise in the signal and due to filter cleaning pulses. 

5.2.2. Tool Activation Case 

The CWT of a signal which contained patterns due to tool activation was studied. A double 

acting cylinder and a solenoid valve were used to simulate the activation of pneumatic 

tools. Figure 5.8 shows a pressure signal during which the valve and the cylinder were 

activated repeatedly.  
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Figure 5. 8: Pressure signal where tools were activated 

The CWT of the tool activation signal in Figure 5.8 is shown as a 3D contour plot in Figure 

5.9. CWT results shown in Figure 5.9 indicated that, like the idle case, patterns relevant to 

the sawtooth shape of the signal had the highest magnitudes. However, the activation of 

tools led to higher magnitudes at higher frequencies. The high frequency components from 

tool activation appeared over a wide frequency range, however the highest magnitudes 

that could be associated with the operation of tool were observed in the frequency range 

0.1-2 Hz. The activation of a valve led to high magnitudes in the frequency range 0.1-02 Hz, 

with the peak magnitudes observed in the frequency range 0.1-0.5 Hz. The activation of a 

cylinder led to higher magnitudes in the frequency range 0.5-2Hz, with the peak 

magnitudes observed in the range 0.5-1.5 Hz. Figure 5.10 shows the wavelet transform in 

the frequency range 0.1-2Hz, and points some of the referred to peaks. 

 

Figure 5. 9: Wavelet transform 3D contour plot for pressure signal where tools were activated 
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Figure 5. 10: Same wavelet transform as the one shown in Figure 5.9, but only showing frequencies 
between 0.1 and 2 Hz. Some peaks associated with valve and cylinder operation are pointed 

Time and frequency resolution of wavelet transforms were inversely proportional. 

Components due to tool activation were better localised in time at high frequencies, 

however their frequency resolution was relatively poor. The opposite was true for low 

frequency components, which appeared well localised in frequency but suffered from a 

reduced time resolution. 

5.3.2. Faulty Case 

Data that was recorded when the system had two different faults, was utilised to analyse 

faulty behaviour using a CWT. The faults were by design or part of an experiment; they 

were already present in the system before sensor data was collected for this research work. 

A sampling frequency of 1 Hz was being used at that time. The first fault was that pressure 

control limits had been changed from recommended settings. The compressor switched on 

when pressure decreased by ~0.7 Bar, instead of ~0.2 Bar. The second fault was a relatively 

large leak in one of the filters, as shown in Figure 5.11. The pressure signal corresponding 

to the faulty case is shown in Figure 5.12 alongside the idle case after faults were fixed. 
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Figure 5. 11: Leak found on filter 

The pressure signal for the faulty case showed that the fault with compressor control 

caused the pressure to drop to lower-than-expected levels, and the compressor had to be 

switched on longer to depressurise the system. In addition to that, the leak accelerated the 

consumption of compressed air, and the system was losing its pressure at a higher rate. 

The combination of these faults meant the compressor had to be switched on for longer 

periods of time and more frequently, leading to increased energy consumption.  

 

Figure 5. 12: Pressure signal when system had faults. The idle pressure signal after fault were 
fixed is shown for comparison 
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The pressure signal corresponding to the faulty case was further analysed with the CWT. 

The wavelet transform of the faulty system signal is shown as a 3D contour plot in Figure 

5.13. Because the amplitude of the pressure signal was relatively high (compared to idle 

and tool activation cases), the magnitude of the coefficients at low frequencies was also 

higher (0.14 compared to 0.03-0.045 in the idle and tool activation cases). The faults 

introduced components in the frequency range 0.01-0.2 Hz that had magnitudes of 0.02-

0.04. These components were present at all times in the faulty case. Similar components 

appeared in the tool activation cases, but they only appeared during time instances when 

a tool was operated. These components in the faulty case were associated with the higher 

discharge rate due to the leak, and the resulting faster loss of pressure in the system.  

 

 

Figure 5. 13: Wavelet Transform of faulty system pressure signal shown in Figure 5.12 

5.4.2. Classification into Idle or Faulty 

Analysing the idle, tool activation and faulty signals with the CWT showed that different 

operational events produced distinct features in the wavelet domain that might enable the 
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automatic recognition of such events. In a first step to create an event recognition system, 

a supervised neural network algorithm that used wavelet coefficient magnitudes as inputs 

was created with the objective of classifying a signal as idle or faulty.  

The wavelet coefficient magnitudes at each time instant were grouped in a feature vector 

and used as input to a neural network. The CWT was computed at 90 different scales, which 

resulted in a feature vector having 90 different entries. A neural network with three layers 

was created and trained. The input layer had 91 nodes, corresponding to the magnitudes 

at 90 different scales, in addition to one bias node. The hidden layer had 11 nodes, including 

a bias node. The output layer contained only two nodes, representing the two possible 

classes: Faulty or Idle 

The neural network was trained with 14,400 samples. Half of those samples belonged to 

the idle case, while the remaining half belonged to the faulty case. To test the accuracy of 

the neural network on unseen data, a pressure signal with idle and faulty data was 

synthesised, and the resulting signal is shown in Figure 5.14. Results with the created neural 

network showed an accuracy of 98.3% while classifying the samples in the signal shown in 

Figure 5.14. Samples in the region between the two vertical red lines (time 1750 to 1770s) 

were classified as faulty, when they should have been classified as idle. Remaining data in 

the signal was correctly classified. 

 

Figure 5. 14: Synthesised signal showing misclassified region. 
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Pattern recognition using features generated with the CWT was not researched further, 

and instead an approach based on the DWT was adopted. CWT created many redundant 

features which did not carry valuable information. For example, if classes corresponding to 

the activation of two different tools (valve and cylinder) were to be included as outputs in 

the neural network, a much larger data set would be required for training and validation. 

Also, a neural network with 90 different inputs would be computationally expensive in a 

monitoring system. 

An alternative approach for detecting the most informative scale could be a feature 

selection algorithm, however this approach was not pursued since it had already been 

studied by Desmet and Delore (2017). This Dissertation instead researched analysing the 

pressure signal using a DWT as this naturally produced fewer coefficients than a CWT. 

Because aligning wavelet features with the position in time they occurred was important 

in an event recognition system, the MODWT was used. 

5.3. Experiments and Results with MODWT 

Because the CWT produced a large number of coefficients, with many being redundant, 

this research investigated an approach based on a MODWT. The MODWT was used instead 

of the DWT because aligning wavelet features with where they occurred in the pressure 

signal was of interest. The Haar wavelet was used as a mother wavelet. 

A pressure signal, shown in Figure 5.15, was analysed with a MODWT. The signal containing 

trends and patterns corresponding to a compressor switch on, compressor off, valve switch 

on/off  and cylinder extension/ret raction. 
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Figure 5. 15: Supply side pressure signal analysed with the MODWT 

An MRA based on the MODWT decomposed the pressure signal into approximation and 

detail coefficients. Figure 5.16 shows a set of plots that correspond to the detail coefficients 

of decomposition levels 7 to 11, in addition to the approximation coefficients at level 11. 

The y-axis corresponds to the detail coefficients, while the x-axis corresponds to the 

sample. Figure 5.17 shows a similar set of plots that correspond to the detail coefficients 

for decomposition levels 1 through 6. Table 5.1 maps each decomposition levŜƭ ΨƧΩ ǿƛǘƘ the 

corresponding scale and frequency band when a sampling period of 50ms was used. 
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Figure 5. 16: Plots for detail coefficients corresponding to levels 7-11. Approximation coefficients 
at level 11 are also shown. 
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Figure 5. 17: Plots showing detail coefficients corresponding to levels 1-6 
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Table 5. 1: Scales and frequency bands at different decomposition levels 

Decomposition 
Level (j) 

Scale (s) Frequency Band (Hz) 

1 1 [5-10] 
2 2 [2.5-5] 

3 4 [1.25-2.5] 

4 8 [0.625-1.25] 
5 16 [0.3125-0.625] 

6 32 [0.1562-0.3125] 
7 64 [0.078-0.1562] 

8 128 [0.0391-0.078] 
9 256 [0.0195-0.0391] 

10 512 [0.0098-0.0195] 

11 1024 [0.0049-0.0098] 
12 2048 [0-0.0049] 

 

The results in Figures 5.16 and 5.17 indicated that detail coefficients corresponding to the 

first six decomposition levels were associated with activation of tools in addition to noise 

in the signal. High spikes in the detail coefficients that aligned well with cylinder 

extension/retraction and valve switching were seen in decomposition levels 1 through 6. 

As the decomposition level increased to levels 7,8 and 9 the detail coefficients started to 

smooth. The sawtooth pattern due to pressure variation started to appear in the detail 

coefficients of levels 10 and 11 and in approximation coefficients of level 11. The detail 

coefficients corresponding to decomposition level 11 clearly show a smoother version of 

the original pressure signal, indicating that a decomposition up until level 11 would be 

suitable for the given signal. In the next Sections, decomposition levels 1 through 6 are 

further analysed to investigate the coefficients due to the patterns produced by different 

tools. 

5.1.3. Decomposition Levels 1-6 

The MRA analysis showed that detail coefficients at decomposition levels 1 through 6 

contained transient components and noise. These decomposition levels covered the 

frequency band starting at 0.1562 up to 10 Hz. This result was in line with results obtained 
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with the CWT, where the activation of tools introduced higher wavelet coefficient 

magnitude in the frequency band 0.1-2 Hz. 

Noise had to be eliminated or reduced to properly analyse coefficients at levels 1-6. A 

relatively simple denoising method that was typically used for denoising in wavelet analysis 

was reported by (Ganesan et al., 2004). The method was based on a threshold value. Detail 

coefficients whose absolute value were below that threshold were set to zero. The 

threshold (̡ jύ ŦƻǊ ŘŜŎƻƳǇƻǎƛǘƛƻƴ ƭŜǾŜƭ ΨƧΩ ǿŀǎ ŎƻƳǇǳǘŜŘ ǿƛǘƘ Equation 5.3. 

  „ ςὰέὫ ὲ 

Equation 5. 3 

Where ΨnΩ corresponds to the signal length and Ψ̀jΩ is the standard deviation of the noise at 

ŘŜŎƻƳǇƻǎƛǘƛƻƴ ƭŜǾŜƭ ΨƧΩΦ ¢ƘŜ ǎǘŀƴŘŀǊŘ ŘŜǾƛŀǘƛƻƴ ŀǘ ŜŀŎƘ ŘŜŎƻƳǇƻǎƛǘƛƻƴ ƭŜǾŜƭ was computed 

with Equation 5.4. 

„
ρ

πȢφχτυ
άὩὨὭὥὲ Ὠȟ  

Equation 5. 4 

The denoised coefficients for decomposition levels 1 to 6 were obtained. The results are 

shown in Figure 5.18, which contains a stack of graphs showing the denoised coefficients 

at decomposition levels 1 to 6, in addition to the original pressure signal. The denoising 

method removed the noise effectively while retaining the underlying process information.  

The detail coefficients at levels 1 and 2 appeared to have a high magnitude when a cylinder 

was activated, while coefficients at levels 5 had distinctive magnitudes when a valve was 

either switched on or off. In most of the cases there were no significant transient events, 

and the coefficients appeared to be zero. Moreover, the coefficients aligned well in time 

against the patterns appearing in the original pressure signal. 

The detail coefficients produced by the valve and the cylinder were further compared. 

Figure 5.19 shows a valve and a cylinder pattern in addition to their first six level 

decompositions. The results indicated that detail coefficients corresponding to the cylinder 

activation had highest magnitudes at decomposition levels 1,2 and 3. At those levels, the 

detail coefficients magnitudes for the valve at moment it switched off or on were 
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considerably lower than those corresponding to the cylinder. On the other hand, the detail 

coefficients magnitude corresponding to the valve at levels 5 and 6 were greater than detail 

coefficients for cylinder activation at those levels. 
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Figure 5. 18: Denoised detail coefficient for decomposition levels 1 to 6 
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Figure 5. 19: Decompositions of the pattern left by the (a) valve and (b) cylinder 

The details coefficients for the cylinder at level 6 were zero after denoising. The coefficients 

for both tools at decomposition level 4 were similar. 

The detail coefficient energy contained at each decomposition level when the valve was 

switched on/off, or a cylinder was extended/retracted was also studied. The energy was 

calculated within a window (wiύ ƻŦ ǿƛŘǘƘ όҟǘύ ǳǎƛƴƎ Equation 5.5. The window was a time 

interval where an event of interest occurred. The objective of this analysis was to 

understand to what extent the detail coefficient energy could be used for features in a 

classification algorithm that recognised the different events.  

Ὁȟ Ὠȟ

Ў

 

Equation 5. 5 

An example of the process of computing the detail coefficient energy for cylinder 

activation is shown in Figure 5.20. The grey shaded area corresponds to the location of 

the window where the detail coefficient energy was computed. The procedure was 

repeated for the valve switch on, valve switch off and when there were no tools active. 
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Figure 5. 20: Plot showing cylinder pattern decomposition and window where coefficient energy 
was calculated 

Four basic events were considered: cylinder activation, valve switching on, valve switching 

off and no tool activated. Ten different instances (40 in total) from each event were 

analysed. The wavelet detail coefficient energy at each decomposition level for all the 

patterns considered are shown in Figure 5.21. 

The results indicated that each event had unique characteristics in their wavelet detail 

decomposition that allowed them to be distinguished from other events. The cylinder 

detail coefficient had most energy distributed among decomposition levels 1,2 with lower 

but considereable energy at levels 3 and 4. The energy at decompostion levels 5 and 6 were 

significantly lower than the energy at the other decomposition levels. 
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Figure 5. 21: Wavelet detail coefficient energy at each decomposition level for all the patterns 
considered 

Results indicated that a valve switching on and a valve switching off had simialr energy 

distribution accross each level, therefore in the remainder of this Chapter they were 

treated as the same event. In general the valve had highest energy at levels 4 and 5 and 

significantly lower energy at the remaining levels. The most distinctive difference between 

energy of a valve and a cylinder was the energy at decompostion levels 1 and 2, where the 

cylinder almost always had significantly higher energy. The results for no tool activated 

showed that the energy across the six levels were significantly lower than energy seen with 

cylinder and valve patterns, making it distinctively different from the other events. 

Although the general attributes of the energy for each event category had distinctive 

characteristics, the energy for patterns belonging to the same class showed statistical 

variation. In the next Section, a nearest neighbour classifier that was created to recognise 

the different events from their wavelet detail energy at each decomposition level is 

described. 
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5.2.3. Nearest Neighbour Classifier 

The nearest neighbour classifier is a simple but effective classifier that could be used with 

any data type (Aggarwal, 2015). GivŜƴ ŀ Řŀǘŀ ǾŜŎǘƻǊ Ψ·Ω ǿƘƻǎŜ Ŏƭŀǎǎ ƛǎ ǘƻ ōŜ ŘŜǘŜǊƳƛƴŜŘΣ 

the nearest neighbour classifier searched for the sample in the training data that was 

ŎƭƻǎŜǎǘ ǘƻ Ψ·Ω ōŀǎŜŘ ƻƴ ŀ ŘƛǎǘŀƴŎŜ ƳŜŀǎǳǊŜΦ ! ŘƛǎǘŀƴŎŜ ƳŜŀǎǳǊŜ ǎǳŎƘ ŀǎ ǘƘŜ 9ǳŎƭŜŘƛŀƴ ƻǊ 

Mahalanobis was typically uǎŜŘΦ Ψ·Ω ǿƻǳƭŘ ōŜ ŀǎǎƛƎƴŜŘ ǘƻ ǘƘŜ ǎŀƳŜ Ŏƭŀǎǎ ŀǎ ǘƘŜ Ƴƻǎǘ ǎƛƳƛƭŀǊ 

sample.  

In this research work the Eucledian distance was used as a distance measure. Each sample 

in the training data had 6 features, corresponding to the energy at the 6 decomposition 

levels discussed earlier. In total, the training data had 202 samples distributed as follows: 

¶ 61 samples corresponding to cylinder  

¶ 67 samples corresponding to valve 

¶ 74 samples corresponding to no tool 

The nearest neighbour was then implemented in a tool recognition algorithm. 

5.3.3. Tool Recognition Algorithm 

An algorithm to classify different patterns that appeared in the pressure signal was created. 

The algorithm operated offline, meaning that pressure would be measured, stored as a 

signal, processed, and then analysed.  

A schematic representation of how the algorithm worked is shown in Figure 5.22. The 

algorithm had five main steps. The first step was collecting pressure data from the supply 

side of the system and storing it on a computer. In the second step, the mean of the 

collected data was removed, and the resulting data was decomposed with a MODWT into 

different scales. Since patterns left by tools were mainly seen in the first six decomposition 

levels, the detail coefficients at the other scales were disregarded. The second step resulted 

in six different time series, each corresponding to the detail coefficients at a decomposition 

level. In the third step, the detail coefficients were denoised using the approach discussed 

in Section (3.1). In the fourth step, a sliding window was moved across the six 

decomposition levels to calculate the energy at each level within a specific time interval. 
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The length of the window was selected to be 20 samples, which corresponded to 1 second 

since the sampling period was 50 ms. The sliding window was moved 10 samples each step, 

and therefore 10 samples overlapped in between adjacent windows. In the fifth and final 

step, the nearest neighbour classifier was used to classify the different patterns. 

 

Figure 5. 22: Schematic representation of how classification algorithm worked 

To evaluate its accuracy and effectiveness, the algorithm was tested on unseen data 

containing patterns left by the cylinder and the valve. The obtained results are summarised 

in the confusion matrix shown in Figure 5.23. 

 Valve Cylinder 

Predicted Valve 42 0 

Predicted Cylinder 0 45 

Predicted No Tool 2 0 

% Correct 95 100 

Figure 5. 23: Confusion Matrix 

The results suggested that the algorithm performed well, with an accuracy rate of 95% 

when detecting a valve and 100% when detecting a cylinder. The testing was performed on 

89 cases; however, a larger number of cases should be considered to further test the 

algorithm. 
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A frequent error encountered was the misclassification of a valve pattern as no tool. In 

most of those cases, the valve pattern did not appear strongly enough in the time domain 

pressure signal, as shown in Figure 5.24. 

 

Figure 5. 24: Valve pattern not appearing strongly in the time domain data leading to 
misclassification 

Another limitation was the misclassification when patterns partially fell within the sliding 

window. This often occurred at the boundaries of a cylinder activation pattern. An example 

is shown in Figure 5.25, where the sliding window is shown at three different locations. 

 

Figure 5. 25: Misclassification due to small parts of cylinder pattern falling within sliding window 
boundaries 

In Figure 5.25, windows 1 and 2 were correctly classified as cylinder since most of the 

cylinder pattern was within the boundaries of the sliding window. However, window 3 was 

incorrectly classified as a valve. This was because part of the cylinder pattern, specifically 
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the part where pressure increased, fell within that window. This pattern resembled the 

pressure increase due to a valve switch off, resulting in a misclassification.  

5.4.3. Implementation in Real-time Monitoring 

In this Section, the implementation of the proposed tool recognition algorithm in a real 

time monitoring system is briefly discussed. Real-time monitoring systems make decisions 

based on the latest sampled data points (Ganesan et al., 2004). One of the main challenges 

for implementing wavelet-based methods for monitoring was the time delay because 

signals had to be of a certain size for decomposition. This had often restricted wavelet-

based method to offline monitoring. 

The algorithm proposed in this research was based on a MODWT. One of the advantages 

ƻŦ ǳǎƛƴƎ ǘƘŜ ah5²¢ ǿŀǎ ƛǘǎ ŀōƛƭƛǘȅ ǘƻ ƘŀƴŘƭŜ Řŀǘŀ ǎŀƳǇƭŜǎ ƻŦ ŀƴȅ ǎƛȊŜ ΨbΩΣ ǳƴƭƛƪŜ ǘƘŜ 5²¢ 

which required the sample size to be a power of two, i.e. N=2JΣ ǿƘŜǊŜ ΨWΩ ǿŀǎ ŀ ǇƻǎƛǘƛǾŜ 

integer. CƻǊ ǘƘŜ 5²¢Σ ŘŜŎƻƳǇƻǎƛƴƎ ǘƘŜ ǎƛƎƴŀƭ ƛƴǘƻ ǎƻƳŜ ƭŜǾŜƭ ΨW0ΩΣ ǊŜǉǳƛǊŜŘ ΨW0Ω ǘƻ ōŜ ƭŜǎǎ 

ǘƘŀƴ ƻǊ Ŝǉǳŀƭ ǘƻ ΨWΩΦ 

!ƭǘƘƻǳƎƘ ƛƴ ǘƘŜƻǊȅ ǘƘƛǎ ǊŜǎǘǊƛŎǘƛƻƴ ǿŀǎ ƴƻǘ ǘƘŜǊŜ ŦƻǊ ǘƘŜ ah5²¢Σ ƛƴ ǇǊŀŎǘƛŎŜΣ ΨW0Ω ƘŀŘ ǘƻ ōŜ 

ƭŜǎǎ ǘƘŀƴ ƻǊ Ŝǉǳŀƭ ǘƻ ΨWΩ (Percival & Walden, 2000)Φ {ŜǘǘƛƴƎ ΨW0Ω ƎǊŜŀǘŜǊ ǘƘŀƴ ΨWΩ ǿŀǎ ŎƻǳƴǘŜǊ-

intuitive since it implied looking for changes in the time series over scales that were greater 

than the time series itself. Because of that, the number of samples required to reach a 

specific decomposition level was restricted, even when a MODWT was used. This implied 

that the minimum time duration of the signal before decomposing into the required level 

was also restricted and depended on the sampling period. Table 5.2 shows the 

decomposition, minimum number of samples required, and the minimum signal duration 

when a sampling period of 50 ms was used. 

In the previous Sections, a six-level decomposition method was discussed for recognising 

different pneumatic tools. In Table 5.2, it is indicated that the minimum sample size 

required for performing a six-level decomposition was 64 samples, which corresponded to 

3.2 seconds when a sampling period of 50 ms was used.  
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Table 5. 2: Minimum number of sample and resulting signal duration for different decomposition 
levels 

Decomposition Level Minimum Samples Signal Duration (seconds) 

1 2 0.1 

2 4 0.2 

3 8 0.4 

4 16 0.8 

5 32 1.6 

6 64 3.2 

7 128 6.4 

8 256 12.8 

9 512 25.6 

10 1024 51.2 

11 2048 102.4 

 

5.4. Discussion and Conclusions 

This Chapter presented the research that investigated extracting information from the 

supply side pressure of a CAS. A CAS with a load/unload compressor control was 

considered. In such systems, the supply pressure signal was made of a low frequency 

sawtooth waveform pattern that contained high frequency components associated with 

the consumption of compressed air in the demand side. The pressure signal was non-

stationary, in the sense that different frequencies appeared at different time instances. 

This meant a Fourier transform was not suitable for analysing the signal, and instead a time-

frequency signal processing tool was required. In this Dissertation, the wavelet transform 

was used.  

A brief review of the wavelet theory was presented. The review focused on three different 

types of wavelet transforms: the CWT, the DWT and the MODWT. The main difference 

between the CWT and the DWT was that CWT generated a significantly larger number of 

coefficients than the DWT. The MODWT was a version of the DWT that the impact of the 

starting point on the obtained coefficients.  
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The supply side pressure was measured and analysed with a CWT. Three different cases 

were considered: a case with no faults, a case with tools being activated, and a case where 

the system had known faults. The results indicated that increased air consumption, either 

due to tool activation or faults, introduced large coefficients at higher frequencies. When 

a tool was activated, air was consumed for short periods of time and therefore the high 

frequency components appeared for a short duration. When a leak was present, air was 

discharged continuously from the system, and the higher frequency components were 

present at all times. A classifier based on machine learning was created, however it was not 

developed further because it required considerable amounts of data for training. The 

research instead considered the MODWT, which produced fewer coefficients than a CWT. 

The supply side pressure signal was decomposed into approximation and detail coefficients 

with the MODWT. Results indicated that coefficients associated with tool activation and 

noise appeared in the low detail decomposition levels, which corresponded to the higher 

frequencies. Coefficients associated with sawtooth waveform of the pressure signal 

appeared in the higher decomposition levels, which corresponded to the lower 

frequencies. The levels containing high frequency components where further investigated. 

After denoising, the detail coefficients obtained when a double acting cylinder and a 

solenoid valve were activated was analysed. The result indicated that the cylinder had 

stronger detail coefficients magnitude at higher frequencies. 

An algorithm for CAS usage pattern recognition was created. The algorithm collected data, 

then performed a MODWT to extract the detail coefficient energy at different 

decomposition levels. The nearest neighbour classifier was then used to recognise the tools 

based on the energy at each decomposition level. The results indicated that the algorithm 

was promising, however testing on a larger data sample was required. Moreover, 

additional research was required to address some limitations that appeared when testing 

the algorithm. These limitations included patterns not appearing well enough in the 

pressure signal and partial patterns falling inside the analysing window. 
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Chapter 6: Monitoring Demand Pressure 

In Chapter 5 the supply side pressure was monitored and an algorithm for recognising 

different tools was presented. In this Chapter, demand side pressure is considered. 

Demand side pressure refers to the pressure downstream of a pressure regulator. In a 

typical CAS, the pressure supplied to a pneumatic tool was regulated so that compressed 

air at a constant pressure was delivered. A regulated line could supply compressed air to 

more than one pneumatic tool. 

When a pneumatic tool operated, it consumed compressed air, which decreased the 

pressure in the line connected to the tool. The amount by which the pressure decreased, 

and the time duration of the decrease depended on the characteristics of the tool. For 

example, a valve consumed air for longer periods of time (seconds or minutes) compared 

to a pneumatic cylinder, which consumed air for fractions of a second. When the pressure 

in the regulated line supplying air to the tools was measured, patterns unique to each tool 

were observed.  

This Chapter presents an algorithm to identify which tools created the patterns appearing 

in the pressure data. The algorithm could be used for monitoring the safe and efficient 

running of a system and to identify problems such as leaks. The algorithm accomplished 

two main functions. The first function was the segmentation of recorded data into smaller 

sections containing the patterns of interest. The second function was the classification of 

the identified patterns. Two different methods for classification were investigated, a 

distance-based method and a rule-based method. 

This Chapter is organised as follows: Section 6.1 presents the experiments performed and 

the different patterns identified. Section 6.2 presents the pattern recognition algorithm. 

The segmentation method, and the two approaches for classification are discussed. Section 

6.3 presents and analyses the results obtained with the algorithm when the different 

classification approaches were used. Finally, Section 6.4 discusses the results and presents 

conclusions. 
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6.1. Experiments 

An experimental set-up was assembled consisting of a pneumatic circuit containing a 

solenoid valve, a single acting cylinder, a double acting cylinder, and a pressure regulator. 

The cylinders were connected to directional valves. A pressure sensor was connected 

downstream of the regulator. A Picolog data logger and a Raspberry Pi were used for data 

acquisition and control. A sampling period of 10 milliseconds was used. The directional 

control valves and the solenoid valves were connected to a relay that was controlled 

through the Raspberry Pi. Figure 6.1 shows a schematic diagram of the pneumatic circuit. 

Pressure sensor

Air 
Supply

Pressure 
Regulator

Solenoid Valve

Double Acting 
Cylinder

Single Acting 
Cylinder

 

 

Figure 6. 1: Schematic diagram showing the pneumatic circuit 

6.1.1. Sensor Calibration 

The pressure sensor connected to the regulated line was calibrated by comparing voltage 

measurements to readings from a pressure gauge attached to the same line. The obtained 

analogue pressure readings and their equivalent voltage reading are shown in Table 6.1. 

The data was plotted and fitted to a linear equation as shown in Figure 6.2. The obtained 

R-vale was close to 1, indicating the equation was a good fit. 

Experiments involving the activation of the pneumatic tools were performed to analyse the 

patterns appearing in the pressure signal. The patterns obtained are presented in the 

following Sections, when no tools were activated and when a solenoid valve, a double 

acting cylinder and a single acting cylinder were activated. The patterns observed when 

multiple tools were operated are also discussed. 
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Table 6. 1: Pressure measurement for sensor calibration 

Analogue Pressure Reading (Bar) Voltage Measured (Volts) 

1 0.713 

2 1.115 

3 1.525 

4 1.92 

5 2.35 

6 2.756 

7 3.15 

 

 

Figure 6. 2: Plot showing pressure reading on the analogue regulator (in Bars) against sensor 
reading in (Volts) 

6.1.2. No Tools Activated 

Pressure in the regulated line was measured when no tools were activated and there were 

no faults in the system. The obtained measurements are shown in Figure 6.3. The pressure 

was around 6 Bar, which was a user defined set-point pressure of the regulated line. 

Pressure in the regulated line remained constant when no tool was used. The constant 

Pressure = 2.4521*Voltage - 0.7392
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pressure was because a pressure regulator was connected to the line inlet, and at the same 

time no air was consumed by any tools attached to the line. The pressure was regulated at 

a level close to 6 Bar, however it could be changed by changing the pressure set point on 

the regulator.  
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Figure 6. 3: Pressure in regulated line when no tools were activated 

6.1.3. Solenoid Valve 

The change in the regulated line pressure after allowing air to flow from the solenoid valve 

was studied. The solenoid valve was connected to a relay, which was controlled by a 

Raspberry Pi. Flow was allowed through the valve for 5 seconds. The resulting pressure 

measurements for this case are shown in Figure 6.4.  
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Figure 6. 4: Pressure in regulated line when valve was activated 

Activating the valve discharged air ŦǊƻƳ ǘƘŜ ǾŀƭǾŜΩǎ ƴƻȊȊƭŜ, which caused the pressure in 

the line to decrease and settle at a new value. Once the valve was closed, flow stopped and 

the pressure in the line recovered to the initial value. 

The level of pressure drop after the valve was switched on depended on the rate of air 

discharged at the valve nozzle, which depended on the geometry of the valve outlet. Also, 

the pressure drop depended on the pressure in the regulated line since air discharge rate 

was directly proportional to pressure difference. The duration of the pressure drop 

depended on how long the valve was switched on, which would normally be determined 

by a user or a sequencing program. 

6.1.4. Double Acting Cylinder 

A double acting cylinder was connected to a 5/2-way directional control valve, which was 

connected to a relay controlled by the Raspberry Pi. Properties of the double acting cylinder 

are summarised in Table 6.2. 

The double acting cylinder consumed air on both extension and retraction strokes. Figure 

6.5 shows a 10 second pressure signal corresponding to the pressure in the regulated line 
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when the cylinder was extended at timeҒ2.5 seconds, and then retracted again at timeҒ8 

seconds. No other tools were activated when the measurements where recorded. 

Table 6. 2: Double acting cylinder properties 

Symbol Description Value 

D Chamber Diameter (mm) 25 

s Stroke (mm) 100 

Pd Downstream Pressure (Bar) 1.01325 

 

 

Figure 6. 5: Pressure in regulated line when the cylinder was extended and then retracted  

Measurements indicated that cylinder extension and retraction caused a sharp decrease in 

the regulated line pressure. The pressure then increased back to its initial level. The 

patterns generated by the double acting cylinder happened over a short time interval, 

consistent with the high speed of the cylinder. 

The repeatability of the patterns created by the cylinder was studied. Figures 6.6 and 6.7 

show 0.5 seconds of pressure signals containing the patterns created by 8 different 

extensions and retractions, overlaid on one another. Results confirmed that each time the 

cylinder was extended or retracted, a similar pattern appeared in the pressure 

measurements.  
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Figure 6. 6: Pattern appearing in pressure measurements after cylinder extension 

 

Figure 6. 7: Pattern appearing in pressure measurements after cylinder retraction 

The pressure drop profile due to cylinder extension and retraction were compared. Figure 

6.8 shows the average pattern obtained after extension and retraction. Two minor 

differences between the patterns were identified. For clarification, the differences within 

the pressure drop profile are circled and shown in Figure 6.8. The first difference was that 

during extension, the average pressure drop was higher, as it decreased to 4.9 (Bar), while 

for the retraction, the pressure reached 5 (Bar). The second difference was the small 

pressure increase seen in the retraction pattern immediately after pressure began to 

decrease. This increase was absent from the extension pattern and only appeared during 

retraction. 
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Figure 6. 8: Averaged extension and retraction pressure profiles in regulated line 

An explanation for the difference in pressure drop between extension and retraction was 

obtained by analysing the geometry of the double acting cylinder, alongside the physical 

characteristics dictating its operation. 

The pressure drop during extension was higher than during retraction. Figure 6.9 shows a 

schematic representation of a double acting cylinder. Since there was a rod inside the 

cylinder chamber, the volume of air required to fill the chamber during extension (Vextension) 

was larger than that required during retraction (Vretraction). The larger volume required a 

larger quantity of air to fill the corresponding chamber, and therefore there was a higher 

flow of air and pressure drop in the regulated line. 

 

Figure 6. 9: Schematic representation of a double acting cylinder: (a) rod position after extension, 
(b) rod position after retraction 
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A second difference was analysed. When the control command for a cylinder retraction or 

extension was sent, air quickly filled the tubing connecting the directional valve to the 

double acting cylinder chamber, leading to the sharp pressure decrease. When pressurised 

air hit the piston surface area, a force pushed the cylinder either to extend or retract. This 

force first had to overcome the static friction between the piston and the cylinder bore. 

The force exerted by the air on the piston was directly proportional to piston surface area. 

Since the surface area on the retraction side was smaller (because of the rod), it took longer 

for the cylinder to overcome its static pressure and to start moving. This caused the flow 

to stop for fractions of a second, allowing the regulated line to gain some pressure. The 

same was observed during extension, however since the force was larger, the time it took 

to overcome the static friction was smaller, and therefore the pressure increase was not as 

visible as in the retraction case. 

Although the extension and retraction patterns were slightly different, for simplicity, this 

research did not define separate patterns for each case. Instead, the research focused on 

identifying a double acting cylinder pattern, regardless of whether it was an extension or 

retraction. 

6.1.5. Single Acting Cylinder 

In addition to the double acting cylinder, a single acting cylinder was considered. The main 

difference between single and double acting was that the single acting cylinder had a spring 

inside its chamber, so no compressed air was consumed during the return stroke. The single 

acting cylinder was connected to a 2/2-way directional control valve, which was connected 

to a relay that was controlled through the Raspberry Pi. Properties of the single acting 

cylinder are summarised in Table 6.3. 

Table 6. 3: Single Acting Cylinder Properties 

Symbol Description Value 

D Chamber Diameter (mm) 25 

s Stroke (mm) 50 

Pd Downstream Pressure (Bar) 1.01325 
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Figure 6.10 shows a 10 second pressure signal showing regulated line pressure when the 

cylinder was extended. No other tools were activated when the pressure was measured. 

 

Figure 6. 10: Pressure in regulated line when single acting cylinder was activated 

The cylinder only consumed air during extension, the retraction stroke did not consume 

any air and it had no impact on the measured pressure. The single acting cylinder activation 

caused a sharp decrease in line pressure. The resulting pattern lasted for fractions of a 

second, and eventually the pressure returned to its initial value. Figure 6.11 shows a set of 

0.25 seconds pressure signals containing the patterns obtained from the stroke of a single 

acting cylinder. The pressure signals in Figure 6.11 confirm the repeatability of the pattern. 

 

Figure 6. 11: Patterns appearing after single acting cylinder strokes 
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The average patterns created by the single and double acting cylinders were compared. 

The patterns were plotted next to each other, as shown in Figure 6.12. The figure shows 

that the amplitude of pressure drop was higher for the double acting cylinder. This was 

mainly due to the difference in size between the cylinders. The stroke length and 

subsequently the cylinder chamber of the double acting cylinder was larger, requiring a 

larger volume of compressed air at each stroke, which caused a sharper pressure drop. 

 

Figure 6. 12: Patterns from single acting and double acting cylinders 

6.1.6. Multiple Tools 

Patterns were investigated when multiple tools operated. An example is shown in Figure 

6.13, where a valve was switched on, then a double acting cylinder was activated 4 times 

(two extensions and two retractions) before the valve switched off. The pattern due to the 

valve activation seen in sub-section 6.1.3 was interrupted by the activation of the cylinder, 

and new shapes seen in the pressure readings could be associated with a valve being active. 

Figure 6.14 shows the same pressure signal shown in Figure 6.13 but without the patterns 

due to cylinder activation, and the patterns at the start and end of the signal where no tools 

were active. Only patterns associated with the valve are shown. 

Patterns (1), (2) and (3) are associated with a valve switching on, switching off or being 

active, respectively. Pattern (1) was a step decrease in pressure caused by the valve 

switching on. Pattern (2), which appears 3 times in the signal shown in Figure 6.14, was the 

pressure being constant at a new level, and it appeared whenever a cylinder was operated 
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more than once while the valve was active. Pattern (3) was a step increase in pressure, and 

was due to the valve switching off, after a cylinder was activated. 

 

Figure 6. 13: Pressure Signal when valve was switched on, cylinder activated 4 time, then valve 
switched off 

 

Figure 6. 14: Same pressure signal shown in Figure 6.13 but without the patterns due to the 
cylinder. Patterns (1), (2) and (3) were associated with a valve operation. 
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6.1.7. Identified Patterns  

This Section summarises and presents the different patterns identified during the 

experiments. Seven patterns of interest were identified. Each pattern was associated with 

one of the following events: 

Á No Tools Active 

Á Valve Activation 

Á Valve Switching On 

Á Valve Switching Off 

Á Valve Already Active 

Á Double Acting Cylinder 

Á Single Acting Cylinder 

Figure 6.15 shows a pressure signal containing the pattern corresponding to the case of no 

tools active. This pattern was characterised by: (1) pressure being equal to regulated line 

set-point pressure and (2) no significant variation in the pressure. 

 

Figure 6. 15: Pressure signal containing the pattern corresponding to no tools active 

Four different patterns were associated with the operation of a valve. The first pattern was 

obtained when a valve was activated while no other tools interrupted its operation. Figure 

6.16 shows a pressure signal that contains this pattern. ¢ƘŜ ǇŀǘǘŜǊƴ ǿŀǎ ƭŀōŜƭƭŜŘ ΨǾŀƭǾŜ 

ŀŎǘƛǾŀǘƛƻƴΩΦ 
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Figure 6. 16: Pressure signal containing the pattern corresponding to valve activation 

Figure 6.17 shows a signal containing the second pattern associated with the operation of 

a valve. This pattern was obtained when a valve switching on was followed by the activation 

ƻŦ ŀƴƻǘƘŜǊ ǘƻƻƭΦ ¢ƘŜ ǇŀǘǘŜǊƴ ǿŀǎ ƭŀōŜƭƭŜŘ ΨǾŀƭǾŜ ǎǿƛǘŎƘƛƴƎ ƻƴΩΦ 

 

Figure 6. 17: Pressure signal containing the pattern corresponding to valve switching on 

Figure 6.18 shows a signal containing the third pattern associated with the operation of a 

valve. This pattern was obtained when a valve was switched off after the operation of 

anoǘƘŜǊ ǘƻƻƭΦ ¢Ƙƛǎ ǇŀǘǘŜǊƴ ǿŀǎ ƭŀōŜƭƭŜŘ ΨǾŀƭǾŜ ǎǿƛǘŎƘƛƴƎ ƻŦŦΩΦ 
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Figure 6. 18: Pressure signal containing the pattern corresponding to valve switching off 

Figure 6.19 shows a signal containing the fourth pattern associated with the operation of 

valve. This pattern was obtained whenever the valve activation was interrupted by the 

repeated activation of another tool. The pattern corresponds to the pressure signal 

between the first and second operation of the other tool. An example for this case was 

given in sub-section 6ΦмΦтΦ ¢Ƙƛǎ ǇŀǘǘŜǊƴ ǿŀǎ ƭŀōŜƭƭŜŘ Ψ±ŀƭǾŜ hƴΩΦ 

 

Figure 6. 19: Pressure signal containing the pattern corresponding to valve on 
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Figures 6.20 and 6.21 contain pressure signals with patterns that correspond to a double 

and a single acting cylinder, respectively. Both patterns had a similar shape, however, the 

pressure drop for double acting cylinder was larger. For the single acting, the pressure 

dropped by ~0.7Bar while for the double acting the pressure drop was close to ~1.1 Bar. 

The signals in Figures 6.20 and 6.21 do not show noise as much as the other signals because 

the length of the signal is relatively short. For example, the signal in Figure 6.15 contains 

considerable noise, while the signals in Figures 6.20 and 6.21 appear smoother. That was 

mainly because signals in Figures 6.16 and 6.17 contain 25 samples, while the signal in 

Figure 6.15 contains 600 samples. Because the figures have similar dimension, figures with 

larger number of samples appear to contain more noise, even though the figures contain 

signals collected with the same sensor using the same sampling period. 

 

Figure 6. 20: Pressure signal with a pattern corresponding to double acting cylinder 
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Figure 6. 21: Pressure signal with a pattern corresponding to a single acting cylinder 

The patterns presented in this sub-section were used in creating a rule-based classifier and 

a distance-based classifier. Next Section will present and discuss new pattern recognition 

algorithms. 

6.2. Pattern Recognition Algorithm 

Pattern recognition algorithms were investigated. The algorithm consisted of two main 

parts: segmentation and pattern classification. Segmentation detected the start and the 

end point of events. Classification assigned each pattern to its proper category. A schematic 

representation of the algorithm is shown in Figure 6.22. 

Pressure measurements were collected from the regulated line and fed as input to a 

segmentation algorithm that dissected the pressure measurements into shorter sub-

segments, where each segment contained a pattern associated with a tool activation. 

These subsegments were then classified into their most likely category. Two approaches 

for classification were investigated, a rule-based and a distance-based approach. In the 

following Sections, the details of the segmentation and pattern classification are discussed. 
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Figure 6. 22: Schematic representation of the suggested algorithm 

 

6.2.1. Signal Segmentation 

Segmentation of time series has been considered an essential pre-processing step for a 

wide variety of temporal data analysis tasks (Fu, 2011).The simplest method for segmenting 
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a time series was to use a fixed length window. However, a fixed length window was too 

simple for complex signals. This was because patterns within a time series typically had 

different lengths, and using a fixed length window, a segment may contain more than one 

meaningful pattern, or it may split a pattern across time, causing patterns to be mixed or 

to be missed. For this reason, a variable size window was more effective. 

Several segmentation methods, also known as change point detection methods, have been 

reported in the literature. Methods were divided into two main categories: online and 

offline methods (Truong et al., 2020). In online methods, the objective was to detect 

changes as soon as they occur. Offline methods detected changes after all samples had 

been collected. Several monographs and papers provided reviews on different change 

point detection methods. In this study, an offline segmentation approach was adopted, 

because in principle, creating an offline segmentation method was simpler than creating 

an online one. An offline segmentation would lead to a delay in detecting events, unlike 

online segmentation which detected events as soon as they occurred. In most compressed 

air systems, a delay of few seconds or minutes in detecting events, such as a leak or damage 

to a tool, would be acceptable, and therefore an offline segmentation approach was 

justified. 

The algorithm for detecting meaningful changes in the data was created by the authors so 

that it suited the nature of the problem. The creation of the segmentation method went 

through two iterations. An initial method was created however it had some limitations. The 

method was improved to address those limitations. Both methods are reported here as: 

(A) Segmentation Method One and (B) Segmentation Method Two. 

A. Segmentation Method One 

The pressure in the regulated line was constant at a pre-defined value determined by the 

functional requirements of the process. This value is referred to here as the demand 

pressure set point. Whenever an air consuming tool was operated, air was discharged from 

the demand line through the activated tool, causing a temporary drop in the line pressure. 

Once air consumption stopped, pressure in the line increased back to the set-point. 

A flow chart depicting how Segmentation Method One worked is shown in Figure 6.23. 
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Figure 6. 23: Flow chart demonstrating how Segmentation Method One worked 

Segmentation Method One detected the start or the end of a ǎŜƎƳŜƴǘ ŀǘ ǎŀƳǇƭŜ Ǉƻƛƴǘ ΨƴΩ 

by evaluating average deviation from the pressure set point ΨtsetΩ ōȅ ŀ ǎǇŜŎƛŦƛŎ ǘƘǊŜǎƘƻƭŘ 

ΨʰΩΦ 

The start of a segment at ǎŀƳǇƭŜ ΨƴΩ ǿŀǎ ŘŜǘŜŎǘŜŘ ǿƘŜƴ ǘƘŜ ŀǾŜǊŀƎŜ ǇǊŜǎǎǳǊŜ Ψt2Ω ƻŦ ǘƘŜ 

ΨƳΩ ǎŀƳǇƭŜǎ ŦƻƭƭƻǿƛƴƎ ǎŀƳǇƭŜ ΨƴΩ όǎŀƳǇƭŜǎ ƴҌмΣ ƴҌнΦΦΦΣ ƴҌƳύ ǿŜǊŜ ƭƻǿŜǊ ǘƘŀƴ ǘƘŜ ǘƘǊŜǎƘƻƭŘ 

ΨʰΩΣ ǿƘƛƭŜ ǘƘŜ ŀǾŜǊŀƎŜ ǇǊŜǎǎǳǊŜ Ψt1Ω ƻŦ ǘƘŜ ΨƳΩ ǎŀƳǇƭŜǎ ǇǊŜŎŜŘƛƴƎ ΨƴΩ όǎŀƳǇƭŜǎ ƴ-1, n-нΧΣ ƴ-

m) were largŜǊ ǘƘŀƴ ǘƘŜ ǘƘǊŜǎƘƻƭŘ ΨʰΩΦ 

Lƴ ŀ ǎƛƳƛƭŀǊ ƳŀƴƴŜǊΣ ǘƘŜ ŜƴŘ ƻŦ ŀ ǎŜƎƳŜƴǘ ŀǘ ǎŀƳǇƭŜ ΨƴΩ ǿŀǎ ŘŜǘŜŎǘŜŘ ǿƘŜƴ ǘƘŜ ŀǾŜǊŀƎŜ 

ǇǊŜǎǎǳǊŜ Ψt2Ω ƻŦ ǘƘŜ ΨƳΩ ǎŀƳǇƭŜǎ ŦƻƭƭƻǿƛƴƎ ǎŀƳǇƭŜ ΨƴΩ όǎŀƳǇƭŜǎ ƴҌмΣ ƴҌнΦΦΦΣ ƴҌƳύ ǿŜǊŜ 

ƎǊŜŀǘŜǊ ǘƘŀƴ ǘƘŜ ǘƘǊŜǎƘƻƭŘ ΨʰΩ ǿƘƛƭŜ ǘƘŜ ŀǾŜǊŀƎŜ ǇǊŜǎǎǳǊŜ Ψt1Ω ƻŦ ǘƘŜ ΨƳΩ ǎŀƳǇƭŜǎ ǇǊŜŎŜŘƛƴƎ 

ΨƴΩ όǎŀƳǇƭŜǎ ƴ-1, n-нΧΣ ƴ-Ƴύ ǿŜǊŜ ƭƻǿŜǊ ǘƘŀƴ ǘƘŜ ǘƘǊŜǎƘƻƭŘ ΨʰΩΦ 
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¢ƘŜ ƴǳƳōŜǊ ƻŦ ǎŀƳǇƭŜǎ ΨƳΩ ŀƴŘ ǘƘŜ ǘƘǊŜǎƘƻƭŘ ΨʰΩ ǿŜǊŜ ŘŜǘŜǊƳƛƴŜŘ ōȅ ǘǊƛŀƭ ŀƴŘ ŜǊǊƻǊΦ A 

value of Ψm=10Ω sample points ŀƴŘ ŀ ǘƘǊŜǎƘƻƭŘ ΨʰҐлΦффȄtsetΩ gave accurate results. 

Segmentation Method One was tested on a pressure signal where a single tool was 

activated. Figure 6Φнп ǎƘƻǿǎ ǘƘŜ ǇǊŜǎǎǳǊŜ ǎƛƎƴŀƭ ǳǎŜŘΦ ! ǾŀƭǾŜ ǿŀǎ ǎǿƛǘŎƘŜŘ ƻƴ ŀǘ ǘƛƳŜҒмΦп 

ǎŜŎƻƴŘǎΣ ǘƘŜƴ ǎǿƛǘŎƘŜŘ ƻŦŦ ŀǘ ǘƛƳŜҒп ǎŜŎƻƴŘǎΦ ¢ƘŜ ǾŀƭǾŜ ǿŀǎ ǘƘŜƴ ǎǿƛǘŎƘŜŘ on again at 

ǘƛƳŜҒсΦп ǎŜŎƻƴŘǎΣ ǘƘŜƴ ǎǿƛǘŎƘŜŘ ƻŦŦ ŀǘ ǘƛƳŜ ǘҒф ǎŜŎƻƴŘǎΦ ¢ƘŜ ǘƛƳŜ ƛƴǎǘŀƴŎŜǎ ǿƘŜǊŜ 

segments started or ended were identified with Segmentation Method One and the results 

are shown on Figure 6.24, as dotted lines. The dotted lines basically show where the original 

pressure signal was broken down into smaller segments. 

Initially, the results obtained with Segmentation Method One appeared to be accurate, 

since each pressure segment contained patterns associated with different events. For 

example, a ǇǊŜǎǎǳǊŜ ǎŜƎƳŜƴǘ ǿŀǎ ƛŘŜƴǘƛŦƛŜŘ ōŜǘǿŜŜƴ ǘƛƳŜҒмΦп ǎŜŎƻƴŘǎ ŀƴŘ ǘƛƳŜҒпΦ ¢Ƙƛǎ 

identification was correct, since this pressure segment was associated with a valve 

activation, unlike the segment just before it and just after it, which both corresponded to 

no tools being active. 

This segmentation method worked well when only one tool was activated however, it 

performed poorly when more than one tool was operated at the same time. Figure 6.25 

shows a pressure signal where a valve switching on was followed shortly by a cylinder 

extension and then the valve switching off. The dotted lines indicate different segments 

obtained when method one was used for segmentation. The original pressure signal was 

broken into three segments. However, this result was incorrect, since the middle segment 

contained two events, a valve, and a cylinder operation. 
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Figure 6. 24: Pressure signal collected when one tool was activated. Dotted lines show pressure 
segments identified with Segmentation Method One. 

 

Figure 6. 25: Pressure signal collected when a valve and cylinder operated. Dotted lines show 
pressure segments identified with Segmentation Method One. 

In this case, Segmentation Method One gave an incorrect result because when the valve 

was switched on, the pressure dropped significantly below the regulated line pressure set 

point. When the cylinder was activated, the starting pressure was already below the set-

point, so the start of the cylinder pattern was not detected. Similarly, the end of cylinder 
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pattern was not detected since pressure did not recover back to set point while the valve 

was still active. 

The signal shown in Figure 6.25 demonstrates the major limitation of Segmentation 

Method One, which was its inability to detect patterns happening at different pressures 

than the predefined set-point. As shown in the example of Figure 6.25, the pressure at 

which a segment started or ended was variable and was not necessarily equal to the 

regulated pressure set point. Another segmentation method that addressed this limitation 

was created. The method allowed the pressure threshold ΨʰΩ to be regularly updated 

instead of using a single predefined pressure threshold. 

B. Segmentation Method Two 

The main difference between Segmentation Methods One and Two was that method one 

searched for deviations from a rigid user defined pressure set point, while method two 

searched for deviations from a pressure threshold that was regularly updated.  

The start of a segment was normally preceded by the pressure in the regulated line being 

almost constant. Similarly, the end of a segment was followed by the pressure reaching a 

new (or the same) constant value. Method two identified regions in the data where the 

pressure had a relatively small variance. Because of the small variance, it was reasonable 

to assume that in those regions, there was no major changes in the pressure, and therefore 

no new events had occurred. The mean pressure value in these regions was then computed 

and used as a new pressure threshold for detecting the start or end of segments. In a similar 

fashion to method one, method two detected the start of a segment when the pressure 

decreased from the corresponding pressure threshold, while the end of a segment was 

detected once the pressure reached a new constant. 

Figure 6.26 shows the same example as shown in Figure 6.25, but with method two used 

for segmentation. The results indicated that method two addressed the limitations of 

method one by successfully detecting segments containing patterns with events that 

happened at a pressure lower than the regulated line pressure. Segmentation Method Two 

was used in the remainder of this Dissertation. 
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Figure 6. 26: Results when method two was used to detect events happening at pressure below 

regulated line pressure 

6.2.2. Event Classification 

Segmentation dissected the pressure data into smaller sections containing patterns 

associated with events of interest. This Section describes pattern classification, which was 

the process of assigning each pattern to a category. The categories were named in line with 

the pattern naming used in Section 6.1.7. 

In this Section, two methods used to classify the patterns are presented. The first 

classification method was based on rules defined after observing the characteristics of the 

different patterns. The second classification method was based on a pattern matching 

approach that estimated the distance between the pattern and a set of reference patterns, 

assigning the pattern to the class of with the smallest distance. 

A. Rule-based Classification 

A rule-based approach for classifying the patterns was investigated. An algorithm 

containing a sequential set of rules that examined distinctive characteristics to classify the 

patterns was created. The characteristics were obtained directly from the patterns 

presented in Section 6.1.7 and included properties such as the time duration of a pattern 

and the amplitude of the pressure drop it created. The algorithm took the pressure 
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segments identified by the segmentation and the pressure set point in the regulated line 

as inputs. Figure 6.27 shows the sequential set of rules forming the rule-based classifier.  

 

Figure 6. 27: Sequential set of rules forming the rule-based classification algorithm 

First the algorithm checked if the pressure segment contained a pattern corresponded to 

a tool, by comparing the segment average pressure to the set-point pressure (pressure in 

the regulated line). If the average pressure was lower than set-point pressure by 0.1 bar or 

more, the algorithm decided that the pattern corresponded to a tool activation, otherwise, 

the pattern corresponded to no tool. 
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If the outcome of the first step was that the pattern belonged to a tool, the algorithm 

identified which tool it was. This was achieved based on the duration of the pattern. The 

algorithm decided that a tool pattern was a cylinder if it lasted less than 0.5 seconds, and 

it was a valve pattern if it lasted more than 0.5 seconds. That rule assumed a valve always 

operated for more than 0.5 seconds. 

If the algorithm detected that a pattern belonged to a cylinder, the next step identified 

whether it was a single or a double acting cylinder. This was achieved based on the pressure 

drop in the pattern. The double acting cylinder had a larger cylinder bore, and caused a 

pressure drop of ~1.1 bar, while single acting cylinder caused a pressure drop closer to ~0.7 

bar. If the pressure drop was greater than 1 bar, the algorithm classified the pattern as a 

double acting cylinder. If the pressure drop was less than 1 bar, the pattern was classified 

as single acting. 

If the algorithm decided the pattern belonged to a valve, the next step was to identify which 

valve patterns it was. If the average pressure of the first 10 samples in the pattern was 

larger by more than 0.1 Bar than the average pressure of the next 10 samples, the pattern 

was classified as valve switch on. If the average pressure of the last 10 samples in the 

pattern was larger by more than 0.1 Bar than the average pressure of the 10 samples 

preceding them, the pattern was classified as valve switch off. If both conditions were true, 

the pattern was a valve activation. Finally, if none of these conditions were true, the pattern 

was classified as valve-on. 

B. Distance-based Classification 

A distance-based classification approach was investigated. Patterns most indicative of a 

class were stored as references and used for comparison against new patterns that had to 

be classified. The classifier estimated the distance between the patterns to be classified 

and the reference patterns and then assigned the class with the smallest distance. The 

patterns defined in Section 6.1.7 were used as reference templates. 

A suitable distance measure was needed to quantify the distance between the reference 

patterns and patterns that required classification. Several distance measures to compare 

time series data had been reported in the literature (Abanda et al., 2019; Xing et al., 2010). 
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One of the simplest and most intuitive measures was the Euclidian distance, which was 

based on a sample-by-sample comparison. The main advantages of the Euclidean distance 

were its simplicity and computational efficiency, however it had major limitations such as 

its sensitivity to distortions in the time dimension and the fact that it required both series 

to be of the same length. 

A distance measure that addressed the limitations of the Euclidean distance was the 

Dynamic Time Warping (DTW) distance. DTW did not require the time series to be of the 

same length nor was it limited by distortions in time, however it was more complex and 

computationally expensive. The DTW has been the standard distance measure for 

comparing time series data (Bagnall et al., 2017). Because of that, the DTW distance was 

used in this research. 

The DTW and its computation are described in Bagnall et al.(2017), Giorgino (2009), Mitsa 

(2010) and Müller (2015). DTW was particularly useful for comparing time series that were 

visually similar, however some distortions in time introduced ƳƛǎŀƭƛƎƴƳŜƴǘ ǘƘŀǘ ΨƛƴŦƭŀǘŜdΩ 

the distance between the two series (Mitsa, 2010). DTW mapped elements of one series to 

the elements of another, creating an alignment between their elements. The alignment 

had commonly been known as a warping path. An example of two similar but misaligned 

time series is shown in Figure 6.28, reproduced from (Giorgino, 2009). The alignment of 

elements from one series into the other with a DWT algorithm is also shown. The general 

objective of the DTW algorithm was to find the optimal alignment between two time series 

under certain restrictions. Once the optimal alignment was identified, a distance measure 

between two time series, known as DTW distance, was computed, and the two series could 

then be compared. 
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Figure 6. 28: Example showing the alignment of two time series with a DTW (Giorgino, 2009) 

The DTW algorithm consisted of three main computational steps. The first step was 

computing the local difference between each pair of elements in the time series being 

compared. The second step was identifying all possible alignments between the elements 

of a series that satisfied certain restrictions. In the classical DTW algorithm, an alignment 

satisfied three main restrictions: Boundary condition, monotonicity condition, and step size 

condition.  

The boundary condition aligned the first elements and last elements of the time series. 

Monotonicity implied that the alignment did not move backwards. A step size condition 

ensured continuity and that no elements were skipped. Also, this condition ensured that 

there were no replicates (the same indices could not be assigned to each other more than 

once). 

¢ƘŜ ǘƘƛǊŘ ŀƴŘ Ŧƛƴŀƭ ǎǘŜǇ ǿŀǎ ƛŘŜƴǘƛŦȅƛƴƎ ǘƘŜ ŀƭƛƎƴƳŜƴǘ ǘƘŀǘ ƘŀŘ ǘƘŜ ōŜǎǘ ΨǉǳŀƭƛǘȅΩΦ It was 

possible that several alignments satisfied the boundary, monotonicity, and step size 

conditions. However, not all the alignments were of the same ΨqualityΩ. The quality of an 

alignment was measured with a total warping cost, which was the sum of the local cost 

measure for each pair of elements included in the alignment. A high warping cost indicated 

the alignment was of poor quality. Alternatively, a low warping cost indicated a good 

alignment quality. 
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The optimal alignment had the minimal total warping cost. The minimal total warping cost 

was also known as the DTW distance. When comparing two series using the DTW distance, 

a low DTW distance value indicated high similarity between the series. In contrast, a high 

DTW distance value indicated high dissimilarity. 

Initial results with the classical DTW algorithm showed that two modifications were 

necessary for the recognition of the patterns considered in this Chapter. The first 

modification was limiting the number of samples a single sample could be mapped to, so 

that singularities were avoided. The second modification was removing the mean from the 

patterns. Both modifications are considered in the next subsections. 

B.1. Singularities 

Using the classical DTW distance could produce illogical results in certain situations where 

the algorithm tried to explain variability in the pressure (y-axis) by warping the time axis (x-

axis) (Keogh & Pazzani, 2001). In such situations, alignments would make little sense as a 

single point in one time series would be mapped to a large subsection of another time 

series. These undesirable behaviours were ŎŀƭƭŜŘ ΨǎƛƴƎǳƭŀǊƛǘƛŜǎΩ (Keogh & Pazzani, 2001). 

An example that demonstrates the issue of singularities is presented. Consider comparing 

a pressure pattern corresponding to a valve activation to the pattern of a single acting 

cylinder, and a valve switching on. The three patterns are shown in Figure 6.29. 

 

Figure 6. 29: Example demonstration the issue of singularities when valve activation, valve on, 
and cylinder patterns were compared 
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By visually inspecting the patterns shown in Figure 6.29, it was concluded that the valve 

activation and valve switching on patterns were more similar to each other than the valve 

activation and single cylinder patterns were. When the classical DTW distance was used as 

basis for comparison, the opposite was concluded. Figures 6.30 show alignment and 

distance obtained when valve activation and single cylinder patterns were compared with 

a DTW. Similarly, Figure 6.31 show the results obtained when valve activation and valve 

switching on patterns were compared with a DTW. 

 

Figure 6. 30: DTW alignment and distance when valve activation and single acting cylinder 
patterns were compared 
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Figure 6. 31: DTW alignment and distance when valve activation and valve switching on patterns 
were compared 

The DTW distance for the pair valve activation-valve on was 10.17, larger than the DTW 

distance for the valve activation-single cylinder, which was 7.53. This result was counter-

intuitive and would lead to a false conclusion that valve activation pattern was more similar 

to single cylinder pattern. As Figure 6.30 shows, the low DTW distance was mainly due to 

one sample point in the single cylinder pattern being mapped to many sample points in the 

valve activation pattern. This example demonstrated how singularities could lead to errors 

and misclassifications. 

Several approaches have been suggested to overcome the issue of singularities, including 

a variant of the DTW algorithm, called the Derivative Dynamic Time Warping (Keogh & 

Pazzani, 2001). A simpler approach was to limit the possible warping paths by adding a 

restriction on the number of times a single point could be aligned. This approach was 

applied to the previous example leading to a significant increase in the DTW distance for 

valve activation-single cylinder while the DTW distance for valve activation-valve on 

remained almost constant. The number of times a single point could be aligned was 

determined by trial and error. A value of 50 gave acceptable results and was selected. 

The new DTW alignments and distances are shown in Figures 6.32 and 6.33. The DTW 

distance with the single acting increased considerably from 7.53 to 127 while that with the 

valve switching on had a minimal increase from 10.17 to 10.2. 
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Figure 6. 32: Modified DTW alignment between valve activation and single cylinder pattern 

 

Figure 6. 33: Modified DTW alignment between valve activation data valve turn on template 

B.2. Mean Removal 

The second modification was removing the mean from the patterns. Comparing two 

patterns of identical shape and amplitude but with an offset gave results indicating the 

patterns were dissimilar (Batista et al., 2014). There were few scenarios where an offset 

could exist between a pressure pattern created by a tool and its corresponding reference 

template. Examples of such a scenario include when the pressure in the regulated line was 

changed to a pressure different than the one used to define the templates, or when a tool 

was activated while a valve was already active. In such cases the offset existing with the 
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template might confuse the DTW algorithm and cause incorrect pattern matching. Gustavo 

et al suggested in (Batista et al., 2014) z-normalising the data to remove the variance cause 

by the offset. 

Z-normalisation has been one of the most used pre-processing methods and has been 

effective in handling offsets. It was based on the idea of centring and scaling data to have 

a mean of 0 and a standard deviation of 1. However, using z-normalising for offset removal 

in the case of pneumatic tools might increase the pattern classification error.  

As an example, the normalisation of the patterns of a double and single acting cylinder, 

shown in Figure 6.34, was considered. The biggest difference between both patterns is the 

larger drop in pressure seen in the double acting cylinder. The patterns after z-normalising 

are shown in Figure 6.35. Results showed that z-normalising the data scaled the pressure 

drop so that both patterns become almost identical. This was not desirable, after z-

normalising, the biggest difference between both patterns disappeared, and therefore it 

would be more challenging for a classification algorithm to differentiate between the two 

patterns. This scenario would also occur if the patterns belonging to two valves with 

different air discharge rates were z normalised. 

 

Figure 6. 34: Patterns of a single and double acting cylinders without normalisation 
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Figure 6. 35: Patterns of a single and double acting cylinder after z-normalisation 

An alternative to z-normalising that would remove the offset while allowing the patterns 

to maintain most of their unique features was mean removal. Mean removal was achieved 

by first calculating the mean of the pattern, and then subtracting it. Figure 6.36 below 

shows the patterns after their means were removed, showing that the differentiating 

features were maintained. 

 

Figure 6. 36: Patterns of a single and double acting cylinder after mean removal normalisation 
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6.3. Results  

The accuracy of the proposed algorithm was tested with data collected from a variety of 

possible operating sequences that involved four pneumatic tools. The tools were a single 

acting cylinder, a double acting cylinder and two identical solenoid valves. The dimension 

and specifications of the tools were given in Section 6.1. The results when the distance-

based and rule-based classification were used are reported in the following sub-sections. 

6.3.1. Results from a Distance-based Classifier 

The performance of the algorithm with the distance-based classifier was studied. Inputs to 

the classifier were the pressure signal segment identified by the segmentation algorithm, 

in addition to the reference patterns identified in Section 6.1.7. The distance-based 

classifier was tested with 164 pressure signal segments, of which 152 were classified 

correctly while 12 were misclassified. The breakdown of the real pattern in each pressure 

segment and their classification results are summarised in Table 6.4. 

Results indicated that the distance-ōŀǎŜŘ ŎƭŀǎǎƛŦƛŜǊ ǇŜǊŦƻǊƳŜŘ ǿŜƭƭΣ ŜȄŎŜǇǘ ŦƻǊ ŎŀǎŜǎ ΨǾŀƭǾŜ 

ƻƴΩ ŀƴŘ Ψƴƻ ǘƻƻƭΩΣ ǿƘŜǊŜ ǘƘŜ ŀƭƎƻǊƛǘƘƳ ŦǊŜǉǳŜƴǘƭȅ ŎƻƴŦǳǎŜŘ ǘƘŜ ǘǿƻ ǇŀǘǘŜǊƴǎΦ This was 

because both patterns had the same shape. Figure 6.37 shows two pressure signals 

ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ ǇŀǘǘŜǊƴǎ ƻŦ Ψƴƻ ǘƻƻƭΩ ŀƴŘ Ψ±ŀƭǾŜ ƻƴΩΦ .ƻǘƘ ǇŀǘǘŜǊƴǎ ƘŀŘ ǘƘŜ ǎŀƳŜ 

ǎƘŀǇŜΣ ōǳǘ ǘƘŜ Ψƴƻ ǘƻƻƭΩ ǇŀǘǘŜǊƴ ƘŀŘ ŀ ƘƛƎƘŜǊ ǇǊŜǎǎǳǊŜΦ hƴŎŜ ǘƘŜ ǇŀǘǘŜǊƴǎ ƘŀŘ ǘƘŜƛǊ ƳŜŀƴǎ 

removed, the pressure in both patterns became the same, causing the algorithm to 

misclassify them. 

Although mean removal normalisation was preferred over z-normalisation because it 

preserved some of the patterns unique features, result indicated that when the patterns 

had the same shape, mean removal normalisation would also lead to misclassifications. A 

possible work around would be to consider additional features, such as average pressure 

before normalisation. 
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Table 6. 4: Classification results when distance-based classifier was used 

  Real Value 

  

Single 
Cylinder 

Double 
Cylinder 

Valve 
Activatio

n 

Valve 
Switch 

On 

Valve 
Switch 

Off 

Valve 
On 

No Tool 
C

la
ss

ifi
c
a
ti
o
n

 R
e

su
lts 

Single 
Cylinder 

15 0 0 0 0 0 0 

Double 
Cylinder 

0 34 0 0 0 0 0 

Valve 
Activation 

0 0 12 0 0 0 0 

Valve 
Switch On 

0 0 0 16 0 0 0 

Valve 
Switch 

Off 
0 0 0 0 18 0 0 

Valve On 0 0 0 0 0 5 5 

No Tool 0 0 0 0 0 7 52 

 

 

Figure 6. 37: Pressure signal containing patterns corresponding to valve on and no tool 
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For the remaining cases, the distance-based algorithm performed well, and the DTW 

distance quantified how well two patterns matched. Table 6.5 shows the average DTW 

distance obtained when comparing patterns obtained from tools to the reference 

templatesΦ tŀǘǘŜǊƴǎ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ Ψƴƻ ǘƻƻƭΩ ŀƴŘ ΨǾŀƭǾŜ ƻƴΩ ǿƘŜǊŜ ŜȄŎƭǳŘŜŘ ōŜŎŀǳǎŜ ƻŦ 

the high rate of misclassification. The results confirmed the suitability of DTW for 

measuring the similarity between pressure patterns, as the smallest DTW distance was 

obtained with the pattern corresponding to the same tool. In addition to that, the DTW 

distance appeared to increase proportionally with the level of dissimilarity between the 

compared patterns. For example, the DTW distance between single cylinder data and the 

template corresponding to double acting was Ψ1.9Ω, whereas DTW distance with a valve 

activation template was Ψ125Ω. This indicated that the pattern was more similar to double 

acting cylinder than it is to a valve activation. 

The proposed algorithm was tested when small changes to a tool operation were applied. 

The defined reference patterns were not changed. Figure 6.38 shows new data 

corresponding to a pressure signal where a valve was activated for 10 seconds. The valve 

activation reference pattern, which last for 5 seconds, is also shown. 

Table 6. 5: DTW distance for combination of tools and reference patterns stored in the algorithm 

 
Reference Pattern 

Valve 
Activation 

Single 
Cylinder 

Double 
Cylinder 

Valve switch 
on 

Valve switch 
Off 

P
a

tt
e

rn
 C

o
n
si

d
e

re
d 

Valve 
Activation 3.8 127 126.5 11 8 

Single 
Cylinder 125 0.64 1.9 131.2 129.7 

Double 
Cylinder 131.9 2.37 0.58 130.4 136.8 

Valve switch 
on 14 130.9 125.3 1.1 17.7 

Valve switch 
Off 7.8 134.6 132.8 12.2 3.5 
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Figure 6. 38: New pressure signal showing valve activated for 10 seconds compared valve 
activation reference pattern, which is 5 seconds long 

The distance-based classifier correctly identified the new pressure signal as a valve 

activation. The DTW distances obtained when the new pressure signal was compared with 

the reference patterns are shown in Table 6.6. 

An important observation was that the DTW distance between the new pressure signal and 

ǘƘŜ ǾŀƭǾŜ ŀŎǘƛǾŀǘƛƻƴ ǊŜŦŜǊŜƴŎŜ ǇŀǘǘŜǊƴ ǿŀǎ ΨтΦтΩΣ ǿƘƛŎƘ ǿŀǎ ŀƭƳƻǎǘ ŘƻǳōƭŜ ǘƘŜ 5¢² 

distance when comparing a 5 second valve activation pressure signal to the valve activation 

reference pattern (see Table 6.5). This implied that as a given pressure signal deviated from 

the expected pattern, the DTW distance increased. This result suggested that the DTW 

distance ŎƻǳƭŘ ōŜ ǳǎŜŘ ŀǎ ŀ ΨƘŜŀƭǘƘΩ ƛƴŘƛŎŀǘƻǊ ǘƘŀǘ ǉǳŀƴǘƛŦƛŜŘ Ƙƻǿ ŎƭƻǎŜ ŀ ǘƻƻƭǎ ǇŜǊŦƻǊƳŀƴŎŜ 

was to the expected or ideal performance. 

Table 6. 6: DTW distances obtained when the new pressure signal was compared with the 
reference patterns 

 Reference Pattern 

 
Valve 

Activation 
Single 

Cylinder 
Double 
Cylinder 

Valve 
switch on 

Valve 
switch off 

T
o

o
l 

Valve 
Activation 

7.7 174.5 265 10 10.8 
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6.3.2. Results from a Rule-based Classifier 

The rule-based classifier was also tested. Inputs to the classifier were the pressure 

segments identified by the segmentation algorithm and the pressure set point in the 

regulated line. The same 164 pressure signal segments used in testing the distance-based 

classifier were used to test the rule-based classified. The rule-based classifier correctly 

classified all the pressure segment. The breakdown of the segments and their classification 

results are summarised in Table 6.7. 

Table 6. 7: Classification results when distance-based classifier was used 

  Real Value 

  

Single 
Cylinder 

Double 
Cylinder 

Valve 
Activatio

n 

Valve 
Switch 

On 

Valve 
Switch 

Off 
Valve On No Tool 

C
la

ss
ifi

ca
ti
o
n

 R
e

su
lts 

Single 
Cylinder 

15 0 0 0 0 0 0 

Double 
Cylinder 

0 34 0 0 0 0 0 

Valve 
Activation 

0 0 12 0 0 0 0 

Valve 
Switch On 

0 0 0 16 0 0 0 

Valve 
Switch 

Off 
0 0 0 0 18 0 0 

Valve On 0 0 0 0 0 12 0 

No Tool 0 0 0 0 0 0 57 

 

The rule-based classifier had a higher classification accuracy than the distance-based 

classifier. This was mainly because the rule-based classifier differentiated between 

pressure segment that had the same shape but had a different pressure level. These cases 

were often misclassified with the proposed distance based- classifier. 
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The rule-based classifier was robust to small changes in the regulated line pressure set-

point. Since the set-point was one of its inputs, the rule-based classifier showed good 

results when set-point pressure was different from the one used to initially create its rules. 

Moreover, the classifier performed well when small changes to tool operation happened, 

for example the classifier successfully identified valve patterns, regardless of how long the 

valve was activated for. 

Unlike the distance-based classifier, the rule-based classifier did not quantify the quality of 

ǇŀǘǘŜǊƴǎ ŀƴŘ ŎƻǳƭŘ ƴƻǘ ōŜ ǳǎŜŘ ǘƻ ƳŜŀǎǳǊŜ ǘƘŜ ΨƘŜŀƭǘƘΩ ƻŦ ŀ ǘƻƻƭΦ ¢Ƙŀǘ ŎƻǳƭŘ ōŜ ŀŎƘƛŜǾŜŘ 

with the DTW distance. 

6.4. Discussion and Conclusions 

This Chapter investigated the automatic recognition of patterns produced by air consuming 

tools in the pressure measurements obtained in a regulated line. Unlike lines directly 

connected to the supply side of a compressed air system, the pressure in a regulated line 

was set to a constant value, determined by process requirements. A compressed air system 

made of pneumatic tools was built and experiments were performed. The pneumatic tools 

considered were a solenoid valve, a double acting cylinder, and a single acting cylinder. 

Each tool was activated, and the shapes appearing in the pressure measurements were 

recorded. Results indicated that the shapes were repeatable and could be treated as 

patterns that were unique for each tool. 

An algorithm for the automatic identification of patterns was created. The algorithm took 

as input the pressure measurements collected from the regulated line, and it identified the 

tools that caused the patterns. The algorithm performed two main functions: segmentation 

and pattern classification. The algorithm could be used on pneumatic tools, irrespective of 

their type or brand, as long as a unique signature appearing in the pressure signal could be 

associated with their operation. 

Segmentation divided pressure measurements into smaller subsections, each containing a 

pattern. Two methods for segmentation were investigated. The first method detected the 

start of an event whenever pressure fell below a predefined pressure set-point, and the 

end of an event whenever the pressure increased back to the predefined set-point. This 
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method did not properly detect events starting or ending below the pressure set point. This 

limitation was addressed by looking into deviations from a regularly updated pressure 

threshold, instead of a rigid predefined pressure set point. Results demonstrated that the 

method was suitable and efficient in segmenting the pressure signal so that individual 

patterns were isolated. 

The classification of pressure signal segments obtained with the segmented was 

investigated. The objective of the classification was to identify which tool created the 

pattern in the signal. Two different methods for classification were investigated, a rule-

based and a distance-based method. 

The rule-based classifier was made up of a sequential set of conditional statements that 

examined qualitative and quantitative properties of a pressure signal segment. The 

quantitative properties included the time duration and average pressure, while the 

qualitative properties included the presence of a step increase or decrease in the pressure. 

The rule-based classifier had a higher classification accuracy than the distance-based 

classifier. 

The rule-based classifier had some disadvantages. The first disadvantage was that the 

number of rules required depended on the number of possible patterns. Three different 

tools were considered, however if the number of tools was higher, the number of rules 

required would increase, which could make creating a rule-based classifier impractical. 

Another disadvantage was that the proposed rule-based classifier did not provide a means 

for assessing the quality of a pattern, which could be used in monitoring the gradual 

deƎǊŀŘŀǘƛƻƴ ƻŦ ŀ ǘƻƻƭΩǎ ǉǳŀƭƛǘȅΦ 

A distance-based classifier was also investigated. This classifier estimated the similarity 

between a pressure segment to be classified and a set of reference patterns, and then 

classified a segment to the most similar reference pattern. The set of reference patterns 

included all possible patterns identified in the experiments. The similarity between 

patterns was quantified with a distance measure. In this research, DTW was used as a 

distance measure because it compared sequences of different length and compensated for 

misalignments in the time axis. Mean removal normalisation was applied to pressure 

segments to remove offsets due to tools operating at different pressures. 
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The results with the distance-based classifier showed satisfactory performance, except 

when two different patterns had the same shape. This was because the distance-based 

method classified patterns based on the similarity of their shapes. The DTW distance 

appeared to increase as the dissimilarity between a pattern and reference template 

increased, suggesting the DTW distance could be used to quantify the quality of a pattern 

ƳŀǘŎƘΣ ŀƴŘ ŎƻƴǎŜǉǳŜƴǘƭȅ ǘƘŜ ΨƘŜŀƭǘƘΩ ƻŦ ŀ ǘƻƻƭΦ 

Using dynamic time warping as a distance measure allowed the algorithm to perform well 

when the duration of tool operation changed. Moreover, the algorithm showed robustness 

to variations in operating pressure, mainly due to the mean removal which allowed pattern 

shapes to be compared. However, mean removal created a limitation when comparing 

similar pattern shapes that belonged to different tools. This could be solved by considering 

other features such as average pressure. 

One of the advantages of the distance-based classifier was its simplicity. Creating the 

classifier required identification of all the possible patterns and storing representative 

reference templates to be used for comparison. This was less laborious than creating a set 

of rules such as the ones used in the rule-based classifier. The distance-based classifier 

might be more practical when a larger number of tools operate. 

Future work to improve the presented algorithm could focus on several of its limitations. 

To reduce the manual effort required for creating a classifier, algorithms that automatically 

identify patterns and associates them with events could be investigated. The events could 

be obtained from the control commands and the algorithm would identify patterns 

appearing when specific control commands were issued. Future work could also investigate 

other distance measures, more complex air consuming tools and sequences and the 

implementation of the algorithm in a more complicated industrial set-up. 

 



Chapter 7 

Page 144 of 252 
 

Chapter 7: Acoustic Monitoring of Pneumatic 

Tools 

This Chapter investigates a sound analysis system for identifying the pneumatic tools from 

the sound generated during tool operation. Previous research reported the use of acoustic 

data for detecting leaks in a compressed air system (CAS). Most of that research was 

focused on leak detection using ultrasonic acoustic sensors or machine learning algorithms. 

Alternatively, in this Chapter, acoustic data were used for monitoring and obtaining 

information regarding the demand side of a CAS. A simple pneumatic network that 

mimicked the demand side of a CAS was used to generate audio recordings that contained 

the sound of tools operating. The frequency spectrum was obtained from the recordings 

and features were extracted for classification. A neural network was built to classify audio 

signals generated by tools. 

The remaining parts of this Chapter are divided as follows. Section 7.1 presents the 

methodology and the proposed audio analysis system. Section 7.2 discusses the 

experimental set-up. Sections 7.3 and 7.4 discuss signal processing and classification 

methods used, respectively. Section 7.5 presents the results obtained when the proposed 

system was tested. Finally, Section 7.6 includes main conclusions and discussions. 

7.1. Proposed System 

Sound is the result of displacements and oscillations of air molecules. Such displacements 

lead to local regions of air compression and rarefication that travel through air as 

alternating pressure waves (Müller, 2015). When these waves reach an electroacoustic 

transducer such as a microphone, they are recorded as an electric signal (Virtanen et al., 

2018). These recording were represented graphically with a pressure-time plot, that 

showed the deviation of air pressure from the average air pressure in the region 

surrounding the microphone. The pressure-time representation of a sound is known as a 

waveform. Figure 7.1, reproduced from (Müller, 2015), shows a schematic representation 

of sound wave propagation, recording and graphical representation. 
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Figure 7. 1: Schematic representation of sound wave propagation and recording 

Pneumatic tools typically generated loud sounds when they were operated. This Chapter 

presents a sound analysis system for identifying a pneumatic tool from the sounds it 

generated. This Section presents the approach and underlying methods used by the 

proposed sound analysis system. 

Figure 7.2 shows a schematic representation of the proposed sound analysis system. The 

system was made up of three main components: a pneumatic network, a data acquisition 

unit and processing and classification algorithms. The operation of pneumatic tools 

generated sounds that were captured by a microphone. The microphone was connected to 

a Raspberry Pi which stored the collected data as audio files. The analysis of acoustic data 

was rarely based on the audio signal itself, but rather on acoustic features that allowed for 

a compact representation of the acoustic signal. To extract the acoustic features, the audio 

file was passed through an audio processing algorithm that divided the audio file into 

frames and then generated acoustic features. The features were selected so that enough 

information for detecting or classifying a sound was obtained. Finally, a machine learning 

algorithm automatically classified sounds into their corresponding classes. The details of 

each subsystem and their underlying methods are discussed next. 
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Figure 7. 2: Schematic diagram showing suggested sound analysis system 

7.2. Experiments 

The experimental set-up used in the previous chapters was used in this one too. For the 

experiments in this Chapter, two pneumatic tools were used, a solenoid valve and a double 

acting cylinder. Both tools were connected to relays and controlled via the Raspberry Pi. 

Figure 7.3 shows a schematic representation of the experimental set-up.  

The sounds produced when the pneumatic tools operated were recorded using a 

microphone and a Raspberry Pi. The microphone used was a standalone model with a USB 

connection, and the Raspberry Pi was a 3B+ model. Both tools are shown in Figure 7.4. 

CǳƴŎǘƛƻƴǎ ŦǊƻƳ ǘƘŜ ǇȅǘƘƻƴ ƭƛōǊŀǊƛŜǎ ΨǎƻǳƴŘŘŜǾƛŎŜΩ ŀƴŘ ΨǎŎƛǇȅΩ were used to code the audio 

recording program. 
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The pneumatic network was fed through a compressed air supply line, that was located at 

far distance from the compressed air generation point and consequently noises generated 

by the compressor and other equipment in the supply side (such as dryers, cooler, etc.) 

were not recorded and were not considered by this research. In addition, the experimental 

set-up was placed in a location that minimised the impact of external noise as much as 

possible (e.g. nearby personnel, outside environment, etc.). 

Microphone

Air 
Supply Solenoid Valve

Double Acting 
Cylinder

 

 

Figure 7. 3: Schematic diagram showing the experimental set-up 

 

Figure 7. 4: USB microphone and Raspberry Pi used for data acquisition 

Four different categories of audio signals were then investigated. The first sound category 

was the audio generated after a valve discharged compressed air. The second category was 

the audio due to the extension or retraction of a cylinder. The third category was the audio 

where the sound of a valve discharging air and a cylinder extending or retracting 

overlapped, meaning that they happened at the same time. Finally, the fourth category 

was the audio that did not include any tools. 
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The waveforms corresponding to each of these audio categories are shown in Figure 7.5. 

For the case of the valve, the waveform lasted for as long as the valve was discharging 

compressed air. On the other hand, the waveform of the cylinder sound was identical each 

time. The waveform obtained when a valve and cylinder operation overlapped (i.e. Ψvalve 

+ cylinderΩύ was practically indistinguishable in the figure from the waveform obtained 

when a valve operated alone. Finally, when no tools operated, the amplitude of the 

waveform was negligible. 

 

Figure 7. 5: Waveform of the 4 different audio categories 

7.3. Audio Signal Processing 

Analysing a sound signal in its waveform representation for the purpose of identifying or 

differentiating sound events was in most situations not feasible (Virtanen et al., 2018). An 

example is the indistinguishable waveform corresponding to an active valve and an active 

valve with a cylinder. It was common to transform the sound signal to its frequency domain 

or frequency-time domain representation and to extract features that allowed 

differentiation between different acoustic events. These features were then used as inputs 

to a machine learning algorithm for classification. In this Section, the methods used for 

processing the acoustic data and for extracting features are discussed. 
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7.3.1. Frame Blocking and Windowing 

Audio signals change rapidly with time and consequently their frequency content 

constantly changes. Because of that, audio signals were analysed using short term 

processing techniques, which broke down the audio signal into overlapping short-time 

windows (frames) that allowed capturing the signal in a quasi-stationary state (Virtanen et 

al., 2018). When the DFT was applied to the frames, the approach was equivalent to a short-

term Fourier transform. 

The signal was broken down into frames using a moving window technique, then the 

frames were processed using a transform such as the Fourier transform. The process of 

breaking a large audio file into shorter overlapping frames was known as frame blocking 

and is depicted in Figure 7.6. 

 

Figure 7. 6: Frame blocking process 

Short term processing techniques focused each processing step on a specific frame of the 

original signal, while the remaining frames were ignored. This was implemented 

mathematically by multiplying the sound signal by a windowing function which had a value 

of zero outside the frame of interest. At each processing step, the windowing function was 

shifted so that the next frame was analysed. 

There were several possible choices for the windowing function, with the simplest choice 

being a rectangular function. However, a rectangular window function resulted in abrupt 
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changes at the frame boundaries that caused undesired distortions in the frequency 

domain representation. For that reason, another window function was selected so that the 

obtained frame boundaries were smoother. Typical window functions that satisfied this 

condition included the Hamming window, Bartlett window and the Hanning window 

(Giannakopoulos & Pikrakis, 2014). 

The mathematical implementation of the frame blocking and windowing are discussed 

nextΦ [Ŝǘ · ōŜ ŀƴ ŀǳŘƛƻ ǎƛƎƴŀƭ ŎƻƴǘŀƛƴƛƴƎ ƴҐмΣнΧ b ǎŀƳǇƭŜǎ ǘƘŀǘ ǿŜǊŜ ǎŀƳǇƭŜŘ ŀǘ ŀ 

frequency Fs. The ith frame Xi at the ith processing step was obtained by multiplying the 

original audio signal X by a windowing function W(n), as given in Equation 7.1.  

ὢ ὲ ὢὲ ὡ ὲ ά        

ὲ ρȟȣȢȢȟὔ 

Ὥ ρȟȣȢȢȟὑ 

Equation 7. 1 

The window function had N samples and was shifted by mi samples at each processing step. 

The value of mi depended on the window step size S and on the signal sampling frequency 

Fs. At the ith processing step, the number of samples by which the windowing function was 

shifted was obtained with Equation 7.2. 

ά Ὥ Ὓ Ὂ   

Equation 7. 2 

The degree of overlap between successive frames depended on the window step size S and 

on total window length WL. Typically, an overlap of 50% between consecutive frames was 

selected (Virtanen et al., 2018). The ratio of overlap Roverlap between successive frames was 

obtained with Equation 7.3. The windowing operation was implemented in MATLAB. 
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Ὑ ρ    

Equation 7. 3 

7.3.2. Discrete Fourier Transform (DFT) 

Analysing a sound signal was usually done in the frequency domain (Virtanen et al., 2018). 

The Discrete Fourier Transform (DFT) was a signal processing tool commonly used for 

transforming the representation of discrete signal from the time to the frequency domain. 

DFT was widely used in the analysis of acoustic signal since the majority of important 

features used in analysing acoustic content were defined in the frequency domain 

(Giannakopoulos & Pikrakis, 2014). The DFT was applied to each windowed frame extracted 

from the original audio signal. In this section, the calculation of the DFT is discussed. 

Consider an audio frame X(n) with a total length of n=1,2Χb samples. Its corresponding 

DFT, X(k), was obtained with Equation 7.4. 

ὢὯ В ὼὲὩ Ⱦ       Ë πȟρȟȣȢȢȟ.-1 

Equation 7. 4 

The output of the transform was a sequence of N coefficients, X(k), which in general were 

complex numbers (Giannakopoulos & Pikrakis, 2014). In Equation 7.4, k is an integer that 

represented a frequency index number from which the analogue frequency fk in Hz could 

be deduced with Equation 7.5. 

Ὢ Ὧ       Ë πȟρȟȣȢȢȟ.-1 

Equation 7. 5 

In Equation 7.5, Fs is the sampling frequency and N is the total number of samples in each 

frame. Increasing the number of samples N for a given sampling frequency would increase 

the number of frequency indices, and therefore would produce a finer representation of 

the signal in the frequency domain (Giannakopoulos & Pikrakis, 2014).  
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The calculated DFT coefficients were complex numbers and therefore plotting them against 

frequency indices was not convenient. An alternative was to obtain the magnitude of each 

coefficient, which would be a real number rather than a complex one, and generate what 

is known as an amplitude spectrum, which was obtained with Equation 7.6. 

ὃ ȿὢὯȿ      Ë πȟρȟȣȢȢȟ.-1 

Equation 7. 6 

The amplitude spectrum was a plot showing the amplitude Ak at each frequency index k. 

To simplify the analysis, the frequency indices were converted to analogue frequencies 

using Equation 7.5. An interpretation of the amplitude spectrum that was particularly 

useful for sound event analysis was that the amplitude measured how present a respective 

frequency was in an audio frame x(n). A high amplitude at a specific frequency indicated a 

strong participation of that frequency in signal x(n). On the contrary, a low amplitude at a 

specific frequency indicated a weak participation of that frequency in signal x(n).  

7.3.3. Feature Extraction 

Several possible features could be extracted from an audio signal. Depending on the signal 

representation used to extract features from, features were classified into two broad 

categories: time domain features and frequency domain features (Virtanen et al., 

2018;Giannakopoulos & Pikrakis, 2014). In general, frequency domain features were widely 

used in audio analysis tasks, and in this study, features based on frequency domain were 

used. 

To develop an accurate and computationally efficient recognition/classification algorithm, 

the features had to have low variability when extracted from audio signals belonging to the 

same class/category. At the same time, features extracted from audio signals belonging to 

different classes had to have high variability allowing for the distinction between different 

classes. In addition to that, a small number of features was preferred since it allowed for a 

computationally efficient algorithm. 

The amplitude spectrum of audio frames belonging to the four different categories of audio 

investigated in this study are shown in Figures 7.7, 7.8, 7.9 and 7.10. Only frequencies up 
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to the Nyquist frequency are shown. The amplitude spectrum revealed that each of the 

categories had enough differentiating characteristics that justified using features based on 

the amplitude spectrum. The main differentiating characteristics of each audio class are 

summarised in Table 7.1. 

Table 7. 1: Main Differentiating characteristics of the amplitude spectrums 

Audio Category Major Differentiating Characteristics 

Valve 

-Low amplitudes in frequency band (0-1,000 Hz) 

-Moderate amplitudes in frequency band (2,000-6,000 Hz) 

-High amplitudes in frequency band (6,000-7,800 Hz) 

Cylinder 

-Moderate amplitudes in frequency band (0-1,000 Hz) 

-Low amplitudes in frequency band (2,000-6,000 Hz) 

-Moderate amplitudes in frequency band (6,000-7,800 Hz) 

Valve+Cylinder 

-Moderate amplitudes in frequency band (0-1,000 Hz) 

-Moderate amplitudes in frequency band (2,000-6,000 Hz) 

-High amplitudes in frequency band (6,000-7,800 Hz) 

No Tool -Low amplitudes across the whole spectrum 

 

 

Figure 7. 7: Amplitude spectrum cylinder extension 
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Figure 7. 8: Amplitude spectrum valve activate 

 

Figure 7. 9: Amplitude spectrum for cylinder extension while valve active 

 

Figure 7. 10: Amplitude spectrum for the case with no tools active 
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The valve frequency spectrum had low amplitudes in the frequency band [0-1,000Hz], 

moderate amplitudes in the band [2,000-6,000Hz] and high amplitudes in the band [6,000-

7,800Hz]. The cylinder spectrum had moderate amplitudes in the frequency bands [0-

1,000Hz] and [6,000-7,800Hz], but low amplitudes in the band [2,000-6,000Hz]. When the 

valve and cylinder operated at the same time, moderate amplitudes were obtained in the 

frequency bands [0-1,000Hz] and [2,000-6,000Hz], while high amplitudes were seen in the 

frequency band [6,000-7,800Hz]. When no tools operated, the amplitudes were low across 

the whole spectrum. 

The amplitude spectrum satisfied the variability properties of efficient features; however, 

their dimension was relatively large. For an audio sampling rate of 44,100Hz, and an audio 

frame size of 1 seconds, each frame contained 44,100 samples and applying the DFT 

resulted in amplitudes at 44,100 different frequency bins. If all the frequencies higher than 

the Nyquist frequencies were ignored, amplitudes at 22,050 different frequency bins 

remained. A feature with such a high dimension was computationally expensive and 

therefore reducing the number of features was necessary. 

The first step in reducing the number of features was to disregard amplitudes at 

frequencies higher than 10,000Hz. The amplitude spectrums in Figures 7.7, 7.8, 7.9 and 

7.10 showed that frequencies higher than 10,000Hz did not contain any valuable 

information that could differentiate between the different categories of audio signals 

considered, and therefore eliminating those frequencies as features would reduce feature 

dimension considerably without having any significant impact on anticipated classifier 

accuracy. 

The second step in reducing the number of features was to divide the frequency spectrum 

into sub-bands and compute a cumulative amplitude for each sub-band. Since the 

discriminative information for each audio category was concentrated in distant frequency 

bands, grouping the frequencies into sub-bands would reduce the number of features, 

while allowing the differentiation between the different categories. Each sub-band Ψi' 

would have a cumulative amplitude CAi calculated by summing the amplitudes of the 

individual frequencies aj contained within the sub-band. The ith cumulative amplitude CAi 

at the ith frequency sub-band SBi was calculated with Equation 7.7.  
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ὅὃ В ὥ        Ê ρȟςȣȢ. 

Equation 7. 7 

Each frequency sub-band contained N frequency bins. The total number of sub-bands was 

obtained by dividing the number of frequencies considered, by the number of frequency 

bins contained in a frequency sub-band. For example, if 10000 frequency values from the 

spectrum were considered, and the number of frequency bins per sub-band was set to 100, 

a total of 100 sub-bands was obtained.  

Figures 7.11, 7.12, 7.13 and 7.14 show the cumulative amplitude of 100 frequency bands 

for each of the audio categories. The overall shape of the frequency spectrum in Figures 

7.11, 7.12, 7.13 and 7.14 with 100 frequency bands was similar to the overall shape of the 

amplitude spectrum with 22,050 frequency bins, shown in Figures 7.7, 7.7, 7.9 and 7.10. 

This suggested that the feature reduction approach reduced the number of features 

without significantly impacting the effectiveness of the features.  

 

 

Figure 7. 11: Cumulative amplitude spectrum for audio signal corresponding to valve 
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Figure 7. 12: Cumulative amplitude spectrum for audio signal corresponding to cylinder 

 

Figure 7. 13: Cumulative amplitude spectrum for audio signal corresponding to valve + cylinder 
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Figure 7. 14: Cumulative amplitude spectrum for audio signal corresponding to no tools being 
active 

7.4. Audio Signal Classification 

The previous Sections presented the approach adopted for audio file processing, feature 

extraction and dimension reduction. This Section discusses developing a classifier that 

takes the features as inputs and outputs a class label indicating which tool generated the 

sound. The classifier was based on supervised machine learning. Other machine learning 

methods, such as unsupervised learning and semi-supervised learning were possible, 

however, for the analysis of sound events, supervised learning methods were the most 

frequently used (Virtanen et al., 2018). 

Supervised machine learning methods were generally categorised into two main groups: 

generative and discriminative. Generative methods determined which classes most likely 

generated a given input. Generative learning methods included Gaussian mixture models, 

hidden Markov models and naïve Bayes classifiers. Alternatively, discriminative methods 

modelled the boundaries between the different classes and established a direct mapping 

between inputs features and target outputs. Some of the established discriminative 

methods included neural networks, decision trees and support vector machines. For 

applications involving sound classification, discriminative learning methods have been 

preferred over generative methods (Virtanen et al., 2018).  
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In this research, a neural network algorithm was selected for the classification. Data for 

neural network training and validation was collected using the experimental set-up 

described in Section 2.1. Each training sample was a one-second-long audio signal 

processed as described in Section 3. The next Section will present the neural network 

architecture and training phase. 

7.4.1. Neural Networks 

Neural networks are a class of supervised machine learning algorithms. In supervised 

learning, the user provided input data with their correct class label so that the algorithm 

learned a mapping model. Once trained, then the algorithm was presented with new 

unseen inputs, and the most likely class was determined.  

The algorithm considered in this research used a feature vector containing the cumulative 

amplitude evaluated at 100 frequency sub-band. The outputs were a class label that 

corresponded to one of four possible events: 1) valve, 2) cylinder, 3) both valve and cylinder 

and 4) no tool.  

A specific class of neural networks that had proven to be of great practical value was the 

multi-layer perceptron (Bishop, 2006). The structure of a neural network contained an 

input layer, an output layer and at least one hidden layer. The first layer was known as the 

input layer, and its main role was to transfer the inputs to the next layer, known as the 

hidden layer. A neural network could have more than one hidden layer, however it has 

been shown that a neural network with a single hidden layer was usually enough (Polikar, 

2006). Finally, the output layer was where the final computations were performed before 

assigning a class to the input. 

Each of the mentioned layers contained several nodes. The number of nodes in the input 

layer were equal to the number of elements in the features vector, which in this research 

was 100 features, and therefore 100 input nodes. The number of nodes in the output layer 

was equal to the number of possible classes, which in this research was four outputs. The 

number of nodes in the hidden layer was a free parameter of the algorithm, and in this 

research a hidden layer with 25 nodes was selected. Each node in a specific layer was fully 

connected to each node in the next layer through weighting parameters. 
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7.4.2. Neural Network Training  

The learning was achieved through a computational algorithm that allowed the model to 

learn the relationship between the input feature vectors and the corresponding class 

label(Virtanen et al., 2018). This was achieved by an iterative computational process that 

adjusted the weight parameters so that a cost function was minimised. The error, which 

was obtained using a cost function, is an indication of how accurate the neural network 

was in predicting the label of the inputs. In this study, the logistic regression cost function 

given by Equation 7.8 was used to compute the error (Polikar, 2006).  

ὐ
ρ

ὔ
ώὰέὫὪὬ ρ ώ ὰέὫ ρ ὪὬ  

Equation 7. 8 

Where  

N Number of training examples 

K Number of possible classes 

y ki Output of example i for class k (0 or 1)  

The cost function was minimised by adjusting the weight parameters using a gradient 

descent algorithm. This process was completed over three main steps: first step, known as 

forward propagation, computed the cost function with the current values of the weight 

parameters. The second step, backpropagation, computed the gradient of the cost function 

with respect to each weight. In the third step, the weights were updated using the gradient 

calculated in step 2. The above three steps were repeated until the cost function converged 

to a minimum, or until the algorithm completed a predetermined number of iterations. The 

neural network algorithm was implemented with MATLAB. 

7.5. Results 

Acoustic data samples corresponding to the different tools in the experimental set-up were 

generated. The data was contained 1,758 samples, of which 1,066 (61%) were no tool, 610 

(35%) were valve, 41 (2 %) were cylinder and 41 (2 %) were both a cylinder and valve. 

Because the duration of a cylinder operation was considerably shorter than a valve, it was 

normal that the percentage of data corresponding to a cylinder was lower than that 
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corresponding to a cylinder. Moreover, a large number of samples corresponded to no tool 

since the data contained instances where no tools were activated. This data was used to 

evaluate the performance of the classifier. 

The collected samples were collected, processed and classified using the methods 

described in Sections 7.3 and 7.4. The classification results are presented as a confusion 

matrix, shown in Figure 7.15. Rows correspond to the class the proposed classifier assigned 

the data sample to, while columns correspond to the true class of the data sample. 

The results indicated that the classifier performed well, with the accuracy for all classes 

being 100% except for the valve which was 99%. The high accuracy indicated that the 

classifier differentiated the different classes with the used features. Another factor that 

contributed to the high accuracy was the fact that there were no noises when data was 

collected, and therefore the audio signals being classified were almost identical to the 

signals used for classifier training. 

  True Class 
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Cylinder 

No Tool 
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Valve 608 0 0 0 

Cylinder 0 41 0 0 

Valve+ 
Cylinder 

2 0 41 0 

No Tool 0 0 0 1066 
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(%) 
99 100 100 100 

Figure 7. 15: Confusion matrix 

The impact of random sounds that could be generated in the vicinity of pneumatic tools 

was analysed. Acoustic data generated from three knocks on a table and from a casual 

conversation were recorded. The waveforms obtained from each sound are shown in 

Figure 7.16. 
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Figure 7. 16: Waveform for sounds corresponding to knocking on a table and a casual conversation. 

The knocking and conversation sounds were processed and classified with the proposed 

algorithm. Results indicated that the proposed algorithm confused random noises with the 

activation of tools. The frames coinciding with knocks were classified as cylinder. Moreover, 

several of the frames in the conversation waveform were classified as a cylinder. These 

sounds were classified as cylinder because their DFT was more like that of a cylinder than 

that of a valve or no tool. If other noises with a DFT like that of a valve were considered, 

the algorithm would classify the noises as a valve. 

7.6. Discussions and Conclusion 

This Chapter presented an audio analysis system for monitoring the demand side of a CAS. 

The system detected the operation of a pneumatic tool from the sounds generated during 

their operation. The proposed system included equipment and methods for data collection, 

signal processing, feature extraction and finally classification. 

A simple pneumatic network with a valve and cylinder was used to simulate tool operation. 

Tools were operated and audio samples were recorded with a microphone and a raspberry 

Pi. Recorded audio included four different operations: valve discharging compressed air, 

extension or retraction of the cylinder, valve discharging air and the cylinder extending or 

retracting at the same time and finally, no tools activated. The audio was processed using 

a short-term processing approach where the audio signal was divided into smaller frames 
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that were windowed and then processed using the DFT. Features based on the cumulative 

amplitudes within frequency sub-bands were generated. 

A neural network classifier was created and trained. The input to the neural network was 

a feature vector containing the cumulative amplitudes at different frequency sub-bands. 

The output was a category indicating which tool activity generated the sounds. The results 

indicated that the suggested system was effective in identifying operating tools based on 

audio recordings. The classifier showed high accuracy against the four possible operations 

considered. 

The high accuracy of the classifier was because the considered classes were easily 

separable, and because the data collection process minimised the impact of external noise 

from pneumatic tools environment. 

One of the advantages of the suggested system was its simplicity. The hardware and 

software used were relatively inexpensive, easy to install and operate. Another advantage 

was the ǎȅǎǘŜƳΩǎ ability to identify overlapping events, such as the case of cylinder 

activation while valve was active. The waveform shown in Figure 7.5 demonstrated that it 

was difficult to differentiate between the case where only the valve was active, and the 

case where the valve and a cylinder operated at the same time. Using the suggested feature 

extraction approach, the system could differentiate between the two cases with an 

accuracy of 99%. 

However, the classifier was based on supervised machine learning and therefore the 

complexity of classifier training depended on the number of tools the pneumatic network 

had. In a larger industrial set-up, the number of tools would be significantly larger than the 

number considered by this research. Implementing an audio monitoring system similar to 

the one proposed by this research in an industrial setting would require large efforts to 

collect, label and train a supervised classifier. A workaround for this limitation would be 

either an unsupervised classification approach, or to automate the process of data 

collection, labelling and training. 

The proposed system was not capable of differentiating between similar tools, for example 

between two similar valves or two similar cylinders. Similar tools placed at close distances 
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would generate similar sounds, and therefore the system might not be able to differentiate 

between them without considering other variables. 

Results showed that the proposed system performed poorly when other sounds were 

generated. Sounds such as knocking on a table or casual conversation were misclassified as 

cylinder operations. The impact of external noise generated by nearby activities, personnel 

or the outside environment was minimised, but that might not be possible in all industrial 

settings as sounds from nearby manufacturing activities or operators might be inevitable. 

This does not mean the proposed system would not be useful in industrial settings. Sounds 

that form part of an industrial process, such as tool operation, are generally repeatable. 

Classes would be defined in the neural network for them. Other sounds would be 

occasional or random, but they might lead to misclassification. They would not occur often 

and could just be disregarded. If a misclassification persisted, then it could be an indication 

that something abnormal was happening around the monitored tools. 

The audio analysis system could be combined with the tool schedule and with other 

monitoring systems to reduce errors. In the next Chapter, the acoustic monitoring system 

is combined with the tool schedule and with demand and supply pressure monitoring to 

create a new Condition Monitoring & Fault Diagnosis System for CAS. 
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Chapter 8: Condition Monitoring and Fault 

Diagnosis System 

This Chapter describes a framework for condition monitoring and fault diagnosis in a 

compressed air system (CAS). The proposed framework combined the control schedule, the 

supply side pressure monitoring presented in Chapter 5, the demand side pressure 

monitoring presented in Chapter 6 and the acoustic monitoring presented in Chapter 7. 

Knowledge management made sense of the outputs from the pressure and acoustic 

monitoring systems to determine the condition of a CAS, and to diagnose faults in case an 

abnormal operating condition was determined. 

The details of the proposed framework and the knowledge management unit are discussed. 

Five experiments were performed to analyse performance under normal operating 

conditions and when faults appeared in the system. The results demonstrate how the 

proposed framework could detect and diagnose faults in a CAS. The use of Dynamic Time 

Warping (DTW) distance as a tool health indicator is also discussed. 

This Chapter is divided as follows: Section 8.1 presents the proposed framework and 

discusses its architecture, main components, and the knowledge management. Section 8.2 

discusses five experiments that demonstrate the operation of the new proposed system 

when different events occur. Section 8.3 discusses how the DTW distance could improve 

the performance of the new system. Finally, Section 8.4 presents discussion and main 

conclusions. 

8.1. Proposed System 

The new system described in this Chapter combined information from multiple data 

sources to achieve conclusions that could not be achieved by a single source. Researchers 

have shown that systems with a single data source had a limited classification or prediction 

capacity, which was not enough in certain applications (Niu, 2017). The fusion of multiple 

data sources had been successfully used in solving complex pattern recognition and 

prediction tasks (Messina, 2020; Niu, 2017; Xanthoula et al., 2020). In the next subsections, 
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the architecture of the proposed system and the methods used for determining CAS 

conditions are discussed. 

8.1.1. System Architecture 

Three common methods for data fusion had been reported in the literature: data level 

fusion, feature level fusion and decision level fusion (Liggins et al., 2009; Niu, 2017). The 

major difference between those three methods was the level at which data was combined. 

The three methods are listed and explained. 

¶ Data level fusion: In this method raw sensor data from all measured quantities were 

combined directly, and a new feature was obtained from the fused data. The sensors 

used in this method measured similar physical phenomena, and the use of this method 

was not optimal in environments where different physical phenomena were 

considered. 

¶ Feature level fusion: In this method raw data from each sensor was extracted and 

processed to generate features. Features were then combined to form a single feature 

vector, which was then used in a suitable classification or pattern recognition algorithm. 

¶ Decision level fusion: In this method feature extraction and classification were applied 

independently for each sensor. Then, the outcome from each sensor were combined 

into one vector, which was used to make determine the system condition. 

The research reported in this Dissertation considered different physical phenomena, such 

as acoustics and pressure. In such cases, data level fusion was not optimal. Systems created 

throughout this research performed data collection, feature extraction and classification 

on each physical phenomenon independently, and an outcome was obtained from each 

physical phenomenon. Because of that, a decision level fusion method was more suitable 

than a feature level fusion. 

Figure 8.1 shows the architecture of the condition monitoring and fault diagnosis system. 

The system was made up of four main units: data collection, data processing, Knowledge 

management and a user interface. Each data source and its corresponding feature 

extraction and classification unit formed a sub-system. The system had four sub-systems 

that considered the control schedule, acoustic data, supply pressure and demand pressure. 
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The output of each sub-system was information about the CAS, which was then fed into a 

knowledge management unit. Knowledge management made sense of the information to 

determine the CAS condition and diagnose faults in case they were present. System 

condition identified by the knowledge management unit would then be communicated to 

the user. 

 

Figure 8. 1: Architecture of the condition monitoring and fault diagnosis system  

8.1.2. Sub-systems Considered 

The system had four different sub-systems for data collection, features extraction and 

classification. 

Sub-system one collected data from a control schedule and determined which tools should 

be operating and at what times. The control schedule was defined in a microcontroller. A 

Programmable Logic Controller (PLC) might be used in an industrial unit. The schedule was 

converted into a format to be used directly by the knowledge management unit. The output 

from sub-system one was which tools operated and at what time. 

Sub-system two was the audio analysis system presented in Chapter 8. The sub-system 

collected acoustic data via a microphone and identified if and which tools operated based 

on the sounds generated. The audio waveforms collected were processed with a short-

term discrete Fourier transform. A neural network classified the different waveforms into 

the tools that generated them. 
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Sub-system three was the supply side pressure monitoring system presented in Chapter 6. 

The sub-system collected the pressure at the supply side of the CAS and determined which 

tools operated based on patterns in the supply pressure signal. The data used by this sub-

system was collected with a pressure sensor connected to the supply side of the CAS. A 

discrete wavelet transform was used to decompose the pressure signal at different scales. 

A K-nearest neighbour classifier determined which tools the seen patterns belonged to. 

Sub-system four was the demand side pressure monitoring system presented in Chapter 7. 

The sub-system collected the pressure at the demand side of the CAS and determined 

which tools operated based on patterns in the demand pressure signal. The data used was 

collected with a pressure sensor connected to the demand side of the CAS. The pressure 

signal was segmented to isolate the different patterns appearing in the pressure signal. The 

isolated patterns were then classified using the rule-based classifier presented in Chapter 

6. 

For simplicity, only three possible outputs from each sub-system were considered: No tool 

operation, valve operation and cylinder operation. Once the outcome from each sub-

system was obtained, knowledge management determined CAS condition and diagnosed 

faults. 

8.1.3. Knowledge Management 

The outputs from the four sub-systems were fed into a knowledge management unit where 

the system condition was determined, and faults were diagnosed. The knowledge 

management unit consisted of a rule-based classifier that mapped the combination of 

outputs from the sub-systems into a system condition and diagnosis. A total of 81 rules 

were defined. The set of rules were created based on domain knowledge. Table 8.1 

summarises the 81 rules. The system condition was either faulty or not faulty. The diagnosis 

was the most likely cause of the fault. When the system was not faulty, the diagnosis 

identified if any of the sub-systems had a misclassification. Once the system condition and 

diagnosis were determined, the output was communicated through a simple user interface. 

The next Section presents and discusses experiments that demonstrate some of the rules. 
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Table 8. 1: Summary of all possible sub-system outcomes showing corresponding system condition and diagnosis 

sub-system Output Condition & Diagnosis Output Condition & Diagnosis Output Condition & Diagnosis Output Condition & Diagnosis Output Condition & Diagnosis Output Condition & Diagnosis Output Condition & Diagnosis 

Control No Tool 
No Faults 

No Tool 
Fault 

Cylinder 
No Fault 

Cylinder 
Fault 

Valve 
Fault 

Valve 
No Fault 

Valve 
Fault 

Acoustics No Tool Cylinder No Tool Valve Cylinder Valve Cylinder 

Supply No Tool 
No tools active 

Valve 
Leak in supply side 

Cylinder Classification Error Cylinder 
Faulty cylinder 

No Tool 
Faulty Valve 

Valve 
Classification error 

No Tool 
Error with control 

Demand No Tool Cylinder Valve  No Tool Cylinder Cylinder No Tool 

Control No Tool 
No Faults 

No Tool 
Fault 

Cylinder 
Fault 

Cylinder 
No Fault 

Valve 
No Fault 

Cylinder 
No Fault 

Cylinder 
Fault 

Acoustics No Tool Cylinder No Tool Valve Cylinder No Tool Valve 

Supply No Tool 
classification error 

Valve 
Leak in demand side 

Valve 
Faulty Cylinder 

Cylinder 
Classification error 

No Tool 
Classification error 

Cylinder 
Classification error 

No Tool 
Faulty cylinder 

Demand Cylinder Valve No Tool Cylinder Valve Cylinder Valve 

Control No Tool 
Fault 

No Tool 
No Fault 

Cylinder 
No Fault 

Cylinder 
Fault 

Valve 
Fault 

No Tool 
Fault 

Valve 
No Fault 

Acoustics No Tool Valve No Tool Valve Cylinder Cylinder Valve 

Supply No Tool 
Leak in demand side 

No Tool 
Classification error 

Valve 
Classification Error 

Cylinder 
Faulty cylinder 

Cylinder 
Faulty Valve 

Valve 
Leak in supply side 

Valve 
Classification error 

Demand Valve No Tool Cylinder Valve No Tool No Tool No Tool 

Control No Tool 
No Faults 

No Tool 
Fault 

Cylinder 
Fault 

Cylinder 
Fault 

Valve 
Fault 

Cylinder 
Fault 

Valve 
No Fault 

Acoustics No Tool Valve No Tool Valve Cylinder Valve No Tool 

Supply Cylinder 
classification error 

No Tool 
Leak in demand side 

Valve 
Faulty Cylinder 

Valve 
Faulty cylinder 

Cylinder 
Faulty Valve 

No Tool 
Faulty cylinder 

Valve 
Classification error 

Demand No Tool Cylinder Valve No Tool Cylinder Cylinder Valve 

Control No Tool 
Fault 

No Tool 
Fault 

Cylinder 
Fault 

Cylinder 
Fault 

Valve 
Fault 

No Tool 
Fault 

Cylinder 
No Fault 

Acoustics No Tool Valve Cylinder Valve Cylinder Cylinder No Tool 

Supply Cylinder 
Leak in demand side 

No Tool 
Leak in demand side 

No Tool 
Error with control 

Valve 
Faulty cylinder 

Cylinder 
Faulty Valve 

Cylinder 
Leak in Demand side 

Cylinder 
Classification error 

Demand Cylinder Valve No Tool Cylinder Valve Valve No Tool 

Control No Tool 
Fault 

No Tool 
Fault 

Cylinder 
No Fault 

Cylinder 
Fault 

Valve 
Fault 

Valve 
Fault 

Valve 
Fault 

Acoustics No Tool Valve Cylinder Valve Cylinder No Tool Valve 

Supply Cylinder 
Leak in demand side 

Cylinder 
Leak in supply side 

No Tool 
Classification Error 

Valve 
Faulty cylinder 

Valve 
Faulty Valve 

Valve 
Faulty Valve 

Cylinder 
Faulty Valve 

Demand Valve No Tool Cylinder Valve No Tool No Tool Cylinder 

Control No Tool 
Fault 

No Tool 
Fault 

Cylinder 
Fault 

Valve 
Fault 

Valve 
Fault 

Valve 
Fault 

Valve 
No Fault 

Acoustics No Tool Valve Cylinder No Tool Cylinder No Tool Valve 

Supply Valve 
Leak in supply side 

Cylinder 
Leak in demand side 

No Tool 
Faulty Cylinder 

No Tool 
Faulty cylinder 

Valve 
Faulty Valve 

Valve 
Faulty Valve 

Cylinder 
Classification error 

Demand No Tool Cylinder Valve No Tool Cylinder Cylinder Valve 

Control No Tool 
Fault 

No Tool 
Fault 

Cylinder 
No Fault 

Valve 
Fault 

Valve 
No Fault 

Cylinder 
No Fault 

Cylinder 
Fault 

Acoustics No Tool Valve Cylinder No Tool Cylinder No Tool Cylinder 

Supply Valve 
Leak in supply side 

Cylinder 
Leak in demand side 

Cylinder 
Classification Error 

No Tool 
Faulty Valve 

Valve 
Classification error 

No Tool 
Classification error 

Valve 
Faulty cylinder 

Demand Cylinder Valve No Tool Cylinder Valve Cylinder Valve 

Control No Tool 
Fault 

No Tool 
Fault 

Cylinder 
No Fault 

Valve 
No Fault 

Valve 
Fault 

Cylinder 
Fault 

Cylinder 
Fault 

Acoustics No Tool Valve Cylinder No Tool Valve No Tool Valve 

Supply Valve 
Leak in Demand side 

Valve 
Leak in supply side 

Cylinder 
Cylinder Activation 

No Tool 
Classification error 

No Tool 
Error with control 

No Tool 
Faulty Cylinder 

No Tool 
Error with control 

Demand Valve No Tool Cylinder Valve No Tool Valve No Tool 

Control No Tool 
No Fault 

No Tool 
Fault 

Cylinder 
No Fault 

Valve 
Fault 

Valve 
Fault 

No Tool 
No Fault 

No Tool 
Fault 

Acoustics Cylinder Valve Cylinder No Tool Valve Cylinder Cylinder 

Supply No Tool 
Classification Error 

Valve 
Leak in Demand side 

Cylinder 
Classification error 

Cylinder 
Faulty Valve 

No Tool 
Faulty Valve 

Cylinder 
Classification Error 

Cylinder 
Error with control 

Demand No Tool Cylinder Valve No Tool Cylinder No Tool Cylinder 

Control No Tool 
No Fault 

No Tool 
Fault 

Cylinder 
Fault 

Valve 
Fault 

Valve 
No Fault 

Valve 
Fault 

Valve 
No Fault 

Acoustics Cylinder Valve Cylinder No Tool Valve Valve No Tool 

Supply No Tool 
Classification Error 

Valve 
Leak in Demand side 

Valve 
Faulty cylinder 

Cylinder 
Faulty Valve 

No Tool 
Classification error 

Cylinder 
Faulty Valve 

Cylinder 
Classification error 

Demand Cylinder Valve No Tool Cylinder Valve No Tool Valve 

Control No Tool 
Fault 

Cylinder 
Fault 

Cylinder 
No Fault 

 Valve 
No Fault 

      

Acoustics Cylinder No Tool Cylinder  Valve       

Supply No Tool 
Leak in Demand side 

No Tool 
Error with Control 

Valve 
Classification error 

 Valve 
Valve Operation 

      

Demand Valve No Tool Cylinder  Valve       
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8.2. Experimental Evaluation 

Five experiments were conducted to evaluate the performance of the CAS condition 

monitoring and fault diagnosis system. 

ü Experiment one simulated CAS operation when no faults were present.  

ü Experiment two simulated a sudden leak in the demand side of the CAS. The leak was 

simulated by manually activating the sliding valve shown in Figure 8.2.  

ü Experiment three simulated a sudden leak in the supply side of the CAS. The sliding 

valve was also used to simulate the leak. Experiment three was similar to experiment 

two, except that in experiment three, the sliding valve was connected downstream of 

the pressure regulator (supply side), whereas in experiment two it was connected 

upstream (demand side).  

ü Experiment four simulated CAS operation when there was a fault in the control of the 

pneumatic tools.  

ü Experiment five simulated the presence of noises not related to CAS operation.  

The data collected and the outcome from the different sub-systems for the five 

experiments are discussed in the following sub-sections. 

 

Figure 8. 2: Sliding Valve used to simulate the occurrence of a large-scale leak 
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8.2.1. Experiment One: No Faults Present 

In experiment one the knowledge management system was tested when CAS did not have 

faults. A double acting cylinder and a valve were activated. Figure 8.3 contains four plots 

showing data collected from the controller, audio analysis, supply, and demand pressures. 

 

Figure 8. 3: Data collected in Experiment One: A. Controller; B. Microphone; C. Supply side 
pressure; and D. Demand side pressure 

Graph A in Figure 8.3 shows the control commands sent by the controller. A value of Ψ1Ω 

indicated an activation command and a value of Ψ0Ω indicated that no command for 

activation was sent. The cylinder was extended at time tҒ15 seconds, while the valve was 

switched on at time tҒ25 seconds and then switched off at time tҒ30 seconds. No other 

tools were operated. 

The effect of operating the pneumatic tools was seen in the acoustic and pressure 

measurements. Graph B shows the acoustic waveform collected during this experiment. 

The amplitude of the acoustic waveform changed significantly when the pneumatic tools 

were active. Graphs C and D show the supply and demand side pressures respectively. 
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When the cylinder and valve were activated, the patterns corresponding to each tool 

appeared in the signal. 

Table 8.2 shows the outputs from the sub-systems during the instances when no tools were 

activated. The audio, supply pressure and demand pressure sub-systems did not detect the 

ŀŎǘƛǾƛǘȅ ƻŦ ŀƴȅ ǘƻƻƭΣ ŀƴŘ ǘƘŜƛǊ ƻǳǘŎƻƳŜ ǿŀǎ Ψbƻ ¢ƻƻƭΩΦ ¢Ƙƛǎ ǿŀǎ ŎƻƴǎƛǎǘŜƴǘ ǿƛth the outcome 

of the control command and therefore it was concluded that the CAS had no faults and that 

there were no tools active. 

Table 8. 2: Output from sub-systems in Experiment One during instances of no tool activation 

 Sub-system Output  Condition & Diagnosis 

E
xp

e
ri

m
e

n
t O

n
e Control command No Tool 

No Faults 
Acoustics No Tool 

Supply No Tool 
No Tool Active 

Demand No Tool 

 

Tables 8.3 and 8.4 show the outputs from the different sub-systems during the instances 

when the valve and the cylinder were activated, respectively. The control commands and 

the outputs from the audio, supply and demand sub-systems were consistent. When the 

controller requested a tool to operate, its operation was correctly detected by all the sub-

systems. These results indicated that there were no faults in the system. 

Table 8. 3: Output from sub-systems in Experiment One during instances of valve activation 

 Sub-system Output  Condition & Diagnosis 

E
xp

e
ri

m
e

n
t 

O
n
e Control command Valve 

No Faults 
Acoustics Valve 

Supply Valve 
Valve Activated 

Demand Valve 
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Table 8. 4: Output from sub-systems in Experiment One during instances of cylinder activation 

 Sub-system Output  Condition & Diagnosis 

E
x
p
e
ri

m
e

n
t 

O
n
e Control command Cylinder 

No Faults 
Acoustics Cylinder 

Supply Cylinder 
Cylinder Activated 

Demand Cylinder 

The cases shown in Tables 8.2, 8.3 and 8.4 are examples of rules that were defined in the 

knowledge management unit to map the combination of outcomes to non-faulty operating 

conditions. 

8.2.2. Experiment Two: Leak in Demand Side 

Experiment two considered the case where a leak occurred in the demand side of the CAS. 

The occurrence of a leak was simulated by manually opening the sliding valve at time tҒ8.5 

seconds. The sliding valve was connected to a pipe located downstream of the pressure 

regulator. Figure 8.4 shows plots corresponding to the data collected from the controller, 

supply pressure, audio analysis and demand pressure. 

Graph A in Figure 8.4 shows the commands sent by the controller, which was a constant 

zero, indicating that no commands for the activation of tools was sent. Graph B shows the 

acoustic waveform amplitude. The waveform amplitude started to vary considerably at 

time tҒ8.5 seconds, which was when the sliding valve was opened. Graphs C and D show 

the supply and demand side pressures respectively. Both pressures had a step decrease 

after the sliding valve was opened. 

The data collected after the sliding valve opening was analysed with the condition 

monitoring and fault diagnosis system. Results are summarised in Table 8.5. The controller 

ŘƛŘ ƴƻǘ ǊŜǉǳŜǎǘ ǘƘŜ ŀŎǘƛǾŀǘƛƻƴ ƻŦ ŀƴȅ ǘƻƻƭ ŀƴŘ ƛǘǎ ƻǳǘǇǳǘ ǿŀǎ Ψbƻ ¢ƻƻƭΩΦ ¢ƘŜ ƻǳǘǇǳǘ ŦǊƻƳ ǘƘŜ 

ŀǳŘƛƻ ŀƴŀƭȅǎƛǎ ǿŀǎ ΨǾŀƭǾŜΩ ƳŜŀƴƛƴƎ ƛǘ ŘŜǘŜŎǘŜŘ ǘƘŜ ƻǇŜǊŀǘƛƻƴ ƻŦ ŀ ǾŀƭǾŜΦ {ƛƳƛƭŀǊƭȅΣ ǘƘŜ 

output from the supply and demand pressure sub-ǎȅǎǘŜƳǎ ǿŜǊŜ ΨǾŀƭǾŜΩΦ ¢Ƙƛǎ ǿŀǎ ōŜŎŀǳǎŜ 

operating the sliding valve generated sounds and created a step decrease in the pressure 

like those obtained when a solenoid valve was activated. 
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Figure 8. 4: Data collected in Experiment Two: A. Controller; B. Microphone; C. Supply side 
pressure; and D. Demand side pressure 

Table 8. 5: Output from sub-systems in Experiment Two after the sliding valve was opened 

 Sub-system Output  Condition & Diagnosis 

E
xp

e
ri

m
e

n
t 
T

w
o Control command No Tool 

Fault 
Acoustics Valve 

Supply Valve 
Leak in Demand Side 

Demand Valve 

 

.ŜŎŀǳǎŜ ǘƘŜ ƻǳǘǇǳǘ ŦǊƻƳ ǘƘŜ ŎƻƴǘǊƻƭ ƛƴŘƛŎŀǘŜŘ Ψbƻ ǘƻƻƭΩ ŀƴŘ ǘƘŜ ƻǳǘǇǳǘ ŦǊƻƳ ǘƘŜ ƻǘƘŜǊ ǎǳō-

systems detected the operation of a valve, it was logical to conclude that air was being 

discharged from the CAS. Since the valve operation was detected in both the supply and 

demand pressure, it was concluded that air was being discharged from somewhere in the 

demand side and hence the fault was diagnosed as a leak in the demand side.  
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8.2.3. Experiment Three: Leak in Supply Side 

Experiment three considered the case of a leak in the supply side. The leak was simulated 

by manually opening a sliding valve at time tҒ11.5 seconds. The sliding valve was connected 

to a pipe upstream of the pressure regulator. Figure 8.5 shows plots corresponding to data 

collected from the controller, supply pressure, audio analysis and demand pressure. 

 

Figure 8. 5: Data collected in Experiment Three: A. Controller; B. Microphone; C. Supply side 
pressure; and D. Demand side pressure 

Graph A in Figure 8.5 shows the commands sent by the controller, which were always zero, 

indicating that no commands for the activation of tools had been sent. Graph B shows the 

acoustic waveform, which demonstrated a variation in amplitude after the sliding valve was 

opened. Graphs C and D show the supply and demand side pressures respectively. The 

supply pressure had a step decrease once the sliding valve was opened. On the other hand, 

the demand pressure did not show any significant change. At the instant the sliding valve 

was opened, the demand pressure increased 0.03 Bar, which was considered negligible. 

Data collected after the sliding valve opening was analysed with the condition monitoring 

and fault diagnosis system. Outputs from the sub-systems are shown in Table 8.6. The 
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controller did not request the activation of any tool; however, the supply side and acoustic 

monitoring sub-systems detected the operation of a valve. The demand side monitoring 

sub-system did not detect the operation of any tools. 

Table 8. 6: Output from sub-systems in Experiment Three after the sliding valve was opened 

 Sub-system Output  Condition & Diagnosis 

E
xp

e
ri
m

e
n

t 
T

h
re

e Control command No Tool 
Fault 

Acoustics Valve 

Supply Valve 
Leak in Supply Side 

Demand No Tool 

 

This combination of outputs suggested the presence of a fault in the system, as the outputs 

from the different sub-systems were not consistent. Because the pressure in the supply 

side decreased, while the pressure in the demand side did not change, it was concluded 

that air was being discharged from the supply side of the CAS. Since the controller did not 

command the operation of any tool, a sensible diagnosis was a leak in the supply side. 

8.2.4. Experiment Four: Controller Error  

Experiment four considered the case where a malfunction in the control of pneumatic tools 

occurred. The electric wires connecting the directional valve of the double acting cylinder 

to a relay were disconnected. The relay was connected to a microcontroller (Raspberry Pi) 

to execute control commands. Figure 8.6 shows plots corresponding to the data collected 

from the controller, supply pressure, audio analysis and demand pressure. 

Graph A in Figure 8.6 shows the control commands sent by the controller. At time tҒ15 

seconds, a control command for the activation of the cylinder was sent. Graphs B, C and D 

show the acoustic waveform amplitude, the supply side pressure, and the demand side 

pressure, respectively. Graphs B, C and D did not show any of the patterns or shapes 

consistent with the activation of a cylinder. 
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Figure 8. 6: Data collected in Experiment Four: A. Controller; B. Microphone; C. Supply side 
pressure; and D. Demand Side Pressure 

The outputs obtained from the four sub-systems after the command for the cylinder 

activation was sent are shown in Table 8.7.  

Table 8. 7: Output from sub-systems in Experiment Four after the command for cylinder 
activation was sent 
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either due to a fault with the cylinder itself or with the controller. Since the pressure and 

acoustic monitoring did not detect any compressed air discharge or any tool operation, the 

possibility of a fault with the cylinder was less likely. All these factors suggested that the 

control command was executed with the system, and it was deduced that the most likely 

diagnosis was an error with the controller. 

8.2.5. Experiment Five: External Noises 

Experiment five considered the case where external noises caused by the striking of a piece 

of metal were generated close to the microphone of the audio analysis system. Figure 8.7 

shows plots corresponding to the data collected from the controller, supply pressure, audio 

analysis and demand pressure. 

Graph A in Figure 8.7 shows the control commands sent by the controller, which indicate 

that no commands for tools operation was sent.  

 

Figure 8. 7: Data collected in Experiment Five: A. Controller; B. Microphone; C. Supply side 
pressure; and D. Demand Side Pressure 

 




















































































































































