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Abstract

Nonlinear integrable systems emerge in a broad class of different problems in Mathemat-

ics and Physics.

One of the most relevant characterisation of integrable systems is the existence of an

infinite number of conservation laws, associated to integrable hierarchies of equations.

When nonlinearity is involved, critical phenomena may occur. A solution to a nonlin-

ear partial differential equation may develop a gradient catastrophe and the consequent

formation of a shock at the critical point. The approach of differential identities provides

a convenient description of systems affected by phase transitions, identifying a suitable

nonlinear equation for the order parameter of the system.

This thesis is aimed to give a contribution to the perspective offered by the approach

of differential identities. We discuss how this method is particularly useful in treating

mean-field theories, with some explicit application. The core of the work concerns the

Hermitian matrix ensemble and the symmetric matrix ensemble, analysed in the context

of integrable systems. They both underlie a discrete integrable structure in form of a

lattice, satisfying a discrete integrable hierarchy. We have studied a particular reduction

of both system and determined the continuum limit of the dynamics of the field variables

at the leading order.

Particular emphasis has been given to the study of the symmetric matrix ensemble.

We have unveiled an unobserved double-chain structure shared by the field variables

populating the lattice structure associated to the ensemble. In the continuum limit of a

particular reduction of the lattice, we have found a new hydrodynamic chain, a hydrody-

namic system with infinitely many components. We have shown that the hydrodynamic

chain is integrable and we have conjectured the form of the associated hierarchy. The

new integrable hydrodynamic chain constitutes per se an interesting object of study. In-

deed, it presents some properties that are different from those shared by the standard

integrable hydrodynamic chains studied in literature.
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Introduction

Nonlinear integrable systems emerge in a plethora of phenomena pertaining to the realms

of Physics and Mathematics. Concerning integrability, a general conventional definition

is not given [33, 68]. Instead, depending on the context, one or more features commonly

shared by integrable systems are considered as a suitable characterisation of it. Over

time, several methods to approach integrability have been introduced, each of them fo-

cusing on one particular facet of the issue [64, 89, 4, 91, 93, 87]. A crucial step in the

study of integrability is the discovery of infinitely many conservation laws [95], associ-

ated with hierarchies of nonlinear integrable equations. In this thesis we will encounter

several integrable hierarchies, either associated with discrete systems (the Toda lattice

and the Pfaff lattice) or with continuous ones (systems of hydrodynamic type).

Random matrix ensembles are typically introduced within the framework offered by

random matrix theory [92], but they constitute an interesting object of study in the con-

text of integrable systems as well. In this thesis we will deal with the Hermitian matrix

ensemble [6] and the symmetric matrix ensemble [12], following the approach estab-

lished by Adler and van Moerbeke in their prolific production on the topic (e.g. [13, 117,

7, 11]). The ensembles show two different underlying integrable structure, the Toda lat-

tice for the Hermitian ensemble and the Pfaff lattice for the symmetric ensemble. These

structures are introduced in terms of hierarchies in the Lax formulation and can be in-

terpreted as emerging from an algebra splitting, in virtue of the Adler–Kostant–Symes

theorem [10]. The connection with the matrix ensembles is realised via the introduction

of suitably defined τ-functions, that in turns satisfy specific integrable hierarchies. In

both the Hermitian and the symmetric case, the specific τ-function is proportional to

the partition function given in terms of an integral on the real eigenvalues of the matri-
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ces. The field variables composing the elements of the Lax operator for the two lattices

are written in terms of functions of the sequence of τ-functions. We study suitable re-

ductions of these structures, leading to the emergence of hierarchies for the continuum

limit of the field variables, that will assume the form of two very different systems of

hydrodynamic type.

In [50, 114], Dubrovin, Novikov and Tsarev give a geometric interpretation of hy-

drodynamic systems in finitely many components, describing the manifold spanned by

their solutions. In the context of Hamiltonian formalism and Riemannian geometry, they

relate integrability of hydrodynamic systems to geometric properties of the manifold, in

terms of metrics, connections, and torsions. A geometric point of view is applied also

in the case of hydrodynamic chains, a particular class of hydrodynamic systems with in-

finitely many components. In [60], Ferapontov and Marshall treat integrability of hydro-

dynamic chains within the geometric framework with the introduction of the Nijenhuis

and Haantjes torsions.

One of the most relevant aspects of hydrodynamic type systems is the occurrence of

critical phenomena, when solutions develop a gradient catastrophe as an effect of non-

linearity [120]. Since a discontinuity is generated, the solution exists in a weak sense

only. This solution takes the name of a shock solution. The discontinuity can then be

resolved by an appropriate mechanisms of regularisation, giving rise to either viscous

shocks or dispersive shocks [55]. The first is modelled as a travelling wave solution to an

ordinary differential equation, whereas the second give rise to a more complex structure,

represented by a modulated periodic train wave.

The fact that the theory of nonlinear integrable systems offers a suitable tool to de-

scribe critical phenomena is the main underlying idea for the development of the method

of differential identities [96]. The latter has its foundations in a new perspective to de-

scribe systems in the realm of Statistical Mechanics, typically affected by phase tran-

sitions. It is indeed possible to outline a proper correspondence between the typical

features of Thermodynamics and those of nonlinear hydrodynamic systems. With some

general assumptions on the properties of the thermodynamic system, the method of dif-

ferential identities provides the equation of state as the solution to a nonlinear partial

differential equation. The nonlinear character of the system induces a gradient catastro-



phe and gives rise to a shock solution [41, 22]. The approach has been successfully ap-

plied to several mean-field theories in a series of recent publications [67, 15, 90, 28]. In

these cases, the suitable differential identities are defined at the partition function level

and then the corresponding nonlinear equation for the order parameter is provided. The

shock solution for the order parameter emerging in the context of mean-field theories is

regularised by a viscous term.

A completely different phenomenon emerges in the study of the Hermitian matrix

ensemble [23]. Here, a particular reduction of the Toda lattice is considered, obtained

by the selection of the even coupling constants in the partition function defined for the

ensemble. The resulting structure depends on one type of field variables only and at

the leading order in the thermodynamic limit a quasilinear hierarchy is obtained. The

behaviour of the solution for different scenarios in the space of parameters is then anal-

ysed. It develops oscillating patterns, observed in [78] and there interpreted as a chaotic

behaviour. In [23] these patterns are instead qualitatively described as a manifestation

of a dispersive regularisation mechanism, giving rise to a dispersive shock solution.

The aim of this work is to provide a contribution to the development of the new

paradigma based on the approach of differential identities. In particular, we will focus on

the study of the symmetric matrix ensemble and a suitable reduction of it. The original

results collected in this thesis are part of a recent publication [24].

The thesis is organised as follows.

Part I - Background The first part is devoted to the introduction of the general theories

constituting the grounds of the objects of study of this work, i.e. integrable systems and

random matrix ensembles.

In chapter 1 we provide an overview of the different perspectives that have been

developed to approach integrability in nonlinear systems over time. We focus on the

existence of infinitely many conservation laws associated with integrable systems and

describe the related integrable hierarchies.

In chapter 2 we present the random matrix ensembles and the main tools that will be

used in the core part of the thesis. We display the procedure leading to define the parti-

tion function for the Hermitian and symmetric matrix ensembles. These ensembles are



intrinsically related to the integrable structures of Toda lattice and Pfaff lattice respec-

tively. We study how these structures emerge from an algebra splitting and investigate

the realisation of the connection between the matrix ensembles and the lattices via the

τ-function.

In chapter 3 we study the theory of integrable hydrodynamic systems. We introduce

the Hamiltonian formalism and the generalised hodograph method to treat integrabil-

ity in hydrodynamic systems with finitely many components. Then we define the hy-

drodynamic chains as a particular class of hydrodynamic systems with infinitely many

components and discuss their integrability.

In chapter 4 we deal with critical phenomena, emerging from the occurrence of a

gradient catastrophe dynamically induced by nonlinearity. We describe the breaking of

the solutions to a quasilinear conservation law and analyse the consequent formation of

a shock. Then we introduce the viscous and the dispersive regularisation of the shock

solution and delineate the main features of their associated structures.

Part II - Case studies This part is dedicated to the description of shock solutions emerg-

ing at the leading order in the thermodynamic limit in the context of mean-field theories

and the Hermitian matrix ensemble. In the first case the shock solution is regularised by

viscous corrections, in the second case by dispersive corrections.

In chapter 5 we introduce the method of differential identities as a suitable tool to

describe phase transitions in thermodynamic systems. Equations of state are defined as

solutions to nonlinear hydrodynamic type equations, after a redefinition of variables and

a precise correspondence between Thermodynamics and nonlinear systems is outlined.

The method of differential identities is explicitly applied to the Curie-Weiss model and

we study the shock solution regularised by a viscous term, this being a typical feature

observed in several mean-field theories.

In chapter 6 we study the Hermitian matrix ensemble and we present the construction

of the associated integrable hierarchy, i.e. the Toda lattice hierarchy. This is shown in the

Lax formulation of infinitely many commuting flows. We focus on a suitable reduction

of the system, i.e. the Volterra lattice. The associated hierarchy will be composed of even

flows only. We investigate the continuum limit of the lattice and at the leading order



we find a scalar nonlinear integrable hierarchy. We restrict our study to the case of the

first three times and analyse the solution in the parameters’ space, where we detect the

occurrence of a dispersive shock.

Part III - Results This part is aimed to present the original results of this work [24].

We consider the symmetric matrix ensemble and its related integrable structure via

a suitable algebra splitting, i.e. the Pfaff lattice. We analyse the structure of the lattice

in terms of the field variables, whose evolution is inspected for different flows of the

associated hierarchy. We introduce a specific notation for the fields aimed at emphasising

the underpinning observed double-chain structure.

We focus on a suitable reduction of the Pfaff lattice, for which the thermodynamic

limit of the first flow is studied. At the leading order, this is represented by a new

hydrodynamic chain. We investigate the diagonalisability and the integrability of the

hydrodynamic chain and define the corresponding Gibbons–Tsarev system. The new hy-

drodynamic chain is interesting in itself since it presents more than just one seed, as in

the case of standard integrable chains.

We verify that for the two next flows the form of the leading order in the thermody-

namic limit is a chain as well. We conjecture that this is indeed the case for every flow

of the suitable reduction of Pfaff, defining a new hydrodynamic chain hierarchy. Finally,

we present a comparison with the Hermitian random ensemble.

Part IV - Explorative studies This part collects some applications of the method of

differential identities on systems describable in graph theory.

We introduce the basics aspects of simple graphs, their main features and the corre-

sponding adjacency matrices. We study the specific example of the two-star model with

a classical mean-field approach and with the method of differential identities.

We look for differential identities in the one-dimensional Ising model, for which we

define a partition function in terms of the trace of the associated adjacency matrix. We

analyse the form of the symmetric factors appearing in the partition function, encoding

information about automorphisms of graphs. Lastly, we consider the case of the expo-

nential random graph theory.





Part I

Background
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Chapter 1

Nonlinear PDEs and integrability

This chapter is devoted to the introduction of the theory of integrable nonlinear systems.

Firstly, we will approach the issue of integrability giving an insight into the different ways

in which it has been studied. In section 1.1 we will briefly refer to the crucial steps in the

development of the theory of nonlinear systems by introducing two of the equations that

we will encounter in different context throughout this work, i.e. the Korteweg-de Vries

equation and the Burgers’ equation.

We will mention the various aspects of integrability, from the Inverse Scattering

Transform methods, to the bi-Hamiltonian structure and the existence of infinitely many

conservation laws (in section 1.2).

Finally, in section 1.3 we will introduce the concept of integrable hierarchies, with

emphasis on those that we will encounter in the following chapters.

1.1 Nonlinear integrable systems

Partial differential equations (PDEs) are fundamental for the study of problems in the

realm of mathematics and for the description of a plethora of phenomena in physics.

There is no general theory concerning the solvability of all PDEs, instead the research

focuses on several particular cases that are relevant for applications in a broad variety of

fields. The possible solvability of PDEs is related to their integrability and here too there

is no a general conventional definition of what integrability is. Dating back to Poincaré,

to integrate a differential equation means to find a general solution expressible in a finite

11



Chapter 1. Nonlinear PDEs and integrability

number of “elementary” functions [107]. The emphasis given to the word finite relates

integrability to a general knowledge rather than a local knowledge of the solutions [68].

This is in some sense connected with the idea of the universality of nonlinear integrable

systems.

Calogero describes this concept in [33], focusing on the fact that some integrable

nonlinear PDEs share the aspects of universality and wide applicability. Indeed, a large

class of nonlinear evolution equations can be mapped into certain universal nonlinear

evolution PDEs via rescaling and asymptotic expansion. In particular, the focus is on

PDEs of the form

Du(x, t) = F [u, ux, ut , uxx, utt , . . . ] , (1.1)

in terms of the field variable u(x, t) with x ∈ R, t ∈ R and its spatial and time deriva-

tives. The left hand side (i.e. Du) corresponds to the linear part that is constructed to

be dispersive and otherwise arbitrary. The right hand side (i.e. F [ . . . ]) is the nonlinear

part, for which the only constraint is that it is an analytic function of the field variable

and its derivatives. The universal equations obtained by the limiting procedure appear

in several contexts and they are widely applicable. Moreover, this procedure generally

preserves integrability, and the universal equations are likely to be integrable. An exam-

ple of universal equation is the celebrated Korteweg-de Vries (KdV) equation [84] in its

nondimensional form1

ut + 6uux +uxxx = 0 , (1.2)

introduced to describe the propagation of one-dimensional, long surface gravity waves

with small amplitude in a shallow water channel. The KdV equation arises in many dis-

parate contexts, such as stratified internal waves, ion-acoustic waves, plasma physics,

lattice dynamics, gravity. The universal character of the equation is signaled by the fact

that it emerges whenever the governing equation is affected by weak quadratic nonlin-

earity and weak dispersion [1, 2].

One of the basic features of integrable systems is their solvability and in [33, 68] a

heuristic distinction between two procedures applied to solve those systems is given.

In the first approach, nonlinear systems can be reduced to a linear form (integrable)

1With the notation of the expression (1.1) for KdV Du(x, t) = ut +uxxx and F [u, . . . ] = −6uux .
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Nonlinear integrable systems

via a specific change of variables. The archetype of this procedure is given by the inte-

grability of Burgers’ equation [32]

ut +uux = ν uxx , 0 < ν� 1 , (1.3)

that is linearised through the Cole-Hopf transformation

u(x, t) = −2ν ∂x lnφ(x, t) , (1.4)

giving the heat equation in the new field variable φ(x, t)

φt = νφxx . (1.5)

In the second approach, the system is linearised in terms of integro-differential equa-

tions through the method of the Inverse Scattering Transform (IST), discovered by Gardner–

Green–Kruskal–Miura in [64] for KdV and generalised by Lax in [89]. In [4], the scheme

describing the method is built mimicking the Fourier transform and the name IST is

coined. The main idea of the procedure relies on the connection established between the

KdV equation (1.2) and the linear time-independent Schrödinger problem

ψxx +u(x, t)ψ = λψ , (1.6)

where u(x, t) is solution to the KdV equation and here it plays the role of a potential,

the time t is treated as a parameter and ψ(x) is the eigenfunction of the scattering prob-

lem. The procedure of the inverse scattering is borrowed from the realm of Quantum

Mechanics. This method leads to the reconstruction of the potential from the scattering

data. The evolution of the function ψ is described by a second equation, i.e.

ψt = (γ +ux) ψ + (4λ+ 2u)ψx , (1.7)

with γ being an arbitrary constant. We assume λ being a function of time λ = λ(t). We

derive (1.6) with respect to t and (1.7) twice with respect to x.

13



Chapter 1. Nonlinear PDEs and integrability

Imposing the compatibility condition

ψtxx = ψxxt , (1.8)

the constraints on λ and u(x, t) are ∂tλ = 0 and u(x, t) satisfies (1.2). Hence, the equa-

tions (1.6) and (1.7) are compatible if the eigenvalues are constant in time and the poten-

tial is a solution to the KdV equation.

The asymptotic behaviour (for |x| → ∞) of eigenfunctions ψ and the set of their as-

sociated eigenvalues λ determine the the scattering data S(λ,0), which in turn depends

on the potential u(x,0). The direct scattering problem consists in the mapping from the

potential to the scattering data. The time evolution equation takes the initial scatter-

ing data S(λ,0) to S(λ,t), whereas the inverse scattering problem is to reconstruct the

potential from the scattering data [1].

u(x,0) S(k,0)

S(k, t)u(x, t)

Direct scattering

Linear time evolution
of scattering data

Inverse scattering

Integrable
nonlinear PDE

In the generalisation of the method provided by Lax, equations (1.6) and (1.7) are

rewritten in terms of the linear operators L, M as

Lψ = λψ

ψt =Mψ.
(1.9)

The compatibility condition is expressed via the Lax equation

Lt = [M, L] , (1.10)

this becoming the key point for the treatment of integrable nonlinear PDEs. The opera-

tor L in equation (1.10) satisfies the isospectral property: its spectrum is preserved with

the evolution in time.

14



Nonlinear integrable systems

Over time, several approaches to tackle integrability have flourished, each focusing

on the latest features discovered in the context of integrable systems.

In [95], Miura discovered the existence of infinitely many conservation laws associ-

ated with the KdV equation, introducing nonlinear transformations, that are now known

as Miura transformations and will be described in section 1.2. This feature has also been

of crucial importance in the developing of the IST method described above.

Another milestone in the theory of integrable systems is the discovery of solitons, a

kind of solution that emerges in many exactly solvable models. The presence of soli-

ton solutions, intended as structures that interact elastically preserving the spectral por-

trait, was considered to unveil the integrability of the system2. They were introduced

by Zabusky and Kruskal in [124] to address the solitary waves observed in the study of

the continuum limit of the Fermi–Pasta–Ulam–Tsingou lattice [63]. The discrete model

is a lattice of coupled anharmonic oscillators with fixed ends and its continuous limit

is described by the KdV equation. The solitons preserve their shape and velocity upon

nonlinear interactions with other solitons and they are solutions to the KdV equation.

Then Hirota, in [71], proved the existence of solutions with an arbitrary number of soli-

tons for KdV, developing the powerful formalism of the bilinear relations named after

him. The Hirota bilinear formalism has a pivotal role in the representation of integrable

hierarchies, as we will see in section 2.4.

In [112], Toda constructs the first example of nonlinear discrete integrable system,

in contrast with the Fermi–Pasta–Ulam–Tsingou lattice, integrable in the continuum

limit. He describes a one-dimensional chain of particles with an exponentially shaped

first neighbours interaction, that is now known as Toda lattice. In [116] the integrable

Toda lattice hierarchy is defined via the Hirota formalism [71] in terms of a suitable τ-

function [75], that we will introduce in section 2.4.

In [93, 94], a symmetry approach is established, where nonlinear perturbations to

linear equations are introduced. In particular, the conditions leading to the emerging

of nontrivial groups of local symmetry transformations are studied for a class of PDEs.

Also, the existence of a few symmetries implies that they are actually infinitely many.

2We emphasise that soliton solutions have been later found in non-integrable systems as well, but in that
case their interaction is not elastic anymore.
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Chapter 1. Nonlinear PDEs and integrability

In another approach [91], the bi-Hamiltonian property is considered as the identifier

for integrability. In particular, it concerns systems that can be formulated as a Hamilto-

nian dynamical system with respect to a Hamiltonian structure via a certain Poisson

bracket. The bi-Hamiltonian property consists in the possibility of the system to be

written in two different Hamiltonian structures. If these two structures are compati-

ble, meaning that the sum of the Poisson brackets of the two structures is still a Poisson

bracket, the system is integrable. Here, integrability is intended in the sense of the exis-

tence of infinitely many conserved quantities in involution with respect to both Poisson

brackets.

Finally, we mention the approach of integrability involving to the study of mon-

odromy, where the integrability of a system of PDEs is related to the study of the sin-

gularity structure of the solutions. The first observation in this context dates back to the

end of 19th century, when Kovalevskaya [87] discussed the problem of the integrability

of a top in a gravitational field. Motivated by this observation, she discovered that many

integrable systems can be integrated in terms of elliptic functions, hence meromorphic

functions that do not show movable critical points. These results were recovered several

decades later and the coeval works by Dubrovin [46] and Matveev and Its [74] posed the

basis for what now is called finite-gap theory.

In the following, we will encounter several integrable systems of different nature. We

will consider the integrability of systems of hydrodynamic type [50]

uit = vij (u)uix , (1.11)

where the field variables ui(x, t) depend on the space coordinate x and time t both in

the case of a finite number of components i ∈ {1, . . . ,m} and of an infinite number of

components i ∈N. In the first case integrability is related to the semi-Hamiltonian prop-

erty [113] satisfied by the characteristic speeds in the context of the treatment involving

the Riemann invariants, as we will see in section 3.1. In the second case, the system takes

the name of a hydrodynamic chain [60] and integrability is discussed introducing the

concepts of the Nijenhuis and Haantjes tensors [86], as we will see in 3.2.

Moreover, we will study the discrete integrable systems of the Toda lattice in chap-
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Conservation laws and Lax equation

ter 6 and Pfaff lattice in chapter 7, the underlying structures of the Hermitian matrix

ensemble [6] and symmetric matrix ensemble [12], respectively. We will see how these

structures are intimately related to the hierarchies written in terms of τ-functions in the

formalism of the Hirota bilinear relations. In particular, we will see how the Toda lattice

is related to the KP hierarchy in section 6.1.2 and the Pfaff lattice to the so called Pfaff-KP

hierarchy in section 7.1.2.

1.2 Conservation laws and Lax equation

One of the main properties of integrable systems is the existence of infinitely many con-

servation laws. This aspect was firstly discovered by Miura in [95], where some nonlinear

transformations are applied to KdV allowing one to recursively construct the associated

conservation laws.

In general, it is possible that with a PDE

G [x, t;u,ux,ut ,uxx,utt , . . . ] = 0 , (1.12)

is associated a conservation law [1, 97] of the form

∂t ρ
i +∂x q

i = 0 , (1.13)

satisfied by all the solutions to (1.12). In (1.13), ρi(x, t;u) is called the conserved density

and qi(x, t;u) the relative conserved flux. If the solution u → 0 as |x| → ∞ sufficiently

rapidly and qi(x, t;u) belongs to the Schwartz class, the integration of (1.13) yields

∂t

∫ ∞

−∞
ρi(x, t;u)dx = 0 =⇒

∫ ∞

−∞
ρi(x, t;u)dx = ci , (1.14)

with ci the conserved quantity. For KdV (1.2) the first conservation laws are

(u)t +
(
3u2 +uxx

)
x

= 0
(
u2

)
t
+
(
4u3 + 2uuxx −u2

x

)
x

= 0
(
u3 − 1

2
u2
x

)

t
+
(9

2
u4 + 3u2uxx − 6uu2

x −ux uxxx +
1
2
u2
xx

)

x
= 0 ,

(1.15)
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Chapter 1. Nonlinear PDEs and integrability

related to the conservation of the mass, the energy, and the Hamiltonian of the system

respectively. As anticipated above, Miura conjectured that these conservation laws are

actually infinitely many. In [95], he studied the so called modified KdV (mKdV) equation

mt − 6m2mx +mxxx = 0 , (1.16)

observing that if m is a solution to (1.16), the following expression for u

u = −m2 −mx , (1.17)

satisfies the KdV. The equation (1.17) takes the name of Miura transformation. It is worth

noticing that every solution to the mKdV equation leads to reconstruct a solution to the

KdV equation, but the converse is not true. We consider now a generalisation of (1.17),

given by

u = w − εwx − ε2w2 . (1.18)

The field u defined in this way is solution to the KdV equation if w satisfies

wt +
(
3w2 − 2ε2w3 +wxx

)
x

= 0 . (1.19)

The solution u does not depend on ε, whereas the solution w depends on it. Given the

arbitrariety of the choice of the parameter ε, we can consider the following formal series

w(x, t;ε) =
∞∑

n=0

wn(x, t)εn . (1.20)

Since (1.19) is posed in a conservation form, we can write the equivalent of (1.14)

∫ ∞

−∞
w(x, t;ε)dx = c =⇒

∫ ∞

−∞
wn(x, t)dx = cn . (1.21)

With the substitution of (1.20) in the KdV equation for u obtained assuming (1.18) and

18



Conservation laws and Lax equation

equating the coefficients of the powers of ε, we get

w0 = u

w1 = (w0)x = ux

w2 = (w1)x +w2
0 = uxx +u2

w3 = (w2)x +w0w1 = uxxx + 4uux .

(1.22)

Going further in powers of ε gives the infinitely many conservation laws.

We will now see how to construct the corresponding Lax equation (1.10) for KdV. The

first consideration is that (1.17) can be seen as a Riccati equation for m in terms of u. It

is known that the Riccati equation can be linearised via a change of variable, that will

imply a new expression for u as well

m =
ψx
ψ

=⇒ u = −ψxx
ψ
, (1.23)

and rewriting the second relation we obtain

ψxx +uψ = 0 . (1.24)

The KdV equation is invariant under a Galilean transformation

(x, t,u(x, t))→ (x − 6λt, t,u(x, t) +λ) , (1.25)

for a constant λ. We then obtain the equation seen in the previous section (1.6) and (1.7)

ψxx +u(x, t)ψ = λψ

ψt = (γ +ux) ψ + (4λ+ 2u)ψx ,

whose compatibility condition ψtxx = ψxxt, with the assumption that the eigenvalues are

constant in time λt = 0, will lead to the KdV for the potential u and the introduction of

suitable operators that will be the elements of the Lax equation (1.10). In particular, the
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Chapter 1. Nonlinear PDEs and integrability

linear operators L and M for KdV are

L = ∂2
x +u

M = γ − 3ux − 6u∂x − 4∂3
x .

(1.26)

As we have already mentioned, the equation (1.10) is obtained by the compatibility con-

dition and imposing the isospectral property on L. The potential u, then, satisfies the

KdV equation(1.2).

In the following section we will see how the expression (1.10) is of fundamental im-

portance in one of the possible representations of hierarchies.

1.3 Integrable hierarchies

The nonlinear PDE representing an integrable system conceals an underlying associated

integrable hierarchy. The latter is represented as a collection of equations commuting

with each other, also known as commuting flows. This nomenclature refers to the fact

that the hierarchies are displayed as infinitely many equations in terms of infinitely many

“times”. In particular, the infinitely many conservation laws associated with an inte-

grable system can be thought as Hamiltonians generating time evolution in a multidi-

mensional time space.

One way to represent the KdV hierarchy relies on the introduction of a so called

pseudo-differential operator [43]

X = ∂+
∑

n≥1

fn∂
−n , (1.27)

where ∂ B ∂x and the negative powers of ∂ refers to a sort of formal integration. The

pseudo-differential operator X, then represents a point on the infinite dimensional man-

ifold ML with coordinates given by the set of functions {f1, f2, . . . }. Taking the opera-

tor L introduced in the previous section in (1.26), we consider its “square root” such

that X = L1/2. Evaluating X2 yields

X2 = ∂2 + 2
∑

n≥1

fn∂
1−n +

∑

n≥1

(∂fn)∂−n +
∑

m,n≥1,l≥0

(−n
l

)
fn

(
∂l fm

)
∂−m−n−l . (1.28)
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Comparing this expression with L we obtain

f1 =
1
2
u

f2 = −1
4
ux

f3 = −1
8

(
u2 −uxx

)

f4 = − 1
16
uxxx +

3
8
uux

...

(1.29)

The KdV hierarchy can be formulated by introducing the infinitely many parameters ti

in the Lax form
∂L

∂ti
=

[(
L

2i−1
2

)
+
, L

]
, i = 1, 2, . . . , (1.30)

Given the explicit expressions for the first three flows

∂t1u = ux

∂t2u =
1
4
uxxx +

3
2
uux

∂t3u =
1

16
u(5) +

5
4

(
ux uxx +

1
2
uuxxx

)
+

15
8
u2ux ,

(1.31)

we can see that the first equation corresponds to the identification of t1 with x, the second

is the KdV equation3 and other flows are the higher KdV flows.

The discovery of the KdV hierarchy is accompanied by that of many others [45]. The

Kadomtsev-Petviashvili (KP) [36, 108] hierarchy has been found unifying all the gen-

eralised KdV hierarchies. These were then generalised involving matrix equations and

generating the so called multi-component KdVs and KP. The latter are so called scalar

hierarchies, generated by differential or pseudo-differential operators of arbitrary or-

ders. Equations of another kind are generated by matrix first order differential operators

with a linear dependence on a spectral parameter. The 2 × 2 matrix version is named

after Ablowitz–Kaup–Newell–Segur (AKNS) [3] and their n × n generalisation is due to

Dubrovin [47]. A further in generalisation is realised by Zakharov–Shabat (ZS) [126] for

hierarchies generated by linear operators with a rational dependence on a parameter [44].

3The different coefficients compared to the form of the KdV previously mentioned can be obtained by a
suitable rescaling of the variables.
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Chapter 1. Nonlinear PDEs and integrability

In the following, we will run into several hierarchies represented in different ways.

We will present the hierarchies associated to the Toda lattice in chapter 6 and the Pfaff

lattice in chapter 7, respectively. The hierarchies will be written in form of Lax equations

for commuting vector fields

∂L

∂tk
=

[(
Lk

)
p
, L

]
, k = 1,2, . . . ,

where p is a particular projection. These hierarchies can be described by an algebraic

approach invoking the Adler–Kostant–Symes theorem [10], as we will see in section 2.3.

We will encounter equations belonging to the KP and Pfaff-KP hierarchies expressed

in terms of the τ-functions for KP and Pfaffian τ-functions and related to Toda and Pfaff

respectively. These will be introduced in section 2.4 in their formulation with the Hirota

symbol

(
sk+4(∂̃)− 1

2
∂t1∂tk+3

)
τn(t) ◦ τn(t) = 0 , k = 0,1,2, . . . ,

(
sk+4(∂̃)− 1

2
∂t1∂tk+3

)
τ2n(t) ◦ τ2n(t) = sk(∂̃)τ2n−2(t) ◦ τ2n+2(t) , k = 0,1,2, . . . .

In addition, we will deal with hierarchies in the context of hydrodynamic systems

associated with the leading order in the thermodynamic limit for random matrix ensem-

bles. We will see how the Hopf hierarchy

ut2k = ck u
k ux , k ∈N ,

will emerge in the context of Hermitian matrix ensemble in section 6.3.

Finally, we will define the hierarchy

ukt2q =
q∑

p=−(q−1)

akp u
p
x +

q∑

p=1

(
akk−p u

k−p
x + akk+p u

k+p
x

)
, k ∈Z , q ∈N ,

for the discovered hydrodynamic chain structure arising in the study of the symmetric

matrix ensemble in section 7.5.
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Random Matrix Ensembles

This chapter is devoted to introduce random matrix ensembles, typically studied within

the framework of random matrix theory [92]. Firstly, in section 2.1, we will define a gen-

eral classification of matrix ensembles considering their general features. Then we will

present the main tools that will be used in chapter 6 and in chapter 7, where we will

follow the scheme proposed by Adler and van Moerbeke [6, 12] to describe the Hermi-

tian matrix ensemble and the symmetric matrix ensemble in terms of their underlying

integrable structure. The starting point of their approach is to determine the partition

function for the ensemble, which is proportional to a suitable defined τ-function. The

latter is defined in terms of a moments matrix constructed on a convenient inner prod-

uct. The decomposition of the moments matrix leads to build the Lax operator L and

the latter represents the underlying integrable lattice. The associated lattice hierarchy is

given in terms of an infinite set of commuting vector fields

∂L

∂tk
=

[(
Lk

)
p
, L

]
, (2.1)

where p is a particular projection. The fields composing the matrix L are expressed in

terms of the above mentioned τ-functions, which in turn satisfy an integrable hierarchy.

In section 2.2, we will consider the random matrix ensembles described as tangent

spaces to symmetric spaces [117] and we will give the expression for the associated par-

tition function. We will then present the AKS theorem [10], that leads to the emergence

of lattice hierarchies of the form (2.1) from an algebra splitting, in section 2.3.
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Chapter 2. Random Matrix Ensembles

In section 2.4, the τ-function will be introduced as the realisation of the connection

between the lattices and the matrix ensembles. As mentioned above, the τ-function will

be defined for the matrix ensembles in terms of a suitable moments matrix. The mo-

ments are defined considering the orthogonal (for the Hermitian ensemble) and skew-

orthogonal (for the symmetric ensemble) polynomials, that we will present in section 2.5.

2.1 Wigner ensembles and rotational invariance

Random matrix ensembles consist of n × n matrices M with entries in the fields of real

numbers (R), complex numbers (C) or quaternions (Q), with real eigenvalues. By def-

inition the Wigner ensemble consists of matrices whose elements Mij are independent

random variables. The joint probability density function takes the form

P (M) ∝
n∏

i=1

fi (Mii)
∏

1 ≤ i < j≤n
fij

(
Mij

)
. (2.2)

Assuming the ensembles exhibit a rotational invariance, for which any two matri-

cesM andM ′ are related by the nonsingular similarity transformationM→M ′ = KMK−1

share the same probability

P (M)dM = P (M ′)dM ′ , (2.3)

condition (2.3) produces a constraint on the form of the joint probability density func-

tion P (M) [92, 118]. The invariants of a n × n matrix under a similarity transforma-

tion M →M ′ = KMK−1 can be written in terms of the traces of the first n powers of M.

Hence, the joint probability density function for a rotational invariant ensemble has the

form

P (M) = f (trM, trM2, . . . , trMn ) . (2.4)

The Haar measure dM is invariant under the transformation M → M ′ by conjugation

on K .

For K ∈ U (n), we define the Hermitian matrix ensemble Hn (or Unitary ensemble),

for K ∈ O(n) the symmetric matrix ensemble Sn (or Orthogonal ensemble) and for K ∈
Sp(n) the symplectic matrix ensemble T2n (or Symplectic ensemble).
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Random matrix ensembles as tangent spaces to symmetric spaces

In these cases, in particular, we have

P (M ∈ dM) = cn e−tr V (M)dM , (2.5)

where dM is the Haar measure respectively on Hn, Sn and T2n and V (M) is the potential

describing the specific ensemble, with derivative given by a rational function [117].

If the probability density P (M) satisfies both the above conditions, then

P (M) = e−a trM2+b trM+c , with a, b, c ∈R , (2.6)

obtaining the Gaussian ensembles [92]: the Gaussian Unitary ensemble (GUE) for K ∈
U (n), the Gaussian Orthogonal ensemble (GOE) for K ∈O(n) and the Gaussian Symplec-

tic ensemble (GSE) for K ∈ Sp(n).

2.2 Random matrix ensembles as tangent spaces to symmetric

spaces

Hermitian, symmetric, and symplectic ensembles emerge as tangent spaces to symmetric

spaces [117]. For the purpose of the present work we will focus on the Hermitian and

symmetric ensembles.

Following [76], a symmetric spaceM can be defined as the quotient group G/K of the

semi-simple Lie group G by the Lie subgroup K invariant under an involution σ : G→ G,

i.e. σ2 = 1

K = {g ∈ G, σ (g) = g } , (2.7)

so that for G/K we have

G/K � {g σ (g)−1 , with g ∈ G } . (2.8)

The involution σ induces a map σ∗ on the Lie algebra g of the infinitesimal isometries on

the symmetric spaceM
σ∗ : g→ g , with (σ∗)2 = 1 . (2.9)
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Chapter 2. Random Matrix Ensembles

The Lie algebra g can be expressed as the direct sum1

g = t⊕ p , (2.10)

where t and p can be interpreted as the eigenspaces corresponding to the eigenvalues

of σ∗

t = {a ∈ g | σ∗(a) = a }

p = {a ∈ g | σ∗(a) = −a } ,
(2.11)

and since (2.9) these are ±1. The Lie bracket for t and p are

[t , t] ⊂ t , [t , p] ⊂ p , [p , p] ⊂ t . (2.12)

Hence, t is a Lie subalgebra of g, since it is a subset closed with respect to the Lie bracket

and p, as a vector space, is isomorphic to TeM, the tangent space to the symmetric

space M at the identity. The group K acts on p by conjugation k pk−1 ⊂ p and induces

a root decomposition

p = a⊕
∑

α∈Φ
pα (2.13)

where a is a maximal abelian subalgebra of p and Φ is the set of roots of p with respect

to a

pα = {x ∈ p | [a,x] = α(a)x for all a ∈ a } . (2.14)

In section 6.1 and 7.1, we will show how this approach is developed forHn and Sn re-

spectively. Taking into account the probability (2.5), this approach will lead to determine

the partition functions for both ensembles

Z
(β)
n (t) = cn

∫

R
n

∏

1 ≤ i < j ≤ n

(
zi − zj

)β n∏

k=1

ρt (zk) dzk , (2.15)

in terms of the eigenvalues zk , the weight ρt(z) and with β = 1, 2 for Sn and Hn respec-

tively. We will se that the coupling constants t = {t1, t2, . . . } on which the partition func-

1Also called Cartan decomposition
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Integrable systems emerging from algebra splitting

tion depends via the weight ρt(z) are called “times”.

2.3 Integrable systems emerging from algebra splitting

The ensemblesHn and Sn are deeply related to the integrable systems called respectively

Toda lattice and Pfaff lattice, as we will see in detail in chapters 6 and 7. Here, we will

briefly review how these integrable structures emerge from an algebraic point of view

and the next paragraph will be devoted to describe their connection to matrix ensembles

via the τ−functions.

The Adler–Kostant–Symes (AKS) theorem states that vector space decompositions of

Lie algebras into subalgebras lead to integrable systems [14, 20]. We will briefly review

this theorem in the version presented in [10], where the starting point is a Lie algebra g

for which g � g∗, via an Ad-invariant non-degenerate bilinear form, that is 〈 · , · 〉g×g → C
such that

〈[X, Y ] ,Z〉 = 〈X, [Y , Z]〉 , X, Y , Z ∈ g . (2.16)

We introduce ∇F(L) ∈ g the gradient of F at L for functions F on g∗ � g

dF(L) = 〈∇F(L) , dL〉 , (2.17)

and the Kostant–Kirillov Poisson structure2 on g∗ � g with respect to 〈 · , · 〉

{F,H}(L) = 〈L, [∇F(L) , ∇H(L)]〉 . (2.18)

The Hamiltonian vector fields χH on g∗ � g take the Lax form

χH (L) = {H,L} = [∇H(L) , L] . (2.19)

Let us consider a vector space decomposition of the Lie algebra

g = g+ ⊕ g− (2.20)

2The Kostant–Kirillov Poisson structure on g∗ is such that it mimics the Lie structure on g. Given a
basis {εa} the Lie structure on g is

[
εa, εb

]
=

∑
c f
ab
c εc, with f abc structure constants. The corresponding

Kostant–Kirillov Poisson structure on g∗ is {εa, εb} = ∑
c f
ab
c εc (see e.g. [17]).
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and, due to the non-degeneracy of 〈 · , · 〉, we have

g∗ � g � g⊥+ ⊕ g⊥− , g⊥± � g∗∓ , (2.21)

with g⊥± the orthogonal complement with respect to 〈 · , · 〉 of g±. The restriction of the

Hamiltonian vector fields on g⊥∓ is then given by

χH (L)|g⊥∓ = P̂∓ [∇±H(L) , L] , L ∈ g⊥∓ , (2.22)

with P̂∓ projections onto g⊥∓ along g⊥± . Analogously, we have for the Lie groupG associated

with the Lie algebra g the decomposition in groups G±. In addition, with the decomposi-

tion g = g+⊕g−, we introduce the projections P± g→ g±. We define R = P+ −P− and the Lie

algebra

[L1 , L2]R =
1
2

([RL1 , L2] + [L1 , RL2]) . (2.23)

We can then state the AKS theorem on g.

Theorem 2.3.1 Suppose that g = g+ ⊕ g− is a Lie algebra splitting and that 〈 · , · 〉 is an Ad-

invariant non-degenerate bilinear form on g, leading to a vector space splitting

g = g⊥+ ⊕ g⊥− ' g∗− ⊕ g∗+ . (2.24)

The Hamiltonian vector fields χH B { · , H}R are given by

χH (L) = −1
2

[L, R (∇H(L))] = ± [L, P±(∇H(L))] . (2.25)

For the purpose of this work, we are interested in the discrete integrable systems of

Toda and Pfaff lattice. Each system arises from a particular decomposition of the general

linear algebra gl(∞) = g+ ⊕ g−, with 〈 · , · 〉 the Frobenius inner product

〈A, B〉 = tr (AB) . (2.26)

Applying the AKS theorem to the specific algebra splitting, the Hamiltonian vector fields
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are
∂L

∂tk
B χH (k) = ± [P±∇Hk , L] , (2.27)

with Hk ∝ trLk+1

k + 1
, conserved quantities in involution [5, 85]. We obtain

∂L

∂tk
= ±

[
P±

(
Lk

)
, L

]
. (2.28)

The matrix L is given by L = KΛK−1, with K ∈ G+ and Λ = {δi,j−1}1 ≤ i,j <∞ the shift

operator.

We will see how the Toda lattice emerges from the splitting gl(∞) = s ⊕ b, with s

skew-symmetric and b lower triangular projections, in section 6.1.2. Section 7.1.2 will be

devoted to the study of Pfaff lattice from go(∞) = t ⊕ p, with t the projection on lower

triangular matrices with 2 × 2 blocks along the diagonal proportional to the identity

and p = sp(∞).

2.4 The connection between lattices and matrix ensembles via

τ-functions

The matrix L = KΛK−1 introduced above, in the case of the Toda lattice, satisfies

Lψ(t, z) = zψ(t, z) , (2.29)

with times t = {t1, t2, . . . }, eigenvalues z, and where ψ(t, z) is a wave vector constructed

from the operator K

ψ(t, z) = K e
1
2
∑∞
i=1 tiz

i
ζ(z) , ζ(z) = (ζ(z))n∈Z = (zn)n∈Z . (2.30)

The wave vector admits a representation in terms of a vector of τ−functions τ = (τn)n∈Z

ψ(t, z) = e
1
2
∑∞
i=1 tiz

i


zn

τn(t − [z−1])√
τn(t)τn+1(t)



n∈Z

, (2.31)

29



Chapter 2. Random Matrix Ensembles

as discussed by Adler and van Moerbeke in [6], having the form of a Baker–Akhiezer

function expressed in terms of the τ-functions via the so called Sato formula [20, 42],

with

t −
[
z−1

]
=

{
tk − 1

k
z−k

}
. (2.32)

In the case of the Pfaff lattice [9], it is necessary to introduce two wave vectors ψ1(t, z),

ψ2(t, z), that admit a representation in terms of τ-functions as well.

What is a τ-function? As pointed out in [98], there are different definitions of τ-

functions, but all of them are related to a specific realization of the following idea: a

τ-function is a generating functional of all the matrix elements of some group in a par-

ticular representation. One of the main aspects shared by τ-functions relevant in this

context is that they satisfy a set of bilinear equation, the Hirota bilinear relations.

The τ-function has been introduced by Jimbo–Miwa–Ueno in [75], following the lead

dating back to Riemann regarding the concept of deformations preserving monodromy

properties in the context of linear ODEs. In particular, the τ-function is presented as an

analogue of the Riemann θ-function associated to nonlinear deformations of ODEs. In

their paper, the authors also discuss the emergence of a connection with the AKNS hierar-

chy. Two years later, Sato [108] proposed a geometrical interpretation of the τ-functions,

establishing a connection with the infinite dimensional Grassmannian3. The τ-function

in this context coincides with the so called Plücker coordinates of the Grassmannian. The

latter are not independent and they satisfy the Plücker relation. This can be written in

terms of the Hirota bilinear formalism and gives rise to the KP hierarchy.

As previously mentioned, in the discrete cases of the Toda and Pfaff lattice, the wave

function admits a representation in terms of a sequence of suitably defined τ-functions

τn(t) (see [116, 6] for Toda and [9] for Pfaff). The corresponding hierarchies written in

terms of τ-functions are produced requiring that

Resz=∞ (ψ(z, t)ψ∗(z, t′)) = 0 ∀t, t′ , (2.33)

from which the set of infinite differential equations is written in the compact formalism

3In [121] the Sato theory is presented in pedagogical terms, starting from the simplest non-trivial case of
the Gr(2;4) and showing the generalisation for the construction of the Sato theory for infinite dimension.
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of the Hirota bilinear identity [20, 49, 121].

The sequence of τn(t) defined for Toda satisfy the KP hierarchy

(
sk+4(∂̃)− 1

2
∂t1∂tk+3

)
τn(t) ◦ τn(t) = 0 , k = 0,1,2, . . . , (2.34)

as it will be shown in section 6.1.2. Analogously, the sequence of τn(t) defined for the

Pfaff lattice satisfy the Pfaff-KP hierarchy (following the nomenclature by Adler and van

Moerbeke)

(
sk+4(∂̃)− 1

2
∂t1∂tk+3

)
τ2n(t) ◦ τ2n(t) = sk(∂̃)τ2n−2(t) ◦ τ2n+2(t) , k = 0,1,2, . . . , (2.35)

that we will study in section 7.1.2. It is worth mentioning that in the literature the Pfaff-

KP is also called BKP hierarchy (introduced in [39] and see also [37, 72, 115, 21, 80]).

The expressions (2.34) and (2.35) involve the Hirota operator

∂
m1
x1 . . .∂

mn
xn f (x) ◦ g(x) =

(
∂
m1
ε1 . . .∂

mn
εn

)
f (x1 + ε1, . . . ,xn + εn) g(x1 − ε1, . . . ,xn − εn)

∣∣∣∣
εi=0∀i

,

(2.36)

the operator ∂̃ =
(
∂t1 ,

1
2∂t2 ,

1
3∂t3 , . . .

)
and the Schur polynomials, defined as

e
∑∞
n=1 tnz

n
=
∞∑

j=0

sj(t)z
j . (2.37)

The hierarchy (2.34) is written in terms of the so called KP τ-functions, while the one

of (2.35) in terms of Pfaffian τ-functions. This allows to establish the connection with

the matrix ensembles Hn and Sn. In particular, the KP τ-function is proportional to the

partition function defined for Hn
τKP
n ∝ Z(2)

n , (2.38)

introduced in (2.15) with β = 2, as it will be described in section 6.1.1. On the other side,

the Pfaffian τ-function proportional to the partition function defined for Sn

τ
pf-KP
n ∝ Z(1)

n , (2.39)

i.e. (2.15) with β = 1, as we will see in section 7.1.1.
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In the context of the matrix theory, for Hn the τ-function is introduced as the deter-

minant of a Hänkel moments matrix with respect to a symmetric measure, for Sn is given

by the Pfaffian of a skew-symmetric moments matrix with respect to a skew-symmetric

measure, as we will study in sections 6.1.2 and 7.1.2, respectively. The moments matrix

is of significant importance in the approach that we will present in the following, leading

to define the elements in the matrix L representing the systems of Toda and Pfaff lattice

in terms of sequences of the respective τ-functions. Finally, it is worth mentioning that

both Toda and Pfaff lattices can be seen as reductions of the 2−Toda lattice, where the ini-

tial condition is given by a moments matrix that is a Hänkel matrix for the Toda lattice

and a skew-symmetric matrix for the Pfaff lattice [12, 13].

The τ-function approach has also lead Witten to elaborate his conjecture in [122]

(generalised in [123]) and then proved in [83] for which the generating functional of

correlators in the model of 2-dimensional gravity coincide with the τ-function of a matrix

model and obey to the KdV hierarchy.

2.5 Orthogonal and skew-orthogonal polynomials

Orthogonal and skew-orthogonal polynomials are an established tool in the theory of

random matrix models. The theory of orthogonal polynomials [111] is well known and

has applications in many areas, while it is not the same for the theory of skew-orthogonal

polynomials, emerging in the context of symmetric and symplectic matrix ensembles and

deeply connected with the underlying Pfaffian structure. We will briefly mention the

main aspects of orthogonal polynomials and then provide the standard introduction of

orthogonal and skew-orthogonal polynomials in the context of the random matrix theory.

A sequence of polynomials {pn(x)}∞n=0 is orthogonal in the interval ]a,b[ with respect

to the positive weight function ρ(x) if

∫ b

a
pn(x)pm(x)ρ(x)dx =



0 n ,m

hn , 0 n =m.
(2.40)

The interval ]a,b[ is defined interval of orthogonality and it can be either finite or infinite,
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provided that the convergence of the integral is ensured. The weight function ρ(x) is

continuous and positive on the interval, so that the moments µn exist, with µn given by

µn =
∫ b

a
ρ(x)xndx . (2.41)

It is worth emphasising that the sequence of polynomials is uniquely defined up to nor-

malization and they can be determined starting from initial conditions with the Gram-

Schmidt orthogonalisation procedure. A fundamental property of the orthogonal poly-

nomials is the fact that they satisfy a three-term recurrence relation of the form

pn+1(x) = (an x+ bn)pn(x)− cnpn−1(x) n = 0, 1, . . . . (2.42)

Notable examples of orthogonal polynomials are the Hermite polynomials and La-

guerre polynomials.

. The Hermite polynomials Hn are defined by the generating function

e2xt−t2 =
∞∑

n=0

Hn(x) tn

n!
, (2.43)

and have the explicit form

Hn(x) =
n/2∑

k=0

(−1)k n!
k! (n− 2k)!

(2x)n−2k . (2.44)

The orthogonality property of Hn(x) is

∫ ∞

−∞
Hn(x)Hm(x)e−x

2
dx = 2nn!

√
nδnm , (2.45)

and they satisfy the recurrence relation

Hn+1(x) = 2xHn(x)− 2nHn−1(x) , n ≥ 1 . (2.46)
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. The Laguerre polynomials Ln are defined by the generating function

(1− t)−α−1e
−xt
1−t =

∞∑

n=0

Lαn (x) tn , (2.47)

and have the explicit form

Ln(x) =
(α + 1)n
n!

n∑

k=0

(−n)k xk

(α + 1)k k!
(2x)n−2k , (2.48)

with (a)b = a (a+ 1) . . . (a+ b − 1). The orthogonality property of Ln(x) is

∫ ∞

−∞
Lαn (x)Lαm(x)xα e−x dx =

Γ (α +n+ 1)
n!

δnm , (2.49)

and they satisfy the recurrence relation

(n+ 1)Lαn+1(x) = (1 + 2n+α − x)Lαn (x)− (n+α)Lαn−1(x) , n ≥ 1 . (2.50)

In the context of random matrix theory, orthogonal and skew-orthogonal polynomi-

als were introduced by Mehta [92] in relation to the partition functions for Gaussian

ensembles defined at the end of section 2.1: the GUE with orthogonal polynomials,

the GOE and GSE with the skew-orthogonal polynomials. The connection has been ex-

tended (especially for the orthogonal polynomials [27, 122]) and has led to a consistent

description of the Hermitian, symmetric, and symplectic ensembles combining random

matrix theory, τ-functions and the theory of orthogonal and skew-orthogonal polyno-

mials [6, 12, 57, 26, 29] associated with the aforementioned integrable structures. In

particular, as recalled in [10], the Toda lattice is the natural integrable system underpin-

ning the deformation of GUE of random matrix theory as well as constituting the natural

deformation class of orthogonal polynomials. Analogously, the Pfaff lattice is associated

with the natural deformations for GOE (and GSE) and provides the natural deformation

for skew-orthogonal polynomials.

In this context, we introduce the t-deformed weight ρt(z)

ρt(z) = ρ(z)e
∑
k tk z

k
. (2.51)
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We consider the symmetric inner product defined on ρt(z)

(f (z) , g(z))t B
∫

R

f (z)g(z)ρt(z)dz (2.52)

and the sequence of polynomials {pn(z, t)}∞n+0 orthogonal with respect to ρt(z)

(
pj(z, t) , pk(z, t)

)
t

=
∫

R

pj(z, t)pk(z, t)ρt(z)dz = δjk hk , (2.53)

where

pn(z, t) = γn(t)zn +γn−1(t)zn−1 + . . . , (2.54)

that is called monic if γn(t) = 1. For a monic sequence of orthogonal polynomials with

respect to a positive measure ρt(z)dz, there exists the recurrence relation

pn+1(z, t) = (z − an(t)) pn(z, t)− bn(t)pn−1(z, t) , n = 0, 1, . . . , (2.55)

with initial conditions p−1(z, t) = 0, p0(z, t) = 1. The recurrence coefficients are given by

an(t) =
(zpn(z, t) , pn(z, t) )t
(pn(z, t) , pn(z, t) )t

, bn(t) =
(zpn(z, t) , pn−1(z, t) )t
(pn−1(z, t) , pn−1(z, t) )t

. (2.56)

Recurrence coefficients can be collected in a tridiagonal matrix Jn, known as Jacobi ma-

trix [27]

Jn =




a1
√
b1 0 0 0 · · ·

√
b1 a2

√
b2 0 0

0
√
b2 a3

√
b3 0

0 0
√
b3 a4

√
b4

...
. . .

. . .
. . .

. . .
. . .

√
bn−1

√
bn−1 an




. (2.57)

We note that this matrix coincides with the Lax operator L(t) of the Toda lattice, which
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we will build in section 6.1.2. The recursion relation can be formulated as

L(t)p(z, t) = zp(z, t) , p(z, t) = (pn(z, t))n∈N . (2.58)

The orthogonal polynomials can be therefore interpreted as eigenvectors of the Toda

lattice. They admit an integral representation [111] and for what is stated in the pre-

vious section, they can be expressed in terms of KP τ-functions [6, 117]. It is worth

noticing that in presence of an even weight function, the term an(t) in the recurrence

relation (2.55) vanishes.

Similarly, the connection between the Pfaff lattice and the skew-orthogonal polyno-

mials is established in [12]. The skew-orthogonal polynomials are defined with respect to

a skew-symmetric weight ρ̃t(y,z) = −ρ̃t(z,y), for which the corresponding inner product

is

〈f (y) , g(z)〉t B
∫ ∫

R
2
f (y)g(z) ρ̃t(y,z)dzdy . (2.59)

A family of monic polynomials {qn(z, t)}∞n=0 is skew-orthogonal with respect to ρ̃t(z) if [11]

〈q2m(y, t) , q2n+1(z, t)〉t = −〈q2n+1(z, t) , q2m(y, t)〉t = δnm rm

〈q2m(y, t) , q2n(z, t)〉t = 〈q2m+1(y, t) , q2n+1(z, t)〉t = 0 .
(2.60)

It is worth noticing that the relations (2.60) are invariant under the transformation

q2m+1(z, t) 7→ q2m+1(z, t) +α2m q2m(z, t) , (2.61)

for an arbitrary α2m, hence the skew-orthogonal transformations are not unique up to

this mapping.

As in the case of the Toda lattice, for the skew-orthogonal polynomials a recurrence

relation is established [106], that can be written as

L(t)q(z, t) = zq(z, t) , (qn(z, t))n∈N , (2.62)

with L(t) a lower triangular matrix with non-zero elements on the above diagonal. This

matrix coincides with the Pfaff lattice and the skew-orthogonal polynomials are eigen-
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vectors of Pfaff [117, 12], as we will see in section 7.1.2. Finally, also in this case, they

admit a representation in terms of the Pfaffian τ-functions.

It is worth noting that, at this stage, the main difference between the Toda lattice and

the Pfaff lattice relies on the number of recurrence coefficients necessary for their repre-

sentation. The Toda lattice is represented by a symmetric tridiagonal matrix, completely

describable by defining two recurrence coefficients uniquely determined. Instead, in the

Pfaff lattice case, the form of the matrix leads to consider infinitely many recurrence

coefficients, that are not uniquely determined because of (2.61).

In chapter 6 and chapter 7, the recurrence coefficients here mentioned will be simply

called field variables for both lattices. We will study the discrete equations they sat-

isfy considering several flows in the Toda and Pfaff hierarchy of the form (2.1). In the

continuum limit at the leading order we will find hierarchies expressed in terms of the

continuum version of the field variables. For a suitable reduction of Toda, we will find

a scalar hierarchy, expressed in terms of one type of field only. Whereas, for a specific

reduction of Pfaff, we will observe a hydrodynamic chain hierarchy, given in terms of

infinitely many field variables. In both cases, we will deal with systems of hydrodynamic

type, that we will present in the next chapter.
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Chapter 3

Hydrodynamic type systems

In this chapter, following [50], we will introduce the Hamiltonian formalism for the de-

scription of hydrodynamic systems. We will start considering systems with finitely many

components, in section 3.1. We will define the Poisson brackets and describe the mani-

fold spanned by the solutions to the system via the Riemann invariants and the associated

characteristic speeds. We will introduce the generalised hodograph method [113] and the

related semi-Hamiltonian property, encoding the integrability of this type of systems.

Section 3.2 is dedicated to the study hydrodynamic chains, i.e. a class of hydrody-

namic systems composed of infinitely many components. We will follow the approach

established in [60] concerning the integrability of hydrodynamic chains via the prop-

erties of the Nijenhuis and Haantjes tensors. The latter are involved in the definition of

diagonalisability and integrability in the sense of an infinite number of hydrodynamic re-

ductions of the system. Finally, we will introduce the Gibbons–Tsarev system, encoding

the information about the integrable chain in a system of equations in terms of charac-

teristic speeds, Riemann invariants, and the seed of the chain.
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3.1 Hydrodynamic systems with finitely many components

In this section, we will briefly review the Hamiltonian theory for systems of hydrody-

namic type with a finite number of components

uit = vij (u)ujx , i = 1, . . . , N , (3.1)

as described in [50]. In particular, in section 3.1.1 we will give the structure of the Poisson

bracket of hydrodynamic type on the manifoldM with local coordinates u1, . . . , uN , and

in section 3.1.2 we will describe the generalised hodograph method, in the context of

integrability of systems of kind (3.1).

We start by recalling the main features of the finite-dimensional Poisson bracket.

LetM be a N -dimensional manifold, called the phase space. A Poisson bracket { · , · } is

defined as an operation on the space of smooth functions onM manifesting the proper-

ties

(a) bilinearity

{λf +µg , h } = λ{ f , h }+µ{ g , h }

{ f , λg +µh } = λ{ f , g }+µ{ f , h } ,
λ,µ = const (3.2)

(b) skew-symmetry

{f , g } = −{g , f } , (3.3)

(c) Jacobi identity

{ {f , g } , h }+ { {h, f } , g }+ { {g , h } , f } = 0 , (3.4)

(d) Leibniz identity

{f g , h } = f {g , h }+ g{f , h } . (3.5)

Considering local coordinates y1, . . . , yN on the manifoldM, a Poisson bracket is defined

by a skew-symmetric (2,0) tensor

hij(y) = {yi , yj } , i, j = 1, . . . , N . (3.6)

40



Hydrodynamic systems with finitely many components

For the Leibniz property (c), the Poisson bracket can also be defined as

{f , g } = hij(y)
∂f (y)
∂yi

∂g(y)
∂yj

, (3.7)

and the Jacobi identity (d) implies for the tensor hij to satisfy the relation

∂hij

∂yl
hlk +

∂hki

∂yl
hlj +

∂hjk

∂yl
hli = 0 . (3.8)

If det
(
hij

)
, 0, the constraint (3.8) is equivalent to endowingM with a symplectic struc-

ture, since the inverse matrix hij =
(
hij

)−1
contributes to define the 2-form Ω = hij dyi ∧

dyj , non-degenerate and closed dΩ = 0. The manifoldM with a non-degenerate Poisson

bracket is then called symplectic.

The existence of a Poisson bracket leads to write the Hamiltonian equations as

∂yi

∂t
= {yi , H(y) } , (3.9)

where H(y) is the Hamiltonian of the system (3.1). Any integral F of the system satisfies

the property

{F(y) , H(y) } = 0 . (3.10)

In terms of the field variables ui(x, t) appearing in (3.1), we now introduce the so called

local Poisson bracket, that is defined for a class of functionals on ui(x, t) with x =
(
x1, . . . , xd

)
.

In particular, they are defined for functionals of local fields and of their derivatives (when

they exist) at a point. The Poisson bracket takes the form

{ui(x) , uj(y) } = hij(x,y) , i, j = 1, . . . , N , (3.11)

where the tensor hij(x,y) is now characterised not only by the integer indices i, j, but also

by two continuous indices x,y. For functionals I [u], J [u], we have

{ I , J } =
∫

δI

δui(x)
δJ

δuj(y)
hij(x,y) ddx ddy , (3.12)
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with variational derivatives given by

I [u + δu]− I [u] =
∫

δI

δui(x)
δui(x) ddx+ o (δu) . (3.13)

We consider local field functionals

I [u] =
∫
P
(
x, u(x), u(1)(x) , . . . , u(k)(x)

)
ddx , (3.14)

where P is a polynomial (or more in general an analytic function) in terms of the vari-

ables
(
u, u(1) , . . . , u(k)

)
, called the density of the functional. A natural class of local field

theoretic brackets is introduced as

{ui(x) , uj(y) } =
∑

|k |≤K
B
ij
k

(
x, u(x), u(1)(x), . . . , u(nk)(x)

)
∂kx δ(x − y) , i, j = 1, . . . , N ,

(3.15)

where k = (k1, . . . , kd), |k | = k1 + · · · + kd , ∂kx =
(
∂
∂x1

)k1
. . .

(
∂
∂xd

)kd and K the order of the

bracket. The derivatives of the Dirac delta function δ(x − y) are formal symbols defined

as ∫
f (y)δ(k)(x − y)ddy = ∂kxf (x) . (3.16)

Introducing the operator

Aij =
∑

|k |≤K
B
ij
k (x, . . . )∂kx , (3.17)

we have for (3.12)

{ I , J } =
∫

δI

δui(x)
Aij

δJ

δuj(x)
ddxddy , (3.18)

and the Hamiltonian equations take the form

uit (x) = {ui(x) , H } = Aij δH

δuj(x)
, i = 1, . . . , N , (3.19)

where H =H [u] is a local functional of the kind (3.14).
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3.1.1 Hamiltonian formalism and Riemannian geometry

A system of hydrodynamic type is represented by an equation of the form [50]

uit = vi αj (u)ujα , i = 1, . . . , N , α = 1, . . . , d , (3.20)

with ujα = ∂uj /∂xα for a d + 1 system with N fields ui . Considering an invertible smooth

change of field variables

ui = ui
(
R1, . . . , RN

)
, i = 1, . . . , N , (3.21)

the coefficients vi αj for each α transform as a (1,1)-tensor

v
j α
j (u) 7→ v

pα
q (u) =

∂rp

∂ui
vi αj (u(R))

∂uj

∂rq
. (3.22)

Let us introduce the manifold MN where the fields u1(x, t) , . . . , uN (x, t) take values for

each x, t. With this in mind, (3.21) can be interpreted as a change of coordinates inMN .

For simplicity, let us restrict to the 1+1 dimensional case. Moreover, let us assume the

system described in (3.20) is strictly hyperbolic, i.e. all the eigenvalues v1 = λ1, . . . , vN =

λN of the matrix
(
vij

)
are real and distinct. If it is possible to reduce the system (3.20),

via the change of coordinates (3.21), to the diagonal form

Rit = vi(R)Rix , i = 1, . . . , N , R =
(
R1, . . . , RN

)
, (3.23)

the variables R1, . . . , RN are called the Riemann invariants for (3.20), while the coeffi-

cients v1(r) , . . . , vN (r) are the corresponding characteristic speeds. For N = 2 it is always

possible to obtain the diagonal form in terms of Riemann invariants, while for N ≥ 3

this is not true in general. The same considerations can be done in the case of complex

eigenvalues, involving complex changes of coordinates (3.21).

The study of Hamiltonian systems involves a rich geometry, as it was first pointed out

by Dubrovin and Novikov in [52].
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For a system of hydrodynamic type

(a) the Poisson bracket is defined as

{
ui(x) , uj(y)

}
= g ijα(u) δ′α(x − y) + bijαk (u)) ukα δ(x − y) , (3.24)

where g ijα(u), bijαk (u) are certain functions, i, j,k = 1, . . . ,N , α = 1, . . . ,d and δ′(x) is

given by (3.16) with k = 1;

(b) functionals are defined as

H [u] =
∫
h(u)ddx , , (3.25)

where the density h(u) is independent of derivatives uα , uαβ , . . . ;

(c) if Hamiltonian, it takes the form

uit (x) =
{
ui(x) , H

}
=

(
g ijα(u)

∂2h(u)
∂uj ∂uk

+ bijαk (u)
∂h(u)
∂uj

)
ukα , i = 1, . . . ,N , (3.26)

with { · , · } a Poisson bracket of hydrodynamic type (3.24).

In the case of a system of 1+1 dimensions, omitting the index α, it can be shown [50]

the following

(a) the class (3.24) of Poisson brackets of hydrodynamic type is invariant under changes

of field variables of the form (3.21) ui 7→ vi(u);

(b) under these changes of variables, the coefficients g ij(u) transform as tensors of

type (2,0)

gpq(u) =
∂vp

∂ui
∂vq

∂uj
g ij(u) , p,q = 1, . . . , N ; (3.27)

(c) assuming that the metric
(
g ij(u)

)
is non-degenerate and defining Γ kij from

b
ij
k (u) = −g il(u)Γ jlk(u) , i, j,k = 1, . . . ,N , (3.28)

then under the change of variables (3.21) it transforms as a differential-geometric

connection

Γ
p
qr(u) =

∂vp

∂ui
∂uj

∂vq
∂uk

∂vr
Γ ijk(u) +

∂vp

∂ui
∂2ui

∂vq∂vr
. (3.29)
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If the metric is non-degenerate then det
(
g ij

)
, 0 and the corresponding Poisson

brackets are called non-degenerate. The latter property is invariant under transforma-

tions (3.21).

Theorem 3.1.1 In the non-degenerate case det
(
g ij

)
, 0, the expression (3.24) defines a Pois-

son bracket if and only if the tensor g ij is symmetric, i.e. it defines a pseudo-Riemannian

metric on the manifold MN . The connection Γ ijk of the form (3.28) is compatible with the

metric g ij and has zero curvature and torsion. Therefore, there exist local coordinates vi =

vi
(
u1, . . . , uN

)
, i = 1, . . . , N such that g ij = const and bijk = 0. In these coordinates the Pois-

son bracket (3.24) is constant

{
vi(x) , vj(y)

}
= g ij0 δ′(x − y) , g

ij
0 = gji0 = const . (3.30)

To consider the conditions for which a hydrodynamic system is Hamiltonian in a more ex-

plicit form, we start from the observation that the system uit (x) =
{
ui(x) , H

}
, with Hamil-

tonian (3.25) (d = 1) and Poisson brackets (3.24), can be formulated as

uit (x) = vij (u) ujx , vij (u) = ∇i∇j h(u) , (3.31)

where ∇j is the covariant differentiation operator

∇j ui = ∂ju
i + Γ ijk u

k , (3.32)

with ∂j = ∂/∂uj . In addition, the controvariant operator is obtained raising indices ∇i =

g ik∇k and the operators ∇i , ∇j commute because of Theorem 3.1.1.

Proposition 3.1.1 The system uit = vij (u)ujx is Hamiltonian if and only if there exists a non-

degenerate metric g ij(u) of zero curvature, such that

gij v
k
j = gjk v

k
i (3.33)

∇ivkj = ∇jvki , (3.34)

where ∇i is the covariant differentiation generated by the metric g ij .
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In 1983, Novikov conjectured that for a finite-component system of hydrodynamic

type to be integrable needs to be Hamiltonian, i.e. it admits a metric as described in the

proposition 3.1.1. This was later demonstrated by Tsarev, who established a less strict

condition for hydrodynamic systems to be integrable – the semi-Hamiltonian property –

and outlined a prescription to integrate these systems called the generalised hodograph

method, that we will analyse in the next section.

3.1.2 The generalised hodograph method

In this section we will briefly review the hodograph method [97], with focus on the ap-

proach elaborated by Tsarev [113], leading to a generalization of the procedure for multi-

component systems.

For a 1 + 1 dimensional system of hydrodynamic type ut = v(u)ux, with two compo-

nents u =
(
u1 , u2

)
, it is possible to define a linearization of it through the hodograph

transformation

x = x
(
u1 , u2

)
, t = t

(
u1 , u2

)
. (3.35)

In particular, the original system of hydrodynamic type



u1
t = v1

1(u)u1
x + v1

2(u)u2
x

u2
t = v2

1(u)u1
x + v2

2(u)u2
x

, (3.36)

is transformed into the linear version



xu2
= −v1

1(u) tu2 + v2
1(u) tu1

xu1
= v2

1(u) tu2 − v2
2(u) tu1

. (3.37)

The method proposed by Tsarev for the integration of two-component systems is suitable

for generalizations to multi-component systems. We start by analysing a two-component

system (3.36) that is strictly hyperbolic in some region of the space of coordinates
(
u1 , u2

)
,

i.e. the matrix vij (u) has two distinct real eigenvalues v1(u) and v2(u). Hence, it is possible

to write the system (3.36) in a diagonal form, under a smooth change of coordinates. For
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simplicity, let us consider the case in which the system is already diagonal



u1
t = v1(u)u1

x

u2
t = v2(u)u2

x

. (3.38)

We introduce w1(u), w2(u), solution to the system

∂2w1

w2 −w1
=

∂2v1

v2 − v1
,

∂1w2

w2 −w1
=

∂1v2

v2 − v1
. (3.39)

Then we have that

(a) the functions u1 = u1 (x , t), u2 = u2 (x , t) defined by



w1

(
u1 , u2

)
= v1

(
u1 , u2

)
t + x

w2

(
u1 , u2

)
= v2

(
u1 , u2

)
t + x

, (3.40)

are solutions to the system (3.38), and every smooth solution to (3.38) can be deter-

mined in this way;

(b) the system of hydrodynamic type



u1
τ = w1(u)u1

x

u2
τ = w2(u)u2

x

, (3.41)

defines a symmetry of the system (3.38) (uit τ = uiτ t), and all the symmetries of the

class of systems of hydrodynamic type can be determined in this way.

To show (a), we consider the hodograph transformation applied to the system (3.38),

leading to 

∂2x+ v1(u)∂2t = 0

∂1x+ v2(u)∂1t = 0

, (3.42)
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that can be reformulated as 

∂2 (v1 t + x) = t ∂2v1

∂1 (v2 t + x) = t ∂1v2

. (3.43)

With the introduction of fields

wi(u) = vi(u) t + x , i = 1,2 , (3.44)

we get for the variable t

t =
w1 −w2

v1 − v2
. (3.45)

The substitution of (3.45) into (3.43) yields (3.39). Conversely, if we differentiate the

implicit functions u1(x, t), u2(x, t) from (3.40) and we use (3.39), we get the system (3.43).

For part (b) let us introduce a symmetry of (3.43)

uiτ = wij(u)ujx , i = 1,2 . (3.46)

From the symmetry property uit τ = uiτ t, it follows that the matrix uij commutes with the

diagonal matrix vj δ
i
j , hence wij = wj δ

i
j is diagonal as well. Moreover, this property im-

plies that w1, w2 satisfy (3.39). As mentioned abovove, for a a multi-component system

of hydrodynamic type, Novikov conjectured that the combination of the existence of the

bracket (3.24) with non-degenerate metric and the diagonalization implies the integra-

bility of the system. Then Tsarev proved the conjecture in [113, 114] and introduced

a generalization of the hodograph method to integrate these systems. We will briefly

review this approach.

Let us consider a multi-component diagonal Hamiltonian system of hydrodynamic

type

uit = vi(u)uix , i = 1, . . . , N , (3.47)

with mutually distinct elements and g ij(u) the corresponding metric (assumed to be non-

degenerate) describing the Hamiltonian structure.

Lemma 3.1.2 Let u1, . . . , uN be fields variables of a diagonal Hamiltonian system of hydro-

dynamic type. Then the corresponding metric g ij(u) is diagonal as well.
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This is proved by (3.33). From a differential-geometric point of view, a diagonal metric

corresponds to a curvilinear orthogonal system of coordinates in a flat space (Euclidean

or pseudo-Euclidean). On the other side, if we choose an arbitrary system of curvilinear

orthogonal coordinates, then a family of Hamiltonian systems is associated with it.

Lemma 3.1.3 Let u1, . . . , uN be a system of orthogonal curvilinear coordinates, gij(u) = gi(u)δij

the associated metric, and Γ kij(u) the generated connection. Then all diagonal systems of hydro-

dynamic type

uit = wi(u)uix , i = 1, . . . , N , (3.48)

Hamiltonian with respect to the Poisson bracket

{
ui(x) , uj(y)

}
= gi (u(x))−1


δ
ij δ′(x − y)−

∑

k

Γ
j
ik u

k
x (x − y)


 , (3.49)

are determined by the relations

∂iwk = Γ kki (wi −wk) , i , k . (3.50)

All these systems commute pairwise and they are parametrised locally by functions of one

variable.

We consider the condition (3.34) for the system to be Hamiltonian and uij = wj δ
i
j

0 = ∇iukj −∇juki = ∂iu
k
j −∂juki +

N∑

l=1

(
Γ ki l u

l
j − Γ li j ukl − Γ kj l uli + Γ lj i u

k
l

)

= ∂iwj δ
k
j −∂jwi δki + Γ kij

(
wi −wj

)
.

(3.51)

This is an identity in the case of i, j, k all distinct, since Γ kij = 0 because we have zero

curvature and torsion. The non-trivial relation is given for the case j = k , i, yielding

to (3.50).

For a generic diagonal metric gij = gi δij , we have

Γ kki = ∂i ln
√
gk , (3.52)
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and inserting this in (3.50) we obtain the relations

∂i

(
∂jwk
wj −wk

)
= ∂j

(
∂iwk
wi −wk

)
, i , k, j , k , (3.53)

leading to the definition of a semi-Hamiltonian system. In particular, a diagonal sys-

tem of hydrodynamic type uit = wi(u)uix, i = 1, . . . , N , is called semi-Hamiltonian if its

coefficients satisfy (3.53). For N = 2 the relations (3.53) reduce to identities, hence ev-

ery diagonal system is semi-Hamiltonian. For N ≥ 3 every Hamiltonian system is semi-

Hamiltonian, but the converse is not true. Then it is sufficient for a system of hydrody-

namic type to be diagonalizable and semi-Hamiltonian in order to be integrable, as it is

stated in the following theorem.

Theorem 3.1.4 Let

uit = vi(u)uix , i = 1, . . . , N , (3.54)

be a diagonal semi-Hamiltonian system of hydrodynamic type, andw1(u), . . . , wN (u) arbitrary

solutions to the system

∂iwk = Γ kki (wi −wk) , i , k , (3.55)

with Γ kki = ∂ivk
vi−vk coefficients of a hydrodynamic flow commuting with (3.54).

The functions u1(x, t), . . . , uN (x, t) determined by the system

wi(u) = vi(u) t + x , i = 1, . . . , N , (3.56)

satisfy (3.54); in addition, every smooth solution can be obtained in this way.

To show this, we differentiate (3.56) with respect to t and x, obtaining



∑
k (∂kwi − t ∂kvi) ukt = vi

∑
k (∂kwi − t ∂kvi) ukx = 1

. (3.57)

Introducing the matrix M(u), with elements

Mik(u) = ∂kwi − t ∂kvi , (3.58)
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by (3.55), they can be formulated as

Mik(u) =
∂kvi
vk − vi

(wk −wi − t (vk − vi)) , i , k . (3.59)

If u = u(x, t) is a solution to (3.56), we have

wk −wi = t (vk − vi) =⇒ Mik = 0 , i , k . (3.60)

Therefore, the only terms remaining are those for which i = k and (3.57) becomes



Mii(u)uit = vi

Mii(u)uix = 1

=⇒ uit = vi(u)uix , i = 1, . . . , N , (3.61)

and u = u(x, t) is a solution to the system (3.54) as well. Also, because ofMii(u)uix = 1, we

have that uix , 0 for any smooth solution to (3.54).

Conversely, let us consider u = u(x, t) a solution to (3.54) such that uix , 0 in the

neighbourhood of the point (x0, t0) for i = 1, . . . , N . Taking ui0 = ui(x, t0) to be the initial

condition of the Cauchy problem for the original system (3.54), we have

wi (u0(x)) = vi (u0(x)) t0 + x , (3.62)

on the curve u0(x). Since by assumption
(
ui0

)
x

(x0) , 0, there exists a unique solutionwi(u)

to (3.55) with initial condition (3.62). We introduce the function

Φi(u,x, t) = wi(u)− vi(t) t − x = 0 , i = 1, . . . , N . (3.63)

The Jacobian matrix is non degenerate in (ui0,x0, t0)

∂Φi
∂uk

= ∂kwi − t0∂kvi =Mik (3.64)

Mik =



0 i , k

∂iwi − t0∂ivi , 0 i = k

. (3.65)
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We differentiate Φi with respect to x at the point (ui0,x0, t0)

Mii

(
ui0

)
x
− 1 = 0 =⇒ Mii =

∂Φi
∂ui

, 0 . (3.66)

Due to the theorem of implicit function, there exists a unique smooth solution ūi(x, t) in

a neighbourhood of (ui0,x0, t0). By construction ū(x, t0) = u(x, t0) and from the previous

part, u(x, t0) is a solution to (3.54). Hence, ū(x, t) = u(x, t) in a neighbourhood of (x0, t0)

by the uniqueness of the solution to the Cauchy problem.

Therefore, thanks to the theorem 3.1.4, the integration of a system of hydrodynamic

type (3.54) is reduced to that of the linear system (3.55) with the functions u1, . . . , uN

implicitly determined by (3.56). In this sense, it is evident that this consists in a gen-

eralisation of the hodograph method, thus called generalised hodograph method. Inte-

grability for a multi-component system of hydrodynamic type with a finite number of

components follows from the diagonalizability of the system and its semi-Hamiltonian

property. In the next section, we will investigate the case of systems of hydrodynamic

type with an infinite number of components.

3.2 Hydrodynamic chains

Let us now move to systems of hydrodynamic type with an infinite number of compo-

nents. They are called hydrodynamic chains [60, 101, 102] and are formulated as quasi-

linear partial differential equations

uit = vij (u)ujx , i = 1, 2, . . . , (3.67)

with u =
(
u1, u2, . . .

)>
an infinite vector and v(u) =

{
vij (u)

}∞
i,j=1

a∞×∞ matrix. The pro-

totypical example of a hydrodynamic chain is given by the Benney’s moments’ equation

unt = un+1
x + (n− 1) un−1u1

x , n = 1, 2, . . . , (3.68)

introduced in [25] to study long waves in shallow fluid with free surface in a gravitational

field.
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In general terms, a hydrodynamic chain takes the form [101]

unt = ϕn1 u
1
x + · · ·+ϕnn+1u

n+1
x , n = 1, 2, . . . , ϕnn+1 , 0 , (3.69)

where ϕnj = ϕnj
(
u1, . . . , un+1

)
. The class of conservative hydrodynamic chains of the type

u1
t = u2

x , u2
t = f

(
u1,u2,u3

)
x
, u3

t = g
(
u1,u2,u3,u4

)
x
, . . . , (3.70)

has been extensively studied (e.g. [105, 102]). In this case, the function f
(
u1,u2,u3

)

determines all the other equations of the chain (3.70) and the related hierarchy.

We will follow the approach established in [60] for the discussion concerning the in-

tegrability of hydrodynamic chains, motivated by the theory of finite-component systems

of hydrodynamic type that we have treated in section 3.1. As we have seen, for those sys-

tems, the requirements of being diagonalizable in terms of the Riemann invariants and

semi-Hamiltonian are sufficient for the system to be integrable. The theory established

in [60] relates to the criterion of classification of (2 + 1)-dimension integrable systems

grounded on the existence of infinite hydrodynamic reductions [59]. This is based on the

observation that dispersionless limits of integrable systems in 2 + 1 dimensions possess

infinitely many hydrodynamic reductions. Moreover, if the dispersionless system is not

linearly degenerate, in [61] it was shown that hydrodynamic reductions of dispersionless

limits of integrable systems can be deformed into those of the dispersive counterpart in

2 + 1 dimensions. In [62], a definition of integrability for 2 + 1-dimensional systems is

given, claiming that a 2 + 1-dimensional system is integrable if all the hydrodynamic re-

ductions of its dispersionless limit can be deformed into reductions of their dispersive

counterparts.

Ferapontov and Marshall [60] introduce a tensorial criterion for diagonalisability,

based on the construction of the so called Nijenhuis tensor and the Haantjes tensor and

they extend this concept to infinite-component systems of hydrodynamic type. Their

idea comes from the results obtained by Nijenhuis [100] and Haantjes [70]. Their re-

search was aimed to find the conditions for which for a field of endomorphisms of the

tangent bundle of a manifold, with the assumption of simple eigenvalues, the distri-
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butions spanned by pairs of eigenvectors are integrable [86]. Ferapontov and Marshall

in [60] formulate the main result in [70] as a theorem, in the field of integrable systems,

as we will see in the following. Their statement is that a system of hydrodynamic type,

with mutually distinct characteristic speeds, is diagonalisable if and only if the corre-

sponding Haantjes tensor vanishes identically. The connection relies on the fact that, for

systems with finitely many components, the solutions form a manifold in the theory of

Riemann invariants. Then they extend the result to infinite-component systems.

For a system of hydrodynamic type with finitely many components, we consider the

matrix vij (u). The Nijenhuis tensor of the matrix vij (u) is a (1,2) tensor defined as

N i
jk = vpj (u)∂pv

i
k(u)− vpk (u)∂pv

i
j (u)− vip(u)

(
∂jv

p
k (u)−∂kvpj (u)

)
, (3.71)

with ∂i = ∂/∂ui . The Haantjes tensor of the matrix vij (u) is a (1,2) tensor that takes the

form

H i
jk =N i

pq v
p
j (u)vqk (u)−N p

jq v
i
p(u)vqk (u)−N p

qk v
i
p(u)vqj (u) +N p

jk v
i
q(u)vqp(u) . (3.72)

The diagonalizability condition for strictly hyperbolic systems can be formulated as the

following theorem, introduced in [70] and reformulated by Ferapontov and Marshall in

the context of hydrodynamic systems.

Theorem 3.2.1 A diagonalizable system of hydrodynamic type with mutually distinct char-

acteristic speeds is diagonalizable if and only if the corresponding Haantjes tensor (3.72) is

identically zero.

It is remarkable that these tensors can be defined in the infinite-component case (3.67)

as well, provided that the matrix vij (u) is “sufficiently sparse”.

Definition 3.2.1 An infinite matrix V (u) =
{
vij (u)

}∞
i,j=1

belongs to the class C (chain class) if

it satisfies the properties

(i) each row of V (u) contains finitely many non-zero elements;

(ii) each matrix element of V (u) depends on finitely many field variables ui(x, t).
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For matrices belonging to class C, the sums on repeated indices in (3.71) and (3.72) re-

duce to a finite number of terms, hence every component of the tensorH i
jk is well defined

and can be computed. In particular, for a fixed value of the upper index i, we have only

a finite number of components of H i
jk that are non-zero.

Definition 3.2.2 A hydrodynamic chain (3.67) with V (u) ∈ C is diagonalizable if all compo-

nents of the Haantjes tensor (3.72) are zero.

As we will show in the following section, the vanishing of the Haantjes tensor is a neces-

sary (and in some cases sufficient) condition for a hydrodynamic chain to have an infinite

number of finite-component diagonalizable hydrodynamic reductions.

This approach, based on the construction of the Haantjes tensor has the advantage to

be “intrinsic”, in the sense that it is not required any knowledge of “estrinsic” objects,

like the Hamiltonian structure, the Lax pair or the commuting flows for the system. As

we will see in the following, the diagonalizability condition is necessary for the system

to possess sufficiently many hydrodynamic reductions.

3.2.1 Hydrodynamic reductions and Gibbons–Tsarev system

A hydrodynamic reduction of an infinite hydrodynamic chain is represented by paramet-

ric equations in a finite number m of components, as

u1 = u1
(
R1, . . . ,Rm

)
, u2 = u2

(
R1, . . . ,Rm

)
, u3 = u3

(
R1, . . . ,Rm

)
, . . . , (3.73)

where R1, . . . ,Rm are the Riemann invariants. They solve the diagonal system

Rit = λi (R) Rix , i = 1, . . . ,m, R =
(
R1, . . . ,Rm

)
, (3.74)

and the characteristic speeds λi(R) satisfy the semi-Hamiltonian property (3.53) that we

recall

∂i

(
∂jλ

k

λj −λk
)

= ∂j

(
∂iλ

k

λi −λk
)
. (3.75)

All the equations of the chain are satisfied modulo (3.74), hence the infinite-component

system reduces to a finite-component one. The notion of hydrodynamic reductions un-

derpins the definition of integrability.
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Definition 3.2.3 A hydrodynamic chain of class C (3.67) is integrable if it admits m-phase

solutions of the form

uk = uk
(
R1, . . . , Rm

)
, (3.76)

for arbitrary m.

In [65], Gibbons and Tsarev show that the Benney chain possesses infinitely many m-

component reductions, parametrized by m functions of a single variable. Integrability of

more generic hydrodynamic chains has been investigated in [105, 101] with the method

of hydrodynamic reductions, that we now briefly review.

We consider the method of hydrodynamic reductions as described in [65, 66], applied

to the Benney chain (3.68) for illustrative purposes. The first equations of the chain are

u1
t = u2

x

u2
t = u3

x +u1u1
x

u3
t = u4

x + 2u2u1
x

u4
t = u5

x + 3u3u1
x

...

(3.77)

We look for solutions of the form ui = ui
(
R1, . . . , Rm

)
, where R1, . . . , Rm are the Riemann

invariants, satisfying the diagonal system (3.74) that we recall

Rit = λi(R)Rix .

Using this ansatz in the first of equations (3.77), we obtain

∂iu
1Rit = ∂iu

2Rix

∂iu
1
(
λi Rix

)
= ∂iu

2Rix

Rix
(
λi ∂iu

1 −∂iu2
)

= 0

∂iu
2 = λi ∂iu

1 ,

(3.78)

for i = 1, . . . , m and with ∂i = ∂/∂Ri .
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Applying the ansatz recursively in the other equations (3.77), we get

∂iu
2 = λi ∂iu

1

∂iu
3 =

((
λi

)2 −u
)
∂iu

1

∂iu
4 =

((
λi

)3 −uλi − 2u2
)
∂iu

1

∂iu
5 =

((
λi

)4 −u
(
λi

)2 − 2u2λi − 3u3
)
∂iu

1

...

(3.79)

Imposing the compatibility conditions

∂i∂ju
k = ∂j∂iu

k , (3.80)

for k = 2,3,4 in the expressions in (3.79) yields

∂i ∂ju
1 =

∂jλ
i

λj −λi ∂iu
1 +

∂iλ
j

λi −λj ∂ju
1 ,

∂jλ
i∂iu

1 +∂iλ
j∂ju

1 = 0 ,

λi ∂jλ
i ∂iu

1 +λj ∂iλ
j ∂ju

1 +∂iu
1∂ju

1 = 0 .

(3.81)

Solving (3.81) in ∂jλi , we get the so called Gibbons–Tsarev system for the Benney chain

∂jλ
i =

∂ju
1

λj −λi ,

∂i∂ju
1 = 2

∂iu
1∂ju

1

(
λi −λj

)2 .

(3.82)

All the compatibility conditions (3.80) for k > 4 in (3.79) are satisfied modulo (3.82) and

the semi-Hamiltonian property (3.75) is automatically fulfilled. Hence, the Benney chain

is integrable and the m-component reductions of the chain are described by (3.82).

This approach can be applied to any hydrodynamic chain of the class C and this has

lead Ferapontov and Marshall to formulate the following theorem, stated in [60].

Theorem 3.2.2 The vanishing of the Haantjes tensor is a necessary condition for the existence

of infinitely many hydrodynamic reductions and, thus, for the integrability of a hydrodynamic
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chain.

To prove the theorem, let us consider a conservative hydrodynamic chain (3.70) written

in the form

umt = vmn (u)unx , m,n = 1, 2, . . . . (3.83)

We apply the ansatz described above, so we look for solutions dependent of a finite num-

ber of Riemann invariants. We get

∂iu
mRit = vmn ∂iu

nRix ,

∂iu
mλi Rix = vmn ∂iu

nRix ,
(3.84)

and equating the coefficients of Rix, the previous becomes

vmn ∂iu
n = λi ∂iu

m , (3.85)

or expressed in vector form as

v(u)∂iu = λi ∂iu . (3.86)

Hence, the characteristic speeds λi can be considered eigenvalues of the infinite ma-

trix v(u) and ∂iu the corresponding eigenvectors. To impose the compatibility condi-

tion (3.80), we make use of the operator ∂j with j , i acting on (3.85) (with the nota-

tion vmn,i = ∂ivmn )

vmn,k ∂ju
k ∂iu

n + vmn ∂j∂iu
n =

(
∂jλ

i
)
∂iu

m +λi ∂j∂iu
m , (3.87)

and we exchange the indices i↔ j, yielding

vmn,k ∂iu
k ∂ju

n + vmn ∂j∂iu
n =

(
∂iλ

j
)
∂ju

m +λj ∂i∂ju
m . (3.88)

The compatibility condition, then, gives

(
λi −λj

)
∂i∂ju

m = −
(
∂jλ

i
)
∂iu

m +
(
∂iλ

j
)
∂ju

m +
(
vmn,k − vmk,n

)
∂iu

k∂ju
n

∂i∂ju
m = − ∂jλ

i

λi −λj ∂iu
m +

∂iλ
j

λi −λj ∂ju
m +

vmn,k − vmk,n
λi −λj ∂iu

k∂ju
n .

(3.89)
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Substituting the latter in (3.87), we obtain

vmn,k∂ju
k∂iu

n +
∂jλ

i

λj −λi v
m
n ∂iu

n +
∂iλ

j

λi −λj v
m
n ∂ju

n +
vml

(
vln,k − vlk,n

)

λi −λj ∂iu
l ∂ju

k =

= ∂jλ
i ∂iu

m +
∂jλ

i

λj −λi λ
i ∂iu

m +
∂iλ

j

λi −λj λ
i ∂iu

m +
vmn,k − vmk,n
λi −λj λi ∂iu

n∂ju
k .

(3.90)

Using (3.85) we get

∂jλ
i∂iu

m + ∂iλ
j∂ju

m =
λi −λj
λi −λj v

m
n,k ∂iu

k ∂ju
k +

vml
(
vln,k − vlk,n

)

λi −λj ∂iu
l ∂ju

k

+
vln

(
vmn,k − vmk,n

)

λi −λj λi ∂iu
n∂ju

k ,

(3.91)

and using the (3.85) twice on the first term of the right hand side we obtain

∂jλ
i∂iu

m +∂iλ
j∂ju

m =
1

λi −λj
{
vln v

m
k,l − vlk vmn,l + vml (vln,k − vlk,n)

}
∂iu

n∂ju
k . (3.92)

Since the Nijenhuis tensor is

Nm
nk = vln v

m
k,l − vlk vmn,l + vml

(
vln,k − vlk,n

)
(3.93)

we have

∂jλ
i∂iv

m +∂iλ
j∂jv

m =
Nm
nk

λi −λj ∂iu
n∂ju

k . (3.94)

where, as usual, the sum is on the reiterated indices, except for i, j.

We now determine the Gibbons–Tsarev system for the hydrodynamic chain. To do so,

we let the matrix vij (u) act on both sides of (3.94) in all the possible ways and using (3.85),

we obtain the system1

λi ∂jλ
i∂iu

m +λj ∂iλ
j∂ju

m =
vmp N

p
nk ∂iu

n∂ju
k

λi −λj (3.95)

λi ∂jλ
i∂iu

m +λi ∂iλ
j∂ju

m =
v
p
nN

m
pk ∂iu

n∂ju
k

λi −λj (3.96)

λj ∂jλ
i∂iu

m +λj ∂iλ
j∂ju

m =
v
p
k N

m
np∂iu

n∂ju
k

λi −λj . (3.97)

1Here we compute the expressions for the components of tensors explicitly rather than showing them in
a vector form, as reported in [60].
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Considering the subtractions side by side of (3.95)− (3.96) and (3.95)− (3.97) we have

∂iλ
j ∂ju

m =
Nm
pk v

p
n −N p

nk v
m
p

(λi −λj )2
∂iu

n∂ju
k (3.98)

∂jλ
i ∂iu

m =
Nm
pn v

p
k −N

p
kn v

m
p

(λi −λj )2
∂iu

n∂ju
k . (3.99)

As we can easily observe, (3.99) can be obtained from (3.98) exchanging the indices i↔ j.

Finally, we show that the Hantjees tensor is zero, starting from the equation (3.94).

Let us consider twice the action of the matrix vij (u) on both sides of the equation in all

the four possible ways

(
∂jλ

i
)(
λi

)2
∂iu

m +
(
∂iλ

j
)(
λj

)2
∂ju

m =
vmq v

q
pN

p
nk∂iu

n∂ju
k

λi −λj (3.100)

(
∂jλ

i
)(
λi

)2
∂iu

m +
(
∂iλ

j
)
λi λj ∂ju

m =
vmp v

q
nN

p
qk ∂iu

n∂ju
k

λi −λj (3.101)

(
∂jλ

i
)
λi λj ∂iu

m +
(
∂iλ

j
)(
λj

)2
∂ju

m =
vmq v

q
k N

p
nq∂iu

n∂ju
k

λi −λj (3.102)

(
∂jλ

i
)
λi λj ∂iu

m +
(
∂iλ

j
)
λi λj ∂ju

m =
v
p
n v

q
k N

m
pq .∂iu

n∂ju
k

λi −λj (3.103)

Now, considering the expression given by (3.100)− (3.101)− (3.102) + (3.103), we have

0 =
(
vmq v

q
pN

p
nk − vmp v

q
nN

p
qk − vmq v

q
k N

p
nq + vpn v

q
k N

m
pq

) ∂iun∂juk

λi −λj . (3.104)

Given the form of the Hantjees tensor (3.72), that we recall,

Hm
nk =Nm

pq v
p
n v

q
k −N

p
nq v

m
p v

q
k −N

p
qk v

m
p v

q
n +N p

nk v
m
q v

q
p , (3.105)

we have Hm
nk = 0 and the demonstration of the theorem 3.2.2 is completed.
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The Gibbons–Tsarev system is then formulated in terms of explicit indices as

∂i∂ju
m = − ∂jλ

i

λi −λj ∂iu
m +

∂iλ
j

λi −λj ∂ju
m +

vmn,k − vmk,n
λi −λj ∂iu

n∂ju
k (3.106)

∂iλ
j ∂ju

m =
Nm
pk v

p
n −N p

nk v
m
p

(λi −λj )2
∂iu

n∂ju
k , (3.107)

∂jλ
i ∂iu

m =
Nm
pn v

p
k −N

p
kn v

m
p

(λi −λj )2
∂iu

n∂ju
k , (3.108)

and the semi-Hamiltonian property for the characteristic speeds (3.75) is satisfied.

It is worth noticing that it is possible to build diagonalizable systems that are not

semi-Hamiltonian. An explicit example is given in [60], with the hydrodynamic chain

unt = un+1
x + p(u1)unx +un−1u1

x . (3.109)

The Haantjes tensor H i
jk is zero in all its components, hence the system is diagonalizable

and it is possible to construct infinitely many hydrodynamic reductions, governed by

the same equations valid for the Benney chain. The difference with Benney is that the

Riemann invariants satisfy, in this case, the system

Rit =
(
λi(R) + p

(
u1

))
Rix , (3.110)

and the characteristic speeds do not fulfill the semi-Hamiltonian property.

Finally, we emphasize that the vanishing of the Haantjes tensor is also a sufficient con-

dition for the integrability of the hydrodynamic chain if the spectrum of the matrix v(u)

is simple in the characteristic speeds, as stated in the following theorem.

Theorem 3.2.3 The vanishing of the Haantjes tensor of a hydrodynamic chain is a necessary

and sufficient condition for the existence of two-component reductions parametrized by two

arbitrary functions of a single variable in the simple spectrum case.

In the study of chains, it is worth mentioning that there exists an equivalence between

chains and multi-dimensional dispersionless systems. As an example, the Benney chain

is related to the dispersionless version of KP (dKP) [125, 82]. The KP hierarchy can be
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written as
∂z

∂tn
=

{
(zn)+ , z

}
, (3.111)

where z = z(p, t) is a complex function depending on the complex variable p and the infi-

nite set of complex parameters t = {t1, t2, . . . }. It is assumed to have a Laurent expansion

z = p+
∑

n≥1

an(t)
pn

, (3.112)

in p → ∞. The (zn)+ is the polynomial part of the expansion in powers of p and the

Poisson bracket is

{f , g} = ∂pf ∂xg −∂xf ∂pg , x = t1 . (3.113)

The compatibility for equation (3.111) is given imposing the zero curvature condition

∂ (zm)+
∂tn

− ∂ (zn)+
∂tm

+
{
(zm)+ , (z

n)+
}

= 0 , m , n. (3.114)

From (3.111) we can obtain the Benney equation for n = 2

(an+1)t + (an+2)x +na1 = 0 , t = −2 t2 . (3.115)

For n = 3, we obtain the dKP equation

(
ut − 3

2
uux

)

x
=

3
4
uyy , u = 2a1 , t = t3 , y = t2 . (3.116)

In section 7.4, we will use the definitions and the approaches here described to dis-

cuss the diagonalizability and the integrability of the new hydrodynamic chain emerging

from the study of the Pfaff lattice in the context of the ensemble of random symmetric

matrices.
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Nonlinear breaking of critical

phenomena

One of the main aspects of the dynamics of nonlinear systems is the emergence of sin-

gularities dynamically developed as a result of a gradient catastrophe. In this chapter,

we will consider the occurrence of such a phenomenon in section 4.1 and its regulari-

sation via higher order corrections. In particular, we will address two different types of

regularisation that will give rise to very different behaviours: the viscous regularisation

in section 4.2 and the dispersive regularisation in section 4.3. In the context of hydrody-

namic systems, viscous corrections lead to the breaking of the local Hamiltonian struc-

ture, while this is not the case for the dispersive ones. We will deal with two equations

that we have already encountered in section 1.1, i.e. the Burgers’ equation (1.3) and the

KdV equation (1.2). Finally, in section 4.4, we will briefly discuss the approach of inte-

grable perturbations to quasi-linear hydrodynamic systems and the universal behaviour

of solutions close to critical points.

4.1 Gradient catastrophe

The prototypical nonlinear PDE is the Hopf equation

ut +uux = 0 , (4.1)
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Chapter 4. Nonlinear breaking of critical phenomena

also defined to be quasi-linear since the coefficient of the highest order derivative of the

function u (Dk with k = 1) depends at most on u itself (Dk−1).

The solution to the equation (4.1) is obtained via the characteristic method. Expres-

sion (4.1) can be seen as a total derivative of u(x, t) along a line with slope

dx

dt
= u(x, t) ,

du

dt
= 0 , (4.2)

at each point of the plane (x, t). We consider the initial condition for the Cauchy problem

u(x,0) = f (x) , x ∈R , (4.3)

and hence the solution can be written as

x+u t = f −1(u) , (4.4)

where f −1(u) is the inverse function of the initial datum f (x). On the axis (x,0) for

x = ξ(0) we have u(x,0) = f (ξ(0)), where ξ(t) parametrises a point on the characteris-

tic line. We denote by F(ξ) the slope of the characteristic curve intersecting the axis at

the point ξ, so that the solution is

x = ξ +F(ξ)t . (4.5)

In this context, a characteristic curve in the space (x, t) describes the point-like propaga-

tion of the initial datum with velocity u(x, t). The solution at a generic time t is given by

moving each point on the initial curve u = f (x) at a distance F(ξ)t to the right.

Where the propagation velocity is a decreasing function, as in the case represented

in figure 4.1 (a), the profile of u(x, t) undergoes a steepening process, and eventually

it breaks giving a multi-valued solution. The breaking occurs when the profile of the

solution develops an infinite slope, i.e. ux →∞, a so called gradient catastrophe. At the

time

t = − 1
F′(ξ)

, (4.6)

the breaking of the profile emerges on the characteristic where F′(ξ) < 0 and |F′(ξ)| is a
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gradient
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Figure 4.1: (a) The solution to the Hopf equation (4.1) is shown for the initial condi-
tion u(x,0) = (1 − tanh(x))/2 evaluated at different values of time in the plane (x,u). (b)
Characteristic curves for the Hopf equation (4.1) with initial condition u(x,0) = (1+x2)−1

in the plane (x, t). The characteristic line corresponding to the occurrence of the profile
breaking is drawn in magenta.

maximum, for ξ = ξb. In figure 4.1 (b), the family of characteristics (8.42) in the param-

eter ξ is shown for a specific initial condition. The region corresponding to F′(ξ) < 0 is

the one where the characteristics converge. In the presence of an increasing initial condi-

tion the characteristics diverge after the breaking point and the emerging phenomenon

is called a rarefaction wave [120].

In the following we will analyse the shock waves arising from two possible mecha-

nisms of regularisation, i.e. viscous and dispersive. We will see how the differences in

their structure and evolution reflects the necessity of a different mathematical descrip-

tion of the two phenomena. As pointed out in [55], their modelling represents the essence

of their distinction:

. the viscous shock wave (figure 4.2 (a)) is described by a travelling wave solution to

an ODE,

. the dispersive shock wave (figure 4.2 (b)) is represented by a modulated periodic

train wave.
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2 ν

u2 - u1

u = u2

u = u1

U =
u1 +u2

2

x

u

(a)

u = u2

u = u1

c2

c1

x

u

(b)

Figure 4.2: (a) The structure of a viscous shock: a smooth steady transition propagating
with shock speedU and width proportional to the viscous parameter ν. (b) The structure
of a dispersive shock: an unsteady nonlinear wavetrain confined to an expanding region.

4.2 Viscous shock wave

The viscous shock wave is the phenomenon emerging from a dissipative regularisation of

the gradient catastrophe previously described. It consists of a travelling wave solution,

whose evolution is characterised by a fixed width and a single speed. The width depends

on the viscous parameter ν, whereas the speed is given by a balance of physical integral

of motion across the shock and it is independent of the details of the shock internal

structure [120].

The Burgers equation is the archetype of a viscous nonlinear integrable PDE

ut +uux = ν uxx , (4.7)

where ν > 0 is the viscosity1 parameter. It provides the viscous small amplitude approx-

imation of the Hopf equation2 (4.1).

As we mentioned in section 1.1, the Cole-Hopf transformation

u = −2ν ∂x logϕ , (4.8)

1The terms viscosity, diffusion and dissipation are all used in literature to name this kind of corrections.
2The Hopf equation (4.1) is also known as inviscid Burgers’ equation.
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yields the heat equation in the new field variable ϕ

ϕt = νϕxx . (4.9)

We consider a decreasing initial condition for the Cauchy problem

u(x,0) = f (x) . (4.10)

The heat equation (4.9) is then solved via the Poisson formula in ϕ. Recalling the Cole-

Hopf transformation we recover the expression for the solution to the Burgers’ equa-

tion (4.7)

u(x, t) =
1∫ ∞

−∞ e−G(η)/2ν dη

∫ ∞

−∞
x − η
t

e−G(η)/2ν dη . (4.11)

In the previous expression

G(η;x, t) =
(x − η)2

2t
+
∫ η

0
F(η′)dη′ , (4.12)

where F(ξ) is the function appearing in (8.42). With the assumption that there exists one

solution to the equation
∂G

∂η

∣∣∣∣∣
η=ξ

= F(ξ)− x − ξ
t

= 0 , (4.13)

the leading order for the solution (ν→ 0) is obtain by the Laplace transform. Writing the

solution as

u(x, t) = u∗(x, t) +O(ν) , (4.14)

the leading order u∗(x, t) satisfies the following

u∗(x, t) =
x − ξ(x, t)

t
= F (ξ(x, t)) , F̃ = F−1 . (4.15)

Assuming that G(η) has a local minimum at u∗ and that the function F (ξ(x, t)) is invert-

ible, at least locally

x −u∗ t = F̃ (u∗) . (4.16)

Hence, in the inviscid limit ν→ 0 the leading order of the solution to the Burgers’ equa-
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tion is given by the Hopf equation (4.1). The latter is then a good approximation of the

evolution of the solution before the critical time, when the hodograph equation admits

one solution.

The viscous shock wave emerges when the equation (4.13) admits multiple solutions.

In the inviscid limit, the dominant behaviour is given by the value ξm(x, t) for which

G(ξm) takes the lowest value. We thus have locally

u∗m(x, t) = F (ξm(x, t)) . (4.17)

There exist subsets of the (x, t) plane where the equation

G (ξl(x, t)) = G (ξr(x, t)) (4.18)

has solution for different indices3 l and r. Equation (4.18) represents the viscous shock

trajectory, the curve representing the jump of the solution form the value that on the left

is u∗l = F (ξl(x, t)) and on the right u∗r = F (ξr(x, t)).

Recalling (4.12), we recover the equal areas rule for F

∫ ξr

ξl

F(η)dη =
1
2

(F(ξl) +F(ξr )) (ξr − ξl) . (4.19)

In particular, the viscous shock position is given by placing a discontinuity cutting the

solution to the Hopf equation into two lobes of equal areas (as in figure 4.3). This is

evident mapping the solution back to t = 0 following the characteristics [120].

It is worth noting that the viscous shock wave in the ν→ 0 limit, induces the conser-

vation of the quantity ∫ ∞

−∞
u(x, t)dx = const , (4.20)

that remains constant also for finite values of ν. Since in this case the expression for the

flux is quadratic, the so called shock condition is such that the shock velocity U is given

by

U =
1
2

(F(ξl) +F(ξr )) . (4.21)

3Left and right are intended with respect to the position of the gradient catastrophe.
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Figure 4.3: Equal area realisation. In (a) at initial time t = 0 in the plane (ξ,F), in (b) after
the breaking of the profile in the plane (x,u).

The dynamics of a viscous shock wave is described by the propagation of the discontinu-

ity front with velocity given by the shock condition. The solution at the time t is given

starting from the initial profile F(ξ) and then translating this of a distance F(ξ)t to the

right, as shown in figure 4.3. The shock cuts out the parts ξl < ξ < ξr . The shock is en-

tirely described by the function F(ξ) considering all the chords constructed via the equal

area property. In particular, the pairs ξ = ξl , ξ = ξr corresponds to those characteristics

that meet on the shock.

The problem is then described by

ut + q(u)x = 0 , conservation law

−U [u] + [q(u)] = 0 , shock condition.
(4.22)

The flux q(u) is q(u) = 1/2u2 for Hopf. The second expression refers to the compact

notation of

q(s−, t)− q(s+, t) =
{
u(s−, t)−u(s+, t)

}
ṡ (4.23)

where s(t) represents the position of the shock evolving in time and s+ and s− represents

the limits xl → s− and xr → s+. The symbol [ · ] in (4.22) denotes the jump across the

discontinuity and U (t) = ṡ(t). The shock solution is a weak solution of the conservation

law.

This construction based on the introduction of viscous perturbations allows us to de-
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fine suitable solutions to equations of hydrodynamic type, to regularise the discontinuity

due to nonlinearity. A solution u(x, t) is considered admissible if there exists a sequence

of solutions u(u,t;ν) to the Burgers’ equation (4.7) such that [51]

u(x, t;ν) −−−−→
ν→0

u(x, t) . (4.24)

We will encounter viscous shocks in the context of the mean fields described with the

formalism of the nonlinear PDEs in chapter 5.

4.3 Dispersive shock wave

Dispersive shock waves appear as a dispersive regularisation mechanism [55] of the

gradient catastrophe emerging from nonlinearity. The KdV equation constitutes the

paradigmatic example of a dispersion nonlinear integrable PDE

ut +uux = ε2uxxx , (4.25)

and it serves as the small dispersion approximation to the Hopf equation (4.1). After

the occurrence of the wave breaking that we have discussed in the previous section, the

solution to the equation (4.25) takes the form of a modulated locally periodic wave ϕ (see

figure 4.2 (b)), whose form will be

ϕ(ϑ) = a+ bdn2 (ϑ) , (4.26)

where dn is a Jacobi elliptic function and ϑ will encode the modulation. In particular, at

the leading edge it exhibits a solitary wave, while close to the trailing edge it transforms

into linear wave packet of vanishing amplitude. The unsteady nature of the dispersive

shock is manifested by the fact that it expands in time.

The modulation of the dispersive shock is obtained invoking Whitham modulation

theory [119] and matched asymptotic analysis. Without going into too much detail, we

briefly describe the modulation procedure, following [55]. Starting from the conservation

laws associated with the original dispersive equations, the slow modulations of periodic
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nonlinear waves are determined by averaging those conservation laws over a family of

periodic travelling wave solutions. Given a n-th order nonlinear evolution equation

qt = K
(
q, qx, . . . , q

(n)
)
, (4.27)

for the Whitham method, there exists a n-parameter family of periodic travelling wave

solutions

q(x, t) = ϕ(ϑ; u ) , with



u = (u1, . . . , un)

ϑ = k(u )x −ω(u ) t .
(4.28)

The vector u of n components represents the parameters, ϕ is the phase, k(u ) and ω(u )

are the wave number and the frequency respectively. Imposing a fixed period of 2π on ϕ

the spatial and temporal periods are determined as

L(u ) =
2π
k(u )

, T (u ) =
2π
ω(u )

. (4.29)

The assumption for the Whitham method to be applied is the existence of at least n − 1

conservation densities Pi [q] and corresponding fluxes Qi [q], constituting the conserva-

tion laws

(Pi)t + (Qi)x = 0 , i = 1, . . . , n− 1 . (4.30)

The modulation equations are derived with the assumption of slow evolution of the pa-

rameters u = u (x, t) both in space and time

|u x| � |u |L , |u t | � |u |T . (4.31)

With the introduction of (4.28) in (4.30), we obtain the modulation equations

(
P i [ϕ]

)
t
+
(
Qi [ϕ]

)
t

= 0 , i = 1, . . . , n− 1 , (4.32)

where the averaged expressions are given by

F [ϕ] =
1

2π

∫ 2π

0
F [ϕ(ϑ; u )] dϑ . (4.33)
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To completely reconstruct the modulated wave, we need to consider the modulated wave

number ϑx = k(u ) and frequency ϑt = −ω(u ). The compatibility condition brings the

conservation of waves

ϑxt = ϑtx =⇒ k(u )t +ω(u )x = 0 . (4.34)

The Whitham equations (4.32) and (4.34) are dispersionless and they can be represented

as a system of a hydrodynamic equations

u t +A(u ) u x = 0 , (4.35)

where the matrix A(u) encodes the information about the nonlinearity and dispersion of

the original system.

In the case of the KdV equation (4.25), the modulation requires the introduction of

three parameters, the amplitude a, the wave number k, and the average of the wave

ϕ. Whitham realised that the modulated system for KdV can be written in terms of

Riemann invariants R1 ≤ R2 ≤ R3 and relative characteristic speeds, that we have defined

in section 3.1. The modulated parameters may be expressed in terms of the Riemann

invariants as [55]

a = 2(R2 −R1)

k =
π
√
R3 −R1√
6K(m)

, m =
R2 −R1

R3 −R1

ϕ = R1 +R2 −R3 + 2(R3 −R1)
E(m)
K(m)

,

(4.36)

where E(m) and K(m) are complete elliptic integral of the first and second kind respec-

tively

K(m) =
∫ π/2

0

1√
1−m sin2(z)

dz , E(m) =
∫ π/2

0

√
1−m2 sin2(z)dz . (4.37)
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The periodic wave can be expressed as

ϕ(ϑ) = R1 +R2 −R3 + 2(R3 −R1) dn2
(
K(m)
π

ϑ;m
)
, (4.38)

where dn is the so called delta amplitude, a Jacobi elliptic function, as anticipated above.

In the limit m→ 1, the wave takes the form of a soliton

ϕ = ϕ + as sech2
(√

as

12
(x − vs t −ϑ0)

)
, vs = ϕ +

as

3
. (4.39)

In the limit m→ 0, the solution becomes a vanishing harmonic wave

ϕ = ϕ +
ah

2
(cos(k x −ω0 t)− 1) +O

(
a2

h

)
, ω0 = ϕk − k3 . (4.40)

The Whitham method reduces the complexity of the problem, producing a nonlinear

modulation system of quasi-linear hydrodynamic form (4.35) with free boundary for the

leading and trailing edges of the dispersive shock. The boundary conditions are given

by matching the solution of the mean dispersive shock with the dispersionless external

solution along double characteristics to the modulation system. In [69], this approach

is followed for KdV and the dispersive shock wave arises as a rarefaction wave for the

Whitham system.

In figure 4.4, two dispersive shock waves are shown, arising from different initial

conditions. In (a), the “Martini glass” shape is obtained for a Riemann problem for KdV,

as it was considered in [69]. In (b), the “Bordeaux glass” is produced for KdV in corre-

spondence of a cubic wave breaking, in this sense the latter can be seen as an universal

mechanism of dispersive regularisation [55].

In the following, in section 6.4, we will observe the emerging of a structure similar to

the one shown in figure 4.4 (b) in the context of the Hermitian matrix ensemble.

4.4 Universality

The Burgers’ and the KdV equations represent the universal asymptotic regularisation

mechanisms, for viscous and dispersive corrections respectively. An extension to non-
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(a) (b)

Figure 4.4: (Adapted from [55] with authors’ permission.) (a) In blue it is shown the dis-
persive shock wave for KdV-type equations in a Riemann problem. The dashed red line
represents the mean value of the wave. (b) In blue the dispersive shock wave emerging
after the cubic wave breaking for KdV-type equations. The dashed red line represents
the modulation solution in terms of the three Riemann invariants.

integrable systems introducing the concept of approximate integrability up to a finite

order in the perturbation modelled via a small parameter was introduced in [48].

In 1 + 1 dimension, the perturbation system is given by

ut+a(u)ux+ε
[
b1(u)uxx + b2(u)u2

x

]
+ε2

[
b3(u)uxxx + b4(u)ux uxx + b5(u)u3

x

]
+· · · = 0 , (4.41)

where the unperturbed system is the nonlinear hyperbolic system

ut + a(u)ux = 0 . (4.42)

This system admits a Hamiltonian description as

ut + {u(x) , H0} = ut +∂x
δH0

δu(x)
= 0 , (4.43)

with the Poisson brackets

{u(x) , u(y)} = δ′(x − y) . (4.44)

The solutions to the perturbed equations in (4.41) are considered up to the Miura trans-

formation

u 7→ u +
∑

k≥1

εk Fk
(
u;ux, . . . , u

(k)
)
, (4.45)
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Figure 4.5: In a (2 + 1)-dimensional hyperbolic system, the asymptotic universal be-
haviour of the function U (X,T ) is shown. The function specifies the asymptotics of the
Riemann invariants and it is a special solution to P 2

I (figure taken from [54]).

with Fk
(
u;ux, . . . , u(k)

)
polynomial in the derivatives of u of degree k. Any Hamiltonian

perturbation of the equation (4.42) can be reduced to the form

ut +∂x
δH

δu(x)
= 0 , H =H0 + εH1 + ε2H2 + . . . . (4.46)

We report part of the conjecture formulated in [54]. The main idea underlying the

conjecture is the universality of the asymptotic approximation at the leading order.

Conjecture 4.4.1 The solution to the generic system (4.43) with generic ε-independent smooth

initial data near a point of cusp catastrophe of the unperturbed hyperbolic system (4.42) is de-

scribed in the limit ε→ 0 by a particular solution to the P 2
I equation.

Hence, it is conjectured that the critical behaviour close to the gradient catastrophe is

independent of the choice of the initial data and the exact form of the Hamiltonian per-

turbation. In particular, the solution for (4.41) with a generic ε-independent smooth

initial data near a point of cusp catastrophe of the unperturbed hyperbolic system (4.42)

is described in the limit ε→ 0 by a particular solution to the P 2
I equation (Painlevé) [54].

In figure 4.5, it is shown the profile for the solution U (X,T ) entering in the asymptotics
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for the Riemann invariants and being the solution to the P 2
I , that is

X =U T −
[1
6
U3 +

1
24

(
U2
X + 2UUXX

)
+

1
240

UXXXX

]
. (4.47)

The function U satisfies also the KdV equation, in the form

UT +UUX +
1

12
UXXX = 0 . (4.48)

The critical behaviour for dispersive hydrodynamic systems has been studied in [53]

for scalar hyperbolic systems and generalised in [54] for (2 + 1)-dimensional hyperbolic

and elliptic systems. Similar results concerning the universal behaviour of solutions close

to critical points hold in generalised viscous systems. These have been explored in [73]

and expanded in [51] and [18].
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Chapter 5

Mean-field models

In this chapter, we describe the method of differential identities [41, 22] and its first ap-

plications to problems in the realm of Statistical Mechanics. The main underlying idea

is that the phase transitions typically emerging in thermodynamic systems can be de-

scribed in terms of nonlinear waves. In particular, we will see how the nonlinear PDEs

formalism provides the natural framework to obtain and describe the equations of state.

In section 5.1, after some preliminary observations, we will present the connection estab-

lished in [96] between the main features of thermodynamics and those of nonlinear PDEs

theory. Then the method of differential identities will be explicitly applied to treat the

Curie-Weiss model in section 5.2, studying the critical behaviour of the order parameter

with the formalism developed in chapter 4. We will see how the model is intrinsically

related to the Burgers’ equation and how viscous shock waves emerge and can be treated

in this context.

The approach has been successfully applied to model mean-field theories in a broad

class of system [15, 67, 40, 90, 28], as we will see in section 5.3.

5.1 Differential identities and Statistical Mechanics

A novel approach to solve problems historically of competence of Statistical Mechan-

ics relies on the theory of nonlinear PDEs via the method of differential identities [96].

A general class of thermodynamic systems can be effectively described by the theory of

nonlinear integrable conservation laws. This approach leads to the description of first or-
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T < Tc

A

BC

V

P

(a)

T > TC

T = TC

T < TC

P

V

(b)

Figure 5.1: (a) The real gas isotherm is shown for a temperature T < Tc with the solid line.
The points A and B define the range in the volume V where the phase transition occurs,
for a constant value of the pressure P . The dashed line represents the metastable state
predicted by the van der Waals model. (b) Van der Waals curves as nonlinear wave so-
lution to a hyperbolic PDE. Beyond the critical temperature the solution is multi-valued
and the shock wave emerges.

der phase transitions in terms of shock waves, interpreted as solutions of nonlinear PDEs

encoding the whole information on the evolution of the system with respect to some ap-

propriate tunable parameters. In general, it establishes a correspondence between phase

transition phenomenology and shock wave dynamics.

The first observation in this direction is reported in [41], where a new perspective is

suggested to interpret the occurrence of phase transitions in the van der Waals model.

The latter represents the simplest mathematical model providing the description of a

phase transitions in a thermodynamic system. For a thermodynamic system in equilib-

rium, the energy balance equation takes the form

dE = T dS − P dV , (5.1)

with E the total energy, T the temperature, P the pressure, V the volume and S the

entropy, determining the state of the system. The equation of state of the system is given

by [88]

P +
∂F

∂V
(V ,T ) = 0 , with F = E(S,V )− T S . (5.2)

The equation of state can be interpreted as a stationary point of the Gibbs potential as a
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function of V

Φ = F + P V . (5.3)

The system is in a state of stable equilibrium when the Gibbs potential has a minimum

for both P and T constant. The existence of points at which the second derivative of Φ

with respect to V vanish identifies the phase transition.

The classical example of a phase transition is the change of state of matter from gas

to liquid. In figure 5.1 (a), an isothermal curve below the critical temperature is shown.

The phase transition takes place between the points A and B. The shape of the solid

curve between A and B is given by the van der Waals model and it corresponds to a non-

observable metastable state. The correct behaviour of the isotherm is recovered via the

Maxwell principle or the equal areas rule. The constant value of the pressure at a phase

transition is that for which the area of the lobe AC is the same of that for the lobe CB, in

figure 5.1 (a).

The description provided by the equal areas rule is similar to what we have seen in

section 4.2 in the context of the viscous shock wave. This is even more evident if we con-

sider the isothermal curves displayed in figure 5.1 (b), after an interchange of the vari-

ables P and V and a reflection. At the critical temperature Tc, the gradient catastrophe

occurs, then the solution becomes multi-valued. Hence, the behaviour of the isotherm

provided by the van der Waals model for V as a function of P can be interpreted as the

solution to a hyperbolic PDE [41]

∂V

∂T
= ϕ(V )

∂V

∂P
. (5.4)

In section 4.1, we have studied the solution to this equation for ϕ(V ) = −V , i.e. the Hopf

equation. The behaviour of the solution is such that after the gradient catastrophe de-

velops a discontinuity and then it exists in a weak sense only. The position of the shock

is obtained via the fitting procedure described in section 4.2, for which the chord cuts

off two lobes of equal area. In particular, in [41], it is shown that the function V (T ,P )

is solution to an equation of the form (5.4) under the assumption that the entropy is a

separable function, i.e. it can be decomposed into the sum of a function of V and a func-

tion of T . Then the hyperbolic equation (5.4) is equivalent to the balance equation (5.1).
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Thermodynamics Nonlinear conservation laws

Isothermal / isobaric curves ←→ Nonlinear waves

Critical point ←→ Gradient catastrophe

Phase transition ←→ Shock

Maxwell principle ←→ Equal areas rule

Clayperon equation ←→ Shock condition

Triple point ←→ Shock confluence

Universality ←→ Universality

Table 5.1: Correspondence between the main features in the framework of thermody-
namics and nonlinear conservation laws [96].

The method of characteristics provides an implicit solution for the equation (5.4) and

corresponds to the equation of state of the thermodynamic system.

In [96], this framework is expanded and a precise correspondence between phase

transition phenomenology and shock waves dynamics is given (see table 5.1). In partic-

ular, it is emphasised the connection between universality in the context of the critical

behaviour of wave breaking (see section 4.4) and the notion of universality in thermo-

dynamics. The method of differential identities leads to determine the equation of state

via a direct integration of the Maxwell’s relations with the above mentioned assumption

on the entropy, rather than using the ansatz on the asymptotic expansion of the Gibbs

potential or its scaling properties.

In [22], it is shown how the approach here described leads to construct the partition

function for a finite size system of n interacting particles. Starting from a suitable equa-

tion of state defined outside the critical region, the associated partition function is well

defined in the whole space of thermodynamic variables and conceals the equal areas rule.

The model consists in a fluid of n particles of mass m

Hn =
n∑

i=1

~pi
2

2m
− 1

2

n∑

i,j=1

ψ(~ri , ~rj ) + P v(~r1 , . . . , ~rn ) , (5.5)

where ~pi is the momentum of the i-th particle, ψ(~ri , ~rj ) a potential shaping the two-body

interaction, P > 0 a mean-field coupling constant, and v(~r1, . . . ,~rn ) the minimum volume

for a configuration {~r1 , . . . , ~rn }. The partition function for the canonical ensemble can be
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written as

Z =
∫

e−βHn dn ~pi dn~ri =
∫ ∞

b
en(xv+t a/v+ln(v−b))dv , (5.6)

with t = β/n, x = −P β/n, given that the expectation value of the volume 〈v〉 satisfies the

van der Waals equation (
P +

a

〈v〉2
)(
〈v〉 − b

)
= nRT , (5.7)

outside the critical region. Then the partition function will be solution to the Klein–

Gordon equation
∂2Z

∂x∂t
= n2 aZ , (5.8)

and hence 〈v〉 satisfies the nonlinear viscous conservation law

∂〈v〉
∂t

=
∂

∂x

(
a

〈v〉 +
1
n

∂ ln〈v〉
∂t

)
. (5.9)

Here the underlying assumption is that, for any point in the space of parameters (x, t),

different configurations occupying the same volume v appear with the same probability

density and that the logarithm of the probability density is linear in x and t.

The general character of the assumptions considered above makes the approach so

developed applicable to a broad class of mean-field theories.

5.2 Differential identities for Curie-Weiss model

We apply the method of differential identities to one of the classical example of mean-

field theory, the Curie-Weiss model, as presented in [97]. We will see how the latter is

connected to with the Burgers’ equation1, that we have studied in section 4.2.

We will start considering the interaction that models the physical system with a finite

number n of components and we will identify the order parameters in the thermody-

namic limit, in the limit n→∞. Then we will introduce suitable differential identities

satisfied by the order parameters and valid for finite n. We will define a reasonable initial

datum and provide finite n solutions. Taking the thermodynamic limit of the equations

n→∞, we will derive conservation laws in form of hyperbolic systems for the order pa-

1In [34], the interpretation of the mean-field theory in terms of the the Burgers’ equation was explicitly
given.
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rameters. The solutions to this hyperbolic system will represent the equations of state for

the model. As we have mentioned above, the shock trajectories will identify the phase

diagrams for the order parameters of the system.

The Curie-Weiss model is introduced as the mean-field theory for the Ising model.

We consider the Hamiltonian for a system of n spins σi = ±1, with i ∈ {1, . . . ,n} interacting

with external scalar field h ∈R and with a uniform coupling matrix Jij = J > 0

Hn({σ }; J, h) = − J
n

∑

i<j

σi σj − h
∑

i

σi = − J
2n

∑

i,j

σi σj − h
∑

i

σi . (5.10)

The sum refers to a given spin configuration {σ } and the corresponding partition function

is obtained considering the Gibbs distribution

Zn(β,J,h) =
∑

{σ }
e−βHn({σ }; J ,h) , (5.11)

with β = 1/T and T the temperature. From the partition function, the free energy is

fn(β,J,h) = −1
β
αn(β,J,h) , αn(β,J,h) =

1
n

lnZn(β,J,h) . (5.12)

In the following we will call αn the free energy of the system, even though the physical

one is fn. The order parameter of the theory is the magnetisation of the system m(σ ),

determined in the thermodynamic limit n→∞ for a specific configuration

m(σ ) = lim
n→∞mn(σ ) = lim

n→∞
1
n

n∑

i=1

σi . (5.13)

The expected value is defined in terms of the partition function as

〈m〉 =
1
Zn

∑

{σ }
m(σ )e−βHn . (5.14)

We now look for the differential identities for finite n [97].
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We introduce the variables

t = J β , x = hβ , (5.15)

and the partition function written in terms of mn(σ ) takes the form

Zn(x, t) =
∑

{σ }
en(xmn+ t

2 m
2
n) . (5.16)

Therefore, the partition function satisfies the differential identity

∂Zn
∂t

=
1

2n
∂2Zn
∂x2 , (5.17)

i.e. the partition function for the Curie-Weiss model is a solution to the heat equation.

The initial condition is constructed by considering t = 0, hence turning off the two-

body interaction

Zn(x,0) =
∑

{σ }
enxmn = (2 cosh(x))n . (5.18)

Given the expression (5.17), the free energy αn satisfies the following equation

∂αn
∂t

=
1
2

(
∂αn
∂x

)2

+ ν
∂2αn
∂x2 , ν =

1
2n
. (5.19)

that resembles the Burgers’ equation (4.7). The corresponding initial datum is given by

Zn(x,0)

αn(x,0) = ln2 + ln cosh(x) . (5.20)

The derivatives of the free energy are related to the statistical moments of the order

parameters. In particular, we have

∂αn
∂x

= 〈mn〉
∂2αn
∂x2 = n

(
〈m2

n〉 − 〈mn〉2
)

= var(mn) .
(5.21)

Differentiating with respect to x the equation (5.19), we get

∂〈mn〉
∂t

= 〈mn〉 ∂〈mn〉∂x
+ ν

∂2〈mn〉
∂x2 , (5.22)
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hence, 〈mn〉 satisfies the Burgers’ equation. The corresponding initial datum is

〈mn(x,0)〉 = tanh(x) . (5.23)

Then, in the thermodynamic limit, we have for any point where

lim
n→∞

∂〈mn〉
∂x

<∞ =⇒ lim
n→∞var(mn) = 0 . (5.24)

Therefore, there exists a suitable region in the plane (x, t) for which the viscous term

can be neglected in the thermodynamic limit and the order parameter satisfies the Hopf

equation
∂〈m(σ )〉
∂t

= 〈m(σ )〉 ∂〈m(σ )〉
∂x

. (5.25)

Following the approach developed in section 4.1, we can consider the method of the

characteristics and the equation of state takes the form

x+ 〈m〉 t = arctanh(〈m〉) . (5.26)

As we have already seen, the solution to the Hopf equation, due to nonlinearity and in

presence of a decreasing initial datum, develops a gradient catastrophe at a finite time2,

as in equation (4.6). We have

∂〈m〉
∂x

=
1− 〈m〉2

1 + t (〈m〉2 − 1)
=∞ =⇒ t =

1
1− 〈m〉2 . (5.27)

The minimum time for which the gradient catastrophe arises gives the critical value for

the order parameter

〈m〉c = 0 . (5.28)

The critical point, where the phase transition occurs, is identified by the coordinates

tc = 1 , xc = 0 , 〈m〉c = 0 . (5.29)

2The variable that mimics the time in the hyperbolic equation is related to the temperature T , for a fixed
value for the coupling constant J . Thus, the gradient catastrophe occurs for a finite value of the temperature.
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Figure 5.2: (a) The solid lines represent the set ∆ = 0 sector, splitting the parameter space
in two regions. The ∆ > 0 region (in orange) corresponds to a multi-valued solution for
the magnetisation. In the ∆ < 0 region, the solution is single-valued. (b) The shock jump
for the magnetisation is depicted for T ' J = 1.

We will now study the shock structure in the proximity to the critical point, as in

section 4.2. We introduce the function

G(x, t;η) = − lncosh(η) +
(x − η)2

2t
. (5.30)

The equation of state (5.26) is recovered for

∂G

∂η

∣∣∣∣∣
η=arctanh(x)

= 0 . (5.31)

The expansion η→ 0 in the (5.31) gives3

1
3
t η3 − (t − 1)η − x = 0 . (5.32)

The discriminant ∆ of the expression (5.32) identifies the regions in the space of param-

eters for which the solution is either multi-valued (∆ > 0) or single-valued (∆ < 0), as

shown in figure 5.2 (a). The confluence of the two lines with equation ∆ = 0 corresponds

to the critical point.

We call the solutions in the multi-valued region ξ1(x, t), ξ2(x, t), ξ3(x, t). The order

3We consider the first term in (5.30) f (η) = − ln cosh(η). Its derivative is f ′(η) = − tanh(η) and its expan-
sion for η→ 0 gives f ′(η) = −η + η3/3 +O(η5).
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parameter is given by

〈m〉 = −x − ξ
∗(x, t)
t

, (5.33)

where ξ∗ is the zero such that the function G(x, t,ξ∗) reaches the minimum value. The

position of the shock is determined by the equal area condition (4.18)

G(x, t,ξi(x, t)) = G(x, t,ξj(x, t)) , ξi , ξj , i, j ∈ {1,2,3} . (5.34)

This is explicitly represented by the relation

Rij = t(ξi + ξj )
(
ξ2
i + ξ2

j − 6
)

+ 6(2x − ξi − ξj ) = 0 . (5.35)

Close to critical point, R12 = 0 is satisfied for x, t ∈ R and defines the trajectory of the

shock.

Finally, using the roots ξ1, ξ2, ξ3 it is possible to evaluate the jump ∆m developed by

the order parameter and shown in figure 5.2 (b)

∆m =



2 tanh
√

3
(
1− TJ

)
0 ≤ T < J

0 T ≥ J ,
(5.36)

going back to the original coupling constants.

The method of differential identities represents then a suitable tool to describe the

main features emerging in the Curie-Weiss model, taken as an example of a mean-field

theory.

5.3 Viscous regularisation in mean-field theories

The approach described above has been successfully applied in the study of different

statistical systems that admit a description via a mean-field theory. Starting from the

observation in [41], the theory of the van der Waals model with the method of differential

identities has been extended in [22], where the possibility to produce solutions at finite

size is emphasised. In [67], a multi-parameter extension of the van der Waals theory is

given, introducing two more deformation parameters.
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The procedure is effective in tackling problems in different fields. In [15], the model

of information processing in biochemical reaction is studied. Here, the approach is in-

voked to provide explicit finite-size solutions in the context of the biochemical reactions.

The system is modelled considering the underlying similarities among the collective be-

haviours in chemical kinetics (biology), spin models (statistical mechanics), and opera-

tional amplifiers (cybernetics).

The extension to systems of higher dimension in terms of order parameters is pro-

posed in [40] with the study of liquid crystals, a liquid substance possessing a microstruc-

ture that is the result of their molecular anisotropy. Here, phase transitions are defined

in terms of the spatial orientation of the crystals. The order parameters are the so called

molecular directors. The emergence of a uniaxial phase (the directors point on average in

the same direction) and a biaxial phase (simultatneous orientation along two orthogonal

axis) is studied. The shock wave corresponding to phase transitions is a shock wave in

(2 + 1)-dimensions in the space of parameters.

In [90], the Potts model is considered, i.e. the extension of the Curie-Weiss model for

q > 2 admissible values for spins. The model with q = 3 is analysed with the introduc-

tion of two order parameters, whose behaviour is studied via the method of differential

identities.

More recently, in [28] the procedure has been applied to the theory of exponential

random networks. In particular, the so called p-star model is considered, for which the

partition function satisfies the heat hierarchy. The order parameter of the theory is de-

fined to be the connectance, obtained as a solution to a nonlinear viscous PDE.

All these examples refer to mean-field theories, that can be modelled via the method

of differential identities. At the leading order of the order parameter of the theory we

always find the Hopf equation, whose solution after a suitable choice of the initial datum

develops a gradient catastrophe. The emerging shock wave undergoes then a viscous

regularisation and its trajectory in the space of parameters models the critical behaviour

of the system.

In the following, we will illustrate the Hermitian matrix ensemble and the symmetric

matrix ensemble. In the case of the Hermitian ensemble, the Hopf equation will emerge

again but with a regularisation mechanism consisting in the formation of a dispersive
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shock wave.
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Chapter 6

Hermitian Matrix Ensemble and

dispersive shocks

In this chapter, we analyse the Hermitian matrix ensembleHn, following the description

given by Adler and van Moerbeke in [6, 8, 117] using the tools described in section 2.1.

In section 6.1, we will construct the associated discrete integrable structure, the Toda

lattice, and observe the emergence of the KP hierarchy for the Toda τ-function, propor-

tional to the partition function of the ensemble Hn. Then we will focus on the study

of a particular reduction of the Toda lattice, following [23], called Volterra lattice. This

reduction represents the structure arising by selecting the even coupling constants only

from the Toda lattice, as we will see in section 6.2. In section 6.3, we will consider the

the thermodynamic limit and we will study how the evolution in different even times

of the lattice fields takes the form of the Hopf hierarchy. In section 6.4, we will restrict

our analysis to the M6 model, for which the order parameter of the theory expressed in

terms of τ-functions undergoes a phase transition in the space of coupling constants near

the critical point. Finally, we will see how the singularity can be resolved in terms of a

multi-dimensional dispersive shock of the order parameter, leading to the emergence of

the already observed chaotic behaviours [78, 109].
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6.1 Hermitian Matrix Ensemble

6.1.1 Hn as a tangent space and partition function

According to the scheme described in section 2.2, we consider the non-compact symmet-

ric spaceM = G/K , with G = SL(n,C) and the involution map defined on K as

σ (g) =
(
ḡ>

)−1
, (6.1)

so that the subgroup K is given by

K = {g ∈ SL(n,C) | σ (g) = g } = {g ∈ SL(n,C) | g−1 = ḡ> } = SU (n) . (6.2)

The symmetric spaceM can be expressed as

SL(n,C) / SU (n) � {g ḡ> | g ∈ SL(n,C) }

= {positive definite matrices with det = 1 } .
(6.3)

The involution map σ induces the map σ∗ in the corresponding algebra, for which σ∗(A) =

−Ā> and the subalgebra t is hence su(n), consisting of n × n traceless skew-Hermitian

matrices. The vector space p tangent toM at the identity is given by the space of n × n
Hermitian matrices Hn, where σ∗(A) = Ā>. The algebra decomposition is then given by

sl(n,C) = t⊕ p = su(n)⊕Hn . (6.4)

For any matrix M ∈ Hn, the diagonal real elements Mii and the real and imaginary part

of non-diagonal elements ReMij , ImMij with 1 ≤ i < j ≤ n are free variables. The Haar

measure on M ∈ Hn reads

dM B
n∏

i=1

dMii

∏

1≤ i < j ≤ n
dReMij d ImMij . (6.5)

A maximal abelian subalgebra a ⊂ p =Hn is given by the subset of diagonal matrices z =

diag(z1, z2, . . . , zn), where zi with 1 ≤ i ≤ n are eigenvalues. In particular, since the

matrices are Hermitian, they can be diagonalised through the action of a unitary operator
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and any M ∈ Hn can be expressed as

M =U zU−1 , U ∈ K = SU (n) . (6.6)

The unitary operator can be expressed via the exponential map asU = eA, withA ∈ t = su(n),

a traceless skew-Hermitian matrix (Ā> = −A). So, A takes the form

A =
∑

1 ≤ k < l ≤ n
(akl (ekl − elk) + i bkl (ekl + elk)) , (6.7)

with ekl is the n×n sparse matrix with (k, l) = 1 the only non-zero element and akl ,bkl ∈R.

From (6.6) and considering a small A, we have

dM = d
(
eA z e−A

)
= d (z+ [A, z] + . . . ) (6.8)

To evaluate the commutator [A, z], we first consider that both the matrices ekl−elk and i (ekl + elk)

are elements of t = su(n). In addition, with z ∈ p and recalling the Lie bracket (2.12), we

have

[ekl − elk , z] = (zl − zk) (ekl + elk) ∈ p =Hn
[i (ekl + elk) , z] = i (zl − zk) (ekl − elk) ∈ p =Hn .

(6.9)

The commutator [A, z] is thus given by

[A, z] = (zl − zk)
∑

1 ≤ k < l ≤ n
akl (ekl + elk) + i bkl (ekl − elk) ∈ p =Hn . (6.10)

Including this result in (6.8) and referring to (6.5), we have

dM =
n∏

i=1

dzi
∏

1 ≤ k < l ≤ n
d ((zl − zk)akl)d ((zl − zk)bkl)

= ∆2
n(z)

n∏

i=1

dzi
∏

1 ≤ k < l ≤ n
dakl dbkl ,

(6.11)

93



Chapter 6. Hermitian Matrix Ensemble and dispersive shocks

where ∆n(z) is the Vandermonde determinant, defined as

∆n(z) =
∏

1 ≤ j < k ≤ n

(
zk − zj

)
. (6.12)

The ∆n(z)2 in (6.11) can be seen as the Jacobian determinant of the map M → (z, U )

and dM can be written in polar coordinates as

dM = ∆2
n(z) dz1dz2 . . . dzn dU , U ∈ SU (n) . (6.13)

As we have seen in section 2.1, Hn is associated with the probability (2.5)

P (M ∈ dM) = P (M ∈ dM) = cn e−tr V (M)dM , (6.14)

where the trace can be expressed as a function of the eigenvalues only

tr V (M) =
n∑

i=1

V (zi) , (6.15)

and we introduce the weight

ρ(dz) = e−V (z)dz . (6.16)

Since (6.13) depends on the trace, the angular part of the polar coordinates dU can be

integrated out. Considering an interval E ⊂R, we define

Hn(E) = {M ∈ Hn with spectral points ∈ E } ⊂ Hn , (6.17)

and the probability associated with the ensemble is obtained by the following matrix

integral

P (M ∈ Hn(E)) =
∫

Hn(E)
cn e−tr V (M)dM =

∫
En
∆2(z)

∏n
k=1ρ(dzk)∫

R
n∆

2(z)
∏n
k=1ρ(dzk)

, (6.18)

where cn is the contribution of the integration of the angular part.
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The free theory partition function for the ensemble is then given by 1

Z
(2)
n (0) = cn

∫

R
n
∆2
n(z)

n∏

k=1

ρ(dzk) = cn

∫

R
n
∆2
n(z)

n∏

k=1

e−V (zk)dzk . (6.19)

The weights appearing in the previous expressions are suitable functions

ρ(z)dz = e−V (z)dz (6.20)

defined on an interval F = [A, B] ∈ R for which the logarithmic derivative is given by a

rational polynomial function

− 1
ρ(z)

∂zρ(z) = ∂zV (z) =
g(z)
f (z)

, (6.21)

and with boundary conditions

lim
z→A,B

f (z)ρ(z)zk = 0 for all k ≥ 0 . (6.22)

Considering the t−deformation of the integral in (6.19), we have

Z
(2)
n (t) = cn

∫

R
n
∆2
n(z)

n∏

k=1

ρt(dzk) = cn

∫

R
n
∆2
n(z)

n∏

k=1

e−V (zk)+
∑∞
i=1 ti z

i
k dzk , (6.23)

where the elements in t = (t1, t2, . . . ) play the role of coupling constants in the formal

series.

6.1.2 Toda lattice

Following the approach presented in section 2.3, the Toda lattice arises from a suitable

decomposition of the algebra of invertible matrices [10]

gl(∞) = g+ ⊕ g− = b⊕ s , (6.24)

1The labeling of the partition function refers to the fact that the considered integral is a β−integral
for β = 2. The parameter β is associated with the power of the Vandermonde determinant in the integral.
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where the subalgebras s and b are

b = { lower triangular matrices with diagonal }

s = { skew-symmetric matrices } ,
(6.25)

and the inner product 〈A, B〉 = tr (AB) . Recalling (2.21) we have g∗∓ � g
⊥± , that in this case

are given by

g⊥+ = b⊥ = { strictly lower triangular matrices }

g⊥− = s⊥ = { symmetric matrices } .
(6.26)

The induced Hamiltonian structure (2.22) on s⊥ is represented by the equations for the

Hamiltonian vector fields

χH (L) = P̂− [∇+H(L) , L ] , ∇+H(L) ∈ b , (6.27)

reminding that P̂− is the projection onto g⊥+ along g⊥− (see section 2.3). Setting

H
(k)
0 = −1

2
trLk+1

k + 1
, L ∈ s⊥ , (6.28)

the equation (2.27) for the AKS theorem reads

∂L

∂tk
=

[ 1
2

(
Lk

)
s
, L

]
= −

[ 1
2

(
Lk

)
b
, L

]
. (6.29)

The matrix L is built from the dressing of the shift operator Λ = {δi,j−1}1 ≤ i,j <∞ as

L(t) = S(t)ΛS(t)−1 , (6.30)

with S belonging to the group G+ associated with the algebra g+, as stated in the end of

the section 2.3, being a lower triangular matrix with non zero diagonal.
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As anticipated in the end of section 2.4, we follow the approach described in [6, 117]

to determine the matrix L in terms of suitable τ-functions, that are proportional to the

partition function (6.23) given in terms of the weight ρt(z)

Z
(2)
n (t) = cn

∫

R
n
∆2
n(z)

n∏

k=1

ρt(dzk) . (6.31)

The weight ρt(z) is considered to define the following inner product in R

(f , g )t =
∫

R

f (z)g(z)ρt(z)dz with ρt(z) = e
∑∞
i=1 tiz

i
ρ(z) = e−V (z)+

∑∞
i=1 tiz

i
. (6.32)

The corresponding moments matrix is thus given by

mn(t) =
(
µij(t)

)
0≤ i,j < n =

((
zi , zj

)
t

)
0≤ i,j < n , (6.33)

that is symmetric being a Hänkel matrix, since µij depends on i + j. Because of the form

of the weight, it is easy to see that the moments µij(t) satisfy

∂µij
∂tk

= µi+k,j , (6.34)

leading to the following, for the corresponding semi-infinite moments matrix m∞(t)

∂m∞(t)
∂tk

=Λkm∞(t) , (6.35)

where Λ is the shift matrix previously recalled. The moments matrix so constructed

admits a Borel decomposition in a lower and upper triangular matrices, as

m∞(t) = S(t)−1S(t)>−1 , (6.36)

with S(t) a lower triangular matrix with non zero diagonal.

In the following, we will state the theorem due to Adler and van Moerbeke concerning

the τ-function for the Hermitian ensemble.
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Theorem 6.1.1 The τ-functions defined as determinants of the moments matrix

τn(t)B detmn(t) =
1
n!

∫

R
n
∆2
n(z)

n∏

k=1

ρt(zk)dzk ∝ Z(2)
n (t) , (6.37)

(i) satisfy the equation in the KP hierarchy

(
sk+4(∂̃)− 1

2
∂t1∂tk+3

)
τn(t) ◦ τn(t) = 0 , k = 0,1,2, . . . ; (6.38)

(ii) constitute the elements of the Toda lattice L(t) = S(t)ΛS(t)−1

L(t) =




∂t1 log τ1
τ0

(
τ0 τ2

τ2
1

)1/2
0 0 0 · · ·

(
τ0 τ2

τ2
1

)1/2
∂t1 log τ2

τ1

(
τ1 τ3

τ2
2

)1/2
0 0

0
(
τ1 τ3

τ2
2

)1/2
∂t1 log τ3

τ2

(
τ2 τ4

τ2
3

)1/2
0

0 0
(
τ2 τ4

τ2
3

)1/2
∂t1 log τ4

τ3

(
τ3 τ5

τ2
4

)1/2

...
. . .

. . .
. . .




(6.39)

for which the commuting equations in different flows are (6.29)

∂L

∂tk
=

[ 1
2

(
Lk

)
s
, L

]
= −

[ 1
2

(
Lk

)
b
, L

]
; (6.40)

(iii) enter in the definition of the two classes of eigenvectors of L

. p(t, z) = (pn(t, z))n≥0, satisfying

L(t)p(t, z) = zp(t, z) , (6.41)

where pn(t, z) are the n-th degree polynomials in z, orthonormal with respect to
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the t-dependent inner product

(pk(t, z) , pl(t, z) )t = δkl , (6.42)

which admit the representation, with χ(z) =
(
1, z , z2, . . .

)>

pn(t, z) = (S(t)χ(z))n = znh−1/2
n

τn
(
t − [z−1]

)

τn(t)
, with hn =

τn+1(t)
τn(t)

; (6.43)

. q(t, z) = (qn(t, z))n≥0, satisfying

L(t)q(t, z) = zq(t, z) , (6.44)

where qn(t, z) are defined as the Cauchy transform of pn(t, z)

qn(t, z) = z
∫

R
n

pn(t, z)
z −u ρt(u)du , (6.45)

and admit the following representation

qn(t, z) =
(
S(t)>−1χ

(
z−1

))
n

= z−nh−1/2
n

τn
(
t + [z−1]

)

τn(t)
. (6.46)

To show (6.37) we write the Vandermonde determinant as

∆n(z) =
∏

1 ≤ i,j ≤ n

(
zi − zj

)
= det




1 1 . . . 1

z1 z2 . . . zn
...

...
...

zn−1
1 zn−1

2 zn−1
n




= det
(
zi−1
j

)
1 ≤ i,j ≤ n . (6.47)

Using the definition of the determinant and the property (det(A))2 = det(A)det(A>) =

det(AA)

∆2
n(z) =

∑

σ∈Sn
(−1)σ

n∏

k=1

(
zk−1
σ (k)

) ∑

σ ′∈Sn
(−1)σ

′
n∏

l=1

(
z
σ ′(l)−1
l

)

=
∑

σ∈Sn
det

(
zl+k−2
σ (k)

)
1 ≤ k,l ≤ n ,

(6.48)
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with σ , σ ′ permutations belonging to the symmetric group Sn with n! elements. In the

partition function Z
(2)
n (t) (6.31), the Vandermonde determinant appears in the n-fold

integral, that can be written as

∫

R
n
∆2
n(z)

n∏

k=1

ρt (zk) dzk =
∑

σ∈Sn

∫

R
n

det
(
zl+k−2
σ (k)

)
1 ≤ k,l ≤ n ρt

(
zσ (k)

)
dzσ (k)

=
∑

σ∈Sn
det

(∫

R
n
zl+k−2
σ (k) ρt

(
zσ (k)

)
dzσ (k)

)

1 ≤ k,l ≤ n

= n! detmn(t) = n!τn(t) .

(6.49)

We now focus on property (i). The τ-functions satisfy the bilinear Hirota identity (6.38),

coming from the relation

Resz=∞
{
τn

(
t − [z−1]

)
τn

(
t′ + [z−1]

)
eξ(t−t′ ,z) } = 0 , ∀t, t′ ∈C , (6.50)

ξ(t, z) =
∞∑

n=1

tnz
n , (6.51)

consisting of all the evolution equations of the KP hierarchy. The functions τn
(
t ± [z−1]

)

are written in terms of the Schur polynomials

∞∑

j=0

sj(t)z
j = e

∑∞
n=1 tn z

n
, (6.52)

and ∂̃ =
(
∂t1 ,

1
2∂t2 ,

1
3∂t3 , . . .

)
as

τn
(
t ± [z−1]

)
=
∞∑

n=0

sn(±∂̃ )τn(t)z−n . (6.53)

We consider the change of variables (t, t′)→ (x,y)



t = x − y

t′ = x+ y ,
(6.54)
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the Hirota derivation

s (∂t) f ◦ g = s
(
∂

∂y1
,
∂

∂y2
, . . .

)
f (t + y) g (t − y)

∣∣∣∣∣∣
y=0

, (6.55)

the Schur polynomials (6.52) and the expressions (6.53) to evaluate the residue (6.50)

0 = Resz=∞
{
eξ(−2y,z) τn

(
x − y − [z−1]

)
τn

(
x+ y + [z−1]

) }

=
1

2πi

∮

C
dz



∞∑

i=0

zi si (−2y)






∞∑

j=0

z−j sj
(
∂̃
)

 e

∑
k yk ∂k τn(x) ◦ τn(x)

=
1

2πi

∮

C
dz



∞∑

i,j=0

zi−j si (−2y)sj
(
∂̃
)

 e

∑
k yk ∂k τn(x) ◦ τn(x)

=



∞∑

j=0

sj (−2y)sj+1

(
∂̃
)

 e

∑
k yk ∂k τn(x) ◦ τn(x) .

(6.56)

Considering s0(−2y)s1
(
∂̃
)

= ∂x1
and a Taylor expansion in y = (t − t′)/2, we have


∂x1

+
∞∑

j=1

sj+1

(
∂̃
)(
−2yj +O

(
y2

))




1 +

∞∑

k=1

yk∂xk +O
(
y2

)

τn(x) ◦ τn(x) = 0


∂x1

+
∞∑

k=1

yk
(
∂xk ∂x1

− 2sk+1

(
∂̃
))

τn(x) ◦ τn(x) +O

(
y2

)
= 0 .

(6.57)

Since ∂x1
τn(x) ◦ τn(x) = 0 and the coefficient of yk is trivial for k = 1,2, with x → t we

obtain the Hirota bilinear representation of the KP hierarchy (6.38).

The first part of property (ii), i.e. the explicit form of L(t) in terms of τ-functions

follows from its definition via the decomposition (6.30). The second part of property (ii)

is a consequence of (6.30). Indeed we have

L(t) = S(t)ΛS(t)−1 = S(t)ΛS(t)−1S(t)>−1S(t)>

= S(t)Λm∞(t)S(t)> = S(t)m∞(t)Λ>S(t)>

= S(t)S(t)−1S(t)>−1Λ>S(t)> =
(
S(t)ΛS(t)−1

)>
= L(t)> ,

(6.58)

hence L(t) is symmetric and thus tridiagonal.
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Conjugating (6.35) with S(t), we have

0 = S(t)
(
Λ(t)km∞(t)− ∂m∞(t)

∂tk

)
S(t)>

= S(t)Λ(t)k S(t)−1 − ∂

∂tk

(
S(t)−1S(t)>−1

)
S(t)>

= L(t)k +
∂S

∂tk
S(t)−1 + S(t)>−1 ∂S(t)>

∂tk
.

(6.59)

Taking into account the projections ( )±, selecting the upper/lower triangular part of the

matrix respectively plus the diagonal and ( )0 the projection selecting only the diagonal,

we can construct the two projections constituting the algebra splitting (6.24)

a = (a )b + (a )s



(a )b = 2(a )− − (a )0

(a )s = (a )+ − (a )− .
(6.60)

From (6.60) and (6.59), we obtain the flows equations for the Toda lattice (6.40).

Finally, we consider the property (iii). The Borel decomposition of m∞(t) (6.36) in-

duces the orthonormality of the polinomials pn(z, t) = (S(t)χ(z))n

(pk(z, t) , pk(z, t) )t
∣∣∣
0 ≤ k,l ≤ n =

∫

R

S(t)χ(z)χ(z)>S(t)>ρt(z)dz

= S(t)m∞(t)S(t)> = S(t)S(t)−1S(t)>−1S(t)> = I .

(6.61)

In particular,
(
pn(z, t) , zk

)
t

= 0 for 0 ≤ k ≤ n− 1. Introducing hn(t) = (τn+1(t)/τn(t))1/2, a

classical result [111] is that they admit the integral representation

hn(t)pn(z, t) =
1

n!τn(t)

∫

R
n
∆2
n(u)

n∏

k=1

(z −uk) ρt(uk)duk

=
zn

n!τn(t)

∫

R
n
∆2
n(u)

n∏

k=1

(
1− uk

z

)
ρt(uk)duk

=
zn

n!τn(t)

∫

R
n

∑

σ∈Sn
det

(
uk+l−2
σ (k)

)
1 ≤ k,l ≤ n

n∏

k=1

(
1− uk

z

)
ρt(uk)duk

=
zn

n!τn(t)

∫

R
n

∑

σ∈Sn
det


u

k+l−2
σ (k) −

uk+l−1
σ (k)

z




1 ≤ k,l ≤ n
ρt(uσ (k))duσ (k)

=
zn

τn(t)
det

(
µi,j(t)− 1

z
µi,j+1(t)

)

0 ≤ i,j ≤ n−1
.

(6.62)
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The expression in the parenthesis is

µi,j(t)− 1
z
µi,j+1(t) =

∫

R

ui+j
(
1− u

z

)
ρt(u)du

=
∫

R

ui+jelog(1− uz )ρt(u)du

=
∫

R

ui+je
∑
k

(
tk− 1

k zk

)
uk
ρ(u)du

= µi,j
(
t − [z−1]

)
,

(6.63)

hence (6.62) becomes

hn(t)pn(z, t) = zn
τn

(
t − [z−1]

)

τn(t)
. (6.64)

An analogous computation can be done for qn(z, t) defined in (6.45), giving

hn(t)qn(z, t) = z−n
τn

(
t + [z−1]

)

τn(t)
. (6.65)

Recalling χ(z) =
(
1, z, z2, . . .

)>
and the shift operator Λ

Λχ(z) = zχ(z) , Λ>χ(z−1) = zχ(z−1)− z e1 , (6.66)

with e1 = (1,0,0, . . . )>, the vectors

p(z, t) = S(t)χ(z) , q(z, t) = S(t)>−1χ(z−1) (6.67)

are eigenvectors of the Toda lattice

L(t)p(z, t) = S(t)ΛS(t)−1S(t)χ(z) = S(t)Λχ(z)

= zS(t)χ(z) = zp(z, t) ,
(6.68)

L(t)> q(z, t) = S(t)>−1ΛS(t)>S(t)>−1χ(z−1) = S(t)>−1Λχ(z−1)

= zS(t)>−1χ(z−1)− zS(t)>−1 e1 = zq(z, t)− z e1 .
(6.69)
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Since for (6.57) L(t) = L(t)> we have

((L(t)− z I)p(z, t))n = 0 , n ≥ 0

((L(t)− z I)q(z, t))n = 0 , n ≥ 1 .
(6.70)

So far we have reviewed the fundamental features and general aspects of the theory to

describe the Hn. In the following, we will consider the description provided in [23],

defining a suitable reduction of the Toda lattice, corresponding to the selection of the

even times only in the coupling constants in the expression for the partition function.

6.2 From Toda lattice to Volterra lattice

We recall the form of the Toda lattice, associated to the study of the Hn, introduced in

section 6.1.2

L(t) =




∂t1 log τ1
τ0

(
τ0 τ2

τ2
1

)1/2
0 0 0 · · ·

(
τ0 τ2

τ2
1

)1/2
∂t1 log τ2

τ1

(
τ1 τ3

τ2
2

)1/2
0 0

0
(
τ1 τ3

τ2
2

)1/2
∂t1 log τ3

τ2

(
τ2 τ4

τ2
3

)1/2
0

0 0
(
τ2 τ4

τ2
3

)1/2
∂t1 log τ4

τ3

(
τ3 τ5

τ2
4

)1/2

...
. . .

. . .
. . .




, (6.71)

where the fields entering the matrix are explicitly reported in terms of τ-functions of the

system. The matrix L(t) representing the lattice satisfies the Lax equations (6.40)

∂L

∂tk
=

[ 1
2

(
Lk

)
s
, L

]
. (6.72)

The matrix L(t) is by construction symmetric and the projection s acts on a generic sym-

metric matrix a as

(a)s = (a)+ − (a)− , (6.73)
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where the projections ( )± selects the upper / lower triangular part of the matrix respec-

tively, giving a skew-symmetric matrix.

The τ-functions appearing within the elements of the Toda lattice are proportional to

the partition function for n×n Hermitian matrices (6.23)

Z
(2)
n (t) = cn

∫

R
n
∆2
n(z)

n∏

k=1

ρt(dzk) = cn

∫

R
n
∆2
n(z)

n∏

k=1

e−
1
2 z

2+
∑∞
i=1 ti z

i
k dzk , (6.74)

as described in section 6.1.1. As we can see, in (6.74) the free theory is given by the

Gaussian Unitary Ensemble, obtained setting all the coupling constants ti to zero.

The τ-function is defined as the determinant of the moments matrix

τn(t) = det(mn(t)) , (6.75)

built via the symmetric inner product (6.32), as

mn(t) =
(
µij(t)

)
0,≤i,j≤n =

((
zi , zj

)
t

)
0,≤i,j≤n

(
zi , zj

)
t

=
∫

R

zi zje−
1
2 z

2+
∑∞
i=1 ti z

i
dz .

(6.76)

6.2.1 Initial condition with the GUE

We now consider the Lax matrix of the Toda lattice at the initial condition, with t = 0.

Looking at the structure of its elements and following a notation commonly used in the

literature, we distinguish between two different fields, an(t) and bn(t). The fields an(t) oc-

cupy the positions along the main diagonal and they are defined in terms of τ-functions

as

an(t) = ∂t1 logτn(t) , (6.77)

whereas the fields bn(t) appear in the first above and lower diagonals of L(t) and they are

given by

bn(t) =
(
τn+1(t)τn−1(t)

τn(t)2

)1/2

. (6.78)

The expressions in (6.77) and (6.78) can be evaluated for t = 0, when the Hermitian

matrix ensemble reduces to the GUE. Following [92], the typical integrals appearing in
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the representation of τ-functions for Gaussian ensembles at t = 0 can be given in terms

of a Selberg’s integral. In particular,

∫

R
n
|∆(x)|2γ

n∏

k=1

e−ax
2
k dxk = (2π)n/2 (2a)−n(γ(n−1)+1)/2

n∏

k=1

Γ (1 + kγ)
Γ (1 +γ)

. (6.79)

In this, case γ = 1 and a = 1/2

∫

R
n
∆(x)2

n∏

k=1

e−
1
2 x

2
k dxk = (2π)n/2

n∏

k=1

Γ (1 + k) . (6.80)

Recalling that the τ-function is given in terms of the determinant of the moments matrix,

we have

τn(0) = (2π)n/2
n∏

k=1

k!
n!
, (6.81)

and we can compute bn(0) as

bn(0) =
(
τn+1(0)τn−1(0)

τn(0)2

)1/2

=
√
n. (6.82)

To evaluate the fields an(0), we observe that if we enable the t1 interaction in the τ-

functions, we have

τn(t1,0,0, . . . ) = (2π)n/2 e
nt21

2

n∏

k=1

k!
n!
. (6.83)

Then we have

an(0) = ∂t1 logτn(t1,0,0, . . . )
∣∣∣
t1=0

= 0 . (6.84)

The corresponding Lax matrix representation of the Toda lattice at t = 0 is entirely de-

scribed by the fields bn(0), while the elements of the main diagonal vanish. In the next

section, we will see that if we set the fields along the diagonal to zero also after the initial

time, we obtain the Volterra lattice.
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6.2.2 Discrete equations for the fields in the Volterra lattice

The Volterra lattice emerges from Toda by letting all the elements of the main diagonal

be identically zero for t , 0. It was introduced in [79] and its Lax operator takes the form

L(t) =




0 b1(t) 0 0 0 · · ·

b1(t) 0 b2(t) 0 0

0 b2(t) 0 b3(t) 0

0 0 b3(t) 0 b4(t)

...
. . .

. . .
. . .




, (6.85)

with t = (t2, t4, . . . ). It is worth mentioning that the model involving odd weights differs

from the case here studied and it has been analysed in [56].

The Lax equations representing the Volterra lattice are the following

∂L

∂t2k
=

[1
2

(
L2k

)
s
, L

]
, k = 1, 2, . . . . (6.86)

In terms of the field variables of the lattice the previous equation reads

∂bn
∂t2k

=
bn
2

(
bn+1

(
L2k−1

)
n+1,n+2

− bn−1

(
L2k−1

)
n−1,n

)
. (6.87)

Multiplying both sides of the equation by bn(t) and introducing the notation



Bn(t) = b2
n(t)

V
(2k)
n (t) = bn(t)

(
L2k−1(t)

)
n,n+1

,

(6.88)

the equation (6.87) becomes

∂Bn
∂t2k

= Bn
(
V

(2k)
n+1 −V

(2k)
n−1

)
, k = 1, 2, . . . . (6.89)
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The field variable Bn(t) is addressed as the order parameter of the system. In particu-

lar, the fields V (2k)
n (t) can be obtained as linear combinations of products involving the

variable Bn(t). For the first three terms we have

V
(2)
n = Bn

V
(4)
n = V (2)

n

(
V

(2)
n−1 +V (2)

n +V (2)
n+1

)

V
(6)
n = V (2)

n

(
V

(2)
n−1V

(2)
n+1 +V (4)

n−1 +V (4)
n +V (4)

n+1

)
.

(6.90)

Considering the theory of the orthogonal polynomials described in section 2.5, we have

that the field variables are essentially the coefficients of the recursion relation (2.55).

This result is in this context established in [31, 27] and gives rise to the so called string

equation. We will refer to its expression given in [30], which in the case of even times

only takes the form

n = Bn −
∞∑

k=1

2k t2kV
(2k)
n . (6.91)

In particular, the form of the operator in the second term of the right hand side of (6.91)

is produced imposing the string equation

[L, P ] = 1 . (6.92)

In (6.92), the operator P is expressed as

P =
1
2

(L)s +
∑

k≥1

k tk
(
L2k−1

)
s
. (6.93)

In the following we will study the behaviour of the order parameter via the expres-

sion (6.91) selecting the model where t2k = 0 for k > 3, evaluating the thermodynamic

limit (for n→∞). The order parameter will develop a singularity, that is regularised by

oscillations, observed in [78, 109] and interpreted as a chaotic behaviour. In [23], this

chaotic phase is instead interpreted as the occurrence of a propagating dispersive shock,

the regularisation mechanism described in 4.3.
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6.3 Thermodynamic limit and scalar hierarchy

We introduce a typical scale of the system N and the rescaled field variables

un =
Bn
N
, T2k =N k−1 t2k , W 2k

n =
V

(2k)
n

N k
. (6.94)

Then the expression (6.91) reads

n

N
= un −

∞∑

k=1

2k T2kW
2k
n . (6.95)

We define the interpolating function u(x) that will be the continuous field variable



u(x) = un

u(x ± ε) = un±1

with x =
n

N
and ε =

1
N
. (6.96)

As previously mentioned, we will focus on the case for which only the first three terms in

the corresponding coupling constants are on. In particular, the coupling constant T6 < 0,

so that the convergence of the integral in the partition function (6.74) is ensured. The

Taylor expansion for ε→ 0 gives at the leading order

x = (1− T2)u − 12T4u
2 − 60T6u

3 . (6.97)

We consider the continuum limit evaluated for the Volterra lattice equations (6.88) to

better understand the evolution of the solution to the recurrence relation u(x). It is worth

noting that u(x) is indeed an order parameter, since in the thermodynamic limit it can be

express in terms of the derivative of the “free energy” of the system (recalling that τ is

essentially the partition function)

u(x) = ∂2
x ln τ(x) . (6.98)

Using (6.94) in (6.88), we get the corresponding expression involving the interpolation

function u(x) and u(x ± ε).
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Evaluating the Taylor series for ε→ 0, the hierarchy can be written as

uT2k
=
∞∑

n=0

εn g
(k)
n (u; ∂xu, . . . , ∂

n
xu) , (6.99)

with g
(k)
n differential polynomials of u. In the thermodynamic limit, with ε → 0 the

previous expression at the leading order gives us the Hopf hierarchy (also known as

Burgers-Hopf hierarchy [81])

uT2k
= ck u

k ux , with ck = (−1)k
(2n+ 1)!!

2nn!
. (6.100)

The solution to this equation is implicitly given by (6.97). From the latter, we can deter-

mine the condition for extremising the free energy

F[u] =
∫ β

0
f0(u)dx , β > 0

f0(u) = −xu +
1
2

(1− T2)u2 − 4T4u
3 − 15T6u

4 .

(6.101)

The number of local minima and maxima of the free energy density depend on the sig-

nature of the discriminant ∆ of (6.97), such as



∆ > 0 two local minima and one local maximum ,

∆ = 0 boundary of the multi-valued region ,

∆ > 0 one minimum .

(6.102)

The phase transition occurs at the critical point, represented by the cusp point in the fig-

ure 6.1 (a). For a given choice of T2, T4 in the plane (x,T6) the colored region represents

the condition for which (6.97) has three different solutions, corresponding to the station-

ary points of the free energy density, displayed in (b) for two different values of T6 as a

function of the field variable u.

All the figures reported in this section are reproductions of those appeared in the

work [23].

The behaviour above described was expected from equation (6.100), since a generic

solution to the Hopf hierarchy develops a singularity for finite value of the time vari-
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Figure 6.1: In (a) the critical set ∆ = 0 for T2 = 0, T4 = 0.1 in the plane (x,T6). The filled
region corresponds to the case ∆ > 0, where (6.97) admits multiple roots. In (b) the free
energy density is depicted as a function of the solution u for the points (0.22,−0.0051)
and (0.22,−0.0067) identified in (a), in the region ∆ > 0.

ables T2k , as we have seen in section 4.1. In particular, we will see how the singularity

is associated to the occurrence of a dispersive shock induced by dispersive corrections

to the Hopf hierarchy, as discussed in section 4.3. Approaching the gradient catastro-

phe, the dispersive corrections appearing in (6.99) induce oscillations manifesting the

emergence of a dispersive shock, as discussed in the following section.

6.4 Dispersive regularisation and possible scenarios in the mul-

tivalued region

In figure 6.2 (a)−(e), it is shown the evolution of the solution u(x) to (6.97) and of un

evaluated via the recurrence relation (6.95) with k ∈ {1,2,3}. Recalling that un = εBn, the

recurrence relation becomes

n = Bn − 2T2V
(2)
n − 4T4 εV

(4)
n − 6T6 ε

2V
(6)
n , (6.103)

where V (2)
n ,V

(4)
n ,V

(6)
n are given by the relations (6.90).

111



Chapter 6. Hermitian Matrix Ensemble and dispersive shocks

The initial constraint of the recurrence relation are given by the fields

B0(t2, t4, t6) = 0 Bi(t2, t4, t6) =
τi+1(t2, t4, t6)τi−1(t2, t4, t6)

τi(t2, t4, t6)2 , i = 1,2,3 , (6.104)

with τ1 = 1 and τi as defined in (6.75) with only nonzero times (t2, t4, t6).

In figure 6.2 (a) the behaviour of the two overlapping solutions is represented for

values of T2,T4,T6 such that the order parameter is single valued (i.e. in the region ∆ < 0

in figure 6.1 (a)).

In figure 6.2 (b), in proximity to the gradient catastrophe, we observe a deviation in

the evolution of the two functions and the profile representing the exact solution devel-

ops oscillations, that become evident in figures 6.2 (c)−(e). Figure 6.1 (a) illustrates the

passage from the region ∆ < 0 to ∆ > 0.

The micro-oscillatory behaviour reveals the occurrence of a dispersive regularisation.

The ostensible chaotic phase, as it was interpreted in [78, 109], is then describable as the

onset of this mechanism of regularisation, for the presence of higher order corrections

to the leading order in (6.97). In [78], the phase transition is interpreted in terms of

the spectral distribution associated to the matrix model, extending to the M6 theory the

approach laid out in [27] for the M4 theory. In particular, the single valued phase is

connected to a spectral distribution with one single cut, whereas the multi-valued phase

corresponds to a spectral distribution with three cuts.
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Figure 6.2: The function u(x) and un are shown for constant values of T2,T4 and ε = 0.01.
In (a) the behaviour of the function at a point in the ∆ < 0 region is represented. In
(b) ∆ = 0 in correspondence of the gradient catastrophe, from (c) to (e) it is shown the
solutions at the selected points of the region ∆ > 0 in figure 6.1.
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We now analyse the region ∆ > 0, for which (6.97) admits three real and distinct

solutions. Here, different scenarios are possible, depending on the ranges associated to

the coupling constants T2,T4,T6, obtained studying the sign of the coefficients in (6.97).

As it was mentioned above, to ensure the converge of the integral to evaluate the τ-

function, the time T6 must be strictly negative. We identify the possible three cases

(1− 2T2) < 0 , T4 > 0 scenario 1,

(1− 2T2) > 0 scenario 2,

(1− 2T2) < 0 , T4 < 0 scenario 3.

(6.105)

Scenario 1 It is represented in figures 6.2 (c)−(e) and it constitutes the same case anal-

ysed in [77, 78]. Since u(x) ≥ 0, only non negative branches of the field variable represent

admissible states of the system. In particular, the three branches of the cubic, corre-

sponding to stationary points of the free energy density, are positive. We can observe a

complex structure that qualitatively looks like a dispersive shock wave, but displaying

an additional so called beating pattern [35].
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Figure 6.3: In (a), u(x) is reported for (1−2T2) > 0 , T4 > 0. In (b), it is also represented un
for ε = 0.01, where it is visible the propagation of the dispersive shock originated in the
region x < 0. The same is shown in (c) and (d) for the sector (1− 2T2) > 0 , T4 < 0.

Scenario 2 The solution u(x) to (6.97) is shown in figure 6.3 (a) and (c) for different

values of T4, while the parameters T2 and T6 are kept constant. The function is three val-

ued, but one of the roots is negative and it does not lead to a stable state for the system.

Nonetheless, the existence of two other possible states, one stable and one unstable, leads

to the emergence of the dispersive shock, visible in figure 6.3 (b) and (d). This is the case

even if in the region x > 0 there exists a non-negative branch of the cubic only: the gra-

dient catastrophe occurs for x < 0. In this case, the profile of the regulation mechanism

qualitatively resembles the one of the dispersive shock wave appearing in KdV with a

cubic wavebreaking [55] (the so called Bordeaux glass profile, see section 4.3).

115



Chapter 6. Hermitian Matrix Ensemble and dispersive shocks

T2=0.25

T4=-1

T6=-0.5

-0.2 0.0 0.2 0.4 0.6 0.8
-0.6

-0.4

-0.2

0.0

0.2

x

u

(a)

T2=0.25

T4=-1

T6=-0.5

un

u

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.00

0.05

0.10

0.15

x

(b)

Figure 6.4: In (a) u(x) is shown for (1 − 2T2) > 0 , T4 > 0. In (b) it is also represented un
for ε = 0.01. There is no dispersive shock in this case and the solution for u > 0 is single
valued.

Scenario 3 The solution u(x) is multivalued with only one positive branch for u(x) > 0,

as represented in figure 6.4 (a), hence the system can be in one state only. In this case, the

two solutions shown in figure 6.4 (b) overlap and there is no oscillation. Then one can

conclude that the regularisation mechanism given by the dispersive shock is associated

with the existence of accessible both stable and unstable states.

The emergence of a dispersive shock is a specific feature of matrix ensembles, whereas

viscous shocks are a specific feature of classical magnetic and fluid models. In section

5.3 we have observed the onset of a viscous shock in the order parameter for mean-field

statistical mechanical models. In this case, the underlying hydrodynamic system at the

leading order in the order parameter is given by the Hopf equation (e.g. equation (5.25)

for the Curie-Weiss model). In the context of the Hermitian matrix ensemble, at the

leading order in the thermodynamic limit, we encounter the Hopf hierarchy (6.100) in

even slow times T2k . This may suggest that from this point of view, the two systems are

specified by the initial condition for the differential identity.

In the following chapter, we will show how ensembles of symmetric give rise to more

complex structures, i.e. hydrodynamic chains, compared to the scalar hierarchy emerg-

ing for the Hermitian matrix ensemble.
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Chapter 7

Symmetric Matrix Ensemble and

hydrodynamic chains

This chapter is dedicated to the study of the symmetric matrix ensemble Sn and a new as-

sociated hydrodynamic chain [24]. Firstly, in section 7.1, we will use the tools developed

in section 2.1 to describe the discrete integrable structure associated with the ensemble,

referred to as Pfaff lattice. We follow [12, 13, 117] and we will see how the KP-Pfaff hier-

archy emerges for the Pfaffian τ-function, the latter being proportional to the partition

function for the ensemble Sn. In section 7.2, we will introduce a suitable notation for

the field variables of the Pfaff lattice with the aim of unveiling the existing underlying

double-chain structure.

Then, in section 7.3, we will describe the lattice emerging by selecting the even inter-

action terms only. This Pfaff reduction is realised with the aim of reducing the complexity

of the problem, passing from a double-chain structure to a single-chain one. In the ther-

modynamic limit at the leading order, the resultant system of equations for the evolution

in the first even time (i.e. t2) can be recast in the form of a hydrodynamic chain, as we

will discuss in section 7.4. Then we will investigate the integrability of the new infinite

hydrodynamic chain, following the approach developed in section 3.2. In section 7.5, we

will conjecture that generalised hydrodynamic chains can be found at the leading order

of the continuum limit for higher even flows as well, i.e. with respect to times t4, t6, . . . .

Finally, section 7.6 is devoted to the comparison between the hierarchies emerging at
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the leading order of the thermodynamic limit in the case of the Volterra lattice and the

corresponding even time reduction of the Pfaff lattice.

7.1 Symmetric Matrix Ensemble

7.1.1 Sn as a tangent space and partition function

Similarly to the Hermitian case treated in section 6.1.1, we follow the approach pre-

sented in section 2.2. We consider the non-compact symmetric spaceM = G/K , with G =

SL(n,R) and the involution map defined in K as

σ (g) =
(
g>

)−1
, (7.1)

so that the subgroup K is in this case given by

K = {g ∈ SL(n,R) | σ (g) = g } = {g ∈ SL(n,R) | g−1 = g> } = SO(n) . (7.2)

The symmetric spaceM can be expressed as

SL(n,R) / SO(n) � {g g> | g ∈ SL(n,R) }

= {positive definite matrices with det = 1 } .
(7.3)

The involution map σ induces the map σ∗(A) = −A>, the subalgebra being t = so(n),

of n×n traceless skew-symmetric matrices. The tangent vector space p toM at the iden-

tity is the space of n × n symmetric matrices Sn, for which σ∗(A) = A>. The algebra de-

composition is

sl(n,R) = t⊕ p = so(n)⊕Sn . (7.4)

The free variables in M ∈ Sn are the real entries Mij for 1 ≤ i ≤ j ≤ n and the Haar

measure on Sn is

dM =
n∏

1 ≤ i ≤ j ≤ n
dMij . (7.5)

Also in this case, a maximal abelian subalgebra a ⊂ p = Sn is given by the subset of

diagonal matrices z = diag(z1, z2, . . . , zn), where zi with 1 ≤ i ≤ n are eigenvalues. Any
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symmetric matrix can be diagonalised through an orthogonal operator, so that

M =OzO−1 , O ∈ K = SO(n) . (7.6)

The orthogonal operator can be expressed via the exponential map as O = eA, with the

matrix A such that A ∈ t = so(n), a traceless skew-symmetric matrix (A> = −A). Then A

takes the form

A =
∑

1 ≤ k < l ≤ n
(akl (ekl − elk)) , (7.7)

with the same formalism used in section 6.1.1. In this case, we have

[A, z] = (zl − zk)
∑

1 ≤ k ≤ l ≤ n
akl (ekl + elk) ∈ p = Sn , (7.8)

so that the Haar measure on Sn becomes

dM =
n∏

i=1

dzi
∏

1 ≤ k < l ≤ n
d ((zl − zk)akl)

= |∆n(z)|
n∏

i=1

dzi
∏

1 ≤ k < l ≤ n
dakl .

(7.9)

Here, |∆n(z)| is the Jacobian determinant of the map M→ (z, O) to the polar coordinates

dM = |∆n(z)| dz1dz2 . . . dzn dO, O ∈ SO(n) . (7.10)

Similarly to the Hermitian case, we have

P (M ∈ Sn(E)) =
∫

Hn(E)
cn e−tr V (M)dM =

∫
En
|∆(z)|∏n

k=1ρ(dzk)∫
R
n |∆(z)|∏n

k=1ρ(dzk)
, (7.11)

and the free theory partition function is defined as

Z
(1)
n (0) = cn

∫

R
n
|∆n(z)|

n∏

k=1

ρ(dzk) = cn

∫

R
n
|∆n(z)|

n∏

k=1

e−V (zk)dzk . (7.12)

121



Chapter 7. Symmetric Matrix Ensemble and hydrodynamic chains

Deforming the potential we obtain

Z
(1)
n (t) = cn

∫

R
n
|∆n(z)|

n∏

k=1

ρt(dzk) = cn

∫

R
n
|∆n(z)|

n∏

k=1

e−V (zk)+
∑∞
i=1 ti z

i
k dzk . (7.13)

7.1.2 Pfaff lattice

As in the case of Toda, the Pfaff lattice emerges from a suitable decomposition of the

algebra go(∞) of invertible matrices1(see section 2.3). It is seen as composed of 2 × 2

blocks [10] and then it admits the natural decomposition

go(∞) = d− ⊕ d0 ⊕ d+ = d− ⊕ d−0 ⊕ d+
0 ⊕ d+ , (7.14)

where d0 has 2×2 blocks along the diagonal and zeros elsewhere, d± are the subalgebras of

upper/lower triangular matrices with 2×2 zero blocks along the diagonal. In addition, d0

can be further decomposed into

d−0 = { all 2× 2 blocks ∈ d0 are proportional to Identity }

d+
0 = { all 2× 2 blocks ∈ d0 are traceless } .

(7.15)

We introduce the skew-symmetric semi-infinite matrix J

J =

0 1 0 0 0 0 · · ·
−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

...
. . .







. (7.16)

and the associated involution σ : go(∞)→ go(∞)

σ : a 7→ σ (a) = J a>J . (7.17)

1In [38] go(∞) is addressed as the algebra behind the so called BKP hierarchy for the corresponding τ-
functions (here called Pfaff-KP), as well as gl(∞) is the one for the KP hierarchy in the associated τ-functions.
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To apply the AKS theorem, we consider the splitting

go(∞) = g+ ⊕ g− = t⊕n , (7.18)

where the subalgebras t and n are

t = d− ⊕ d−0 = { lower triangular matrices with 2× 2 diagonal blocks ∝ Id }

n = d+
0 ⊕ d+ = { a ∈ go(∞) | a = J a>J } = sp(∞) ,

(7.19)

and the inner product 〈A, B〉 = tr (AB) . Setting

H
(k)
0 = − trLk+1

k + 1
, (7.20)

the equation (2.27) for the AKS theorem reads

∂L

∂tk
= −

[ (
Lk

)
t
, L

]
=

[ (
Lk

)
n
, L

]
. (7.21)

The matrix L is, in this case, built from the dressing of the shift operatorΛ = {δi,j−1}1 ≤ i,j <∞
as

L(t) =Q(t)ΛQ(t)−1 , (7.22)

with the matrix Q ∈ G+, belonging to the group associated with the subalgebra g+, thus

being a lower triangular matrix with the 2× 2 blocks along the diagonal proportional to

the identity. The projectors entering in (7.21) are explicitly given as follows. Given a ∈
gl(∞)

a = (a)− + (a)0 + (a)+

= (a)t + (a)n

=
((

(a)− − J (a)>+ J
)

+
1
2

(
(a)0 − J (a)>0 J

))
+
((

(a)+ + J (a)>+ J
)

+
1
2

(
(a)0 + J (a)>0 J

))
.

(7.23)
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We now will follow the approach shown in [12, 13, 117] to express the Pfaff lattice in

terms of the corresponding Pfaffian τ-functions. As for the Toda lattice, the τ-function is

proportional to the partition function for the symmetric ensemble determined in (7.13)

Z
(1)
n (t) = cn

∫

R
n
|∆n(z)|

n∏

k=1

ρt(dzk) . (7.24)

Let us introduce the inner product on the skew-symmetric weight ρt(y,z) = −ρt(z,y)

〈f , g 〉t =
∫ ∫

R
2
f (y)g(z)ρt(y,z)dy dz

=
∫ ∫

R
2
f (y)g(z)ε(y − z)e−V (y)−V (z)+

∑∞
i=1 ti(yi+zi)dy dz ,

(7.25)

where ε(x) = sgn(x) and ε(0) = 0. The moments matrix is, in this case, given by

mn(t) =
(
µij(t)

)
0≤ i,j < n =

(
〈yi , zj 〉t

)
0≤ i,j < n , (7.26)

that is skew-symmetric. Due to the form of the inner product, for the moments µij(t) we

have
∂µij
∂tk

= µi+k,j +µi,j+k . (7.27)

For the corresponding semi-infinite moments matrix m∞(t) this leads to

∂m∞(t)
∂tk

=Λkm∞(t) +m∞(t)Λ>k , (7.28)

where Λ is the shift matrix mentioned above. The moments matrix so constructed ad-

mits a unique decomposition in terms of the inverse of the matrix of the aforementioned

group G+ and the semi-infinite matrix J , as

m∞(t) =Q(t)−1 J Q(t)>−1 , (7.29)
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with the matrix Q(t) of the form

Q(t) =

. . . 0 0 0 0 . . .

Q2n,2n 0 0 0 . . .

0 Q2n,2n 0 0 . . .

∗ ∗ Q2n+2,2n+2 0 . . .

∗ ∗ 0 Q2n+2,2n+2 . . .

...
...

...
...

. . .







. (7.30)

We can now state the theorem by Adler and van Moerbeke2.

Theorem 7.1.1 The τ-functions defined as Pfaffian of the moments matrix

τ2n(t)B pfm2n(t) = (detm2n(t))1/2 ∝ Z(1)
2n (t) , (7.31)

(i) satisfy the equation in the Pfaff-KP hierarchy

(
sk+4(∂̃)− 1

2
∂t1∂tk+3

)
τ2n(t) ◦ τ2n(t) = sk(∂̃)τ2n+2(t) ◦ τ2n−2(t) , k = 0,1,2, . . . ;

(7.32)

(ii) constitute the elements of the Pfaff lattice L(t) =Q(t)ΛQ(t)−1

L(t) =




0 1 0 0 0 0 . . .

∗ ∂t1 logτ2

(
τ4 τ0

τ2
2

)1/2

0 0 0
. . .

∗ ∗ −∂t1 logτ2 1 0 0
. . .

∗ ∗ ∗ ∂t1 logτ4

(
τ6 τ2

τ2
4

)1/2

0
. . .

∗ ∗ ∗ ∗ −∂t1 logτ4 1
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .




(7.33)

2The theorem here presented is in the form reported in [117], where the results of several works are
collected (see e.g. [12, 13, 7]).
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for which the commuting equations in different flows are (7.21)

∂L

∂tk
= −

[ (
Lk

)
t
, L

]
=

[ (
Lk

)
n
, L

]
; (7.34)

(iii) enter in the definition of the class of eigenvectors of L q(t, z) = (qn(t, z))n≥0, satisfying

L(t)q(t, z) = zq(t, z) . (7.35)

Here, qn(t, z) are the n-th degree polynomials in z, skew-orthonormal with respect to

the t-dependent inner product

〈qi(t, z) , qj(t, z)〉t = Jij . (7.36)

They admit the representation (qn(z, t))n≥0 =Q(t)χ(z), with χ(z) =
(
1, z , z2, . . .

)>
, and

q2n(t, z) = z2nh−1/2
2n

τ2n

(
t − [z−1]

)

τ2n(t)
, with h2n =

τ2n+2(t)
τ2n(t)

q2n+1(t, z) = z2nh−1/2
2n

1
τ2n(t)

(
z+

∂

∂t1

)
τ2n

(
t − [z−1]

)
.

(7.37)

In order to prove the formula (7.31), we consider the integral in the definition of the

partition function Z(1)
n (t) in (7.13). It involves the Vandermonde determinant (see (6.47))

∫

R
2n
|∆2n(z)|

2n∏

k=1

ρt(zk)dzk =

= (2n)!
∫

−∞ < z1 < z2 < ... < z2n <∞
det

(
zij+1

)
0 ≤ i,j ≤ 2n−1

2n∏

k=1

ρt(zk)dzk ,

(7.38)

where we impose an ordering of the eigenvalues to remove the absolute value of the de-

terminant and, as a consequence of this, a factorial factor appears in front of the integral.
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We consider a shift of the indices i and j

(2n)!
∫

−∞ < z1 < z2 < ... < zn <∞
det

(
zij+1

)
0 ≤ i,j ≤ 2n−1

2n∏

k=1

ρt(zk)dzk =

= (2n)!
∫

−∞ < z1 < z2 < ... < zn <∞
det

(
zi−1
j

)
1 ≤ i,j ≤ 2n

2n∏

k=1

ρt(zk)dzk

= (2n)!
∫

−∞ < z1 < z2 < ... < zn <∞
det

(
zi−1
j ρt(zj )

)
1 ≤ i,j ≤ 2n

2n∏

k=1

dzk .

(7.39)

Given the ordering of the eigenvalues and the fact that z1 appears only in the first column

of the matrix
(
zi−1
j ρt(zj )

)
1 ≤ i,j ≤ 2n

, this can be integrated for each element as

Fi(z2) =
∫ z2

−∞
ρt(z1)zi−1

1 dz1 , ∀i = 1, . . . , 2n (7.40)

and i-th element of the column substituted with Fi(z2)

det
(
zi−1
j ρt(zj )

)
1 ≤ i,j ≤ 2n

=

ρt(z1) ρt(z2) . . . ρt(z2n)

z1ρt(z1) z2ρt(z2) . . . z2nρt(z2n)

...
...

...

z2n−1
1 ρt(z1) z2n−1

2 ρt(z2) . . . z2n−1
2n ρt(z2n)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(Fi(z2))1≤ i ≤ 2n

.

(7.41)

After the substitution, the eigenvalue z2 appears in the first two columns. We can reiter-

ate the procedure for z3, substituting the third column with

Fi(z4) =
∫ z4

−∞
ρt(z3)zi−1

3 dz3 , ∀i = 1, . . . , 2n, (7.42)

and then subtracting Fi(z2)

Fi(z4)−Fi(z2) =
∫ z4

z2

ρt(z)z
i−1dz , ∀i = 1, . . . , 2n. (7.43)

In this way, all the variables z1, z3, z5, . . . can be integrated out and the expression in the
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last row of (7.39) becomes

(2n)!
∫

−∞ < z2 < z4 < ... < z2n <∞

n∏

k=1

ρt(z2k)dz2k

det
(
Fi(z2) , zi2 , Fi(z4)−Fi(z2) , . . . , Fi(z2n)−Fi(z2n−2) , zi2n

)
0 ≤ i ≤ 2n−1

.

(7.44)

We introduce the function

Gi(z) = F′i (z) =
∂

∂z

∫ z

−∞
xi ρt(x)dx = zi ρt(z) , (7.45)

and using the invariance of the determinant with respect to the addition and subtraction

of columns, the expression in (7.44) takes the form

(2n)!
∫

−∞ < z2 < z4 < ... < z2n <∞
det

(
Fi(z2) , Gi(z2) , . . . , Fi(z2n) , Gi(z2n)

)
0 ≤ i ≤ 2n−1

n∏

k=1

dz2k =

=
(2n)!
n!

∫

R
n

det
(
Fi(z1) , Gi(z1) , . . . , Fi(zn) , Gi(zn)

)
0 ≤ i ≤ 2n−1

n∏

k=1

dzk ,

(7.46)

where in the last step the ordering of eigenvalues is removed invoking the symmetry of

the expression and this last can be seen as a sum over n terms of the kind αij

αij =
∫

R

(
Fi(z)Gj(z)−Fj(z)Gi(z)

)
dz

=
∫

−∞ < y < x <∞

(
Gi(y)Gj(x)−Gj(y)Gi(x)

)
dxdy

=
1
2

∫

R
2
Gi(x)Gj(y)ε(x − y)dxdy , with ε(z) =



1 z > 0

−1 z < 0

0 z = 0 ,

(7.47)

using (7.45).
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Thus, the (7.46) brings to

(2n)!
n!

∑

σ∈S2n

(−1)σ
2n−1∏

k=0

ασ (k)σ (k+1) =

=
(2n)!
2nn!

∑

σ∈S2n

(−1)σ
2n−1∏

k=0

(∫

R
2
xσ (k) yσ (k+1)e

∑
i ti(xi+yi) ε(x − y)ρ(x)ρ(y)dxdy

)

= (2n)!pfm2n(t) = (2n)!τ2n(t) ,

(7.48)

where we recognize the Pfaffian τ-function, that in the case of a matrix with an even

number of rows and columns is given by

pfm2n(t) = (detm2n(t))1/2 . (7.49)

The Pfaffian τ-functions satisfy the bilinear identity [13, 7]

Resz=∞
{
τ2n

(
t − [z−1]

)
τ2m+2

(
t′ + [z−1]

)
eξ(t−t′ ,z) z2n−2m−2

}

+ Resz=0

{
τ2n+2 (t − [z]) τ2m (t′ + [z]) eξ(t′−t,z) z2n−2m

}
= 0 , ∀t, t′ ∈C ,

(7.50)

with ξ(t, z) defined in (6.51). Considering the change of variables (t, t′)→ (x,y) as in (6.54),

the Schur polynomials (6.52) and the Taylor expansion in y = (t − t′)/2, we obtain

1
2πi

∮

z=∞
e−

∑
k 2yk zk τ2n

(
x − y − [z−1]

)
τ2m+2

(
x+ y + [z−1]

)
z2n−2m−2dz

+
1

2πi

∮

z=0
e
∑
k 2yk zk τ2n+2 (x − y − [z]) τ2m (x+ y + [z]) z2n−2mdz =

=
1

2πi

∮

z=∞

∞∑

j=0

zj sj(−2y) e
∑
k −yk ∂k

∞∑

k=0

z−k sk(−∂̃ )τ2n(x) ◦ τ2m+2(x)z2n−2m−2dz

+
1

2πi

∮

z=0

∞∑

j=0

z−j sj(2y) e
∑
k −yk ∂k

∞∑

k=0

zk sk(∂̃ ) τ2n+2(x) ◦ τ2m(x)z2n−2mdz

=
∑

j−k+2n−2m=1

sj(−2y) e
∑
i −yi ∂i sk(−∂̃ ) τ2n(x) ◦ τ2m+2(x)

+
∑

k−j+2n−2m=−1

sj(2y) e
∑
i −yi ∂i sk(∂̃ ) τ2n+2(x) ◦ τ2m(x)

= . . . + yk

((1
2
∂x1

∂xk − sk+1(∂̃ )
)
τ2n(x) ◦ τ2n(x) + sk−3(∂̃ ) τ2n+2(x) ◦ τ2n−2(x)

)
+ . . . .

(7.51)

With x → t, imposing that the coefficients of yk are zero, we identify the Pfaff KP hier-

129



Chapter 7. Symmetric Matrix Ensemble and hydrodynamic chains

achy (7.32).

The procedure to build the Pfaff lattice from the matrix Q(t) described at the be-

ginning of the section allows us to write the elements in the diagonal and in the above

diagonal showed in (7.33) in terms of the sequence of Pfaffian τ-functions explicitly. The

lower triangular part is composed of terms involving combinations of Schur polynomials

whose form is not specified. In what follows, we will focus on a specific reduction of the

Pfaff lattice, obtained selecting the even times only in the weight of the inner product,

mimicking the way in which Volterra is obtained from Toda. A study of the equations

of the flows obtained for the first even times in the reduction shows that the above men-

tioned expressions given in [7] for the fields occupying the first lower diagonal are valid

only up to a truncated finite lattice for n = 4 and cannot be generalised3.

For the last part of the property (ii), we consider the equations for the flows of the

moments matrix (7.28) in conjugation with the matrix Q(t)

0 =Q(t)
(
Λkm∞(t) +m∞(t)Λ>k − ∂m∞(t)

∂tk

)
Q(t)>

=
(
Q(t)ΛkQ(t)−1

)
J −

(
J Q(t)>−1Λ>kQ(t)> J

)
J +

∂Q(t)
∂tk

Q(t)−1 J −
(
J Q(t)−1> ∂Q(t)>

∂tk
J

)
J

=
(
L(t)k +

∂Q(t)
∂tk

Q(t)−1
)
− J

(
L(t)k +

∂Q(t)
∂tk

Q(t)−1
)>
J ,

(7.52)

where we use the definition of the Pfaff lattice and the property J2 = −I . Evaluating the

projections ( )0 and ( )±, corresponding to selecting 2 × 2 blocks along the diagonal and

upper/lower triangular part with zero elements in the 2 × 2 blocks along the diagonal

respectively, we obtain the equations for the commuting vector fields (7.34).

Finally, for (iii), from the skew-Borel decomposition, we get the skew-orthonormality

of the polynomials qn(z, t)

〈qk(z, t) , ql(z, t)〉t
∣∣∣
k,l≥0

=Q(t)
(
〈yk , zl 〉t

)
k,l≥0

Q(t)> =Q(t)m∞(t)Q(t)> = J . (7.53)

3Whenever we have explored an aspect of the lattices here reported, we have of course considered a
truncated version of the lattices, for which the boundary effects have been neglected.
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Then, using the first of (6.66) and the definition of the Pfaff lattice, we get

L(t)q(z, t) =Q(t)ΛQ(t)−1Q(t)χ(z) =Q(t)Λχ(z)

= zQ(t)χ(z) = zq(z, t) .
(7.54)

Hence, the skew-orthogonal polynomials are eigenvectors of the Pfaff lattice.

7.2 Lattice equations in the first two flows for the Pfaff hierar-

chy

In the following, we will introduce a suitable notation for the fields constituting the Pfaff

lattice. This is meant to highlight how certain fields evolve similarly, and will be helpful

later on in clarifying the underlying double chain structure for the field variables.

We start by recalling the form of the Pfaff lattice introduced in section 7.1.2

L(t) =




0 1 0 0 0 0 . . .

∗ ∂t1 logτ2

(
τ4 τ0

τ2
2

)1/2

0 0 0
. . .

∗ ∗ −∂t1 logτ2 1 0 0
. . .

∗ ∗ ∗ ∂t1 logτ4

(
τ6 τ2

τ2
4

)1/2

0
. . .

∗ ∗ ∗ ∗ −∂t1 logτ4 1
. . .

...
. . .

. . .
. . .

. . .
. . .

. . .




, (7.55)

with the fields of the main diagonal and the upper above diagonal explicitly given in

terms of τ-functions of the system. The matrix L(t) satisfies the Lax equations (7.34)

∂L

∂tk
= −

[ (
Lk

)
t
, L

]
. (7.56)

From (7.23) the action of the projection labelled by t in (7.56) on a 2× 2 blocks matrix a

(a)t =
(
(a)− − J (a)>+ J

)
+

1
2

(
(a)0 − J (a)>0 J

)
, (7.57)
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where J is the skew-symmetric matrix (7.16), ( )± is the projection selecting the up-

per/lower triangular part without the 2×2 blocks along the main diagonal and ( )0 selects

the 2× 2 blocks along the main diagonal.

The τ-functions are proportional to the partition function describing Sn for 2n × 2n

symmetric matrices

Z
(1)
2n (t) = c2n

∫

R
2n
|∆2n(z)|

2n∏

k=1

ρt(dzk) = c2n

∫

R
2n
|∆2n(z)|

2n∏

k=1

e−
1
2 z

2
k+

∑∞
i=1 tiz

i
k dzk , (7.58)

as discussed in section 7.1.1, see in particular equation (7.13). Setting to zero the cou-

pling constants ti in (7.58), we find the free theory given by the Gaussian Orthogonal

Ensemble. We recall that the τ-function is defined as the Pfaffian of the moments matrix

τ2n(t) = pf(m2n(t)) = (det(m2n(t)))1/2

τ2n(t) =
1

2nn!

∑

σ∈S2n

(−1)σ
2n−1∏

k=0

(∫

R
2
xσ (k) yσ (k+1)e−

1
2 (x2+y2)+

∑
i ti(xi+yi) ε(x − y)dxdy

)
.

(7.59)

We observe that Lax equations for the Pfaff lattice (7.56) can be recast in the form of a

two-component infinite chain. We introduce the following notation for the entries of the

lattice

L(t) =




0 1 0 0 0 0 0 0 0 . . .

w−1
1 v0

1 w0
1 0 0 0 0 0 0 . . .

v−1
1 w1

1 −v0
1 1 0 0 0 0 0 . . .

w−2
1 v1

1 w−1
2 v0

2 w0
2 0 0 0 0 . . .

v−2
1 w2

1 v−1
2 w1

2 −v0
2 1 0 0 0 . . .

w−3
1 v2

1 w−2
2 v1

2 w−1
3 v0

3 w0
3 0 0 . . .

v−3
1 w3

1 v−2
2 w2

2 v−1
3 w1

3 −v0
3 1 0 . . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .




. (7.60)

We distinguish between the entries in the odd and even diagonals of the lattice, respec-

tively wkn and vkn, with k ∈ Z and n ∈N. The first upper diagonal is the highest non-zero

odd diagonal of the lattice, and the non-constant fields belonging to it are named w0
n.
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The main diagonal is populated by the fields v0
n. For the fields appearing in the lower

triangular part of the lattice, the upper index in absolute value identifies the diagonal to

which the field belongs, and negative and positive values refer to odd and even positions

of the diagonal respectively. Hence, the fieldswkn occupy the odd positions of the (2|k|−1)-

th below diagonal for k < 0 and the even positions for k > 0. The same is valid for the

fields vkn in the (2|k|)-th below diagonal. From (7.56), we can investigate the evolution

for the fields vkn and wkn with respect to the different times. With the chosen notation the

structure characterising the matrix L in 2× 2 blocks is evident

L(t) =

0 1 0 0 0 0 0 0 0 . . .

w−1
1 v0

1 w0
1 0 0 0 0 0 0 . . .

v−1
1 w1

1 −v0
1 1 0 0 0 0 0 . . .

w−2
1 v1

1 w−1
2 v0

2 w0
2 0 0 0 0 . . .

v−2
1 w2

1 v−1
2 w1

2 −v0
2 1 0 0 0 . . .

w−3
1 v2

1 w−2
2 v1

2 w−1
3 v0

3 w0
3 0 0 . . .

v−3
1 w3

1 v−2
2 w2

2 v−1
3 w1

3 −v0
3 1 0 . . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .







.

We can rewrite this in terms of 2× 2 blocks bij as follows

L(t) =




. . .
. . . 0 0 0 0 · · ·
. . .

. . . 0 0 0 · · ·

· · · b1 j−1 b0 j−1 0 0 · · ·

· · · bi j · · · b1 j b0 j 0 · · ·

· · · b1 j+1 b0 j+1 0

. . .
. . .




, (7.61)

where the blocks are given in terms of the previously introduced fields vkn and wkn, as

bi j =




w−ii−j+1 vi−1
i−j+1

v−ii−j+1 wii−j+1



, b0 j =




w0
j 0

v0
j 1



, with j ≤ i, i ≥ 0 . (7.62)
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In the following, we will display the equations for the first two flows (t1, t2) in terms

of the fields vkn and wkn. We start by considering the equations for the t1-flow in the

fields vkn

∂t1v
k
n =

1
2

(
v0
n−1 + v0

n − v0
n−k−1 − v0

−k+n

)
vkn +wk−1

n −w0
nw
−(k+1)
n+1

−w−1
n w

−k
n −w0

n−1w
−(k−1)
n−1 , k < −1

∂t1v
−1
n =

1
2

(
v0
n−1 − v0

n+1

)
v−1
n +w−2

n −w0
n −w−1

n w
1
n −w0

n−1w
2
n−1

∂t1v
0
n =w0

nw
1
n

∂t1v
1
n =

1
2

(
v0
n+1 − v0

n−1

)
v1
n −w−2

n +w0
n +w−1

n+1w
1
n +w0

n+1w
2
n

∂t1v
k
n =

1
2

(
v0
k+n + v0

k+n−1 − v0
n − v0

n−1

)
vkn +w0

n+k−1w
k−1
n +w−1

n+kw
k
n

+w0
n+kw

k+1
n −w−(k+1)

n , k > 1 .

The equations for the fields wkn in the time t1 are

∂t1w
k
n =

1
2

(
v0
n−k−1 + v0

n−k−2 + v0
n + v0

n−1

)
wkn +w0

n−k−2v
k+2
n −w0

nv
−(k+2)
n+1

+w−1
n−k−1v

k+1
n −w−1

n v
−(k+1)
n +w0

n−k−1v
k
n −w0

n−1v
−k
n−1, k < −1

∂t1w
−1
n =w0

nv
−1
n −w0

n−1v
1
n−1

∂t1w
0
n =

1
2

(
v0
n+1 − 2v0

n + v0
n−1

)
w0
n

∂t1w
k
n = − 1

2

(
v0
n+k + v0

n+k−1 + v0
n + v0

n−1

)
wkn + vkn − v−kn , k > 0 .
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For the second flow in the time t2 we have for the fields vkn

∂t2v
k
n = −1

2
vkn

(
(v0
n−k)

2 − (v0
n−k−1)2 − (v0

n)2 + (v0
n−1)2 +w0

n−kw
1
n−k −w0

n−k−1w
1
n−k−1

−w0
nw

1
n +w0

n−1w
1
n−1

)
+w0

n−k v
k−1
n −w0

n−k−1 v
k+1
n +w0

n v
k+1
n+1 −w0

n−1 v
k−1
n−1

+
(
v0
n−k − v0

n−k−1

)
wk−1
n −

(
v0
n − v0

n−1

)
w−1
n w−kn

−
(
w0
n v

k+1
n −w0

n−1 v
−(k+1)
n−1

)
w−kn , k < 0

∂t2v
0
n = w0

n

(
v1
n + v−1

n

)

∂t2v
k
n =

1
2
vkn

(
(v0
n+k)

2 − (v0
n+k−1)2 + (v0

n)2 − (v0
n−1)2 +w0

n+kw
1
n+k −w0

n+k−1w
1
n+k−1

+w0
nw

1
n −w0

n−1w
1
n−1

)
+w0

n+k v
k+1
n −w0

n+k−1 v
k−1
n +w0

n v
k
n+1 −w0

n−1 v
k+1
n−1

+
(
v0
n+k − v0

n+k−1

)
w−1
n+kw

k
n −

(
v0
n − v0

n−1

)
w
−(k+1)
n

+
(
w0
n+k v

−(k−1)
n+k −w0

n+k−1 v
k−1
n+k−1

)
wkn , k > 0

Finally, the evolution of the fields wkn in t2 is given by the equations

∂t2w
k
n =

1
2
wkn

(
(v0
n−k−1)2 − (v0

n−k−2)2 + (v0
n)2 − (v0

n−1)2

+w0
n−k−1w

1
n−k−1 −w0

n−k−2w
1
n−k−2 +w0

nw
1
n −w0

n−1w
1
n−1

)

+w0
n−k−1w

k−1
n −w0

n−k−2w
k+1
n +w0

nw
k+1
n+1

−w0
n−1w

k−1
n−1 +

(
v0
n−k−1 − v0

n−k−2

)
w−1
n−k−1 v

k+1
n −

(
v0
n − v0

n−1

)
w−1
n v

−(k+1)
n

+
(
w0
n−k−1 v

k+2
n−k−1 +w0

n−k−2 v
−(k+2)
n−k−2

)
vk+1
n

−
(
w0
n v

k+2
n +w0

n−1 v
−(k+2)
n−1

)
v
−(k+1)
n , k < 0

∂t2w
0
n =

1
2
w0
n

(
(v0
n+1)2 − (v0

n−1)2 +w0
n+1w

1
n+1 −w0

n−1w
1
n−1

)
+w0

n

(
w−1
n+1 −w−1

n−1

)

∂t2w
1
n =− 1

2
w1
n

(
(v0
n+1)2 − (v0

n−1)2 +w0
n+1w

1
n+1 −w0

n−1w
1
n−1

)
+w0

n+1w
2
n − (w0

n)2

+w0
nw

0
n+1 −w0

n−1w
2
n−1 +

(
v0
n+1 − v0

n

)
v1
n −

(
v0
n − v0

n−1

)
v−1
n
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∂t2w
k
n =− 1

2
wkn

(
(v0
n+k)

2 − (v0
n+k−1)2 + (v0

n)2 − (v0
n−1)2 +w0

n+kw
1
n+k

−w0
n+k−1w

1
n+k−1 +w0

nw
1
n −w0

n−1w
1
n−1

)
+w0

n+kw
k+1
n −w0

n+k−1w
k−1
n

+w0
nw

k−1
n+1 −w0

n−1w
k+1
n−1 +

(
v0
n+k − v0

n+k−1

)
vkn −

(
v0
n − v0

n−1

)
v−kn , k > 1.

We can see how the complexity of the equations increases for higher flows, comparing

the evolution of the fields in t2 with those in t1. Nevertheless, it is worth noticing that the

number of fields on which these expressions depend remains finite. In the following we

will see how the number of elements of every equation reduces if we consider a particular

restriction, inspired by the form of initial condition of the Pfaff lattice related to the

symmetric matrix ensemble.

7.3 The even Pfaff lattice

We look for a suitable reduction of the Pfaff lattice with the aim of simplifying the struc-

ture, inspired by how the Volterra lattice is determined starting from the Toda lattice.

We consider the initial datum t = 0, for which the number of field variables entering the

lattice is considerably reduced. In particular, only the fields wkn survive in the new con-

figuration. Then we look for a suitable selection of the coupling constants such that the

expression for the lattice is completely given in terms of wkn, the even Pfaff lattice.

7.3.1 Initial condition with the GOE

We now consider the initial condition for the Lax matrix L(t = 0). From (7.33), we have

the explicit form in terms of τ-functions for the functions w0
n(t) and v0

n(t). Specifically,

the component w0
n(t) can be expressed as follows

w0
n(t) =

(
τ2n+2(t)τ2n−2(t)

τ2
2n(t)

)1/2

. (7.63)

and the component v0
n(t) as

v0
n(t) = ∂t1 logτ2n(t). (7.64)
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The even Pfaff lattice

Both expressions can be evaluated for t = 0, emphasising that in this case the symmetric

matrix ensemble reduces to the GOE. We will consider again the Selberg’s integral (6.79),

with in this case γ = 1/2 and a = 1/2, giving

∫

R
n
|∆(x)|

n∏

k=1

e−
1
2 x

2
k dxk = (2π)n/2

n∏

k=1

Γ (1 + k
2 )

Γ (1 + 1
2 )
, (7.65)

and since Γ (1 + 1/2) =
√
π/2 we have

∫

R
n
|∆(x)|

n∏

k=1

e−
1
2 x

2
k dxk = 2(n+2)/2π(n−1)/2

n∏

k=1

Γ

(
1 +

k

2

)
. (7.66)

Recalling that the τ-function is in this case written in terms of the Pfaffian of the moment

matrix with a skew-symmetric inner product and using the properties of the Gamma

function, we have

τ2n(0) = πn/2
n−1∏

k=0

2−2k(2k)! . (7.67)

Therefore, equations (7.63) and (7.67) imply

w0
n(0) = 2

√
π
√

2n(2n− 1) . (7.68)

To evaluate (7.64), we consider only the dependence on t1 in the expression of the Pfaf-

fian τ-function. Recalling that t = {t1, t2, t3, . . . }, we have

τ2n(t1,0,0, . . . ) = πn/2 e
nt21

2

n−1∏

k=0

2−2k(2k)! . (7.69)

Hence, the fields constituting the main diagonal of the Pfaff lattice vanish

∂t1τ2n(t)
∣∣∣∣∣
t=0

= nt1π
n/2 e

nt21
2

n−1∏

k=0

2−2k(2k)!
∣∣∣∣∣
t=0

= 0 =⇒ v0
n(0) = 0 . (7.70)
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We observe that the fields vkn(0) for k , 0 vanish at t = 0 as well. This can be seen by

considering that the moment matrix m2n(0) in the case of a symmetric weight is

m2n(0) =
(
µi,j

)
0≤i,j≤n−1

=




0 µ0,1 0 µ0,3 0 µ0,5 . . .

−µ0,1 0 µ1,2 0 µ1,4 0 . . .

0 −µ1,2 0 µ2,3 0 µ2,5 . . .

−µ0,3 0 −µ2,3 0 µ3,4 0 . . .

0 −µ1,4 0 −µ3,4 0 µ4,5 . . .

−µ0,5 0 −µ2,5 0 −µ4,5 0 . . .
...

...
...

...
...

...
. . .




, (7.71)

because of the skew-symmetry of the inner product.

When considering the decomposition of the moment matrix to obtain the matrixQ(0)

that allows to build the Pfaff lattice (see equations (7.29) and (7.30)), we have

Q(0) =




Q0,0 0 0 0 0 0 . . .

0 Q0,0 0 0 0 0 . . .

Q3,1 0 Q2,2 0 0 0 . . .

0 Q4,2 0 Q2,2 0 0 . . .

Q5,1 0 Q5,3 0 Q4,4 0 . . .

0 Q6,2 0 Q6,4 0 Q4,4 . . .

...
...

...
...

...
...

. . .




, (7.72)

and the corresponding Pfaff lattice has the form

L(0) =




0 1 0 0 0 0 0 0 0 . . .

w−1
1 0 w0

1 0 0 0 0 0 0 . . .

0 w1
1 0 1 0 0 0 0 0 . . .

w−2
1 0 w−1

2 0 w0
2 0 0 0 0 . . .

0 w2
1 0 w1

2 0 1 0 0 0 . . .

w−3
1 0 w−2

2 0 w−1
3 0 w0

3 0 0 . . .

0 w3
1 0 w2

2 0 w1
3 0 1 0 . . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .




. (7.73)
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In what follows, we will study the Pfaff lattice in the specific restriction for which the

fields that are zero at t = 0 remain zero for different times.

7.3.2 The even reduction

We consider the symmetric matrix ensemble Sn with even power interactions specified

by the partition function (7.13)

Z
(1)
2n (t) = c2n

∫

R
2n
|∆2n(z)|

2n∏

k=1

e−
z2
2 +

∑∞
i=1 t2i z

2i
k dzk . (7.74)

We are going to show that it provides a solution to a reduction of the even Pfaff lattice,

i.e. the commuting flows (7.56) associated to the even times t2k only. We will see how the

notation we have introduced is suitable for the description of this system, involving one

type of fields only.

In this case, the equation τ2n(t) = pf(m2n(t)) still holds with m2n(t) = (µij(t))0≤i,j≤2n−1

and in the inner product we select only the times labelled by even indices

µij(t) = 〈xi , yj〉t =
∫ ∫

R
2
xi yj σ (x − y)e

∑
k≥1 t2k (x2k+y2k)e−

1
2 (x2+y2)dxdy. (7.75)

Hence, the moments matrix m2n(t) reads as

m2n(t) =
(
µi j

)
0≤i,j≤2n−1

=




0 µ01 0 µ03 0 µ05 . . .

−µ01 0 µ12 0 µ14 0 . . .

0 −µ12 0 µ23 0 µ25 . . .

−µ03 0 −µ23 0 µ34 0 . . .

0 −µ14 0 −µ34 0 µ45 . . .

−µ05 0 −µ25 0 −µ45 0 . . .

...
...

...
...

...
...

. . .




, (7.76)

for all times t = {t2, t4, t6, . . . }. The moments (7.75) satisfy the evolution equations

∂µij
∂t2k

= µi+2k,j +µi,j+2k (7.77)
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which imply for the semi-infinite moment matrix

∂m∞
∂t2k

=Λ2km∞ +m∞Λ2k . (7.78)

We consider the reduction of the Lax equation (7.56) of the form

∂L

∂t2k
=

[
−(L2k)t ,L

]
, (7.79)

with

L(t) =




0 1 0 0 0 0 0 0 0 . . .

w−1
1 0 w0

1 0 0 0 0 0 0 . . .

0 w1
1 0 1 0 0 0 0 0 . . .

w−2
1 0 w−1

2 0 w0
2 0 0 0 0 . . .

0 w2
1 0 w1

2 0 1 0 0 0 . . .

w−3
1 0 w−2

2 0 w−1
3 0 w0

3 0 0 . . .

0 w3
1 0 w2

2 0 w1
3 0 1 0 . . .

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .




, (7.80)

i.e. the Lax matrix associated with Sn with even power interactions is obtained from the

general one by setting the variables v0
n, vkn identically equal to zero for any t. In other

words, the partition function gives a solution to a reduction of the even Pfaff hierarchy

which preserves the zeros of the initial Lax matrix L(0) given by the expression (7.73).
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The evolution equations for the first non trivial flow t2 of the fields constituting the even

Pfaff lattice read as

∂t2w
k
n =

1
2

(
wknw

0
nw

1
n +wknw

0
n−k−1w

1
n−k−1 −wknw0

n−1w
1
n−1 −wknw0

n−k−2w
1
n−k−2

)

+wk+1
n+1w

0
n +wk−1

n w0
n−k−1 −wk−1

n−1w
0
n−1 −wk+1

n w0
n−k−2, k < −1

∂t2w
−1
n = w0

n

(
w−1
n w

1
n +w−2

n +w0
n

)
−w0

n−1

(
w−1
n w

1
n−1 +w−2

n−1

)
−
(
w0
n−1

)2

∂t2w
0
n =

1
2

(
w0
n+1w

1
n+1 −w0

n−1w
1
n−1

)
w0
n +

(
w−1
n+1 −w−1

n

)
w0
n

∂t2w
1
n =

1
2

(
w0
n−1w

1
n−1w

1
n −w0

n+1w
1
nw

1
n+1

)
+w0

n+1w
2
n −w0

n−1w
2
n−1

∂t2w
k
n =

1
2

(
w0
n−1w

1
n−1w

k
n +w0

n+k−1w
1
n+k−1w

k
n −w0

nw
1
nw

k
n −w0

n+kw
1
n+kw

k
n

)

+w0
nw

k−1
n+1 +w0

n+kw
k+1
n −w0

n−1w
k+1
n−1 −w0

n+k−1w
k−1
n , k > 1.

(7.81)

7.4 Thermodynamic limit and integrable hydrodynamic chain

We now consider the continuum limit of the equations for the Pfaff lattice, exploring the

asymptotic properties of the symmetric matrix ensemble Sn for large n, with a focus on

the case of even power interactions, where the Pfaff lattice is given by (7.80), satisfying

the Lax equations (7.79).

As mentioned above, the lattice equations for the reduced even Pfaff hierarchy (7.81)

constitute an infinite chain for the variables wkn, where k ∈ Z identifies the components

of the chain and n ∈ N labels points on the lattice. As n→ ∞, for the variables wkn we

have

wkn+1 −wkn =O(ε) , ε→ 0 , (7.82)

with ε such that x = εn remains finite. In the following, we derive the continuum limit

equations for the chain and study the integrability at the leading order with respect to

the ε expansion. We illustrate the result for the first equation of the hierarchy given by

the t2-flows. Our considerations extend to the flows in t4 and t6 as well, and we conjecture

they hold for any equation of the hierarchy.

We introduce the interpolation function wk(x/ε) with x = εn so that wk(n) = wkn, and
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define

uk(x) := wk
(x
ε

)

with uk(x ± ε) = wkn±1. Substituting uk(x) into the equations (7.81), expanding in Taylor

series for ε→ 0 and setting t = ε t2, at the leading orderO(ε0) we get the following system

of PDEs

ukt =
(
(k + 2)uk+1 − kuk−1 +u1uk

)
u0
x +u0uku1

x +u0uk−1
x +u0uk+1

x , k < 0

u0
t = u0u1u0

x +
(
u0

)2
u1
x +u0u−1

x

u1
t =

(
2u2 −

(
u1

)2
)
u0
x −u0u1u1

x +u0u2
x

ukt =
(
(k + 1)uk+1 − (k − 1)uk−1 −u1uk

)
u0
x −u0uku1

x +u0uk−1
x +u0uk+1

x , k > 1

(7.83)

with the notation ft = ∂tf , fx = ∂xf . In particular, we note that the system (7.83) is an

infinite chain of quasilinear PDEs of hydrodynamic type. In fact, the equations of the

chain are of the form

ukt = ak0u
0
x + ak1u

1
x + akk−1u

k−1
x + akk+1u

k+1
x , (7.84)

or equivalently in vector form

ut = A(u)ux , u =
(
. . . , u−1, u0, u1, . . .

)>
, (7.85)

where A(u) =
{
akj

}+∞
j,k=−∞ is an infinite matrix such that akj = 0 if j < {0,1, k − 1, k + 1} and

ak0 =



(k + 2)uk+1 − kuk−1 +u1uk if k < 0

u0u1 if k = 0

(k + 1)uk+1 − (k − 1)uk−1 −u1uk if k ≥ 1

ak1 =



u0uk if k ≤ 0

−u0uk if k ≥ 1

akk−1 =



u0 if k , 1

(
2u2 − (u1)2

)
if k = 1

akk+1 =



u0 if k , 0

(u0)2 if k = 0
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By applying the same procedure, one can construct a hierarchy of infinitely many com-

muting flows, each of them in the form of a hydrodynamic chain from the thermody-

namic limit of the higher flows of the hierarchy (7.79).

The hydrodynamic chain (7.83) is integrable as it possesses an infinite hierarchy of

commuting flows. In the following, we show that the hydrodynamic chain (7.83) is di-

agonalisable and integrable according to the criterion introduced and discussed in sec-

tion 3.2, namely the existence of integrable hydrodynamic reductions in an arbitrary

number of components.

Referring to definition 3.2.1 describing the chain class, and bearing in mind the form

of the matrix A(u) as specified in (7.4), we have the following

Proposition 7.4.1 Given the chain (7.83), the associated matrix A(u) in (7.85) belongs to the

chain class.

Now, we can construct the Nijenhuis and Haantjes tensors of the infinite (sufficiently

sparse) matrix A(u), to study the diagonalisability of the chain, as described in sec-

tion 3.2. We state the following proposition.

Proposition 7.4.2 Given the chain (7.83), the Haantjes tensor of the associated matrix A(u)

vanishes.

The proof proceeds by direct inspection. We recall the form of the Nijenhuis tensor

in (3.71)

N i
jk = apj (u)∂pa

i
k(u)− apk (u)∂pa

i
j(u)− aip(u)

(
∂ja

p
k (u)−∂kapj (u)

)
.

Observing that, by definition, N i
jk is antisymmetric under the exchange of j and k, a

direct calculation shows that N0
jk = 0 for any j and k. Similarly, for i , 0 the only nonzero

elements of N i
jk are

N i
0±1, N

i
0 i , N

i
0 i±1, N

i
1 i±1N

i
−1 i±1, N

i
−1+1 (7.86)

and their counterparts with the lower indices exchanged. These components can be com-

puted for a generic value of i, yielding
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. for |i| > 2

N i
01 =



u0
(
(i − 1)ui−1 − (i + 1)ui+1

)
if i > 2

u0
(
iui−1 − (i + 2)ui+1

)
if i < −2

N i
0−1 =



(i − 1)ui−1 +u1ui − (i + 1)ui+1 if i > 2

iui−1 −uiu1 − (i + 2)ui+1 if i < −2

N i
−11 = −sgn(i)u0ui

N i
0 i = −4u0

N i
1 i+1 =N i

1 i−1 = (u0)2

N i
0 i+1 =N i

0 i−1 = u0u1

N i
−1 i+1 =N i

−1 i−1 = u0

. for |i| ≤ 2

N2
01 = u0(2u1 − 3u3)

N2
0−1 = u1(1 +u2)− 3u3

N2
−11 = −u0(−1 +u2)

N2
02 = −4u0

N2
03 = u0u1

N2
13 = (u0)2

N2
−13 = u0

N1
01 = −2u0(2 +u2)

N1
02 = u0u1

N1
12 = (u0)2

N1
−10 = −(u1)2 + 2u2

N1
−11 = −u0u1

N1
−12 = u0

N−2
01 = −2u−3u0

N−2
0−1 = −2u−3 + (−u−2 +u0)u1

N−2
−11 = (u−2 −u0)u0

N−2
0−2 = −4u0

N−2
0−3 = u0u1

N−2
1−3 = (u0)2

N−2
−1−3 = u0

N−1
01 = −u0(u−2 + 2u0)

N−1
0−1 = −u−2 − 6u0 −u−1u1

N−1
0−2 = u0u1

N−1
1−2 = (u0)2

N−1
−1−2 = u0

N−1
−11 = u0u−1
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We recall the expression of the Haantjes tensor given in (3.72)

H i
jk =N i

pq a
p
j (u)aqk(u)−N p

jq a
i
p(u)aqk(u)−N p

qk a
i
p(u)aqj (u) +N p

jk a
i
q(u)aqp(u) .

The structure of N i
jk and A(u) induces constraints on the range of values the indices p

and q can take in the expression of the Haantjies tensor (3.72), and consequently on

potential nonzero elements. Indeed, the form of N i
jk , specified by the elements (7.86),

implies that

H i
jk , 0 , i ∈Z, j,k ∈ {0,±1,±2,3, i, i ± 1, i ± 2, i ± 3} . (7.87)

Given the explicit expressions for akj in (7.4) and N i
jk above, a direct calculation demon-

strates that H i
jk = 0 for the listed values of the lower indices. This proves the statement.

We now study the integrability of the chain (7.85) by following the approach based

on the method of hydrodynamic reductions applied to the system (7.83) and reported in

section 3.2.1. We look for solutions of the form

uk = uk
(
R1,R2, . . . ,RN

)
(7.88)

for an arbitrary number N of components Ri = Ri(x, t). The functions
{
Ri

}N
i=1

are the

Riemann invariants and satisfy by definition the diagonal system

Rit = λi
(
R1, . . . ,RN

)
Rix (7.89)

where the characteristic speeds λi are such that the system (7.89) possesses the semi-

Hamiltonian property, that is

∂k

(
∂jλ

i

λj −λi
)

= ∂j

(
∂kλ

i

λk −λi
)
, (7.90)

with the notation ∂i = ∂Ri . The diagonal form of the system (7.89) and the condi-

tion (7.90) guarantee that equations (7.89) constitute a system of conservation laws [110]

which is integrable via the generalised hodograph method, described in section 3.1.2.

Substituting the assumption (7.88) into the system (7.85) and using (7.89), we obtain the
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equations of the form

λi ∂iu = A(u)∂iu, i = 1,2, . . .N (7.91)

where we used the fact that Rix for i = 1, . . . ,N are independent. We observe that, due to

the specific sparse structure of the matrix A(u), the components of the eigenvectors ∂iu

can be parametrised in terms of the components ∂iu0 and ∂iu1.

Let us consider, for example, the equations for ∂iu−2, ∂iu−1, ∂iu2 and ∂iu3:

∂iu
−2 =

1
(u0)2

(
(λi)2 −u0u1λi −u0(2u0 +u−2 +u−1u1)

)
∂iu

0 −
(
λi +u−1

)
∂iu

1

∂iu
−1 =

(
λi

u0 −u1
)
∂iu

0 −u0∂iu
1

∂iu
2 =

1
u0

(
(u1)2 − 2u2

)
∂iu

0 +
1
u0

(
λi +u0u1

)
∂iu

1

∂iu
3 =

1
(u0)2

((
(u1)2 − 2u2

)
λi +u0

(
u1(1 +u2)− 3u3

))
∂iu

0

+
1

(u0)2

(
(λi)2 +u0u1λi + (u0)2(u2 − 1)

)
∂iu

1 , i = 1, . . . ,N .

(7.92)

The compatibility conditions

∂j∂iu
−2 = ∂i∂ju

−2 ∂j∂iu
−1 = ∂i∂ju

−1 ∂j∂iu
2 = ∂i∂ju

2 ∂j∂iu
3 = ∂i∂ju

3

lead to the associated Gibbons–Tsarev system. For our chain, this takes the form

∂jλ
i =

4(u0)2 −λiλj
u0(λi −λj ) ∂ju

0

∂iλ
j =

4(u0)2 −λiλj
u0(λj −λi) ∂iu

0

∂i∂ju
0 =

(λi)2 + (λj )2 − 8(u0)2

u0(λi −λj )2
∂iu

0∂ju
0

∂i∂ju
1 = − (λj − 2λi)λj + 4(u0)2

u0(λi −λj )2
∂iu

0∂ju
1 − (λi − 2λj )λi + 4(u0)2

u0(λi −λj )2
∂ju

0∂iu
1.

(7.93)
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A direct calculation shows that the system of equations (7.93) is in involution, i.e. com-

patibility conditions of the form

∂k∂jλ
i = ∂j∂kλ

i ∂k∂i∂ju
0 = ∂i∂k∂ju

0 ∂k∂i∂ju
1 = ∂i∂k∂ju

1

are satisfied modulo the equations (7.93) for all permutation of the derivatives with re-

spect to Ri , Rj , Rk . A first classification of Gibbons–Tsarev systems has been provided

by Odesskii and Sokolov [101, 102]. We note that, at the best of our knowledge, the sys-

tem (7.93) has not appeared before in the literature and it is not included in the class

considered in the above mentioned works.

The compatibility of the Gibbons–Tsarev system (7.93) guarantees, that for any solu-

tion to the Riemann invariants system (7.83), it is possible to construct a solution to the

hydrodynamic chain, as reported in section 3.2.1.

Therefore, the above calculations prove the following

Theorem 7.4.1 The hydrodynamic chain (7.83) is integrable in the sense of the hydrodynamic

reductions.

We will then explore the structure of the chains associated with higher terms in the

Pfaff hierarchy.

7.5 Extension to higher flows and generalisation of the chain

As mentioned in section 3.2, a hydrodynamic chain takes the form

unt = ϕn1 u
1
x + · · ·+ϕnn+1u

n+1
x , n ∈N , ϕnn+1 , 0 , (7.94)

where ϕnj = ϕnj
(
u1, . . . , un+1

)
and the integrability of the chain is studied by analysing

the corresponding Gibbons–Tsarev system, as in [101, 102]. The most known example is

given by the Benney chain

unt = un+1
x + (n− 1) un−1u1

x , n = 1, 2, . . . , (7.95)
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whose Gibbons–Tsarev system is given by (3.82), that we recall

∂jλ
i =

∂ju
1

λj −λi

∂iλ
j =

∂iu
1

λi −λj

∂i∂ju
1 = 2

∂iu
1∂ju

1

(
λi −λj

)2 ,

(7.96)

in terms of the characteristic speeds λj , the derivative with respect to the Riemann in-

variants Ri , and the field u1, that we call the seed of the chain.

The hydrodynamic chain associated to the continuum limit at the leading order of

the first flow for the even Pfaff lattice is given by

ukt = ak0u
0
x + ak1u

1
x + akk−1u

k−1
x + akk+1u

k+1
x , k ∈Z , (7.97)

and the associated Gibbons–Tsarev system is reported in (7.93). The new chain associ-

ated with the symmetric ensemble is double infinite, unlike the Benney chain and other

known examples of integrable chains. In addition, the new chain is initialised by the two

central elements or seeds (the fields u0 and u1) rather than one, as in the Benney chain.

From (7.97), we notice that the evolution of the the field uk with respect to the first

even slow time variable t depends on the spatial derivatives of the seeds of the chain u0

and u1 and of its nearest neighbours uk−1 and uk+1. In the following, we will see that it

is possible to associate a hydrodynamic chain for the evolution of the fields in t4 and t6

as well, observing a nominal proliferation of the seeds of the chain and a dependence of

the dynamics on an increasing number of nearest neighbours.

We study the continuum limit for the evolution equations of the fields entering the

discrete Pfaff lattice for higher even flows, t4 and t6. We recall the Lax equations for the

even flows
∂L

∂t̃2q
=

[
−
(
L2q

)
t
, L

]
, q = {1, 2, . . . } (7.98)

in terms of the semi-infinite Lax matrix L, whose elements are given by the discrete

variables wkn, with k ∈Z and n ∈N.
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We have verified that for t4 and t6 the leading order of the continuum limit can be recast

as

ut2q = Aq(u)ux , u =
(
. . . , u−1, u0, u1, . . .

)>
, (7.99)

where we consider slow time variables t2q = ε t̃2q and the interpolating functions uk(x) =

wk(x/ε) = wk(n) = wkn, where ε = 1/N , in the limit N →∞. The matrix Aq(u) is an infi-

nite matrix of the chain class, for q = 1,2,3. Since the flows of the hierarchy commute

pairwise, we have
[
Aq , Ap

]
= 0 . (7.100)

We have verified by direct inspection (7.100) for the matrices for q,p ∈ {1,2,3}. Therefore,

the continuum limit at the leading order can be written in terms of a hydrodynamic chain

for q = 1,2,3 and this has led us to conjecture a generalisation for q > 3. In the following,

we will show the form of the hydrodynamic chains associated to the higher flows and the

possible generalisation. As we will see, the number of seeds of the chain and the number

of nearest neighbours in the interaction term increases with q. The explicit form of the

entries of the matrices is reported in appendix C.

• q = 1, aij ∈ A1

ukt2 = ak0u
0
x + ak1u

1
x + akk−1u

k−1
x + akk+1u

k+1
x (7.101)

the seeds of the chain are u0, u1 and the interaction is with first nearest neighbours;

• q = 2 , aij ∈ A2

ukt4 = ak−1u
−1
x + ak0u

0
x + ak1u

1
x + ak2u

2
x

+ akk−2u
k−2
x + akk−1u

k−1
x + akk+1u

k+1
x + akk+2u

k+2
x

(7.102)

the seeds are u−1, u0, u1, u2 and the interaction is with second nearest neighbours;
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• q = 3 , aij ∈ A3

ukt6 = ak−2u
−2
x + ak−1u

−1
x + ak0u

0
x + ak1u

1
x + ak2u

2
x + ak3u

3
x

+ akk−3u
k−3
x + akk−2u

k−2
x + akk−1u

k−1
x + akk+1u

k+1
x + akk+2u

k+2
x + akk+3u

k+3
x

(7.103)

the seeds are u−2, u−1, u0, u1, u2, u3 and the interaction is with third nearest neigh-

bours.

We can generalise the form of the hydrodynamic chain for the generic q−th flow

ukt2q =
q∑

p=−(q−1)

akp u
p
x +

q∑

p=1

(
akk−p u

k−p
x + akk+p u

k+p
x

)
(7.104)

with aij ∈ Aq. The generic hydrodynamic chain for the q-th flow of the even Pfaff lattice

is then characterised by 2q seeds and interaction with q-th nearest neighbours.

7.6 Leading order of even times hierarchy for Toda and Pfaff

We have studied the hydrodynamic system of PDEs emerging from the study of the sym-

metric matrix ensemble, consisting of infinitely many components in terms of the field

variables. The system is described by an infinite number of order parameters. The order

parameters of the model with even order interactions satisfy a reduction of the even Pfaff

hierarchy.

It is worth to emphasise that only the model with even rescaled interactions leads to

an integrable hydrodynamic chain hierarchy, given by (7.104)

ukt2q =
q∑

p=−(q−1)

akp u
p
x +

q∑

p=1

(
akk−p u

k−p
x + akk+p u

k+p
x

)
, k ∈Z , q ∈N .

This represents the main difference with the case of the Hermitian matrix ensemble,

where the leading order in even slow times is described by a scalar hydrodynamic system,

i.e. the Volterra lattice. The collection of the equations representing the evolution at
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different times gives the Hopf hierarchy (6.100)

ut2k = ck u
k ux , k ∈N .

In the context of the perspective offered by the approach of differential identities, we

have seen in section 6.4 the emergence of a dispersive shock. The latter characterises a

phase transition where asymptotic stable states are connected by an intermediate state,

where the dispersive nature of finite size corrections induce fast oscillations in the order

parameter. In this case, the description is possible in terms of one order parameter only.
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Explorative studies
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Chapter 8

Towards networks

In this chapter we will consider a particular case of symmetric matrices, the adjacency

matrices arising in the context of graph theory. Section 8.1 is dedicated to a brief intro-

duction of the subject. In section 8.2 we will address the problem of the so called two-star

model as presented in [103]. The same problem will be treated with the tools developed

in chapter 5 in section 8.3, invoking the method of differential identities. We then will

consider the one-dimensional Ising model, in section 8.4, and write a suitable partition

function constructed from the corresponding adjacency matrices. Finally, we will give

an insight on the automorphisms of different configurations in section 8.5 and we will

discuss the form of the partition function for exponential random graphs in section 8.6.

8.1 Graphs

A network is described in mathematical term by the graph, a collection of vertices con-

nected by edges [99]. Those primary elements acquire different nomenclature with re-

spect to the field we are considering (nodes and links, sites and bonds, actors and ties).

We will focus on the study of the simple graph in figure 8.1, with n vertices and m

edges, without neither multiedges (more than one edge connects a pair of vertices) nor

self-edges (connecting a vertex with itself).

One of the possible way to represent a network is via its edge list, not so useful in terms

of a mathematical analysis. Another more proper way is to consider the adjacency matrix
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1
2

3

4

56

vertex

edge

Figure 8.1: Simple graph with n = 6 vertices

of the graph representing the network, defined by

Aij =



1 if i and j are connected by an edge

0 otherwise
(8.1)

The adjacency matrix describing the graph shown in figure 8.1 is

A =




0 1 0 0 0 1

1 0 1 1 0 0

0 1 0 1 0 0

0 1 1 0 1 1

0 0 0 1 0 0

1 0 0 1 0 0




(8.2)

with every element of the diagonal is zero, since there are no self-edge and it is sym-

metric, due to the fact that if there is a connection between i and j, the same is for the

connection between j and i (A = A>).

In order to represent self-edges of specific vertices, once they are addressed with a

label, the related element in the diagonal will be twice the multiplicity of the edge: if

there is a simple loop connecting vertex i with itself, we have two legs on that vertex.

Sometimes it may be useful to consider edges with a certain weight. In that case, the

element corresponding to an edge will account for the weight of that connection. One can

pass from this kind of description to a multi-edge one, in which the weight is rearranged

in term of multiplicity in units of the minimum weighted edge in the network.

We now introduce the degree ki of a vertex i as the number of edges adjacent to it.
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The adjacency matrix depends on the enumeration of vertices, but of course different

enumerations are conjugates of each other via a permutation matrix. Also, the fact that

the matrix is symmetric implies that there exist an orthonormal basis of eigenvectors

u1,u2, . . . ,un ∈Rn with real eigenvalues

kmax ≥ κ1 ≥ κ2 ≥ · · · ≥ κn ≥ −kmax with kmax = max
i∈V

ki (8.3)

The multiplicities are taken into account, so that multiplicity 3 means that κj = κj+1 =

κj+2. The κi are the zeros of the characteristic polynomial

p(λ) = det(λ1n −A) (8.4)

and the eigenvalues κ1,κ2, . . . ,κn form the adjacency spectrum of the graph G. We will

see that just by studying the adjacency spectrum we can have different information about

the characteristics of the graph.

A graph is named directed if its edges have a direction, they are represented by arrows

connecting the vertices and the adjacency matrix describing is

Aij =



1 if there is an edge from i to j

0 otherwise
(8.5)

corresponding to an asymmetric matrix. The undirected network can be seen as a di-

rected one where the undirected edges may be seen as two directed edges going in oppo-

site directions.

We will study the problem of the so called two-star model, that allow a description of

the Curie-Weiss model. We will review the problem both with the mean-field approach

and via the method of differential identities developed in chapter 5 and in particular

following the development of section 5.2.
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8.2 The two-star model in the mean-field approach

The two-star model appears in the context of statistical mechanics of networks [104, 103,

16]. With this approach it is possible to study different configurations of a system by

considering an ensemble of networks, where every possible configuration is represented

by a graph G. We can associate a Hamiltonian H(G) to any configuration and then define

a partition function Z for the ensemble, being this the starting point for a statistical

approach. For every graph the probability is given by

P (G) =
e−H(G)

Z
, Z =

∑

{G}
e−H(G) , (8.6)

with the partition function defined as the sum over all the possible graphs. The Hamilto-

nian is written in terms of the adjacency matrix elements taking into account the number

of edges connecting vertices m and the number of two-stars m2s for each configuration.

The two-star is an elemental structure that can be found in a graph, denoting a vertex

shared by two different edges. By counting these kind of subgraphs, it is possible to have

information about the way in which the edges are distributed in the entire graph, either

they tend to appear in clusters or they are randomly spread.

Given the form of AG, one can define m and m2s as

m =
∑

i<j

aij =
1
2

∑

i,j

aij , (8.7)

m2s =
∑

i

∑

j,i

∑

k,i,j

aijaik =
1
2

∑

i,j

aij
∑

k,i,j

(aik + ajk) . (8.8)

The hamiltonian for a configuration G can be written in terms of the Lagrange multipli-

ers β, γ by using the definitions in (8.7) and (8.8)

H(G) = −β 1
2

∑

i,j

aij −γ 1
2

∑

i,j

aij
∑

k,i,j

(aik + ajk) . (8.9)

In order to evaluate the previous expression, we adopt the mean-field approach, replac-

ing all the quantities with their mean values on the graph. The mean value for the term

multiplying β is given by (8.7) and we have to determine the mean value for the re-
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maining term, multiplied by γ . The latter counts for all the possible pairs of vertices

in the graph connected by an edge. In the mean-field approach, every pair of vertices

can be connected by an edge with a given probability p, so that what is actually fixed in

the graph is the number of vertices N and the probability p. We can now evaluate the

expectation value of the two-stars, as

〈 ∑

k,i,j

aik

〉
=

∑

k,i,j

〈aik〉 =
∑

k,i,j

p = (N − 2)p ∼Np, (8.10)

for large values of N .

The probability associated to any graph in the ensemble withm edges and N vertices,

in terms of the probability that an edge connects two vertices p, is given by

P (G) = pm (1− p)
N (N−1)

2 −m = pm (1− p)(
N
2)−m . (8.11)

It is possible to determine the expectation value of the number of edges 〈m〉, by consider-

ing that the number of distinct configurations withN vertices andm edges is equal to the

number of ways we can pick the position of edges among N (N − 1)/2 distinct pairs. Ev-

ery graph enters in the ensemble with the same probability P (G), so that the probability

distribution for the number of edges m is

P (m) =
((N

2
)

m

)
pm (1− p)(

N
2)−m , (8.12)

hence the binomial distribution, with expectation value

〈m〉 =
(
N

2

)
p . (8.13)

Substituting the results (8.10) and (8.13) in (8.9), we obtain the mean-field hamilto-

nian HN

HN (G) = −(β + 2γNp)m = −ϑ(N,p)m (8.14)

with the introduction of the function ϑ(N,p) in order to simplify the next calculations.

The partition function associated to the networks’ ensemble in the mean-field approach

159



Chapter 8. Towards networks

is given by

ZN =
∑

{G}
e−HN (G) =

∑

{aij }
eϑ

∑
i<j aij =

∑

{aij }

∏

i<j

eϑaij =
∏

i<j

(
1 + eϑ

)
=

(
1 + eϑ

)(N2)
. (8.15)

In order to obtain a consistence relation involving the probability p, we can use the defi-

nition of the expected value of the number of edges 〈m〉 via the partition function as

〈m〉 =
∑
Gm e−HN (G)

ZN (G)
=

1
ZN

∂ZN
∂ϑ

=
(
N

2

)
eϑ

1 + eϑ
=

(
N

2

)
1

1 + e−ϑ
. (8.16)

By considering the equivalence between (8.13) and (8.16), we get

(
N

2

)
p =

(
N

2

)
1

1 + e−ϑ
=⇒ p =

1
1 + e−ϑ

. (8.17)

We can write the previous in terms of the fixed variables, N and p, as

p =
1
2

[
1 + tanh

(β
2

+γNp
)]
. (8.18)

By rescaling the parameters in the previous equation, with b = β/2 and c = γN/2, so that

the equation is

p =
1
2

[1 + tanh(b+ 2cp)] , (8.19)

that will be evaluated in terms of the parameters b and c.

In figure 8.2 the behaviour of p(b) as a function of b is shown, with different values

for the parameter c. We can observe that in correspondence of c = 1 a gradient catastro-

phe occurs, the function becomes multivalued for c > 1, beyond the critical point. The

spontaneous symmetry breaking produces two different possible configuration for the

present graph for values of the parameter c > 1. In particular, the network can be either

dense, with a high number of edges connecting vertices, or sparse.

By differentiating the expression in (8.19) with respect to p on both sides we get

1 = c sech2(b+ 2cp)

1
c

= 1− tanh2(b+ 2cp) ,
(8.20)
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gradient
catastrophe
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b
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Figure 8.2: (a) The probability that an edge connects two vertices p is shown as a function
of the parameter b, for different values of the parameter c. The dashed line represents
the gradient catastrophe, beyond which the profile of the function (for c > 1) is not more
single-valued in b. (b) The phase diagram in terms of the parameters b and c.

using the fact that sech2(x) = 1− tanh2(x). From (8.19) we can write (8.20) as

1− (2p − 1)2 =
1
c

p2 − p+
1
4c

= 0 .
(8.21)

The roots of the equation are easily found as

p1,2 =
1
2
±
√

1− 1
c
. (8.22)

In order to produce the diagram for the phase transition observed, we write b from (8.19)

as a function of p and c

b = arctanh(2p − 1)− 2cp

b = ±arctanh

√
1− 1

c
− c


1±

√
1− 1

c


 .

(8.23)

These curves are the boundaries for the coexistence region shown in the right of figure

8.2, where the regions of the space of parameters are represented. The critical point is
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localised by the coordinates

bc = 1 , cc = 1 . (8.24)

In the next section, we will tackle the same problem by considering the approach estab-

lished in chapter 5.

8.3 Differential identities for the two-star model

The same problem can be treated with the formalism of non-linear PDEs by starting

from the analogy with the Curie-Weiss system, mean-field approach for the Ising model.

The two-star model can be seen as an Ising model, if we look at the Hamiltonian (8.9)

previously discussed, we can identify a term referring to en external field and a term

related to the interaction between pairs. The elements of the adjacency matrix play the

role of spins, represented by the edges. In contrast with the original Ising model, where

spins can assume values in {+1,−1}, here the set of possible values is {0,1}. With the

Curie-Weiss approach the two-body interaction term is substituted by a mean-field term,

as if every spin interacts with all the others. With this prescriptions, the mean-field

Hamiltonian can be written as

HN (G) = − J

N (N − 1)

∑

ij

aij
∑

kl

akl − h
∑

ij

aij , (8.25)

where the first term describes the mean-field interaction, with the coupling constant J ,

and the second refers to the interaction with the external field h. The term referring to

the interaction between “spins” is long ranged and weak, of order 1/N2 (since here we are

considering pairs of vertices). Since the indices are not correlated, the first term of (8.25)

can be written as
∑

ij

aij
∑

kl

akl =



∑

ij

aij




2

. (8.26)
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The order parameter is given in this context by the number of edges appearing in the

graph, normalized to the maximum number of possible pairs of vertices, as

m =
2

N (N − 1)

∑

i,j

aij . (8.27)

The aim is to determine a partial differential equation in terms of the expectation

value of the order parameter 〈m〉, in order to discuss the phase diagram of the system.

By using (8.27) the Hamiltonian becomes

HN (G) = − J N (N − 1)
2

m2 − h N (N − 1)
2

m = −
(
N

2

)(
Jm2 + hm

)
. (8.28)

The partition function for the system is defined, with β = 1/T , as

ZN (G) =
∑

G

e−βHN (G) =
∑

G

e(N2)( 1
2 tm

2+xm) , (8.29)

having rescaled the coupling constants J and h as

t = Jβ

x = hβ .
(8.30)

By taking the derivative of ZN (x, t) with respect to x and t, we can write a differential

identity for ZN

∂ZN
∂t

=
N (N − 1)

4
m2ZN

∂2ZN
∂x2 =

(N (N − 1))2

4
m2ZN

=⇒ ∂ZN
∂t

=
1

N (N − 1)
∂2ZN
∂x2 (8.31)

hence the partition function satisfies the heat equation. We have to involve an initial

condition, given by t = 0. The evaluation is the same as in (8.15), so that we have

ZN (x,0) = (1 + ex)(
N
2) . (8.32)
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The free energy of the system is fN

fN (x, t) = − 1
β
αN (x, t) with αN =

2
N (N − 1)

lnZN . (8.33)

By imposing the result of (8.31), we obtain the PDE satisfied by αN

∂tαN =
1
2

(∂xαN )2 +
1

N (N − 1)
∂2
xαN

∂tαN =
1
2

(∂xαN )2 + ν ∂2
xαN ,

(8.34)

with ν = 1/N (N − 1), multiplying a dispersion term in αN . The initial condition is given

by (8.32), as

αN (x,0) =
2

N (N − 1)
lnZN (x,0) = ln(1 + ex) . (8.35)

By writing explicitly the first and second derivatives of αN with respect to x we can iden-

tify the expectation value of the order parameter 〈m〉 and the variance var〈m〉 respectively

∂xαN =
1
ZN

∑

G

me(N2)(xm+ t
2m

2) = 〈m〉 . (8.36)

∂2
xαN =

1

Z2
N

N (N − 1)
2



∑

G

m2 e(N2)(xm+ t
2m

2) −


∑

G

me(N2)(xm+ t
2m

2)



2


= var〈m〉 . (8.37)

We can now take the derivative with respect to x of the PDE (8.34), using the fact that

the order of derivatives with respect to x and t is not important, obtaining

∂t(∂xαN ) = (∂xαN )∂x(∂xαN ) + ν∂2
x(∂xαN ) (8.38)

hence, we have that the order parameter satisfies the Burgers equation

∂t〈m〉 = 〈m〉∂x〈m〉+ ν ∂2
x〈m〉 . (8.39)

The initial condition is given by

〈m(x,0)〉 = ∂xαN (x,0) =
ex

1 + ex
=

1
2

(
1 + tanh

x

2

)
. (8.40)
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The initial datum does not depend on the number of vertices N of the graph. In the

thermodynamic limit, in a neighbourhood of the critical point, we can neglect the viscous

term, proportional to var〈m〉, so that the Burgers equation reduces to the Hopf equation

∂t〈m〉 − 〈m〉∂x〈m〉 = 0 . (8.41)

The solution to this equation is implicitly given via the method of characteristics

x+ 〈m〉 t = f (〈m〉) , (8.42)

with 〈m〉 representing the characteristic speed. The form of the function f (〈m〉) is given

by inverting the function for the initial datum

〈m(x,0)〉 = f −1(x) =
1
2

(
1 + tanh

x

2

)
=⇒ x = 2arctanh(2〈m(x,0)〉 − 1) . (8.43)

With this prescription for the initial profile of the function, since the value of 〈m〉 is

gradient
catastrophe

-6 -4 -2 2 4 6
x

0.5

1.0

m(x )

t=0

t=2

t=4

t=6

(a)

gradient

catastrophe

-3 -2 -1 1 2 3
x

-1.5

-1.0

-0.5

0.5

1.0

1.5

m(x )

t=0

t=1/2

t=1

t=3/2

(b)

Figure 8.3: (a) Behaviour of the order parameter m as a function of the coupling x for
different value of the coupling t. (b) Magnetization in the space of parameters for spins
with values in {+1,−1}.

constant along the characteristic curve, the equation is

x+ 〈m〉t = 2arctanh(2〈m〉 − 1) . (8.44)
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In order to determine the coordinates for the critical point in terms of the parameters x

and t, we look for the gradient catastrophe, expected since the non-linearity of the equa-

tion (8.41). We take the derivative with respect to x

1 +∂x〈m〉 t = 4sech2 (2〈m〉 − 1)∂x〈m〉 , (8.45)

so that we get

∂x〈m〉 = − 1

t − 4sech2(1− 2〈m〉) = − 1

t − 4 + 4tanh2(1− 2〈m〉) . (8.46)

The critical time tc is defined as the value of t for which the derivative ∂x 〈m〉 →∞. This

is if the denominator of (8.46) is zero. Hence

tc = 4− 4tanh2(1− 2〈m〉) . (8.47)

The degeneracy condition corresponds to the half of the possible edges connecting ver-

tices, the most disordered phase. Since we are considering the normalized order param-

eter, this is given by 〈m〉c = 1/2. The critical point is identified by the coordinates

tc = 4 , xc = −2 . (8.48)

Finally, we can compare the result obtained with this description with that of the

classical Curie-Weiss problem, for which the spin values in {+1,−1}. In the first case

(Figure 8.3(a)), we have that a shock wave is formed propagating backwards, towards

negative values of x. In the second case (Figure 8.3(b)), we observe a fixed point in the

origin, since the reference frame corresponds to the characteristic curve.

8.4 Ising model in one dimension

In our search for differential identities, following the Curie-Weiss model, we will try to

build the partition function for the Ising model in one dimension, starting from suitably

defined adjacency matrices.
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Ising model in one dimension

We start by considering the Ising model in one dimension. The Ising model describe

a system composed of N interacting spins σi , where σi assumes values in {+1,−1}. In

one dimension the system is represented by a chain, with first neighbours interaction

between spins. The Hamiltonian describing the model is

HN = − J
N∑

i=1

σiσi+1 − h
N∑

i=1

σi , (8.49)

where the first term describes the interaction between spins, with coupling constant J ,

and the second term refers to the interaction with an external field, with coupling con-

stant h. In order to neglect border effects, we introduce the periodical boundary condi-

tion, for which σN+1 = σ1, the structure of the system modifying as in Figure 8.4.

. . .
σN−1σ2σ1 σN

. . .
σN−1

σ3

σ2σ1

σN

Figure 8.4: Chain of spins σi (left) with periodical boundary conditions (right).

By taking into account the constraint, the Hamiltonian reads as

HN (J,h) = − J
N∑

i=1

σiσi+1 − h2
N∑

i=1

(σi + σi+1) . (8.50)

The partition function ZN is given in terms of all the possible spin configurations, for

which the Hamiltonian is defined as

ZN (J,h) =
∑

{σ }
e−βHN (J,h) (8.51)

with {σ } representing the set of configurations and β = 1/(kBT ) is related to the inverse

of temperature via the Boltzmann constant.

The standard procedure to define the partition function associated to the Ising model

in one dimension involves a 2×2 transfer matrix and the solution is given in terms of its

the two eigenvalues λ± as

ZN = λN+ +λN− , (8.52)
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where the eigenvalues are written in terms of the coupling constants J and h as

λ± = eJ coshh±
√

e2J cosh2h− 2sinh2J . (8.53)

The idea is to define the partition function in terms of the adjacency matrix associated

to a properly defined graph. In order to draw a graph describing the structure of the

system, we consider a change of variables σi → ci , defined as

σi = 2ci − 1 ci =
σi + 1

2
ci ∈ {0,1} . (8.54)

In terms of the variables ci the transformed Hamiltonian is written as

HN = − J
N∑

i=1

(2ci − 1)(2ci+1 − 1)− h
2

N∑

i=1

(2ci − 1 + 2ci+1 − 1)

= −4 J
N∑

i=1

cici+1 − (h− 2 J)
N∑

i=1

(ci + ci+1)− (J − h)N

= −α1

N∑

i=1

cici+1 − α2

N∑

i=1

(ci + ci+1) +
(
α2 +

α1

4

)
N ,

(8.55)

where in the last expression a scaling of the coupling constants is taken into account



α1 = 4 J

α2 = h− 2 J
(8.56)

Since the values of the variables ci are in {0,1} we can define the adjacency matrix asso-

ciated to a graph G = (V ,E) representing the system, characterised by V vertices and E

edges. In this case, the graph is a simple undirected cycle CN , where each vertex is

connected to two other vertices via two edges, being a 2-regular graph. The graph is

represented by its adjacency matrix, the N ×N matrix A with elements

Aij =



1 if ci ∼ cj
0 otherwise

(8.57)

Since the graph is simple and undirected, the corresponding matrix A has zeros as di-
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agonal elements and it is symmetric. Every vertex is labelled by the variable ci and in

order to involve these variables in the adjacency matrix, we consider the dual-edge graph,

where for each edge in the original graph, a vertex is drawn in the dual and in the latter

two vertices are connected by an edge if the corresponding edges in the original one share

a vertex.

. . .
cN−1

c3

c2c1 (1,2)

(2,3)(N,1)

(N − 1,N )

cN

. . .

c1

c2cN

cN−1
(N − 2,N − 1)

(2,3)

(1,2)(N,1)

(N − 1,N )

Figure 8.5: Graph representing the spin chain with periodical boundary (left) with ver-
tices ci and edges (i, j) and its edge-dual (right).

In this way, the variables ci label the edges mapping the spins. In particular, the

original spin +1 corresponds to an existing edge between two vertices, a spin −1 to the

situation in which two vertices are not connected. The adjacency matrix associated to the

edge-dual graph Â for N spins is given by

Â =




0 c2 0 0 . . . 0 c1

c2 0 c3 0 . . . 0 0

0 c3 0 c4 . . . 0 0
...

. . .
...

0 0 0 0 . . . 0 cN

c1 0 0 0 . . . cN 0




with ci ∈ {0,1} ∀i = 1, . . . ,N . (8.58)

The generic element of the previous matrix is given by

(Â)i,j = ci+1 δi,j−1 + ci δi,j+1 with cN+1 = c1 (8.59)

where δ is the Kronecker delta and we have stressed the significant constraint given

by the periodical conditions. It is possible to reproduce the structures involved in the

Hamiltonian (8.55) by considering traces of powers of Â. In particular, we seek expres-

sions with the purpose of reproducing the interaction with the external field (one-body)

and the interaction between first neighbours (two-body).
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We start by computing odd powers of the adjacency matrix, for which we have

tr Â2n+1 = 2(2n+ 1)
N∑

i=1

cici+1 . . . ci+2n+1δ2n+1,N (8.60)

where we assume n ≥ 1. As we can see, for the Kronecker delta involving the number of

spins, the contribution of the expression is non zero only for the configurations in which

the number of spins coincides with the power of the adjacency matrix and when they

have values ci = 1 for each i. Since the first non-zero term in (8.60) appears for n = 1

and describes a three-body interaction, we can exclude the presence of such terms in the

specific problem we are studying. For the quadratic term we get

tr Â2 =
N∑

i=1

N∑

j=1

ÂijÂji =
N∑

i=1

N∑

j=1

(
ci+1 δi,j−1 + ci δi,j+1

)(
cj+1 δj,i−1 + cj δj,i+1

)

=
N∑

i=1

N∑

j=1

(
ci+1cj+1 δi,j−1 δj,i−1 + ci+1cj δi,j−1 δj,i+1 + cicj+1 δi,j+1 δj,i−1 + cicj δi,j+1 δj,i+1

)

=
N∑

i=1

(
ci+1ci δ2,N + c2

i+1 + c2
i + cici−1 δ2,N

)

=
N∑

i=1

(
2c2

i + 2cici+1 δ2,N

)

=
N∑

i=1

(
2ci + 2cici+1 δ2,N

)

(8.61)

where we have used the fact that ci ∈ {0,1}. The term multiplied by δ2,N is derived by

considering that the highlighted terms appearing in the second row give in general a zero

contribution, except for the case in which the index j can be at the same time equal to i−1

and i + 1. By involving the periodical condition cN+1 = c1, this occurrence is verified only

for N = 2 for each i = 1,2 and the term is non zero only for ci = 1.
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We will now consider the trace of the quartic power of the adjacency matrix, as follows

tr Â4 =
N∑

i=1

N∑

j,k,l=1

ÂijÂjkÂklÂli

=
N∑

i=1

N∑

j,k,l=1

(
ci+1 δi,j−1 + ci δi,j+1

)(
cj+1 δj,k−1 + cj δj,k+1

)

×
(
ck+1 δk,l−1 + ck δk,l+1

)(
cl+1 δl,i−1 + cl δl,i+1

)

(8.62)

for which we can evaluate the terms giving a non zero contribution, obtaining

tr Â4 =
N∑

i=1

(
2c4

i + 4c2
i c

2
i+1 + 2cici+1ci+2ci+3δ4,N

)

=
N∑

i=1

(
2ci + 4cici+1 + 2cici+1ci+2ci+3δ4,N

)
,

(8.63)

where the term involving δ4,N is derived in an analogous way to the term δ2,N in (8.61),

by imposing the periodical condition. Summarizing we get

tr Â2 =
N∑

i=1

(
ci + ci+1

)
+ 2δ2,N

N∑

i=1

cici+1 (8.64)

tr Â4 =
N∑

i=1

(
ci + ci+1

)
+ 4

N∑

i=1

cici+1 + 2δ4,N

N∑

i=1

cici+1ci+2ci+3 (8.65)

We can rearrange the terms appearing in (8.55) in order to write the Hamiltonian

involving the traces of the matrices, giving that

N∑

i=1

cici+1 =
1
4


tr Â4 − 2δ4,N

N∑

i=1

cici+1ci+2ci+3 − tr Â2 + 2δ2,N

N∑

i=1

cici+1


 (8.66)

N∑

i=1

(
ci + ci+1

)
= tr Â2 − 2δ2,N

N∑

i=1

cici+1 . (8.67)

Hence, the Hamiltonian of the system becomes

HN (κ2,κ4) = −κ2


tr Â2 − 2δ2,N

N∑

i=1

cici+1


−κ4


tr Â4 − 2δ4,N

N∑

i=1

cici+1ci+2ci+3


+κN ,

(8.68)
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where a redefinition of the coupling constants (α1,α2)→ (κ2,κ4) is considered



κ2 = α1 − α2

4

κ4 =
α1

4

(8.69)

and κ is written as a function of κ2 and κ4 as

κ(κ2,κ4) = α2 +
α1

4
= κ2 + 2κ4 . (8.70)

By assuming a Boltzmann distribution for the adjacency matrices of the form (8.58), rep-

resenting the set of all possible configurations of the system {Â}, the partition function

for the system can be written as

ZN (κ2,κ4) =
∑

{Â}
e
βHN

(
{Â} ;κ2 ,κ4

)
, (8.71)

and it can easily checked that it corresponds to (8.52). The partition function can be

rewritten in terms of eigenvalues. Since the matrices belonging to the set {Â} are sym-

metric they are diagonalizable, with eigenvalues λi ∈ R. By using the cyclic property of

the trace, we have

tr Âm = tr
(
OD̂O−1

)m
= tr

(
O−1OD̂

)m
= tr

(
D̂
)m

=
N∑

i=1

λmi for m = 2,4 . (8.72)

After a suitable redefinition of the coupling constants, the partition function takes the

form

ZN (x2 , x4) =
∑

{α}
cN (α)

N∏

i=1

e−x2λ
2
i −x4λ

4
i , (8.73)

where α represents a configuration. As we can see in (8.73), it is not possible express the

partition function in terms of the spectrum only. This is because to express the original

adjacency matrix we start with N degrees of freedom and we have N − 1 degrees of free-

dom when we consider the eigenvalues. The invariance of the trace imposes a constraint

on the total sum of eigenvalues. Then new parameters are needed to restore the proper

number of degrees of freedom and this may be related to the degree sequence for the
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graph (see section 8.1). The coefficients cN (α) encode the information about the symme-

try of the specific configuration, related to the symmetry group underpinning the graph

structure and its automorphisms, as we will see in section 8.5.

It seems that with our description, we are in some way modelling the interaction

term for the spins. Indeed, if we consider the mean-field version of the Ising model, the

interaction will be represented by a star

s3 s4 s 5

Figure 8.6: Star graphs representing the mean-field interaction term for a system com-
posed of 3, 4 and 5 spins respectively.

The spectrum σ of a star graph is given by

σ (SN−1) = {−
√
N − 1,

√
N − 1, 0, . . . , 0} , (8.74)

therefore in this case we have

trA4
star =

1
2

(
trA2

star

)2
, (8.75)

and we recover the typical form of the partition function for the two-star version of the

Curie-Weiss model.

8.5 Automorphisms of graphs

In order to give a proper expression for the coefficients c(α) in equation (8.73), we con-

sider the following definitions in the context of graph theory [19].

Definition 8.5.1 Isomorphisms of graphs are bijections of the vertex sets preserving adja-

cency as well as non-adjacency.

Definition 8.5.2 Automorphisms of the graph X = (V ,E) are X → X isomorphisms, they

form the subgroup Aut(X) of the symmetric group Sym(V ).
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Definition 8.5.3 Homomorphisms of graphs are defined as adjacency preserving maps. A

map f : V1 → V2 is a homomorpism of the graph X1 = (V1,E1) to the graph X2 = (V2,E2) if

(f (x), f (y)) ∈ E2 whenever a (x,y) ∈ E1. Non-adjacency is not preserved in a homomorphism,

so a bijective homomorphism is not necessarily an isomorphism. The chromatic number of

the graph X is the smallest cardinal number m such that the set Hom(X,Km) of X → Km

homomorphisms is nonempty.

A graph and its complement have the same automorphisms. The automorphism

group of the complete graph Kn and the empty graph K̄n is the symmetric group Sn

(of order n!). The automorphism group of the cycle of length n is the dihedral group Dn

(of order 2n). A star has Sn as automorphism group (of order n!). A path of length ≥ 1

has 2 automorphisms.

The automorphism group of a graph is determined by the automorphism groups and

the isomorphisms of its connected components.

In the case of the Ising model the coefficients c(α) in (8.73) are given in terms of

automorphisms of a configuration, as

cN (α) =
|DN |
|Aut(α)| =

2N
|Aut(α)| , (8.76)

since we are essentially considering cycles (elements of the dihedral group Dn).

The relevance of the symmetry factor becomes evident when we consider more com-

plex structures than cycles, as we will see in the nex section.

8.6 Exponential random graphs

A random graph is defined to be G(n,p), where p is the probability associated to an edge

between a pair of vertices [58, 104, 16]. We consider the adjacency matrix of an undi-
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(a) (b)

Figure 8.7: Example of two different configurations sharing the same spectrum σ (a) =
σ (b) = {−2,2,0,0,0} and possessing different symmetry factors c5(a) = 5, c5(b) = 15.

rected random graph

A =




0 a12 . . . a1N

a12 0 . . . a2N
...

. . .

a1N 0




a i j =



1 i ∼ j with probability p

0 otherwise

We consider the occurrence of an edge with probability p ≤ 1/2 and every entry in the

matrix aij ∈ {0,1}. The probability distribution for every entry is then the Bernoulli dis-

tribution. Since the graph is undirected, the adjacency matrix is symmetric, i.e. it is

invariant under orthogonal transformations

A→O>AO, with OO> = 1 . (8.77)

With the assumption that the entries are independent, we have a symmetric matrix with

entries independent and identically distributed. As we have seen in section 2.1, this leads

to a Gaussian weight in the partition function. The partition function is

ZN (a) =
∑

{α}
cN (α)

N∏

i=1

e−aλ
2
i . (8.78)

Here, it is crucial distinguishing between configurations having the same spectrum and

different symmetry factor, related to the number of the associated automorphisms. In

figure 8.7 it is shown an example of two isospectral configurations with different number

175



Chapter 8. Towards networks

of automorphisms. The symmetry factor is given by

cN (α) =
|SN |
|Aut(α)| =

N !
|Aut(α)| , (8.79)

with SN the symmetric group. In the jargon of graphs what is different between the two

configurations reported in figure 8.7 (a) and (b) is the degree sequence

d(a) = {1,1,1,1,4} ,

d(b) = {2,2,0,2,2} ,
(8.80)

whereas the sum of the degrees is the same, this given by the fact that the number of

edges for the two graphs is the same.

Giving the similarity of the forms of the partition functions constructed in this chap-

ter with those encountered in the theory of random matrix ensembles, we expect that

some results can be applied to real networks.
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Conclusions

In this thesis we have investigated several integrable systems in the framework offered

by the approach of differential identities. We have seen how mean-field theories can be

suitably described via the introduction of nonlinear equations of hydrodynamic type sat-

isfied by the order parameters of the theory. The breaking of the solutions induced by

the effects of nonlinearity is regularised via a viscous shock solution. We have explic-

itly applied the method to the Curie-Weiss model, where we have found that the order

parameter satisfies a Hopf equation.

We have then studied the Volterra reduction of the Toda lattice, connected with the

Hermitian matrix ensemble with even interactions only. At the leading order in the con-

tinuum limit of the field variable, we have obtained the Hopf hierarchy. We have analysed

the specific case of all but the first three times set to zero. With this assumption, we have

studied the dynamics of the solution and we have observed the emergence of a structure

characterised by fast oscillations after the breaking. This feature resembles the structure

of a dispersive shock and occurs in different scenarios in the space of parameters.

Within the perspective of the corresponding hydrodynamic systems, it seems that the

magnetisation in the Curie-Weiss model and the continuum limit of the order parameter

in the Volterra lattice belong to the same class of solutions, both being solutions of the

Hopf hierarchy. What distinguish the two systems is the initial datum and the regulari-

sation mechanism.

Particular emphasis has been given to the study of the symmetric matrix ensemble

and its underpinning integrable structure, the Pfaff lattice. We have introduced a suit-

able notation of the field variables constituting the elements of the lattice, making the

double-chain structure shared by the field variables manifest. We have considered the
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GOE as the free theory (or initial datum) for the Pfaff lattice and we have introduced a

suitable reduction, by selecting the even times only, in analogy with the construction of

the Volterra lattice from the Toda lattice. We have studied the behaviour at the leading

order in the continuum limit of the field variables in the first flow, where the equations

can be recast in form of a new hydrodynamic chain.

The introduced hydrodynamic chain constitutes an interesting object per se, given

that it differs from the standard integrable hydrodynamic chains studied in literature,

for the presence of an additional seed. We have addressed the question of integrability of

the chain, analysing the geometric structure behind it via the evaluation of the Nijenhuis

and Haantjes tensors and we have obtained the corresponding Gibbons–Tsarev system.

We have extended the study to the next two flows, finding a hydrodynamic chain-like

structure as well. Also, we have observed a nominal proliferation of seeds in the hydro-

dynamic chains associated to higher flows and a dependence on an increasing number of

nearest neighbours in the dynamics. We have then conjectured the existence of a hydro-

dynamic chain hierarchy. From these observations, it seems that the symmetric matrix

ensemble is a system characterised by a sort of intrinsic multi-dimensionality. This is

something that is evident starting from the more complex structure of the underlying

Pfaff lattice compared to the Toda lattice. Therefore, we expect a broader and richer pat-

terns of possible behaviours in the context of the symmetric matrix ensemble compared

to those observed for the Hermitian matrix ensemble.

In the last part of the work we have applied the above mentioned method of differ-

ential identities to the two-star model, in the context of graph theory, reproducing the

classical result of the mean-field underlying theory. Finally, we have determined the

partition function for the one-dimensional Ising model in terms of the elements of the

adjacency matrix associated to cycles.



Appendix A

Exploring the Pfaff lattice

A.1 Observations on the structure of the Pfaff lattice

Let us consider, for N = 8, the matrix L of the form

L(t) =




L1,1(t) 1 0 0 0 0 0 0

L2,1(t) L2,2(t) L2,3(t) 0 0 0 0 0

L3,1(t) L3,2(t) L3,3(t) 1 0 0 0 0

L4,1(t) L4,2(t) L4,3(t) L4,4(t) L4,5(t) 0 0 0

L5,1(t) L5,2(t) L5,3(t) L5,4(t) L5,5(t) 1 0 0

L6,1(t) L6,2(t) L6,3(t) L6,4(t) L6,5(t) L6,6(t) L6,7(t) 0

L7,1(t) L7,2(t) L7,3(t) L7,4(t) L7,5(t) L7,6(t) L7,7(t) 1

L8,1(t) L8,2(t) L8,3(t) L8,4(t) L8,5(t) L8,6(t) L8,7(t) L8,8(t)




where Li,j are functions of t = {t1, t2, . . . } and L2n,2n+1 are related to the Pfaffian τ−functions

L2n,2n+1 =
(
h2n

h2n−2

)1/2

(A.1)

The Hamiltonian commuting equations are

∂L

∂tk
=

[
−
(
Lk

)
t
,L

]
. (A.2)
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In order to explore the structure of the different elements of the matrix L, we will consider

the equations (A.2) for different tk and solve the corresponding system of equations in

terms of elements Li,j .

To determine other constraints on the elements of the matrix, we will consider that L

is introduced as a matrix given by dressing the shift matrix Λ with the matrix Q, decom-

position of the moments matrix

L(t) =Q(t)ΛQ(t)−1 . (A.3)

A.2 Equations for derivatives w.r.t. t1

We now consider the equation
∂L

∂t1
=

[− (L)t ,L
]

(A.4)

explicitly for N = 4,6.

With N = 4, the matrix L is

L(t) =




L1,1(t) 1

L2,1(t) L2,2(t) L2,3(t) 0

L3,1(t) L3,2(t) L3,3(t) 1

L4,1(t) L4,2(t) L4,3(t) L4,4(t)




(A.5)

The system of equations that we can write by considering every non zero element of the

matrix L is the following (∂/∂t1 = ∂1)

∂1L1,1 = 0

∂1L1,2 = 0

∂1L2,1 = L2,3 L3,1

∂1L2,2 = L2,3 L3,2

∂1L2,3 =
1
2
L2,3

(−L1,1 −L2,2 +L3,3 +L4,4
)

(A.6)
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Equations for derivatives w.r.t. t1

∂1L3,1 = −L2,3 −L2,1L3,2 +L4,1 +
1
2
L3,1

(−L1,1 +L2,2 +L3,3 −L4,4
)

∂1L3,2 = L3,1 +L4,2 +
1
2
L3,2

(
L1,1 −L2,2 +L3,3 −L4,4

)

∂1L3,3 = −L2,3 L3,2

∂1L3,4 = 0

∂1L4,1 = −L2,1L4,2 +L3,1L4,3 + L2,3
(
L1,1 −L4,4

)
+

1
2
L4,1

(−L1,1 +L2,2 −L3,3 +L4,4
)

∂1L4,2 = L2,3 −L4,1 +L3,2L4,3 +
1
2
L4,2

(
L1,1 −L2,2 −L3,3 +L4,4

)

∂1L4,3 = −L2,3 L4,2

∂1L4,4 = 0

(A.7)

Inserting the constraints related to the form of Q, it is possible to solve the system.

The matrix L for N = 4 have the structure in terms of Q elements given by

L =QΛQ−1 =




0 1 0 0

−q3,1

q4,4
−q3,2

q4,4

q2,2

q4,4
0

−q3,1 q3,2 + q4,1 q4,4

q2,2 q4,4

−q2
3,2 + (q3,1 − q4,2)q4,4

q2,2 q4,4

q3,2

q4,4
1

q3,1 q4,2

q2,2 q4,4

−q3,2 q4,2 + q4,1 q4,4

q2,2 q4,4

q4,2

q4,4
0




(A.8)

where Q has the following structure

Q =




q2,2 0

0 q2,2

q3,1 q3,2 q4,4 0

q4,1 q4,2 0 q4,4




(A.9)
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The added constraints are, then,

L1,1 = L4,4 = 0

L2,2 = −L3,3

L1,2 = L3,4 = 1

(A.10)

With these prescriptions, the system is

∂1L2,1 = L3,1L2,3

∂1L2,2 = L3,2L2,3

∂1L2,3 = −L2,2L2,3

∂1L3,1 = −L2,1L3,2 +L4,1 −L2,3

∂1L3,2 = L3,1 +L4,2 −L3,2L2,2

∂1L4,1 = −L2,1L4,2 +L3,1L4,3 +L4,1L2,2

∂1L4,2 = L3,2L4,3 −L4,1 +L2,3

∂1L4,3 = −L4,2L2,3 ,

(A.11)

reducing the number of equations to 8, with variables~L = {L2,1, L2,2, L2,3, L3,1, L3,2, L4,1, L4,2, L4,3}.
The latter elements are effected by more constraints than those previously considered,

thus yielding to the fact that the variables Li,j are not the best option to treat the system.

If we consider as new variables the entries of the matrix Q, we will produce a system

with 5 distinct equations and 6 variables {q2,2, q3,1, q3,2, q4,1, q4,2, q4,4}. By analysing the

form of the Lmatrix in terms ofQ entries, we recognise a suitable change of independent

variables, for which it is possible to write a closed system of 5 equations.

The number of independent variables per N is

Nvar =
(N−2)/2∑

i=1

i +
N − 2

2
. (A.12)
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Equations for derivatives w.r.t. t1

We introduce the variables ai with i = 0,1, . . . ,4, written in terms of Q entries

a0 =
q2,2

q4,4

a1 =
q3,1

q4,4

a2 =
q3,2

q4,4

a3 =
q4,2

q4,4

a4 =
q4,1

q4,4

q2,2 0 0 0

0 q2,2 0 0

q3,1 q3,2 q4,4 0

q4,1 q4,2 0 q4,4







a0
a1

a2

a3

a4

The form of the matrix L in terms of this set of variables is

L =




0 1 0 0

−a1 −a2 a0 0

−a1 a2 + a4

a0

a1 − a2
2 − a3

a0
a2 1

−a1 a3

a0

−a2 a3 + a4

a0
a3 0




(A.13)

Starting from the system (A.11), we obtain the following in terms of ai variables

∂1a0 = a0 a2

∂1a1 = a1 a2 + a4

∂1a2 = −a1 + a2
2 + a3

∂1a3 = a2 a3 − a4

∂1a4 = a2
0 + a1 a3

(A.14)

The elements of the matrix L show a precise structure in terms of ai .

The “skeleton” of the matrix in terms of the independent variables is
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0 1 0 0

−a1 −a2 a0 0

−a4 −a3 0 1

0 0 0 0







First, we notice that the independent fields appear as shown in the following.

0 1 0 0

−a1 −a2 a0 0

−a4 a1 − a3 a2 1

0 a4 a3 0







Then the additional terms in the lower part of the matrix are given by multiplying

the entries appearing in the more external frame

0 1 0 0

−a1 −a2 a0 0

−a4 − a1 a2 a1 − a3 − a22 a2 1

−a1 a3 a4 − a2 a3 a3 0







Finally, every element is rescaled by the entry a0 and we reproduce the form of L for

N = 4.

0 1 0 0

−a1 −a2 a0 0

−a4 − a1 a2
a0

a1 − a3 − a22
a0

a2 1

−a1 a3
a0

a4 − a2 a3
a0

a3 0
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Equations for derivatives w.r.t. t1

It is possible to identify the system (A.14) by analysing the second step of the con-

struction for the L matrix.

We can identify the equations for the system in ai variables by comparing the skeleton

matrix and the matrix obtained in the steps previously shown

0 1 0 0

−a1 −a2 a0 0

−a4 −a3 0 1

0 0 0 0







∂1

∂1

∂1

∂1

∂1

0 1 0 0

−a1 −a2 a0 0

−a4 − a1 a2 a1 − a22 − a3 a2 a0 1

−a1 a3 −a20 a4 − a2 a3 a3 0







We reproduce the system

∂1a1 = a1 a2 + a4

∂1a2 = −a1 + a2
2 + a3

∂1a3 = a2 a3 − a4

∂1a4 = a2
0 + a1 a3

∂1a0 = a0 a2
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For N = 6 the matrix L is

L(t) =




L1,1(t) 1 0 0 0 0

L2,1(t) L2,2(t) L2,3(t) 0

L3,1(t) L3,2(t) L3,3(t) 1 0 0

L4,1(t) L4,2(t) L4,3(t) L4,4(t) L4,5(t) 0

L5,1(t) L5,2(t) L5,3(t) L5,4(t) L5,5(t) 1

L6,1(t) L6,2(t) L6,3(t) L6,4(t) L6,5(t) L6,6(t)




(A.15)

Investigating the form of L written in terms of the decomposition matrix Q, we obtain a

pretty complicate form, still useful to deduce some constraints on L elements

L1,1 = L6,6 = 0

L3,3 = −L2,2

L5,5 = −L4,4

(A.16)

The form of the Q matrix for N = 6 is

Q =




q2,2 0 0 0

0 q2,2 0 0 0 0

q3,1 q3,2 q4,4 0 0 0

q4,1 q4,2 0 q4,4 0 0

q5,1 q5,2 q5,3 q5,4 q6,6 0

q6,1 q6,2 q6,3 q6,4 0 q6,6




(A.17)

As in the previous case, we introduce a new set of variables, related to ratios of Q ele-
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Equations for derivatives w.r.t. t1

ments

a0 =
q2,2

q4,4
a1 =

q3,1

q4,4

a2 =
q3,2

q4,4
a3 =

q4,2

q4,4

a4 =
q4,1

q4,4
b0 =

q4,4

q6,6

b1 =
q5,3

q6,6
b2 =

q5,4

q6,6

b3 =
q6,4

q6,6
b4 =

q6,3

q6,6

b5 =
q5,1

q6,6
b6 =

q5,2

q6,6

b7 =
q6,2

q6,6
b8 =

q6,1

q6,6

q2,2 0 0 0 0 0

0 q2,2 0 0 0 0

q3,1 q3,2 q4,4 0 0 0

q4,1 q4,2 0 q4,4 0 0

q5,1 q5,2 q5,3 q5,4 q6,6 0

q6,1 q6,2 q6,3 q6,4 0 q6,6







a0

a1

a2

a3

a4

b0

b1 b2

b3

b4

b5

b6

b7

b8

With this set of variables, we produce a closed system of 14 differential equations.

∂1a0 = a0 a2 − 1
2
a0 b2 ∂1b0 = b0 b2 − 1

2
b0 a2

∂1a1 = a1 a2 + a4 ∂1b1 = b1 b2 + b4 − b6

∂1a2 = −a1 + a2
2 + a3 ∂1b2 = −b1 + b2

2 + b3

∂1a3 = a2(a3 − b1)− a3 b2 − (a4 − b6) ∂1b3 = b2 b3 − b4

∂1a4 = a2
0 + a1(a3 − b1)− a4 b2 + b5 ∂1b4 = b2

0 + b1 b3 + b7

∂1b5 = b2 b5 + b8

∂1b6 = b5 + b2 b6 + b7

∂1b7 = a2 b
2
0 + b3 b6 − b8

∂1b8 = a1 b
2
0 + b3 b5
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The matrix L has the following form expressed with variables ai and bi

L =




0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a1 a2−a4
a0

a1−a2
2−a3
a0

a2 1 0 0

−a1 (a3−b1)+a4 b2−b5
a0

−a2 (a3−b1)+a4+a3 b2−b6
a0

a3 − b1 −b2 b0 0

−a4(b1−b2
2−b3)+a1(b1 b2+b4−b6)−b2 b5−b8

a0 b0

−a3(b1−b2
2−b3)+a2(b1 b2+b4−b6)+b5−b2 b6−b7

a0 b0

−b1 b2−b4+b6
b0

b1−b2
2−b3
b0

b2 1

−a4(−b2 b3+b4)−a1(−b1 b3+b7)−b3 b5−b7
a0 b0

−a3(−b2 b3−b4)+a2(b1 b3−b7)−b3 b6+b8
a0 b0

−b1 b3+b7
b0

−b2 b3+b4
b0

b3 0




We now analyse the structure of the matrix L, starting from the independent variables

ai and bi

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a4 −a3 0 1 0 0

−b5 −b6 −b1 −b2 b0 0

−b8 −b7 −b4 −b3 0 1

0 0 0 0 0 0







We consider the diagonal shifting of every independent variable

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a4 a1 − a3 a2 1 0 0

−b5 a4 − b6 a3 − b1 −b2 b0 0

−b8 b5 − b7 b6 − b4 b1 − b3 b2 1

b8 b7 b4 b3 0
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Equations for derivatives w.r.t. t1

We obtain the additional terms by multiplying the terms appearing in the external

rows of the blocks progressively. First, we consider separately the action of the ai and of

bi

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a4 −a3 a2 1 0 0

−b5 a4 − b6 a3 − b1 −b2 b0 0

−b2 b5 − b8 −b2 b6 + b5 − b7 −b1 b2 + b6 − b4 b1 − b22 − b3 b2 1

−b3 b5 −b3 b6 + b8 −b1 b3 + b7 −b2 b3 + b4 b3 0







Then we consider the mixed action of the two classes of variables in two steps. The

first considering the second row and the third column

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a1 a2 − a4 a1 − a22 − a3 a2 1 0 0

−a1 (a3 − b1)− b5 −a2(a3 − b1) + a4 − b6 a3 − b1 −b2 b0 0

−a1(−b1 b2 + b6 − b4)− b2 b5 − b8 −a2(−b1 b2 + b6 − b4)− b2 b6 + b5 − b7 −b1 b2 + b6 − b4 b1 − b22 − b3 b2 1

−a1(−b1 b3 + b7)− b3 b5 −a2(−b1 b3 + b7)− b3 b6 + b8 −b1 b3 + b7 −b2 b3 + b4 b3 0







and the second step considering the independent variables of the third row (−a4 for the

first element and −a3 for the second) and the forth column

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a1 a2 − a4 a1 − a22 − a3 a2 1 0 0

−a1 (a3 − b1) + a4 b2 − b5 −a2(a3 − b1) + a3 b2 + a4 − b6 a3 − b1 −b2 b0 0

−a1(−b1 b2 + b6 − b4)− a4(b1 − b22 − b3)− b2 b5 − b8 −a2(−b1 b2 + b6 − b4)− a3(b1 − b22 − b3)− b2 b6 + b5 − b7 −b1 b2 + b6 − b4 b1 − b22 − b3 b2 1

−a1(−b1 b3 + b7)− a4(−b2 b3 + b4)− b3 b5 −a2(−b1 b3 + b7)− a3(−b2 b3 + b4)− b3 b6 + b8 −b1 b3 + b7 −b2 b3 + b4 b3 0







Finally, we rescale the entries in the bulk blocks with the variables a0 and b0
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0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a1 a2−a4
a0

a1−a22−a3
a0

a2 1 0 0

−a1 (a3−b1)+a4 b2−b5
a0

−a2(a3−b1)+a3 b2+a4−b6
a0

a3 − b1 −b2 b0 0

−a1(−b1 b2+b6−b4)−a4(b1−b22−b3)−b2 b5−b8
a0

−a2(−b1 b2+b6−b4)−a3(b1−b22−b3)−b2 b6+b5−b7
a0

−b1 b2 + b6 − b4 b1 − b22 − b3 b2 1

−a1(−b1 b3+b7)−a4(−b2 b3+b4)−b3 b5
a0

−a2(−b1 b3+b7)−a3(−b2 b3+b4)−b3 b6+b8
a0

−b1 b3 + b7 −b2 b3 + b4 b3 0







and we can reproduce entirely the complete form of the matrix L for N = 6

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a1 a2−a4
a0

a1−a22−a3
a0

a2 1 0 0

−a1 (a3−b1)+a4 b2−b5
a0

−a2(a3−b1)+a3 b2+a4−b6
a0

a3 − b1 −b2 b0 0

−a1(−b1 b2+b6−b4)−a4(b1−b22−b3)−b2 b5−b8
a0 b0

−a2(−b1 b2+b6−b4)−a3(b1−b22−b3)−b2 b6+b5−b7
a0 b0

−b1 b2+b6−b4
b0

b1−b22−b3
b0

b2 1

−a1(−b1 b3+b7)−a4(−b2 b3+b4)−b3 b5
a0 b0

−a2(−b1 b3+b7)−a3(−b2 b3+b4)−b3 b6+b8
a0 b0

−b1 b3+b7
b0

−b2 b3+b4
b0

b3 0







Analogously to what we did for the case N = 4, we will analyse the structure of the

matrix L in terms of the variables ai and bi in order to easily produce the equations

composing the system for N = 6. We start considering the lower part of the matrix,

involving equations in bi variables for i = 1, . . . ,8

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a4 −a3 0 1 0 0

−b5 −b6 −b1 −b2 b0 0

−b8 −b7 −b4 −b3 0 1

0 0 0 0 0 0







∂1 ∂1 ∂1 ∂1

∂1 ∂1 ∂1 ∂1

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a1 a2 − a4 a1 − a22 − a3 a2 1 0 0

−b5 a4 − b6 a3 − b1 −b2 b0 0

−b2 b5 − b8 −b2 b6 + b5 − b7 −b1 b2 + b6 − b4 b1 − b22 − b3 b2 1

−a1 b20 − b3 b5 −a2 b20 − b3 b6 + b8 −b20 − b1 b3 + b7 −b2 b3 + b4 b3 0
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Equations for derivatives w.r.t. t1

We reproduce the following equations

∂1b1 = b1 b2 + b4 − b6 ∂1b5 = b2 b5 + b8

∂1b2 = −b1 + b2
2 + b3 ∂1b6 = b5 + b2 b6 + b7

∂1b3 = b2 b3 − b4 ∂1b7 = a2 b
2
0 + b3 b6 − b8

∂1b4 = b2
0 + b1 b3 + b7 ∂1b8 = a1 b

2
0 + b3 b5

We now consider the equations with ai variables by comparing the skeleton matrix

with independent fields and the step of the matrix involving all the products in ai vari-

ables

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a4 −a3 0 1 0 0

−b5 −b6 −b1 −b2 b0 0

−b8 −b7 −b4 −b3 0 1

0 0 0 0 0 0







∂1 ∂1

∂1 ∂1

0 1 0 0 0 0

−a1 −a2 a0 0 0 0

−a1 a2 − a4 a1 − a22 − a3 a2 1 0 0

−a20 − a1 (a3 − b1) + a4 b2 − b5 −a2(a3 − b1) + a3 b2 + a4 − b6 a3 − b1 −b2 b0 0

−a1(−b1 b2 + b6 − b4)− a4(b1 − b22 − b3)− b2 b5 − b8 −a2(−b1 b2 + b6 − b4)− a3(b1 − b22 − b3)− b2 b6 + b5 − b7 −b1 b2 + b6 − b4 b1 − b22 − b3 b2 1

−a1(−b1 b3 + b7)− a4(−b2 b3 + b4)− b3 b5 −a2(−b1 b3 + b7)− a3(−b2 b3 + b4)− b3 b6 + b8 −b1 b3 + b7 −b2 b3 + b4 b3 0
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We have the equations

∂1a1 = a1 b2 + a4

∂1a2 = −a1 + a2
2 + a3

∂1a3 = a2(a3 − b1)− a3 b2 − (a4 − b6)

∂1a4 = a2
0 + a1(a3 − b1)− a4 b2 + b5

Finally, for the equations involving the variables a0 and b0 with derivatives in the skele-

ton matrix, they are connected respectively to a2 and b2 and we obtain the last two equa-

tions in the system

∂1a0 = a0 a2 − 1
2
a0 b2 ∂1b0 = b0 b2 − 1

2
b0 a2 .
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Appendix B

Continuous limit of the even Pfaff

lattice

B.1 Equations for t2-flow and higher order corrections

We provide, for the reduced even Pfaff Hierarchy, the corrections to the leading order of

equation (7.83) up to O(ε3):

ukt =
((

(k + 2)uk+1 − kuk−1 −u1u0
xu

k
)
u0
x −u0u1

xu
k +u0uk−1

x +u0uk+1
x

)
+

1
2

(
k2u0

xx(−uk−1)

+(k2 + 2k)u0
xxu

k+1 − kuk
(
2u0

xu
1
x +u1u0

xx +u0u1
xx

)
−2u0

xu
k+1
x +u0

(
uk−1
xx −uk+1

xx

))
ε

+
1

12

(
2
(
u0
xxx

(
((k + 1)3 + 1)uk+1 − k3uk−1

)
+ 3u0

xxu
k+1
x + 3u0

xu
k+1
xx +u0

(
uk−1
xxx +uk+1

xxx

))

−uk
(
3k2 + 3k + 2

)(
3u1

xu
0
xx + 3u0

xu
1
xx +u1u0

xxx +u0u1
xxx

))
ε2 +O

(
ε3

)
, k < 0

u0
t = u0

(
u−1
x +u1u0

x +u0u1
x

)
+

1
2

(
u0u−1

xx

)
ε+

1
6
u0

(
3u1

xu
0
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Appendix C

Hydrodynamic chains for flow t4

Here, we list the discrete equations in t4 and the leading order of the continuum limit,

recasting the expressions in terms of the corresponding hydrodynamic chains reported

in (7.102)

ukt4 = ak−1u
−1
x + ak0u

0
x + ak1u

1
x + ak2u

2
x + akk−2u

k−2
x + akk−1u

k−1
x + akk+1u

k+1
x + akk+2u

k+2
x (C.1)

C.1 Discrete equations in t4
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• field u1
n
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• field u2
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• field ukn for k > 2
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• field u−kn for k > 1
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Continuum limit in t4

C.2 Continuum limit in t4

The leading order of the thermodynamic limit with the time rescaled as t = εt4 can

be recast in the hydrodynamic chain
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(C.8)

whose coefficients are listed below.
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Appendix D

Permutations for one-dimensional

Ising model

The partition function for the Ising model in one dimension is written in terms of the

adjacency matrix Â as

ZN (x2,x4) =
∑

{Â}

(
ex2 tr Â2+x4 tr Â4

)
e−N (x2+2x4) . (D.1)

Since Â is symmetric it can be diagonalised

Â =OD̂OT , (D.2)

with D̂ is the diagonal matrix of the eigenvalues of Â and the matrix O is given by the

corresponding eigenvectors.

D.1 Transformation of adjacency matrix for different configu-

rations

We observe that, given the adjacency matrix ÂN for a specific configuration, it is possible

to identify a set of transformations Pi acting on the associated eigenvectors orthogonal
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matrix by permuting its rows, that leave invariant the structure of ÂN itself

ÂN =OD̂OT Õ = PiO

ÂN = ÕD̂ÕT = PiOD̂O
T P Ti

ÂN = PiÂNP
−1
i .

(D.3)

where the last expression is given by the fact that a permutation matrix is orthogonal.

The effect of the transformation Pi on the adjacency matrix is to permute rows (acting

from the left) and columns (acting from the right via the inverse). Hence, we have

ÂNPi = PiÂN =⇒
[
ÂN , Pi

]
= 0 (D.4)

that means that the permutations that leave invariant the adjacency matrix are those that

commute with ÂN .

The permutations of n objects form a group, called the symmetric group Sn of order

n!. In terms of matrices every element of the group is given by a permutation of the

eigenvectors of the identity matrix.

The permutation π of n elements π : {1, . . . ,n} → {1, . . . ,n} can be represented in the

following two-line form as 


1 2 · · · n

π(1) π(2) · · · π(n)




(D.5)

and there are two natural ways to represent a permutation with a permutation matrix,

starting from the n × n identity matrix In. The first way is to consider a permutation of

columns of In, the second a permutation of rows. We will consider the matrix Pπ = pij

associated to the permutation of rows of In, as

pij =



1 if i = π(j)

0 otherwise
(D.6)

The entries in the i−th column are all 0 except for 1 in correspondence of the row π(j),

we can write

Pπ =
[
eπ(1) eπ(2) · · · eπ(n)

]
(D.7)
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where ej is a standard basis vector, a column of length n with 1 in the j−th position and

0 in every other position.

Let us consider for example the permutation

π =



1 2 3 4 5

1 4 2 5 3




(D.8)

the corresponding permutation matrix Pπ is given by

Pπ =
[
eπ(1) eπ(2) eπ(3) eπ(4) eπ(5)

]
=

[
e1 e4 e2 e5 e3

]
=




1 0 0 0 0

0 0 1 0 0

0 0 0 0 1

0 1 0 0 0

0 0 0 1 0




(D.9)

where the second row in I5 occupies the forth one in Pπ, the third row occupies the second

one and so forth, following the prescription (D.8).

The n× n permutation matrices that can be constructed starting from the In identity

matrix form a group under matrix multiplication with identity matrix as identity ele-

ment. Any permutation may be written as a product of transpositions, a cycle composed

of two elements. In general a cycle of degree m is a permutation interchanging m objects

cyclically.

The group Sn of permutations of n objects {1, . . . ,n} can be generated by the n − 1

fundamental transpositions (1↔ 2), (1↔ 3), . . . , (1↔ n).

Case N=3

We consider the group of row permutations for 3 × 3 matrices. It is composed of 6 ele-

ments, each of them can be expressed in terms of the 2 fundamental elements

p1 = (1↔ 2) p2 = (1↔ 3) (D.10)
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The symmetric group S3 is then

S3 = {1, p1, p2, p1p2, p2p1, p1p2p1 } (D.11)

where 1 corresponds to the identical permutation, p2
1 = p2

2 = 1 and p1p2p1 = p2p1p2. It

can also represented formally as

S3 = 〈p1,p2 | p2
1 = p2

2 = (p1p2)3 = 1〉 (D.12)

The operators associated to the elements are identified by matricesM3×3 as follows

I3 =




1 0 0

0 1 0

0 0 1




P1 =




0 1 0

1 0 0

0 0 1




P2 =




0 0 1

0 1 0

1 0 0




P1P2 =




0 1 0

0 0 1

1 0 0




P2P1 =




0 0 1

1 0 0

0 1 0




P1P2P1 =




1 0 0

0 0 1

0 1 0




By considering the possible configurations represented by the adjacency matrices forN =

3 we have the following relations between the specific adjacency matrix and the various

permutation matrices.

The adjacency associated to the configuration with no link and labelled as Â3(0) triv-

ially commutes with all the elements of the group S3

Â3(0) =




0 0 0

0 0 0

0 0 0




σ (Â3(0)) = {0,0,0}

[
Â3(0), I3

]
=

[
Â3(0), P1

]
=

[
Â3(0), P2

]
= 0

[
Â3(0), P1P2

]
=

[
Â3(0), P2P1

]
=

[
Â3(0), P1P2P1

]
= 0

(D.13)

The same is verified by the complementary configuration, where all the links are on being
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represented by the adjacency matrix Â3(3)

Â3(3) =




0 1 1

1 0 1

1 1 0




σ (Â3(3)) = {2,−1,−1}

[
Â3(3), I3

]
=

[
Â3(3), P1

]
=

[
Â3(3), P2

]
= 0

[
Â3(3), P1P2

]
=

[
Â3(3), P2P1

]
=

[
Â3(3), P1P2P1

]
= 0

(D.14)

We notice that with equal commutation relations with the elements of S3 what allows us

to distinguish Â3(0) from Â3(3) is the spectrum of eigenvalues related to the matrices.

The situation is different for the intermediate configurations, where each adjacency

matrix commutes with just one of the elements of S3, other than with I3, this being trivial.

The other elements of the group, fixed the adjacency matrix, allow us to pass from a

configuration to another representing the same structure (having the same spectrum).

The possible configurations represented by the adjacency matrix with spectrum σ (Â3(1))

are shown in the following. Each adjacency matrix is accompanied by the corresponding

graph, the permutation matrix with which it commutes (the trivial I3 is not shown) and

the transformations taking it to the equivalent configurations are represented.

σ (Â3(1)) = {−1,1,0}

Â3(1,2) =




0 1 0

1 0 0

0 0 0




[
Â3(1,2), P1

]
= 0

P2P1, P1P2P1

P1P2, P1P2P1

P1, P1P2

P1, P2P1

P2, P1P2

P2, P2P1

Â3(1,1) =




0 0 1

0 0 0

1 0 0




[
Â3(1,1), P2

]
= 0

Â3(1,3) =




0 0 0

0 0 1

0 1 0




[
Â3(1,3), P1P2P2

]
= 0

207



Chapter D. Permutations for one-dimensional Ising model

The same is given for the configurations related to the spectrum σ (Â3(2))

σ (Â3(2)) = {−√2,
√

2,0}

Â3(2,3) =




0 0 1

0 0 1

1 1 0




[
Â3(2,3), P1

]
= 0

P2P1, P1P2P1

P1P2, P1P2P1

P1, P1P2

P1, P2P1

P2, P1P2

P2, P2P1

Â3(2,2) =




0 1 0

1 0 1

0 1 0




[
Â3(2,2), P2

]
= 0

Â3(2,1) =




0 1 1

1 0 0

1 0 0




[
Â3(2,1), P1P2P2

]
= 0

Now we consider the general form of the adjacency matrix for N = 3 and look for the

constraints on the values of the entries, by imposing the relations of commutation with

the different permutation matrices, representations of the group S3.
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The general form for Â3 is

Â3 =




0 c2 c1

c2 0 c3

c1 c3 0




(D.15)

Imposing that the commutator respectively with P1, P2, P1P2P1, P1P2 and P2P1 is zero

we get

σ (Â3(2)) σ (Â3(1)) σ (Â3(3)) σ (Â3(0))

{−
√

2,
√

2,0} {−1,1,0} {2,−1,1} {0,0,0}

[
Â3, P1

]
= 0 → c3 = c1

[
Â3, P2

]
= 0 → c3 = c2

[
Â3, P1P2P1

]
= 0 → c2 = c1

[
Â3, P1P2

]
= 0 → c3 = c2 = c1

[
Â3, P2P1

]
= 0 → c3 = c2 = c1
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