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Microplastics (MPs) are prevalent inmarine ecosystems. Because toxicants (termed here “co-contaminants”) can
sorb to MPs, there is potential for MPs to alter co-contaminant bioavailability. Our objective was to demonstrate
sorption of two co-contaminants with different physicochemistries [phenanthrene (Phe), log10Kow = 4.57; and
17α-ethinylestradiol (EE2), log10Kow=3.67] toMPs; and assess whether co-contaminant bioavailabilitywas in-
creased after MP settlement. Bioavailability was indicated by gene expression in larval zebrafish. Both Phe and
EE2 sorbed toMPs, which reduced bioavailability by amaximum of 33% and 48% respectively. Sorption occurred,
but was not consistent with predictions based on co-contaminant physicochemistry (Phe having higher log10Kow

was expected to have higher sorption). ContaminatedMPs settled to the bottom of the exposures did not lead to
increased bioavailability of Phe or EE2. Phewas 48%more bioavailable than predicted by a linear sorptionmodel,
organism-based measurements therefore contribute unique insight into MP co-contaminant bioavailability.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Plastic debris is accumulating in the environment on a global scale
and the potential for negative effects on ecosystems has become a prior-
ity concern for environmental science and policy (Gregory, 2009).
Around 300 million tonnes of plastic are produced every year (Browne
et al., 2011; Shim and Thomposon, 2015), and disposal of many of
these plastic products leads directly or indirectly to their arrival in
aquatic environments. Plastic debris is present in numerous shapes
and sizes and particles b5 mm (MPs) in size are reported as the most
abundant sizes detected in large-scale assessments of the oceans
(Eriksen et al., 2014). Over the last decade, investigations have reported
the presence of MPs in sediments (Reddy et al., 2006) and in pelagic
zones (Collignon et al., 2012); however, the ecological implications of
MPs are unknown. One concern is the potential for MPs to transport
harmful pollutants (termed here “co-contaminants”) sorbed from ma-
rine environments (Holmes et al., 2012; Mato et al., 2001; Rochman et
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al., 2013a) into the food chain (Teuten et al., 2007). Although co-con-
taminant concentrations can be up to a million times higher on the sur-
face of MPs compared to surrounding seawater (Mato et al., 2001), and
many of these MPs with sorbed co-contaminants can be transported to
sediment surfaces, there is little information on the bioavailability of co-
contaminants to organisms.

Numerous organisms ingest MPs and there is potential that co-con-
taminants sorbed from the environment are desorbed upon entering
the different conditions (pH, ion concentration, etc.) within the lumen
of the gastrointestinal tract. Seabirds that have ingested MPs have
been reported to have elevated amounts of polychlorinated biphenyls
(PCBs) and other persistent organic contaminants (Colabuono et al.,
2010; Tanaka et al., 2013), although whether the increased amounts
of these contaminants is a consequence of desorption from ingested
MPs is unknown. A recent article suggests thatMPs ingested by seabirds
act as passive samples of the persistent organic pollutants (POPs) that
have accumulated within the animal rather than contributing to the ac-
cumulation of POPs (Herzke et al., 2016). Recently MPs have been
shown to alter the bioavailability of pyrene and PCBs in vertebrates
and invertebrates (Avio et al., 2015; Besseling et al., 2013; Oliveira et
al., 2013; Rochman et al., 2013b). Previous studies measured the con-
centration of co-contaminants in different tissues after MP/co-contami-
nant exposures (Besseling et al., 2013; Oliveira et al., 2013), and some
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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previous work also used gene expression to indicate toxicological ef-
fects of MP/co-contaminant exposure (Avio et al., 2015; Rochman et
al., 2013b). In order to understand and predict the risks of MPs and
MP-sorbed co-contaminants in the environment, more data is required
on the bioavailability of sorbed co-contaminants.

The term bioavailability is defined as the extent to which a com-
pound enters tissue and reacts with biological molecules (Semple
et al., 2004). Bioavailability can be difficult to assess as there are nu-
merous potentially interacting factors including temperature, inter-
actions with other chemicals, pH, salinity, and organism-specific
variables (e.g. digestive system function, respiration, etc.). A relevant
means of measuring bioavailability is to use a characterized organ-
ism response to a specific substance to indicate the level of bioavail-
ability. Changes in expression of biomarker genes have been used to
assess bioavailability of endocrine disrupting substances [e.g. 17α-
ethinylestradiol (EE2)] (Park et al., 2010) and metals (e.g., Hg2+)
(Henry et al., 2013) sorbed to engineered nanomaterials, and a sim-
ilar approach will be useful for investigating bioavailability of co-
contaminants associated with MPs.

Bioavailability of co-contaminants sorbed toMPs is likely to be relat-
ed to the physicochemical properties of MPs and the co-contaminants.
Various contaminants, with different physicochemical properties, have
been shown to interactwithMPs in both the environment and laborato-
ry, and co-contaminants that are more hydrophobic appear to be more
strongly sorbed and likewise less likely to desorb (Bakir et al., 2012;
Frias et al., 2010; Teuten et al., 2009). Phenanthrene [Phe, (log10 of the
octanol:water partition coefficient (log10 Kow) = 4.57 (Miller et al.,
1985)] is a simple three ringed polycyclic aromatic hydrocarbon
(PAH) that has been frequently reported as a co-contaminant sorbed
to MPs (Mato et al., 2001). PAHs are of concern due to their persistence
in the environment as well as their carcinogenic andmutagenic proper-
ties (Jennings, 2012; Teranishi et al., 1975). Investigation of sorption of
Phe to unplasticized polyvinyl chloride (uPVC, 200–250 μm) resulted in
determination of a distribution coefficient, Kd value, for Phe onto uPVC
of 2285 ± 693 L kg−1 (Bakir et al., 2012) and desorption rate of
1.04±0.05K(day−1) (Teuten et al., 2007). Furthermore, gut surfactants
have been shown to increase the desorption rate of Phe in vitro, 2.29 ±
1.40 K(day−1) (Teuten et al., 2007; Voparil and Mayer, 2000), but de-
sorption and bioavailability of Phe sorbed to MPs has not been deter-
mined in vivo. In contrast to Phe, 17α-ethinylestradiol (EE2, a
synthetic oestrogenic substance) is less hydrophobic (log10 Kow =
3.67 (Hansch et al., 1995)) and sorption to MPs may be relatively
lower and have a lower effect on EE2 bioavailability. Although EE2 sorp-
tionwithMPs has not been investigated, the bioavailability of EE2 is re-
duced in zebrafish in the pelagic scenario upon association with
fullerene agglomerates [(C60)n, an engineered nanomaterial] and the
EE2 did not becomebioavailablewhen zebrafish ingested the agglomer-
ates (Park et al., 2011, 2010).

The aim of the present study was to use changes in co-contami-
nant bioavailability to assess sorption to MPs in the water column
(pelagic scenario), and, subsequently, to determine if MPs could
transport co-contaminants to the bottom (benthic scenario) and in-
crease their local bioavailability to benthic organisms. Twomodel co-
contaminants (Phe and EE2) with different physicochemistries were
selected. uPVC was selected as a model polymer because it is report-
ed globally in themarine environment (Andrady, 2011), and because
preliminary trials with unplasticized PVC showed that the MPs sank
to the bottom. A uPVC size of 200–250 μmwas selected and provided
a high surface area for sorption (Teuten et al., 2009), is comparable
with previous work (Bakir et al., 2012) and is representative of
small MPs found in the environment (Thompson et al., 2004). The
bioavailability of Phe and EE2 were assessed by measuring changes
in expression of biomarker gene transcripts for these substances in
larval zebrafish, Danio rerio. It was not the objective of this study to
investigate toxicity or bioaccumulation of Phe, EE2, uPVC or the mix-
ture toxicity of these substances.
Please cite this article as: Sleight, V.A., et al., Assessment of microplastic-s
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2. Materials and methods

2.1. Experimental fish

Zebrafish (Danio rerio) were provided by the Zebrafish Research Fa-
cility at Plymouth University (Plymouth, UK). Animal welfare regula-
tions of the University of Plymouth and the UK Home Office were
followed for all experimental procedures with zebrafish. Fish water
quality and experimental conditionswere: temperature, 27–29 °C; pho-
toperiod, 12 h light; dissolved oxygen, 7.5–8.0 mg/L; pH, 7.2–7.4; total
ammonia nitrogen, b0.09; nitrite, b0.18; and nitrate, b22 mg/L. Adult
fishwere spawned to obtain embryos of the same age (within 1 h fertil-
ization), and larval fish hatched at ~72 h post fertilization (hpf). The du-
ration of fish exposure was 96 h, and all larvae were 168 hpf when they
were sacrificed at the end of the experiments.

2.2. Preparation of exposure solution and microplastic characterisations

Stock solutions of Phe and EE2 (Sigma-Aldrich, U.K.) were prepared
by dissolution in ethanol (Phe:EtOH, 1 mg/mL stock solution; EE2:EtOH
20 mg/ml stock solution) before addition to fish water to achieve the
target nominal concentration. All exposures contained ≤0.01% ethanol.
All exposure solutions were made in thoroughly-mixed 1-L batches,
and added in aliquots to corresponding exposure beakers.

uPVC (Goodfellow, Huntington, UK) was sieved to a size range of
200–250 μm. Consistent with previous MP sorption studies, uPVC con-
centration was 400 mg/L for all experiments (Bakir et al., 2012;
Teuten et al., 2007). Beakers containing the exposure solutions and
uPVC were covered with Parafilm® and kept dark for 5 days at 20 °C
with continual orbital rotation (180 rpm). The uPVC was removed
from designated treatments (see below) by filtration of the preparation
through cellulose filters (Whatman, membrane filter cellulose nitrate,
0.45 μm), and filtrate was poured back into the original beaker. All solu-
tions were kept in original beakers and transferred to the zebrafish re-
search facility for 24 h prior to exposure to reach optimum rearing
temperature, 27 °C ± 1 °C.

The concentration of uPVC particles was evaluated over time during
96 h to determine changes in numbers of particles within thewater col-
umn of the exposure chamber. A 500 μl water sample was collected
(n = 3) twice daily from the center of the water column by pipette,
each sample was dispensed onto colored filter paper (to allow easy
identification of white uPVC particles), and particles were counted
upon examination with a stereo microscope (×45). uPVC particles
were characterized by stereo microscopy (SM) and scanning electron
microscopy (SEM). For size measurements by SM (Olympus SZX7,
×45), samples were mounted onto slides and analyzed using Infinity
Analyse software. SEM (JEOL JSM-6610LV) was used to investigate sur-
face topography of particles according to standard procedure (Ashton et
al., 2010) - samplesweremounted onto disks of adhesive tape and coat-
ed with a nano-layer of gold (EMITECH K550) to aid substrate
conductivity.

2.3. Experimental design

For each experiment there were three replicate beakers and 35 lar-
vae in each beaker. All experiments were static, 96-h exposures, and
each experiment included a positive co-contaminant control treatment
(no uPVC) as well as negative controls: fish water, vehicle (EtOH), and
uPVC treatments. At the end of exposure, larvae within a beaker were
pooled together (one replicate) and frozen (−80 °C) prior to gene ex-
pression analysis (see below).

2.4. Experiment 1: dose response

To establish relationships for Phe concentration and cyp1a expres-
sion, and for EE2 concentration and vtg expression, five and six
orbed contaminant bioavailability through analysis of biomarker gene
.doi.org/10.1016/j.marpolbul.2016.12.055

http://dx.doi.org/10.1016/j.marpolbul.2016.12.055


3V.A. Sleight et al. / Marine Pollution Bulletin xxx (2016) xxx–xxx
concentrationswere used respectively (Phe: 0, 0.1, 0.2, 0.3 and 0.5mg/L.
EE2: 0, 0.001, 0.01, 0.1, 0.5 and 1 μg/L). The Phe experiment was repeat-
ed twice. A volume of 200mL exposure solution (prepared as described
above) was added to a 400-mL glass beaker. The concentrations of each
substance were selected as they are the highest non-lethal concentra-
tions which allowed for high gene expression whilst avoidingmortality
(Gündel et al., 2012; Henry et al., 2009).

2.5. Experiment 2: sorption of co-contaminants to uPVC MPs in the water
column – pelagic scenario

Based on results from Experiment 1, a concentration of 0.5 mg/L Phe
and 1 μg/L EE2 was selected for further experimentation. uPVC particles
(400 mg/L) were suspended in the aqueous phase by a magnetic stirrer
(300 rpm), and mixing of the MPs with co-contaminants occurred for
5 d prior to initiating the bioavailability tests. Larvae were contained
in a custom-built glass chamber with a double layer of (150 μm) stain-
less steel mesh (Fig. 1). Whilst in the chamber the larvae were not in
Fig. 1. Schematic diagrams of experimental exposures. A.) Aqueous exposure representing
microplastics (contaminatedwith Phe or EE2) in pelagic environments, stirrermaintained
uPVC in suspension and particles did not enter the chamber. An airline acted as an air lift
pump to aid mixing of exposure water into the chamber (Experiment 2). B.)
Sedimentation exposure representing microplastics (contaminated with Phe or EE2) in
benthic habitats, uPVC settled to the bottom of beaker and larvae were observed to rest
on top of particles (Experiment 3). Larvae in all exposures were aged up to 168 hpf (by
the end of 96 h exposures) and therefore did not have developed mouthparts and were
unable to uptake MPs via ingestion.

Please cite this article as: Sleight, V.A., et al., Assessment of microplastic-so
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contact with the uPVC but were in contact with the exposure solution.
This allowed us to investigate the bioavailability of the co-contaminant
that was not sorbed to theMPwithout being confounded by direct con-
tact (and possible facilitated desorption) between larvae andMPs. Con-
tinualmixing of the solution inside the chamberwas aidedby anair-line
through the center of the chamber. In order to accommodate a chamber
and stirrer, a volume of 350 mL exposure solution (prepared as de-
scribed above) was added to a 400-mL glass beaker.

2.6. Experiment 3: bioavailability of co-contaminants sorbed to uPVC upon
accumulation of MPs on the bottom – benthic scenario

Concurrent with Experiment 2, the contaminant concentrations
were 0.5mg/L Phe and 1 μg/L EE2. A volume of 300ml exposure solution
(prepared as described above) was added to a 400-ml glass beaker, and
all uPVC exposures had two experimental conditions to investigate bio-
availability. The first condition had uPVC and contaminant mixed for
5 days (MP + Contaminant), the second condition had uPVC removed
(filtration) after mixing (as described above) to investigate the level of
expression induced (bioavailability) by contaminant left in solution
(MP Filtered). Experiment 3 represented MPs in benthic, sedimentary
habitats. During the exposures uPVC particles (400 mg/L) settled onto
the bottom of the beakers and zebrafish larvae were observed to rest
on top of the uPVC for the first 72 h, in the final 24 h of exposure larvae
were observed to be free swimming (Fig. 1).

2.7. Gene expression quantification

After sample homogenization (3–5 s of sonication) and tissue disag-
gregation (QiaShredder column, Qiagen), total RNA was extracted
(RNeasy MiniKit for animal tissue, Qiagen, West Crawley, UK) from
zebrafish larvae (35 fish in each sample) as previously described
(Henry et al., 2009; Park et al., 2010; Reinardy et al., 2013). A DNase
treatment (15-min, Qiagen) was used to remove sample contamination
by genomic DNA, and 30 μL of water (RNase/DNase free) was used for
elution of RNA. The concentration and quality of RNA were determined
by spectrophotometer (NanoDrop, ND-1000 Spectrophotometer). Each
sample was diluted to 100 ng μL−1 total RNA, and cDNA (800 ng) was
synthesized according to manufacturer instructions [ImProm-II™ Re-
verse Transcription System, Promega; hexanucleotide primers and
deoxynucleotide mix (Sigma-Aldrich), and thermocycler conditions:
annealing (10 min, 25 °C) extension (20 min, 42 °C), and heat-
inactivating reverse transcriptase (10 min, 70 °C; GeneAmp® PCR Sys-
tem, 9700, Applied Biosystems)]. cDNA was stored at −80 °C prior to
gene expression analysis.

Primers for amplification of zebrafish transcripts of cyp1a (NCBI Ref-
erence Sequence: NM_131879.1) were designed with Primer Blast
(NCBI) or from our previous work for vtg (NCBI Reference Sequence:
NM_0010044897.2) and β-actin (NCBI Reference Sequence:
NM_131031.1) (Henry et al., 2009; Park et al., 2010; Reinardy et al.,
2013). Primers were designed such that amplicons spanned one intron
junction and avoided secondary structure, self-annealing, complemen-
tarity, and potential hairpins [primer characteristics also evaluated by
DNA calculator (Sigma-Aldrich) and OligoCalc (Northwestern Universi-
ty, USA)]. Verification of amplicon size for vtg, cyp1a and β-actin was
carried out on a 2% agarose gel after PCR amplification (Table 1.).

Quantitative PCR (Q-PCR) was carried out as per previous work in
our laboratory (Henry et al., 2009; Park et al., 2010; Reinardy et al.,
2013), briefly, RNase-free water was used to reconstitute lyophilised
primers (Eurofins MWG Operon, Ebersberg, Germany) to 100 μmol
that were mixed with SYBR Green JumpStart Taq ReadyMix to give a
final reaction concentration of 375 nmol in 20 μL total volume. Fluores-
cence was detected (StepOne Real-Time PCR System, Applied
Biosystems, Warrington, UK) over 40 cycles with the following cycling
conditions: denaturing (94 °C, 15 s), primer-specific annealing (55–
60 °C, 1 min), and extension (72 °C, 1 min). All samples and standards
rbed contaminant bioavailability through analysis of biomarker gene
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Table 1
Zebrafish (Danio rerio) gene specific primers for cytochrome P450 1a (cyp1a) vitellogenin
(vtg), and the reference gene β-actin. Reference sequence numbers from NCBI, and prod-
uct length in base pairs (bp).

Gene Primer Nucleotide sequence (5′-3′) Amplicon size (bp)

cyp1a Forward AGG ACA ACA TCA GAG ACA TCA CCG 174
Reverse GAT AGA CAA CCG CCC AGG ACA GAG

vtg Forward ATC AGT GAT GCA CCT GCC CAG ATT G 116
Reverse ACG CAA GAG CTG GAC AAG CTG AA

β-actin Forward ACA CAG CCA TGG ATG AGG AAA TCG 138
Reverse TCA CTC CCT GAT GTC TGG GTC GT

Fig. 2.Experiment 1, Characterization of dose response relationships. Larvaewere exposed
for 96 h, relative fold changes in expression were calculated by ΔΔCT method with the
gene of interest normalized to zebrafish β-actin gene (mean ± S.E. n = 3). A.) Fold
changes in zebrafish cytochrome P450 1a gene (cyp1a) expression relative to
concentration of Phe, linear regression indicated relationship is significant P = 0.012. B.)
Fold changes in zebrafish vitellogenin (vtg) expression relative to concentration of EE2,
linear regression indicated relationship is significant P = 0.0001.
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were run in triplicate, and a standard curvewas prepared on eachQ-PCR
plate for each gene transcript with 10-fold serial dilutions of cDNA
(from pooled samples that had high cyp1a or vtg expression). The re-
quired efficiency of each Q-PCR plate was 90–110% for each gene tran-
script based on the slope of the standard curve.

Relative quantification of gene expression was by the comparative
CT method, in which the change in expression of the gene of interest is
normalized to that of an internal housekeeping gene (Park et al.,
2006). Evaluation of β-actin CT values across samples showed that
there was no effect of treatment on β-actin expression (i.e., β-actin ac-
ceptable as housekeeping gene). Normalized CT values (ΔCT) were ob-
tained by subtracting the CT value of cyp1a or vtg from that of β-actin
in the same sample. Differences between average ΔCT of control group
and ΔCT of each sample in all tested groups were expressed as ΔΔCT.
The relative fold differences (2^ΔΔCT) of target gene expression in ex-
posed samples were compared by treatment concentration for experi-
ment one and by different treatments for experiments two and three.

2.8. Statistical analysis

Statistical analyses were carried out using Minitab 16 software.
Dose-response (Experiment 1) data were checked for normality (Kol-
mogorov-Smirnov's test; P N 0.05) and analyzed using a linear regres-
sion. All bioavailability data (Experiments 2 and 3) were tested for
normality and homogeneity of variance using Kolmogorov-Smirnov's
and Bartlett's tests respectively (P N 0.05). Fold change was analyzed
using a one-way general linear model (GLM) analysis of variance
(ANOVA) followed by a post-hoc Tukey's test for multiple comparisons.

3. Results and discussion

During all exposures, zebrafish larvae developed normally, there
were no changes in behaviour, and no fish died during any of the exper-
iments. The expression of β-actin did not differ among treatments, in-
cluding vehicle (EtOH) controls, and this gene transcript was therefore
considered appropriate as an internal reference for all experiments. A
positive linear relation between co-contaminant concentration and tar-
get gene transcript expression was significant for both EE2 with vtg
(P = 0.0001) and Phe with cyp1A (P = 0.012) respectively (Fig. 2).
The concentration-related induction of vtg with EE2 was consistent
with our previous work (Henry et al., 2009; Park et al., 2010; Reinardy
et al., 2013), and other reports (Bowman et al., 2000; Solé et al.,
2000). Induction of cyp1A by Phe in zebrafish larvae has not been inves-
tigated previously by other researchers; however, we have previously
demonstrated a similar level of cyp1A induction in our laboratory. Rela-
tively low (compared to other cyp1A inducers) level of induction of
cyp1A by Phe is consistent with previous reports (Fent and Bätscher,
2000). The positive relations between co-contaminant concentration
and target gene expression indicated that measurement of the expres-
sion of these genes is a useful approach for evaluation of changes in
co-contaminant bioavailability during sorption reactions with particles
as we have demonstrated previously (Henry et al., 2013; Park et al.,
2011).
Please cite this article as: Sleight, V.A., et al., Assessment of microplastic-s
expression in larval zebrafish, Marine Pollution Bulletin (2016), http://dx
Measurements of the size and shape of uPVC particles used in
Experiments 2 and 3 indicated that particles were consistent with
manufacturer's specifications (Fig. 3). SEM analysis revealed detailed
surface topography of uPVC particles, and, compared to images of
micro-sized polyethylene previously published (Corcoran et al., 2009),
the texture of the uPVC particles of the present study appeared to be
more irregular and coarse. Particles were confirmed to be 200–250 μm
in diameter, and the surface area computed for spherical particles
(4πr2) of this diameter range was 1.26–1.96 × 105 μm2. The assumption
of spherical shaped particles for determination of surface area by com-
putation has been used previously (Goldstein et al., 2013; Nuelle et al.,
2014; Rocha-Santos andDuarte, 2014). Researchers reported themajor-
ity of particles collected from the North Pacific bymanta trawl to be of a
similar size range to those of the present study (1× 106 μm2) (Goldstein
et al., 2013). Based on the computed surface area and total particle con-
centration (8 × 104 particles L−1; Fig. 4) the estimated total uPVC sur-
face area for contaminant sorption in Experiments 2 (300 mL) and 3
(350 mL) was 3–5.5 × 109 μm2. These calculations do not take into ac-
count detailed surface topography, and therefore likely considerably
underestimate the surface area available for sorption of co-contami-
nants. Nevertheless, the total surface area available for sorption of EE2
and Phe was consistent (i.e., same particle sizes and concentrations)
and therefore differences in bioavailability between these co-contami-
nants are not likely to be related to the differences in surface area avail-
able for sorption.

Custom-built chambers were effective at maintaining a relatively
homogeneous aqueous dispersion of MPs and prevented direct contact
orbed contaminant bioavailability through analysis of biomarker gene
.doi.org/10.1016/j.marpolbul.2016.12.055
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Fig. 3. Characterization of uPVC particles. A.) SEM image of uPVC (scale bar = 100 μm; magnification = ×200) B.) SEM image of same uPVC showing more detailed particle topography
(scale bar = 2 μm; magnification = ×5500).
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between larvae and MPs in Experiment 2 (pelagic scenario). The num-
ber of particles in the water column decreased over time (R2 = 57%,
F1,22 = 29.16, P = 0.0001, Fig. 4), and, at 96 h, the number of particles
was 60% of the initial particle concentration. Although 40% of the parti-
cles were sedimented from the water column over 96 h, if the chamber
is not used, 100% of the particles are lost from thewater column and the
resulting heterogeneity of exposure can increase the variation of the
analysis endpoints. The improvement observed in the number of MPs
held in thewater columnwithin the chamber is consistentwith that ob-
served for engineered nanoparticles in a chamber of similar design
(Boyle et al., 2015). Use of the chamber in that study considerably en-
hanced the reproducibility of nanoparticle toxicity in larval zebrafish
compared to exposures without the chamber (i.e., in which particles
were allowed to sediment out of the water column). The need to main-
tain homogenous aqueous dispersions of MPs has not been adequately
addressed in previous studies that tested MP effects on aquatic organ-
isms, and is a potential explanation for differences among reports of
the effects and behaviour of MPs in previous studies.

Compared to positive controls (i.e., co-contaminant exposures with-
out MPs) expression of cyp1A and vtg were reduced when MPs were
present in the water column indicating reduced co-contaminant bio-
availability consistent with co-contaminant sorption to MPs, however
the reduction was only significant for one of the eight experimental
groups (Fig. 5). Based on changes in expression of cyp1A and vtg, the
presence of MPs reduced bioavailability of Phe by only 33% ± 6 SE
(n = 3) whereas with EE2 bioavailability was reduced by up to
48% ± 10 SE (n = 3) (Fig. 5a, b). The MPs and their characteristics
(e.g., surface area charge etc.) are expected to be the same for all co-
Fig. 4. Characterization ofmicroplastic chamber exposures (in Experiment 2) with change
in average concentration of uPVC (200–250 μm) particles over time (F1,22 = 29.16, P =
0.0001, error bars = ± technical triplicate S.E.).
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contaminant exposures and therefore the differences in relative bio-
availability are either related to differences in our ability to detect
changes in bioavailability of each co-contaminant, or by differences in
their physicochemistry that relate to sorption with the MPs. The con-
centrations of EE2 and Phe differed (1 μg/L and 500 μg/L respectively)
and this was because the response profile of the biomarker genes dif-
fered for these substances (i.e., expression of vtg is considerably more
sensitive than expression of cyp1A). It is possible that greater sorption
of EE2 to MPs indicated by lower relative bioavailability (vtg
vt
g
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EE2 Treatments

Fig. 5. Experiments 2 and 3. Relative fold changes in gene expression were calculated by
ΔΔCT method with gene of interest expression normalized to zebrafish β-actin gene
(mean ± S.E. n = 3–18). Grey bars = mean average of controls between Experiments 2
& 3. Significance indicated by letters above error bars (n = at least 3 as indicated in bar
label). A.) Fold changes in zebrafish cytochrome P450 1a gene (cyp1a) expression in
larvae exposed (96 h) to each of the Phe experimental treatments (F5,30 = 9.14, P =
0.0001). B.) Fold changes in zebrafish vitellogenin gene (vtg) expression in larvae
exposed (96 h) to each of the EE2 experimental treatments (F5,27 = 44.47, P = 0.0001).
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expression) is a consequence of the lower amount of EE2 present (i.e.,
lower concentration) compared to Phe.

Filtration removal of theMPs after co-contaminant sorption resulted
in different patterns of bioavailability between Phe and EE2 when
zebrafish were exposed to the filtrate. For Phe, the expression of cyp1A
was highest (3.3 ± 0.4 SE (n = 3) fold) in the positive control (i.e.
Phe without MPs), and, in the chamber exposure simulatingMPs in pe-
lagic environments (i.e., aqueous MPs), Phe bioavailability appeared to
be higher (although observation was not statistically significant)
whenMPswere removed compared towhenMPswere left in the expo-
sure (Fig. 5a). The same reduction in Phe bioavailabilitywas observed in
the exposures that simulated MPs in benthic environments (i.e.,
sedimented MPs). In contrast, the opposite pattern was observed for
EE2 by assessment of vtg expression. EE2 bioavailability was lower
when the MPs were removed compared to when they were left in the
exposure, in the pelagic and benthic scenarios. The consistent opposite
trends observed between Phe and EE2 are most likely to be due to the
different physicochemistry properties of the co-contaminants. Analyti-
cal chemistry was not used to characterize sorption of EE2 to uPVC par-
ticles due to difficulty in detecting such low concentrations; however,
previous studies have demonstrated EE2 has a strong sorption affinity
to plastic (Han et al., 2012; Walker and Watson, 2010). Based on our
bioavailability (gene expression) data, EE2 appeared more strongly as-
sociated with the MPs than Phe, and when the contaminated MPs
were removed (i.e., filtered exposures) much of the bioavailable EE2
was also removed (F5,27 = 44.47, P = 0.0001). The stronger MP associ-
ation of EE2 compared to Phe is contrary to what would be expected
based on physicochemistry (i.e., Phe has higher Kow and lower water
solubility than EE2), which suggests that the bioavailability of co-con-
taminants sorbed to MPs cannot be predicted based on co-contaminant
physicochemistry alone.

Although sorption of Phe and EE2 to MPs is related to contaminant
physicochemistry, it was shown that sorption alters co-contaminant
bioavailability in amanner that cannot be predicted by analytical chem-
istry alone. The sorption of Phe to uPVC MPs was previously character-
ized in our laboratory (Bakir et al., 2012), and the following sorption
equation was obtained:

y ¼ 0:51x−0:14

(where y=concentration of Phe left in the pelagic scenario and x=the
initial concentration of Phe).

The Phe sorption equation predicts that if a 500 μg/L initial concen-
tration of Phe was added to water containing uPVC particles then,
after sorption, 255 μg/L would be left in aqueous solution. If 255 μg/L
was the only bioavailable source of Phe, then, according to the dose-re-
sponse equation for Phe-cyp1A, a cyp1A fold change of 1.68would be ex-
pected. However, when MPs were added to 500 μg/L Phe, a cyp1A fold
change of up to 2.5 ± 0.2 SE (n = 3) was observed in larval zebrafish,
which is 48%±14 SE (n=3) higher thanwhat is predicted by the sorp-
tion equation (above, Supplementary Fig 1). The determination of
greater Phe bioavailability based on measurement of cyp1A expression
in larval zebrafish indicates that methods of analytical chemistry may
not completely determine the bioavailable fraction of co-contaminants.

The concentrations of MPs and co-contaminants used in the present
studywere orders of magnitudes higher than what is found in the envi-
ronment (Aris et al., 2014; Long et al., 1995; Lusher et al., 2014), and co-
contaminant concentrationswere deliberately tested at higher than en-
vironmentally relevant amounts. Results provide evidence that sorption
of these substances to MPs occurs (confirming previous results with
other substances), but that sorption to MPs may not be as much as de-
termined by analytical chemistry or predicted by contaminant
physicochemisty. One reason for the observed higher Phe bioavailability
than that predicted by the linear sorption model could be that Phe
partitioned into clean fish once they were added to the system. In the
environment,MPswith sorbed co-contaminantswill likely be dispersed
Please cite this article as: Sleight, V.A., et al., Assessment of microplastic-s
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to new environments and dis-equilibrium conditionswill lead to poten-
tial changes in bioavailability of sorbed co-contaminants. There is evi-
dence that nanoparticles (NPs) increase the bioavailability of mercury
to larval zebrafish.When NPs with sorbed Hg2+ sedimented to the bot-
tom of beakers, Hg2+ exposure in fish at the bottom of the beaker in-
creased (Henry et al., 2013). The present study did not provide similar
evidence of elevated bioavailability of Phe or EE2 in fish exposed to
sedimented MPs despite the considerably higher than environmentally
relevant concentrations of MPs and co-contaminants tested. It is possi-
ble that other benthic exposure scenarios (e.g., benthic organisms in
which ingestion of MPs with sorbed co-contaminants) could demon-
strate that sedimentation of contaminant-sorbed MPs to the benthos
enhances co-contaminant bioavailability, but - at environmentally rele-
vant concentrations - these effects are expected to be minimal.

Author contributions

V.A.S. designed the study, conducted all exposures and qPCR analy-
ses, performed data analysis and interpretation, produced the figures
and wrote the manuscript. A.B. contaminated the MPs in line with pre-
vious work, provided advice on data interpretation and commented on
the manuscript. R.C.T. initially conceived the study, provided advice on
data interpretation and commented on the manuscript. T.B.H. initially
conceived the study, provided advice on experimental design and data
interpretation and helped to write the manuscript.

Acknowledgements

Thank you to StanleyMcMahon for fishmaintenance and husbandry
in the Zebrafish Research Facility, Plymouth, andAndrewAtfield andDr.
Helena Reinardy for laboratory assistance.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.marpolbul.2016.12.055.

References

Andrady, A.L., 2011. Microplastics in the marine environment. Mar. Pollut. Bull. 62:
1596–1605. http://dx.doi.org/10.1016/j.marpolbul.2011.05.030.

Aris, A.Z., Shamsuddin, A.S., Praveena, S.M., 2014. Occurrence of 17α-ethynylestradiol
(EE2) in the environment and effect on exposed biota: a review. Environ. Int. 69:
104–119. http://dx.doi.org/10.1016/j.envint.2014.04.011.

Ashton, K., Holmes, L., Turner, A., 2010. Association of metals with plastic production pel-
lets in the marine environment. Mar. Pollut. Bull. 60, 2050–2055.

Avio, C.G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d'Errico, G., Pauletto, M.,
Bargelloni, L., Regoli, F., 2015. Pollutants bioavailability and toxicological risk from
microplastics to marine mussels. Environ. Pollut. 198C:211–222. http://dx.doi.org/
10.1016/j.envpol.2014.12.021.

Bakir, A., Rowland, S.J., Thompson, R.C., 2012. Competitive sorption of persistent organic
pollutants onto microplastics in the marine environment. Mar. Pollut. Bull. 64:
2782–2789. http://dx.doi.org/10.1016/j.marpolbul.2012.09.010.

Besseling, E., Wegner, A., Foekema, E.M., van den Heuvel-Greve, M.J., Koelmans, A.A.,
2013. Effects of microplastic on fitness and PCB bioaccumulation by the lugworm
Arenicola marina (L.). Environ. Sci. Technol. 47:593–600. http://dx.doi.org/10.1021/
es302763x.

Bowman, C.J., Kroll, K.J., Hemmer, M.J., Folmar, L.C., Denslow, N.D., 2000. Estrogen-in-
duced vitellogenin mRNA and protein in sheepshead minnow (Cyprinodon
variegatus). Gen. Comp. Endocrinol. 120:300–313. http://dx.doi.org/10.1006/gcen.
2000.7565.

Boyle, D., Boran, H., Atfield, A.J., Henry, T.B., 2015. Use of an exposure chamber tomaintain
aqueous phase nanoparticle dispersions for improved toxicity testing in fish. Environ.
Toxicol. Chem. 34 (3), 583–588.

Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R.,
2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Envi-
ron. Sci. Technol. 45:9175–9179. http://dx.doi.org/10.1021/es201811s.

Colabuono, F.I., Taniguchi, S., Montone, R.C., 2010. Polychlorinated biphenyls and organo-
chlorine pesticides in plastics ingested by seabirds. Mar. Pollut. Bull. 60, 630–634.

Collignon, A., Hecq, J.-H., Glagani, F., Voisin, P., Collard, F., Goffart, A., 2012. Neustonic
microplastic and zooplankton in the north western Mediterranean Sea. Mar. Pollut.
Bull.:2010–2013 (In Press). 10.1016/j.marpolbul.2012.01.011.

Corcoran, P.L., Biesinger, M.C., Grifi, M., 2009. Plastics and beaches: a degrading relation-
ship. Mar. Pollut. Bull. 58, 80–84.
orbed contaminant bioavailability through analysis of biomarker gene
.doi.org/10.1016/j.marpolbul.2016.12.055

http://dx.doi.org/10.1016/j.marpolbul.2016.12.055
http://dx.doi.org/10.1016/j.marpolbul.2016.12.055
http://dx.doi.org/10.1016/j.marpolbul.2011.05.030
http://dx.doi.org/10.1016/j.envint.2014.04.011
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0015
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0015
http://dx.doi.org/10.1016/j.envpol.2014.12.021
http://dx.doi.org/10.1016/j.marpolbul.2012.09.010
http://dx.doi.org/10.1021/es302763x
http://dx.doi.org/10.1021/es302763x
http://dx.doi.org/10.1006/gcen.2000.7565
http://dx.doi.org/10.1006/gcen.2000.7565
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf2000
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf2000
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf2000
http://dx.doi.org/10.1021/es201811s
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0045
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0045
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0055
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0055
http://dx.doi.org/10.1016/j.marpolbul.2016.12.055


7V.A. Sleight et al. / Marine Pollution Bulletin xxx (2016) xxx–xxx
Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F.,
Ryan, P.G., Reisser, J., 2014. Plastic pollution in the World's oceans: N5 trillion plastic
pieces weighing over 250,000 tons afloat at sea. PLoS One 9, e111913. http://dx.doi.
org/10.1371/journal.pone.0111913.

Fent, K., Bätscher, R., 2000. Cytochrome P4501A induction potencies of polycyclic aromat-
ic hydrocarbons in a fish hepatoma cell line: demonstration of additive interactions.
Environ. Toxicol. Chem. 19, 2047–2058.

Frias, J.P.G.L., Sobral, P., Ferreira, A.M., 2010. Organic pollutants in microplastics from two
beaches of the Portuguese coast. Mar. Pollut. Bull. 60, 1988–1992.

Goldstein, M.C., Titmus, A.J., Ford, M., 2013. Scales of spatial heterogeneity of plastic ma-
rine debris in the northeast pacific ocean. PLoS One 8, e80020. http://dx.doi.org/10.
1371/journal.pone.0080020.

Gregory, M.R., 2009. Environmental implications of plastic debris in marine
settings—entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien
invasions. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 364, 2013–2025.

Gündel, U., Kalkhof, S., Zitzkat, D., von Bergen, M., Altenburger, R., Küster, E., 2012. Con-
centration-response concept in ecotoxicoproteomics: effects of different phenan-
threne concentrations to the zebrafish (Danio rerio) embryo proteome. Ecotoxicol.
Environ. Saf. 76:11–22. http://dx.doi.org/10.1016/j.ecoenv.2011.10.010.

Han, J., Qiu, W., Meng, S., Gao, W., 2012. Removal of ethinylestradiol (EE2) from water via
adsorption on aliphatic polyamides. Water Res. 46:5715–5724. http://dx.doi.org/10.
1016/j.watres.2012.08.001.

Hansch, C., Leo, A., Hoekman, D.H., 1995. Exploring QSAR: fundamentals and applications
in chemistry and biology. Am. Chem. Soc.

Henry, T.B., McPherson, J.T., Rogers, E.D., Heah, T.P., Hawkins, S.A., Layton, A.C., Sayler, G.S.,
2009. Changes in the relative expression pattern of multiple vitellogenin genes in
adult male and larval zebrafish exposed to exogenous estrogens. Comp. Biochem.
Physiol. A Mol. Integr. Physiol. 154, 119–126.

Henry, T.B., Wileman, S.J., Boran, H., Sutton, P., 2013. Association of Hg2+ with aqueous (C
60) n aggregates facilitates increased bioavailability of Hg2+ in zebrafish (Danio
rerio). Environ. Sci. Technol. 47:9997–10004. http://dx.doi.org/10.1021/es4015597.

Herzke, D., Anker-Nilssen, T., Nøst, T.H., Götsch, A., Christensen-Dalsgaard, S., Langset, M.,
Fangel, K., Koelmans, A.A., 2016. Negligible impact of ingested microplastics on tissue
concentrations of persistent organic pollutants in northern fulmars off coastal Nor-
way. Environ. Sci. Technol. 50:1924–1933. http://dx.doi.org/10.1021/acs.est.5b04663.

Holmes, L.A., Turner, A., Thompson, R.C., 2012. Adsorption of trace metals to plastic resin
pellets in the marine environment. Environ. Pollut. 160:42–48. http://dx.doi.org/10.
1016/j.envpol.2011.08.052.

Jennings, A.A., 2012. Worldwide regulatory guidance values for surface soil exposure to
carcinogenic or mutagenic polycyclic aromatic hydrocarbons. J. Environ. Manag.
110:82–102. http://dx.doi.org/10.1016/j.jenvman.2012.05.015.

Long, E.R., Macdonald, D.D., Smith, S.L., Calder, F.D., 1995. Incidence of adverse biological
effects within ranges of chemical concentrations in marine and estuarine sediments.
Environ. Manag. 19:81–97. http://dx.doi.org/10.1007/BF02472006.

Lusher, A.L., Burke, A., O'Connor, I., Officer, R., 2014. Microplastic pollution in the North-
east Atlantic Ocean: Validated and opportunistic sampling. Mar. Pollut. Bull. 88:
325–333. http://dx.doi.org/10.1016/j.marpolbul.2014.08.023.

Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C., Kaminuma, T., 2001. Plastic resin
pellets as a transport medium for toxic chemicals in the marine environment. Envi-
ron. Sci. Technol. 35, 318–324.

Miller, M.M., Wasik, S.P., Huang, G.L., Shiu, W.Y., Mackay, D., 1985. Relationships between
octanol-water partition coefficient and aqueous solubility. Environ. Sci. Technol. 19:
522–529. http://dx.doi.org/10.1021/es00136a007.

Nuelle, M.-T., Dekiff, J.H., Remy, D., Fries, E., 2014. A new analytical approach for monitor-
ing microplastics in marine sediments. Environ. Pollut. 184:161–169. http://dx.doi.
org/10.1016/j.envpol.2013.07.027.

Oliveira, M., Ribeiro, A., Hylland, K., Guilhermino, L., 2013. Single and combined effects of
microplastics and pyrene on juveniles (0+ group) of the common goby
Pomatoschistus microps (Teleostei, Gobiidae). Ecol. Indic. 34:641–647. http://dx.doi.
org/10.1016/j.ecolind.2013.06.019.

Park, J.-W., Hecker, M., Murphy, M.B., Jones, P.D., Solomon, K.R., Van Der Kraak, G., Carr,
J.A., Smith, E.E., du Preez, L., Kendall, R.J., Giesy, J.P., 2006. Development and optimiza-
tion of a Q-RT PCRmethod to quantify CYP19mRNA expression in testis of male adult
Please cite this article as: Sleight, V.A., et al., Assessment of microplastic-so
expression in larval zebrafish, Marine Pollution Bulletin (2016), http://dx
Xenopus laevis: comparisons with aromatase enzyme activity. Comp. Biochem. Phys-
iol. B Biochem. Mol. Biol. 144:18–28. http://dx.doi.org/10.1016/j.cbpb.2006.01.003.

Park, J.-W., Henry, T.B., Menn, F.-M., Compton, R.N., Sayler, G., 2010. No bioavailability of
17α-ethinylestradiol when associated with nC60 aggregates during dietary exposure
in adult male zebrafish (Danio rerio). Chemosphere 81:1227–1232. http://dx.doi.org/
10.1016/j.chemosphere.2010.09.036.

Park, J.-W., Henry, T.B., Ard, S., Menn, F.-M., Compton, R.N., Sayler, G.S., 2011. The associ-
ation between nC60 and 17α-ethinylestradiol (EE2) decreases EE2 bioavailability in
zebrafish and alters nanoaggregate characteristics. Nanotoxicology 5:406–416.
http://dx.doi.org/10.3109/17435390.2010.525329.

Reddy, M.S., Adimurthy, S., Ramachandraiah, G., 2006. Description of the small plastics
fragments in marine sediments along the Alang-Sosiya ship-breaking yard, India.
Estuar. Coast. Shelf Sci. 68, 656–660.

Reinardy, H.C., Scarlett, A.G., Henry, T.B., West, C.E., Hewitt, L.M., Frank, R.A., Rowland, S.J.,
2013. Aromatic naphthenic acids in oil sands process-affected water, resolved by
GCxGC-MS, only weakly induce the gene for vitellogenin production in zebrafish
(Danio rerio) larvae. Environ. Sci. Technol. 47:6614–6620. http://dx.doi.org/10.1021/
es304799m.

Rocha-Santos, T., Duarte, A.C., 2014. A critical overview of the analytical approaches to the
occurrence, the fate and the behavior of microplastics in the environment. TrAC
Trends Anal. Chem. 65:47–53. http://dx.doi.org/10.1016/j.trac.2014.10.011.

Rochman, C.M., Hoh, E., Hentschel, B.T., Kaye, S., 2013a. Long-term field measurement of
sorption of organic contaminants to five types of plastic pellets: implications for plas-
tic marine debris. Environ. Sci. Technol. 47:1646–1654. http://dx.doi.org/10.1021/
es303700s.

Rochman, C.M., Hoh, E., Kurobe, T., Teh, S.J., 2013b. Ingested plastic transfers hazardous
chemicals to fish and induces hepatic stress. Sci. Rep. 3, 3263.

Semple, K.T., Doick, K.J., Jones, K.C., Burauel, P., Craven, A., Harms, H., 2004. Peer reviewed:
defining bioavailability and bioaccessibility of contaminated soil and sediment is
complicated. Environ. Sci. Technol. 38:228A–231A. http://dx.doi.org/10.1021/
es040548w.

Shim, W.J., Thomposon, R.C., 2015. Microplastics in the ocean. Arch. Environ. Contam.
Toxicol. 1–4.

Solé, M., Porte, C., Barceló, D., 2000. Vitellogenin induction and other biochemical re-
sponses in carp, Cyprinus carpio, after experimental injection with 17α-
ethynylestradiol. Arch. Environ. Contam. Toxicol. 38, 494–500.

Tanaka, K., Takada, H., Yamashita, R., Mizukawa, K., Fukuwaka, M.A., Watanuki, Y., 2013.
Accumulation of plastic-derived chemicals in tissues of seabirds ingesting marine
plastics. Mar. Pollut. Bull. 69, 219–222.

Teranishi, K., Hamada, K., Hiromu, W., 1975. Quantitative relationship between
carcinogenecity and mutagenicity of polyaromatic hydrocarbons in Salmonnella
typhimurium mutants. Mutat. Res. Mutagen. Relat. Subj. 31:97–102. http://dx.doi.
org/10.1016/0165-1161(75)90071-0.

Teuten, E.L., Rowland, S.J., Galloway, T.S., Thompson, R.C., 2007. Potential for plastics to
transport hydrophobic contaminants. Environ. Sci. Technol. 41, 7759–7764.

Teuten, E.L., Saquing, J.M., Knappe, D.R.U., Barlaz, M.A., Jonsson, S., Björn, A., Rowland, S.J.,
Thompson, R.C., Galloway, T.S., Yamashita, R., Ochi, D., Watanuki, Y., Moore, C., Viet,
P.H., Tana, T.S., Prudente, M., Boonyatumanond, R., Zakaria, M.P., Akkhavong, K.,
Ogata, Y., Hirai, H., Iwasa, S., Mizukawa, K., Hagino, Y., Imamura, A., Saha, M.,
Takada, H., 2009. Transport and release of chemicals from plastics to the environment
and to wildlife. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 364, 2027–2045.

Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle,
D., Russell, A.E., 2004. Lost at sea: Where is all the plastic? Science 304 (80), 838.

Voparil, I.M., Mayer, L.M., 2000. Dissolution of sedimentary polycyclic aromatic hydrocar-
bons into the lugworm's (Arenicola marina) digestive fluids. Environ. Sci. Technol. 34:
1221–1228. http://dx.doi.org/10.1021/es990885i.

Walker, C.W., Watson, J.E., 2010. Adsorption of estrogens on laboratory materials and fil-
ters during sample preparation. J. Environ. Qual. 39:744–748. http://dx.doi.org/10.
2134/jeq2009.0017.
rbed contaminant bioavailability through analysis of biomarker gene
.doi.org/10.1016/j.marpolbul.2016.12.055

http://dx.doi.org/10.1371/journal.pone.0111913
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0065
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0065
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0065
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0070
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0070
http://dx.doi.org/10.1371/journal.pone.0080020
http://dx.doi.org/10.1371/journal.pone.0080020
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0080
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0080
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0080
http://dx.doi.org/10.1016/j.ecoenv.2011.10.010
http://dx.doi.org/10.1016/j.watres.2012.08.001
http://dx.doi.org/10.1016/j.watres.2012.08.001
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0095
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0095
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0100
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0100
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0100
http://dx.doi.org/10.1021/es4015597
http://dx.doi.org/10.1021/acs.est.5b04663
http://dx.doi.org/10.1016/j.envpol.2011.08.052
http://dx.doi.org/10.1016/j.envpol.2011.08.052
http://dx.doi.org/10.1016/j.jenvman.2012.05.015
http://dx.doi.org/10.1007/BF02472006
http://dx.doi.org/10.1016/j.marpolbul.2014.08.023
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0135
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0135
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0135
http://dx.doi.org/10.1021/es00136a007
http://dx.doi.org/10.1016/j.envpol.2013.07.027
http://dx.doi.org/10.1016/j.ecolind.2013.06.019
http://dx.doi.org/10.1016/j.cbpb.2006.01.003
http://dx.doi.org/10.1016/j.chemosphere.2010.09.036
http://dx.doi.org/10.3109/17435390.2010.525329
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0170
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0170
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0170
http://dx.doi.org/10.1021/es304799m
http://dx.doi.org/10.1021/es304799m
http://dx.doi.org/10.1016/j.trac.2014.10.011
http://dx.doi.org/10.1021/es303700s
http://dx.doi.org/10.1021/es303700s
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0190
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0190
http://dx.doi.org/10.1021/es040548w
http://dx.doi.org/10.1021/es040548w
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0205
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0205
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0210
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0210
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0210
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0215
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0215
http://dx.doi.org/10.1016/0165-1161(75)90071-0
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0225
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0225
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0230
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0230
http://refhub.elsevier.com/S0025-326X(16)31059-1/rf0235
http://dx.doi.org/10.1021/es990885i
http://dx.doi.org/10.2134/jeq2009.0017
http://dx.doi.org/10.2134/jeq2009.0017
http://dx.doi.org/10.1016/j.marpolbul.2016.12.055

	Assessment of microplastic-�sorbed contaminant bioavailability through analysis of biomarker gene expression in larval zebrafish
	1. Introduction
	2. Materials and methods
	2.1. Experimental fish
	2.2. Preparation of exposure solution and microplastic characterisations
	2.3. Experimental design
	2.4. Experiment 1: dose response
	2.5. Experiment 2: sorption of co-contaminants to uPVC MPs in the water column – pelagic scenario
	2.6. Experiment 3: bioavailability of co-contaminants sorbed to uPVC upon accumulation of MPs on the bottom – benthic scenario
	2.7. Gene expression quantification
	2.8. Statistical analysis

	3. Results and discussion
	Author contributions
	Acknowledgements
	Appendix A. Supplementary data
	References


