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ABSTRACT

Cooperative search provides a class of strategies to design more effective search

methodologies by combining (meta-) heuristics for solving combinatorial optimisation

problems. This area has been little explored in operational research. This thesis

proposes a general agent-based distributed framework where each agent implements

a (meta-) heuristic. An agent continuously adapts itself during the search process

using a cooperation protocol based on reinforcement learning and pattern matching.

Good patterns which make up improving solutions are identified and shared by the

agents. A theoretical approach to the understanding of the potential of agent-based

systems is also proposed. This agent-based system aims to raise the level of generality

by providing a flexible framework to deal with a variety of different problem domains.

The proposed framework so far has been tested on Permutation Flow-shop Scheduling,

Travelling Salesman Problem and Nurse Rostering. These instances have yielded some

promising results. As part of the nurse rostering work a novel approach to modelling

fairer nurse rosters is proposed.
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CHAPTER I

INTRODUCTION

1.1 Background and Motivation

Heuristics (meta-heuristics) have been successfully used to solve a wide range of

combinatorial optimisation problems. In the recent years, however, it has become

evident that different (meta-)heuristics working on the same problem can produce

different results. Moreover, most of the (meta-)heuristics developed for a specific

problem domain cannot be used to solve instances from another problem domain.

This frequently requires either parameter tuning and/or design of new neighbourhood

operators for the new problem domain. There is almost no guidance available in

choosing the best (meta-)heuristic for solving a problem in hand. For these reasons,

the use of a sole (meta-)heuristic can be rather restrictive when dealing with real-

world problems. But what if there was a way of combining all of these meta-heuristics

so that the different strengths could be harnessed during a search?

One way that this could be achieved is with a framework enabling the use of

different (meta-)heuristics that to provide an improved search methodology and an

increase in the level of generality. The key idea behind cooperative search is to

combine the strengths of different (meta-)heuristics to balance intensification and

diversification and direct the search towards promising regions of the search space

(Ouelhadj and Petrovic, 2010).

Interest in cooperative search has risen due to successes in combining novel search

algorithms (Clearwater et al., 1992; Hogg and Williams, 1993; Talbi and Bachelet,

2006). Blum and Roli (2003); Clearwater et al. (1992); Hogg and Williams (1993);

Toulouse et al. (1999); Crainic and Toulouse (2008) describe how cooperative search

can be performed by the exchange of states, solutions, sub-problems, models or search

space characteristics. Several frameworks have been proposed recently, including

(Talbi and Bachelet, 2006; Milano and Roli, 2004; Meignan et al., 2008, 2010; Ouelhadj

and Petrovic, 2010). Each of these frameworks incorporates either meta-heuristics
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(Talbi and Bachelet, 2006; Milano and Roli, 2004) or hyper-heuristics (Ouelhadj and

Petrovic, 2010).

Crainic and Toulouse (2008) explain that cooperation may take many forms but

in each case they share two important features:

a) a set of autonomous programmes (AP) implementing a particular solution method,

b) a cooperation scheme for combining AP’s into a single problem-solving strategy.

Another important feature that will be developed in chapter IV is that AP’s can

just as well solve a problem as stand alone algorithms. However by cooperating the

chances of finding novel and greatly improved solutions are increased. Therefore the

communication and sharing of information is an important feature of cooperation.

Crainic and Toulouse (2008) have identified a number of key properties that might

feature in a cooperation schema. These are synchronous, asynchronous, direct and

indirect communication. Cooperation mechanisms where AP’s have to synchronise

communication at predefined intervals are prone to be slow and less affective as the

search has to be re-started at each interval. Asynchronous mechanisms do not have

such constraints therefore information exchange can take place in a more seamless

manner allowing a search to expand in hitherto unexpected ways. Direct commu-

nication is often associated with population based methods where are population

is divided into subsets or an island which an communicate directly with other is-

lands. Indirect communication is often associated with memory-based approaches

where AP’s send and receive partial or whole solutions to a central memory pool of

information.

1.1.1 Motivation

In the literature most cooperative search mechanisms are described as communi-

cating indirectly through some central pool or adaptive memory (Talbi and Bachelet,

2006; Milano and Roli, 2004; Meignan et al., 2008). This can take the form of passing
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whole, or possibly, partial solutions, to the pool (Meignan et al., 2010). As far as it

is known direct asynchronous cooperation has not been researched much at all.

The only exceptions are Vallada and Ruiz (2009) and Ouelhadj and Petrovic (2010)

where whole solutions are passed from one process to another in an island model

executing a genetic algorithm (Vallada and Ruiz, 2009) or hyper-heuristic (Ouelhadj

and Petrovic) to solve the permutation flow-shop scheduling problem. Also Xie and

Liu (2009) propose an evolutionary system to solve the Travelling Salesman Problem

(TSP). However, all three systems are designed for specific problem domains and

use the best known (meta-)heuristics for these domains. While Malek (2010) has

proposed a multi-agent framework able to work on different problem domains, but

the system seems to pass whole solutions through a solution pool.

Little work has been done on direct cooperation where partial solutions are rated

and their parameters are communicated between agents. Furthermore no direct coop-

eration strategy has been applied to more than one problem domain in combinatorial

optimisation. There is a gap in the literature regarding agents cooperating directly

and asynchronously where the communication is used for the adaptive selection of

moves with parameters. Also little work seems to have been done on cooperative

systems where different meta-heuristics work collectively to solve problems.

1.2 Aims, objectives and contribution

The aim of this thesis is to find ways to combine different meta-heuristics in such

a way that they cooperate with each other. This goal itself necessitates a number

of design choices. According to Crainic and Toulouse (2008) an asynchronous frame-

work enabling the use of different (meta-)heuristics could result in an improved search

methodology and increase the level of generality. Furthermore using different coop-

erating meta-heuristics also implies a choice between direct or indirect methods of

communication where each meta-heuristic is an island. Given these choices Crainic

and Toulouse (2008) suggest that communication can either be many-to-many where

each meta-heuristic communicates with every other, or it can be memory based where

3



information is sent to a pool where the other meta-heuristics can use it as required.

However, one of the aims of this project is to build a framework using different meta-

heuristics to solve combinatorial optimisation problems balancing intensification and

diversification between (meta-heuristics). It is proposed that this goal is appropriately

achieved by developing a multi-agent framework where the agents are autonomous

and maintain there own representation of the a search environment. This, in turn, ne-

cessitates an asynchronous direct many-to-many approach which, as far as is known,

has not been tried before.

Given this set of assumptions the aims for the thesis are as follows:

a) develop a theory to prove why cooperative algorithms are effective

b) build a system where meta-heuristics share information using asynchronous di-

rect cooperation

c) develop a multi-agent platform for cooperative search that is generic and mod-

ular that can be easily configured to solve different combinatorial optimisation

problems

d) develop a cooperation mechanism that allows different meta-heuristics to share

good parts of solutions with each other to control intensification and diversifi-

cation effectively.

e) test the framework with a number of case studies to prove that the system meets

its design objectives.

To achieve these goals a generic framework of cooperating agents using pattern

matching and reinforcement learning is proposed. Therefore an island model is pro-

posed where each agent is autonomous and is capable of executing different meta-

heuristic and local search combinations with different parameter settings. They co-

operate using an asynchronous message passing protocol utilising a pattern matching

diversification phase and meta-heuristics for intensification.
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To this end, the framework has been developed to use ontologies (see section

5.4.1.1) to model combinatorial optimisation problems. In so doing the platform is

easily configurable, generic and modular allowing the seamless integration of new

heuristics. It also means that different modules developed by other people can be

easily adapted and added to the platform. Finally, the system has been tested on

a number of classical combinatorial optimisation problems including the Symmetri-

cal Travelling Salesman Problem(STSP) and the Permutation Flow-shop Scheduling

Problem (PFSP). The system was also tested on a highly constrained Nurse Rostering

(NR) problem.

1.2.1 Contribution

The main contributions of this thesis are:

• A Turing machine based theory of cooperating algorithms. Cooperation is ex-

amined within the context of the theory of computation and computability. To

account for cooperation formally an extension to the definition Turing machine

is proposed. The formal implications of this work are discussed.

• A generic modular agent-based framework for cooperative search to combinato-

rial optimisation problems is proposed and implemented. The framework raises

the level of generality.

• A generic pattern matching protocol for meta-heuristics to share information is

proposed. Each meta-heuristic is an autonomous agent with its own representa-

tion of the search environment. To this end they share partial solution pattens

to enable each agent to build new potential solutions and develop the search.

• Important test results showing the benefits of cooperation for The Symmetrical

Travelling Salesman Problem (STSP), the Permutation Flowshop Scheduling

Problem (PFSP) and the Nurse Rostering Problem (NRP).
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• A Nurse rostering model is used by the framework to produce test results that

out perform previous work on these problem instances. This work has been

conducted in conjunction with (Ouelhadj et al., 2012)

• A novel approach to fairness in nurse rostering. With Ouelhadj et al. (2012)

a new objective function is proposed to increase the level of fairness in nurse

rosters. This was tested on the framework with good results.

1.3 Outline of the thesis

This thesis is structured as follows. A brief overview of the literature is provided

in chapter II. It reviews the current research on parallel meta-heuristics and agent-

based cooperation. It pinpoints the gap in the literature which the current work seeks

to fill.

Agents and agent-based systems are introduced in chapter III. It starts with a

brief history of agent-based research and concludes with a discussion of the JADE

platform which was used to develop the agents-based system described in this thesis.

In chapter IV A Turing machine definition of cooperating algorithms is proposed.

It identifies them as computing a class of algorithms proposed by Crainic and Toulouse

(2008) where, if required, algorithms can solve given problems on their own, but cru-

cially, if they are allowed to cooperate, new and unforeseen solutions are generated.

This class of algorithms lends itself well to the goals of this research, namely to get

meta-heuristics to cooperate asynchronously to improve solution quality. The impli-

cations of this class of algorithms for the theory of computation and computability are

examined and it is proposed that it is always possible to extend the Turing machines

by augmenting a machines alphabet or the set of tape head moves, but that this does

not affect the Church-Turing thesis as has been claimed by Goldin (2000).

Chapter V the multi-agent framework of combinatorial optimisation problems is

introduced. The cooperation protocol for pattern matching is described as well as the

ontology representing combinatorial optimisation. This allows the system to operate
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at a level of generality making it possible to work on different combinatorial optimi-

sation problems with little configuration. Section 5.2 discusses the implementation of

the generic agent-based system.

Chapter VI is the first of the case studies where the platform is tested on well

known benchmark problems for the Symmetrical Travelling Salesman Problem (STSP).

The framework is tested using two simple meta-heuristics combined with a 2-opt lo-

cal search heuristic. Even with such simple heuristics the system produces credible

results.

Chapter VII is the second of the case studies for the Permutation Flow-shop

Scheduling Problem (PFSP). The system uses the same meta-heuristics and param-

eter setting as with the STSP tests. The only difference is that the local search

heuristic is a simple hill-climber with random swaps. The test results are in line

with many published results and are surprisingly good given the simplicity of the

heuristics.

Chapter VIII is the last of the case studies testing the platform on a constrained

problem, The Nurse Rostering problem (NR). The system is tested on benchmark

problems from a hospital in Belgium (Bilgin, 2008). These results are better than

those published in Bilgin et al. (2012). Work was also carried out with Belgian

partners (Ouelhadj et al., 2012) on fairness in nurse rostering where a new objective

function modelling fairness was tested.

The final chapter IX summarises the main achievements of the thesis, presents

general conclusions and suggests future research directions for cooperation in combi-

natorial optimisation.
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CHAPTER II

A SURVEY OF COOPERATIVE SEARCH

2.1 Introduction

Research into parallel cooperative optimisation has grown significantly in the last

10 to 15 years. Most of this work has been focussed on parallel (meta-)heuristics, in-

cluding tabu search, genetic algorithms,ant colony and simulated annealing (Crainic

and Laporte, 1998; Crainic and Toulouse, 2010; Alba, 2005; Dorigo and Gambardella,

1997; Dorigo et al., 2006; Aydin, 2007). This research has concentrated on speed-up

and robustness. Speed-up aims to decrease the overall processing time of (meta-

)heuristics by implementing them in parallel rather than a single process implemen-

tation. This can be achieved by processing computationally expensive or time con-

suming routines in parallel. Robustness is where the overall search is widened covering

more of the search space by starting different processes with different instances of the

same problem without the need for parameter tuning.

There is very little literature on cooperating meta-heuristic agents. This chapter

reviews the work on parallel meta-heuristics and shows why cooperating parallel meta-

heuristics are different from cooperating meta-heuristic agents.

2.2 Brief overview of Parallel Meta-heuristics

Meta-heuristics are notoriously difficult to calibrate, and in consequence they have

to be designed and tuned to specific problems and cannot be easily reconfigured to

solve new problems. However parallel meta-heuristics have been shown to address

some of these issues. Crainic and Toulouse (2010) identify four main areas of research

in the parallel meta-heuristics field:

• Low-level parallel strategies. These usually involve the decomposition of

a task into subtasks where a master process apportions subtasks to slave pro-

cesses. The slaves complete their tasks and return the results to the master
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process which recombines the results either producing a final result or reiterat-

ing the whole process again. There is no interprocess communication between

slaves. This is a very traditional approach to a parallelism and is typical of

research undertaken in the 1980’s such as Malek et al. (1989).

• Domain Decomposition. The idea here is to break a problem into smaller,

usually disjoint, but not necessarily exhaustive subsets, and try to solve these

with (meta-)heuristics and then to collect the respective partial solutions and

reconstruct the entire one. Laganiére and Mitiche (1995) propose a parallel

tabu search using domain decomposition to solve the vehicle routing problem

with time windows.

• Independent multi-search. This strategy involves the performing of several

searches simultaneously. There is no master process that decomposes a problem

or one that controls the search. Starting from different initial solutions the

entire search space is searched in parallel by different search algorithms. The

best result is collected and presented as the overall solution at the end of the

search. An example of this has been proposed by Taillard (1994).

• Cooperative multi-search. Cooperative multi-search starts in much the same

way as independent multi-search strategies with parallel processes starting from

the same or different seed solutions. However the difference is that during

the search the various processes have the opportunity to share information.

This can be done synchronously or asynchronously. In the former case, the

processes have to be halted periodically throughout the search while the different

processes share information with each other updating the overall system state.

In the case of asynchronous cooperation, the different processes control how they

share information with each other. This latter method tends include seamless

and more effective information sharing. For example, consider the work of

Vallada and Ruiz (2009) where different islands in a genetic algorithm update

asynchronous each other asynchronously through a central memory pool.
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Crainic et al. (2005) propose a classification system where they identify a three of

important dimensions of parallel meta-heuristics. These include:

• Search Control Cardinality. This specifies if the global control strategy for

the parallel system is controlled by one (1C) or many (pC)processes.

• Search Control and Communications. This addresses the issue of whether

information is to be passed synchronously or asynchronously. In the former

case, some process has to control when information is to be passed between

processes. This usually results in all processes being halted while this exchange

takes place. In the later case information exchange is controlled by each process.

There are also four sub-categories associated with this category. These are:

rigid synchronous(RS), knowledge synchronisation(KS), and collegial(C) and

knowledge collegial(KC). Here asynchronous information exchange is collegial

because no process has overall control.

• Search Differentiation. Different processes/threads can start from the same

or different seeds. Furthermore, the different threads/processes can use the

same or different search strategies. These choices are split into four sub cate-

gories. These are: same initial point/population, same search strategy(SPSS);

same initial point/population, different search strategy(SPDS); Multiple initial

points/populations, same search strategy(MPSS); Multiple initial points/populations,

different search strategy(MPDS). The term “point” is concerned with neighbourhood-

based methods while “population” is associated with evolutionary of genetic

based methods

Taking into account the above categories, it is possible to classify most parallel

heuristics seen in the literature. Furthermore it is possible to classify cooperation

strategies and pinpoint the approach chosen in this thesis.
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2.2.1 Cooperative meta-heuristics

Using the classification schema of Crainic et al. (2005), it is clear that all cooper-

ative meta-heuristics fall into the category of pC/KS or pC/C with any of the search

differentiation subcategories(SPSS/SPDS/MPSS/MPDS).

The main challenge for cooperative search is designing cooperative mechanisms

that enable the useful exchange of information between processes. This cooperation

may be performed synchronously or asynchronously, or directly or indirectly (Crainic

and Toulouse, 2008). An example of direct cooperation is the island model of evo-

lutionary algorithms, where a population is divided into subsets, each is assigned to

a different processor and a genetic algorithm runs on each island. The islands may

communicate with each other. This normally takes the form of the islands sending

good solutions to a pool of solutions. Solutions are then retrieved from the pool for

further search. This model has been successfully applied to a number of combinato-

rial optimisation problems. Crainic et al. (1995a) apply a pC/KS/MPSS approach

to multi-commodity location with balancing requirements, while Crainic et al. (2006)

use a pC/C/MPSS approach on the capacitated network design problem,James et al.

(2009) uses a pC/KC/MPSS strategy for quadratic assignments and Crainic et al.

(2009) use a pC/KC/MPDS approach for a methodology for designing wireless net-

works.

Comparative literature studies conducted by Crainic et al. (1997) have compared

distributed synchronous and asynchronous cooperative search with sequential search.

They found the solutions obtained to be superior. Furthermore, they conclude that,

of the methods they reviewed, asynchronous cooperative search is the most effective.

From the literature it is clear that cooperation can lead to better solutions. It is also

robust, covering more of the search space and often leads to better performance, or

speed-up (Alba, 2005).

2.3 Agent-based approaches in cooperative search

Crainic and Toulouse (2010) have produced a comprehensive survey and analysis of
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parallel meta-heuristics and the classification schema of Crainic et al. (2005) explains

clearly the diversity of the field. However in this survey they do not mention agent-

based approaches. This is probably as much to do with the fact that the term is used

to describe many different approaches. To this end, this schema will be used to help

clarify the types of parallelism used by agent-based system and will help highlight

any areas not covered by the schema.

In the literature, the term agent, is often used, as above, to describe distributed

sub-processes. From now on the term multi-agent system (or agent-based system,

the terms will be used interchangeably) is a system where the agents are autonomous

programs communicating by message passing. A full definition of agents will be given

in section 3.2, but for now the following will suffice.

Wooldridge (2009) defines an agent-based system as

... a computer system that is situated in some environment, and that

is capable of autonomous action in this environment in order to meet its

design objectives.

Aydin (2007) has pointed out that multi-agent systems offer a natural way to

implement cooperative search. Furthermore, he describes meta-heuristic agents as

having the potential to carry out cooperative search where each agent implements

either different or the same algorithms while exchanging useful information about the

search between them.

In combinatorial optimization the term “agent” is often used to describe parallel

population based heuristics such as parallel genetic algorithms (Vallada and Ruiz,

2009) or parallel ant colony heuristics such as Dorigo et al. (2006). The term has also

been used by researchers referring to different parallel meta-heuristic approaches.

The Cooperative A-Teams of Talukdar et al. (2003) is an agent-based system

that uses asynchronous agents which execute different solution modifying techniques

where they can be classified in more than one way using the schema of Crainic et al.

(2005). An agent will scan the current population from a central memory and select a

12



number of solutions, modify them and then write the population back to memory. An

agent maybe a creator or a destroyer. A creator agent will augment the population

of solutions when it modifies a solution while a destroyer will remove solutions from

the population. A-teams also work on two levels. A complex problem can be broken

down into sub-problems which an A-team agent will work on with its own memory

pool for the sub-problem. From this description it can be seen that A-team agents are

at once pC/C/MPDS when the creator and destroyer agents update the central pool.

They can also be classed as pC/KC/MPDS when an agent has its own sub-pool.

This is due to the fact that an agent-based system according, to Wooldridge’s

definition will have a degree of autonomy. This implies that the agent will be asyn-

chronous because it will have an internal communication mechanism; it will com-

municate directly and will also maintain its own internal partial view of the search

environment. Therefore, by the classification schema it will be pC/KC or C/MPSS

or MPDS meaning that there are multiple processes and no master, information is

shared asynchronously and directly where the agent will have some kind of internal

memory and agents can instantiate the same or different meta-heuristics. As a con-

sequence they do no easily fall under the classification of Crainic et al. (2005). This

is due to their autonomy according to their survey pC/C/X systems usually cooper-

ate via a central shared memory while pC/KC/X will use adaptive-memory pools.

Agent based systems communicate not through a shared memory (of any sort) but

directly using protocols. This means that unless there is an agent acting as a central

or adaptive pool, the agents must maintain an internal partial representation of the

search.

Furthermore the agents in this thesis can conduct all of the problems tested as

stand alone agents and reach a solution. They only cooperate because it improves

solutions. What this means is that there is no governing process guiding the search

and the agents are completely autonomous. The agents each participate in a search

that amounts to a distributed meta-heuristic but the exact character of this heuristic

can only be known at the end of the search (see chapters IV and V). It is therefore
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proposed to call this type of algorithm an emergent distributed algorithm.

It is important to realise that an agent-based system is not just a collection of

distributed processes or threads working together to solve a problem. Each agent

in an agent-based system is an autonomous program in its own right. It can per-

form its allotted task without recourse to a governing process. This means that the

multi-agent will have an internal representation of its environment and will respond

through cooperation protocols to other agents accordingly. Another feature of such

systems is that they communicate by passing messages as opposed to function calls

to other processes. In a message passing system, the agent has to translate a message

from its own internal representation into a text message that can be transmitted to

another agent. A receiving agent must de-parse the message into its own internal

representation.This means that an agent is not some kind of homunculus performing

a task or subtask for some other controlling process. Agent systems are often, but

not always, distributed over many machines or even the internet.

2.4 Conclusion

There is very little research into agent-based cooperative search. As a conse-

quence, the classification mechanism of Crainic et al. (2005) has been used to survey

current research into parallel meta-heuristics and what there is on agent-based co-

operation. This has been undertaken to show that parallel meta-heuristic research

is very different from agent-based research. Another aim was to show that there is

very little research into agent-based cooperative search mechanisms using different

meta-heuristics. It is proposed that this type of agent-based system can implement

a cooperative search where each participant is an equal partner, but with the crucial

property that they can complete a search on their own. They only cooperate because

it is more beneficial, but it also means they cooperate using a type of algorithm called

here emergent distributed algorithm. This idea will be expanded in chapter IV.
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CHAPTER III

INTRODUCTION TO MULTI-AGENT SYSTEMS

3.1 Introduction

The aim of this chapter is to explain the rationale behind agent-based technology

and to introduce the JADE platform on which the work of this PhD has been devel-

oped. Also, agents and agent-based systems are defined. In the first section 3.2 the

question is posed what is an agent and what makes an agent-based system? A history

of agents is provided in section 3.3. The FIPA standards (FIPA, 2000) for agent-based

systems are introduced. Also the FIPA compliant JADE agent development platform

(Bellifemine et al., 2007) is introduced in section 3.4.

3.2 What is an Agent?

There are many systems that called to be agent-based systems in the literature.

Before giving the definition of an agent that will be used in this thesis, it is instructive

to look some these other systems as a contrast with the one provided later in this

section.

There are many types of agents described in the literature. Here are just a few:

• Multi-agent. A multi-agent is an agent that exists on an multi-agent system.

This a term from Distributed Artificial Intelligence (DAI) where the multi-

agents are a collection of problem solvers which can only solve a given problem

by working together (Jennings et al., 1998).

• Intelligent agent. This is an agent that exhibits some for sort of Artificial

Intelligence techniques such as learning (Woodridge and Jennings, 1995).

• Software agent. A software agent is a program that acts on behalf of a user

(Nwana et al., 1999).
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• Autonomous Agent. These agents have their own view of an environment

and are capable of modifying the way in which they achieve their objective

(Franklin and Graesser, 1997).

• Distributed agent. These are software entities that have the ability to com-

municate with other agents (Sycara et al., 1996).

• Ant colony or Swarm agent. These are examples of population or evolu-

tionary heuristics which take their take single or groups of solutions, with or

without parameter attributes, to be agents (Dorigo et al., 2006).

Given that there are so many uses of the word agent in artificial intelligence and

operational research, it is important to explain what will be meant by an agent in

this thesis. According to Ferber (1999) a software agent is a “computing entity which

a) is in an open computing system (assembly of applications, networks and het-

erogeneous systems),

b) can communicate with other agents,

c) is driven by a set of its own objectives,

d) possesses resources of its own,

e) has only a partial representation of the other agents,

g) possesses skill (services) which it can offer to other agents,

i) has behaviour tending towards attaining its objectives, taking into account the

resources and skill available to it and depending on its representations and on

the communications it receives.”

Wooldridge, in the introduction to his book on multi-agent systems (Wooldridge,

2009) states that the
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“history of computing to date has been marked by five important and

continuing trends:

• ubiquity;

• interconnection;

• intelligence;

• delegation;

• human-orientation.”

He argues that these strands, taken together, have lead to the emergence of a new

field in computer science: multi-agent systems. He defines an agent as a computer

system that is capable of independent action on behalf of its user or owner. In other

words an agent can figure out for itself what it needs to do to perform its design

objectives rather than having to be explicitly told at any given moment.

Given these definitions an agent will be defined in thesis as a software entity that

is connected to an open communication system and is able to communicate with other

agents. It is also autonomous and able to maintain its own internal representation

of a computing environmental. Such an agent is also able to execute any number of

behaviours that have been assigned to it. These behaviours are characterised by the

appropriate interaction with the environment and other agents and possibly human

users to achieve its goals.

Most modern multi-agent systems such as ZEUS (Nwana et al., 1999), FIPAOS

(Poslad et al., 2000) and JADE (Bellifemine et al., 2007) adhere to the definition of

multi-agent systems of Ferber (1999). “The term ’multi-agent system’ (or MAS), is

applied to a system comprising the following elements:

(1) An environment, E, that is, a space that generally has a volume.

(2) A set of objects, O. These objects are situated, that is to say, it is possible at

a given moment to associate any object with a position in E. These objects are
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passive, that is, they can be perceived, created, destroyed and modified by the

agents.

(3) An assembly of agents, A, which are specific objects (A ⊆ O), representing the

active entities of the system.

(4) An assembly of relations, R, which link objects(and thus agents) to each other.

(5) An assembly of operations, Op, making it possible for the agents of A to per-

ceive, produce, consume, transform and manipulate objects from O.

(6) Operators with the task of representing the application of these operations and

the reaction of the world to this attempt at modification which we shall call the

laws of the universe (cf. Chapter 4).”

A short history of agent-based research is provided in the next section to put these

definition into context with operational research and artificial intelligence.

3.3 A brief history of agent-based research

According to Wooldridge (2009) the notion of an Agent as some sort of computa-

tional artefact goes back to the early days of AI in the 1950’s. It can clearly been see

in Turing’s famous test where a human sitting in front of a teletype terminal, after

5 mins of conversation, has to judge whether the “person” at the other end of the

teletype terminal is indeed human or machine (Turing, 1950). Wooldridge argues if it

is a machine at the other end of the teletype, then that machine must have a degree

of autonomy which he argues is one of the basic traits of agent-hood.

However software agent research did not really get going until the 1990’s. In the

intervening years the seeds of agent technology were sown. A lot of research during

that time was focussed on symbolic representation and their use in planning systems

such as STRIPS (Fikes and Nilsson, 1972).

Another strand of research was conducted on concurrency and parallelism includ-

ing Hewitt et al. (1973); Hewitt (1977) on actors and Gasser and Huhns (1989) on
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Distributed Artificial Intelligence (DAI).

Agha (1985) proposed an actor model of concurrent computation for distributed

systems based on the work of Hewitt et al. (1973). An actor is described as a com-

putational entity that, in response to a message it receives, can concurrently:

• send a finite number of messages to other actors

• create a finite number of new actors

• designate the behaviour to be used for the next message it receives.

An actor may be viewed as an object augmented with its own control, a mailbox

and a globally unique immutable name. They communicate asynchronously where

no message to any of the actors is given priority over another. In this way the com-

munication is deemed to be fair. Furthermore the path a message takes, and any

network delays it may encounter, are not specified. Therefore the arrival and order of

message is indeterminate. Other properties of actors systems include encapsulation

of state and atomic execution of a behaviour in response to a message and location

transparency enabling concurrent execution and actor mobility. These are all impor-

tant ideas which laid the foundations of agent autonomy, communication and the fact

that they are distributed.

Dissatisfaction with the symbolic AI of the 1960’s and 70’s le,d in the late 1980’s, to

the growth of behavioural AI (Brooks, 1990) which turned away from direct symbolic

representations and looked to nature in order to focus on a more “holistic” view of

systems as many simple processes collaborating to produce “emergent” system wide

properties.

Also in 1970’s and 1980’s research into blackboard systems (Engelmore, 1988) and

parallel blackboards (Carver and Lesser, 1994) showed that intelligent communication

between processes could be achieved through shared data structures where relevant

knowledge could be exchanged.

Along with blackboard systems, another technology that would be very influential

in agent development even to this day, was being developed, that of the Contract
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Net (Smith, 1980). The key concept was that a number agents solved problems by

delegating sub-problems to other agents. It also introduced the notions of agent-based

systems being economies that compete and negotiate and cooperate.

All these strands of research came together in the early 1990’s and began to

coalesce into modern agent research. Firstly, a number of projects funded by the

European Union allowed researchers to work on agent-based systems that were au-

tonomous, that could communicate relevant information focussed, but not exclusively,

on behavioural AI. The MAGMA Demazeau and Müller (1990) was an example of

such a project.

While in the United States the Defence Advanced Research Projects Agency

(DARPA) funded the knowledge sharing effort INTERCHANGE (1998) which brought

important advancements in agent communication including the Knowledge Query and

Manipulation Language KQML (Finin et al., 1994) and Knowledge Interchange For-

mal KIF (Genesereth et al., 1992) and Ontologies (Gruber, 1993).

Also the growth of the world wide web was an important development for the

growing agent-based research, allowing open world-wide communication through the

internet protocol IP and the development of computer languages such as JAVA con-

ceived to work with the internet. This enabled agent-based communications to be

open and scalable in a way not possible before.

The growth of electronic commerce as result of the WEB lead to agent-based

technology being designed for e-commerce. Early examples were FireFly developed

by Shardanand and Maes (1995) and MAPPA Arafa et al. (2000).

At this time, there were moves to standardise agent-based systems and develop-

ment. This resulted in the Foundation of Intelligent Physical Agents (FIPA) (FIPA,

2000), an IEEE body which produces standards for agent development and agent

platforms. This was to enable agents developed on different FIPA compliant plat-

forms to all perform full agent based communication with each other. A number of

agent development platforms and environments have been developed as a result of

this standard including ZEUS (Nwana et al., 1999). FIPAOS (Poslad et al., 2000)
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and JADE (Bellifemine et al., 2007).

3.4 JADE

JADE (Bellifemine et al., 2007) is an open source FIPA compliant development

platform. The framework described in this thesis is developed on JADE. This section

will describe JADE and the FIPA compliant technologies it uses which are essential

features of any agent-based system.

Figure 3.1: The JADE architecture

JADE is a FIPA compliant platform and as such, it must provide a number of

important services (see diagram 3.1 Grimshaw (2011)). It must implement a number

of Message Transport Protocols (MTP) so that the platform can communicate with

other platforms. The most common is HTTP. The JADE environment comes with

two important predefined agents:

a) the Agent Management System (AMS). This is the main authority for the plat-

form and is the only agent that can create and kill agents and shut down the

platform,
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b) the Directory Facilitator (DF) which advertises the services of agents on the

platform so that other agents can find them.

The platform also has a GUI facility and facilities to log and view the messages

passed between agents. Developers can use the platform to build and test new agents

that exhibit new behaviours and perform new tasks and services. This means the

developer is only concerned with developing new agent behaviours and what they

will communicate rather than with the problems of how to build agents.

Developing new agents requires a number of different techniques. To this end,

JADE has a number of standard communication types implemented as behaviours

or groups of behaviours. These standard communication types have been codified by

FIPA into a number of protocols which a FIPA compliant platform must implement

FIPA (2009). The FIPA list of protocols is by no means exhaustive, but contains

ready-made communication protocols characterising common human communication

activities. Agents communicate using FIPA-ACL FIPA (2000) which defines a number

of conversation primitives deemed to be common to all human speech acts (Searle,

1970). The primitives, called by FIPA performatives, include requesting, querying

and informing.

3.4.1 Agents and Behaviours

A JADE agent is a programme that schedules behaviours. When an agent is

started it registers with the platform and therefore can be managed on the platform

by the AMS and located by the DF. When other agents join the platform they can

locate other agents through the AMS and DF.

A behaviour is a task that an agent executes. It is possible to schedule when and

in what order these behaviours are to be executed. A behaviour will often involve an

agent communicating with other agents and perform actions as a result of communi-

cation. JADE provides a number of predefined behaviours based on the most common

tasks agents are required to perform. These behaviours include One-shot behaviours,

Cyclic behaviours, Parallel behaviours and more complex behaviours. These are are
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all arranged in a class hierarchy with the class Behaviour as the root class. It has

two important subclasses CompositeBehaviour and SimpleBehaviour. The subclasses

of CompositeBehaviour deal with ways a developer might want to build a complex

behaviour with many sub-behaviours. While the sub-classes of SimpleBehaviour exe-

cute one task or behaviour at a time but some of these are specialised. For instance,

WakerBehaviour which has a facility to sleep for specified periods and then wake-up

to perform a task and then go back to sleep. When a behaviour terminates, control

is passed back to the agent which then schedules the next behaviour or suspends the

agent into a wait state or the agent is terminated by the AMS.

3.4.2 Agent Communication

Agent communication is probably the most fundamental feature of JADE and

is implemented according to the FIPA standard. Agent communication is also an

important feature of making an agent autonomous in that a sophisticated communi-

cation system is an important feature of maintaining an internal representation of an

environment. JADE agents use asynchronous message passing where each agent has

a mailbox where messages are sent by other agents. Whenever a message is posted

into an agents mailbox message queue the receiving agent, is notified. However the

agent chooses when it will act upon any messages received into its queue.

3.4.2.1 Performatives

Jade agents communicate using a language called FIPA Agent Communications

Language FIPA-ACL. FIPA-ACL is developed from the speech acts theory of Searle

(1970). The idea is that there are some basic communicative acts that are present in

all speech and transcend the technicalities of different languages. For example if an

agent REQUESTS something of another agent, the sender intends that the receiver

performs some action. If an agent INFORMS another agent, then the sender wants

the receiver to be aware of some fact. Finin et al. (1994) developed KQML as part of

the DARPA knowledge sharing effort. However FIPA FIPA (2008) has standardised
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the following performatives:

• accept-proposal- The action of accepting a previously submitted proposed to

perform an action.

• agree- The action of agreeing to perform a requested action made by another

agent. Agent will carry it out.

• cancel- Agent wants to cancel a previous request.

• cfp- Agent issues a call for proposals. It contains the actions to be carried out

and any other terms of the agreement.

• confirm- The sender confirms to the receiver the truth of the content. The

sender initially believed that the receiver was unsure about it.

• disconfirm- The sender confirms to the receiver the falsity of the content.

• failure- Tell the other agent that a previously requested action failed.

• inform- Tell another agent something. The sender must believe in the truth of

the statement. Most used performative.

• inform-if- Used as content of request to ask another agent to confirm whether

a statement is true or false.

• inform-ref- Like inform-if but asks for the value of the expression.

• not-understood- Sent when the agent did not understand the message.

• propagate- Asks another agent to forward this same propagate message to oth-

ers.

• propose- Used as a response to a cfp. Agent proposes a deal.

• proxy- The sender wants the receiver to select target agents denoted by a given

description and to send an embedded message to them.
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• query-if- The action of asking another agent whether or not a given proposition

is true.

• query-ref- The action of asking another agent for the object referred to by an

referential expression.

• refuse- The action of refusing to perform a given action, and explaining the

reason for the refusal.

• reject-proposal- The action of rejecting a proposal to perform some action during

a negotiation.

• request- The sender requests the receiver to perform some action. This is usually

to request the receiver to perform another communicative act.

• request-when- The sender wants the receiver to perform some action when some

given proposition becomes true.

• request-whenever- The sender wants the receiver to perform some action as

soon as some proposition becomes true and thereafter each time the proposition

becomes true again.

• subscribe- The act of requesting a persistent intention to notify the sender of

the value of a reference, and to notify again whenever the object identified by

the reference changes.

Agents use FIPA-ACL as a way of communicating to a receiver the intention

behind a message and to indicate if any action is required. Another important part

of a message is letting the receiver know how to read the content of a message. This

function is handled by an ontology which can be associated with any message.

3.4.3 Communication Protocols

It is important in agent messaging to develop messaging schemas for solving dif-

ferent problems. In the framework for combinatorial optimisation the agents use a
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sequence of messages as part of a behaviour to achieve various actions. These message

sequences are called communication protocols.

FIPA has specified a number of communication protocols and JADE implements

them all as complex behaviours. Here is a list of the main protocols implemented by

JADE:

• FIPA-Request

• FIPA-Query

• FIPA-Propose

• Iterated version of FIPA-Request

• Contract-Net

• FIPA-Subscribe

It is possible to build more complex protocols from these basic protocols. Indeed

the framework described here uses a complex protocol built from Iterated version of

FIPA request and Iterated Contract-Net (see Section 5.2 for more details).

3.4.3.1 Ontology

Ontologies play an important role within the agent communication. They define

a set of general representational primitives with which to model a conversation will

take place and as such are semantic (Gruber, 1993). JADE provides a comprehensive

ontology representation system that make the process of implementing an ontology

quite easy. Firstly it is important to design an ontology with respect to the prob-

lem trying to be solved and the communication required by the agents to solve this

problem. Chapter V explains how combinatorial optimisation is modelled and how

an ontology has been developed to express this model in this thesis. Once this is done

all that is required is to implement Java classes of each of the primitives represented

within the ontology. Each of these classes then must implement a JADE interface
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which declares whether the primitive is an action or a concept. An action implies that

the primitive is describing an action that is to be taken. A concept indicates that

the primitive is about something. Finally the objects to be implemented are declared

in an object that is a sub class of a BeanOntology object. JADE then seamlessly

adds these to any message sent between agents. By the same token for any agent

receiving messages, JADE will de-parse these messages and create the Java objects

for the ontology.

This process enables the agents to communicate semantic quality in any message.

In this thesis an ontology has been created that allows the agents to reason about

a generic model of combinatorial optimisation. This raises the level of generality

allowing only the agents to reason in these primitives about different combinatorial

optimisation problems.

3.5 Conclusion

Agent technology has a long pedigree going back to the very inception of AI.

The various strands of research that are the foundation of agent technology came

together in the 1990’s and since then the field has been growing. Agent technology

was standardised in the late 1990’s by FIPA but that does not mean that this is a

closed field of research. Much new work is being done and it is a very rich field of

research.

JADE is probably the most popular opens source development framework that

came out of the work of the late 1990’s offering a FIPA compliant platform that is

constantly being updated. There is a rich developer network offering new add-ons

to the basic platform such as the XML messaging add-on used in this thesis which

means all messaging is done in XML. There are others for different ontologies and a

version of the framework that can work on mobile phones.
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CHAPTER IV

PROPOSED NEW FORMAL THEORY FOR

COOPERATIVE ALGORITHMS

4.1 Introduction

It is the aim of this chapter to offer an explanation of cooperation by examining

the various mathematical theories of interaction, actors, process algebras and the

various proposed extensions to Turing Machines. It will be necessary to consider

the mathematical and logical foundations of computation which have in the last 15

years come in for re-examination and criticism (Syropoulos, 2008). This, in turn,

will lead to a discussion of hypercomputation, interaction, the Church-Turing thesis

(Wegner, 1998; Goldin, 2000; Van Leeuwen and Wiedermann, 2001) and unbounded

non-determinism (Agha and Hewitt, 1987).

For these reasons, this chapter is set out in two halves sections 4.2 and 4.3. The

first half, section 4.2, consists of a review of the literature it introduces Turing com-

putability and criticisms of as a theory of modern computing. In subsection 4.2.1 the

relevant literature on interaction and agents in computation theory, computability

and hypercomputation is reviewed. In subsection 4.2.2 systems of cooperating agents

are examined.

In section 4.3 cooperating algorithms are introduced, and a new refinement of

Turing machines is proposed. The implications of this new refinement are discussed

and a refutation to claims that interaction defeats the Church-Turing thesis is also

proposed. While subsection 4.2 proposes a theory of cooperation which refutes the

view, held by many reviewed in the first section, that there are counterexamples that

mean the Church-Turing these is false.

Finally, in section 4.4, conclusions and suggestions for future work are offered.
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4.2 Literature Review: Turing computability and modern computing

The Turing model of computation (also known as computability) has been criti-

cised as not being adequate to explain and describe modern computer systems. Tra-

ditionally a computation is considered successful, if after a certain amount of time,

it halts and gives an output. Therefore Turing machines are defined as being able to

compute partial or total functions. They are also defined as stand alone devices where

input is read from, and output is written to, a tape supplied before a computation

starts.

Contrast this with modern computers where operating systems or web-servers

are designed never to stop. They do produce outputs, but they do not stop to

produce their output as a traditional Turing machine would. They are also connected

together through local area networks and the wider internet. To this end they receive

inputs from many different locations, often as background processes, so that the user

is unaware of their existence. Also a user can interact with a modern computer

supplying input in response to the computer’s output in a sort of feedback loop. In

this context, it is argued, it is hard to see how they compute partial or total functions.

Furthermore, modern machines are not Turing machines and a new model is required.

The Church-Turing thesis especially, has come under much criticism. Goldin and

Wegner (2005) in particular, have offered counterexamples to the thesis proposing

Interaction and Persistent machines to account for the operation of modern computers

which are not classical Turing machines. The hypercomputation community (Ord,

2006; Stannett, 2003) has also criticised the Church-Turing providing other physics

inspired counterexamples (Syropoulos, 2008). While Agha and Hewitt (1987); Milner

(1982) have not sought to challenge the logical foundations of computing, they have

offered models of the process of computing, to account for the way modern machines

interact with people, other machines, and their environments.

Turing derived his model of computing in order to show there was no decision

process for every statement of first order logic. In doing this his project was to find a

systematic mathematical definition for the informal abstract notion of an algorithm.
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He devised a thought experiment where Turing machines are an idealised computing

device that can instantiate our informal understanding of algorithms and, in so doing,

make them precise so that they can be treated mathematically. Since then, Turing’s

work, taken along with the work of Church (Church, 1932), Kleene (Kleene, 1952) and

many others, has been developed into a logical mathematical theory of computation

(computability) on which all computers are supposed to be based.

In this chapter the practice of deriving counterexamples to the Church-Turing

thesis from the features of modern computers is examined together with the practice

of offering extensions to Turing machines, based on these features. This normally

involves a conflation between the physical/causal interactions of a physical computer

and the abstract informal definition of an algorithm. For an argument from the

physical to the abstract to work, a definition of the causal interactions of the physical

process needs to be given for this definition to be meaningful.

One such property, which has come under much discussion lately is unbounded

non-determinism which arises naturally in the context of computer interaction. It is

hard to see how the notion of abstract algorithm can be modified to account for this

and other physical phenomena. However, if computers do not implement abstract

algorithms, they implement something very similar to them. Therefore, the question

arises what is the correct level of description and what are the consequences for

traditional computability?

In this chapter these issues are discussed with respect to agents which, it is argued,

can exhibit the physical property of unbounded non-determinism. By producing a

refinement of a Turing machine, it is possible to show that, taken as a process algebra,

this refinement accounts for unbounded non-determinism. If however, it is taken as

an abstract theory, then a clarification of Turing theory is proposed.
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4.2.1 Interaction machines, Persistent Turing machines, Site Machines, Actors and

process algebras.

There is no literature offering a formal description of cooperating agents in the

standard theory of computation. However, a number of researchers have offered

formal extensions to the theory of computation which exhibit physical or algorithmic

properties that agents share. In this section these different extensions are examined

and their relationship with cooperating agents is established.

4.2.1.1 Interaction, Persistent and Site Machines

Wegner (1998) defines his Interaction Machines (IM) as machines that are able

to dynamically read and write streams that enable it to interact with the outside

world. What makes IM’s different is their ability to communicate with an environment

synchronously or asynchronously. The streams are temporal character streams. IM’s

are also open in the sense that it is possible to understand their working by studying

their stream histories. Streams are an interactive time-sensitive analogue of strings.

He argues that because of these properties it is easy to see that IM’s cannot be

represented as Turing machines because IM’s are more expressive.

Wegner argues that because these machines can send and receive streams, they

are more powerful than Turing machines. He formally describes streams containing

characters of an Interactive Grammar (IG). An Interactive Grammar is defined as a

grammar IG = (N, T, S,R) which accepts streams by reduction rules R, i.e. with a

dynamic listening operator “.” and a non-deterministic choice operator “ +”. So, for

example, the grammar for streams: stream −→ (+1).stream accepts binary streams

by the “.” operator listening for externally controlled input , while the “+” operator

expresses incremental choice and commitment (Wegner, 1998). Wegner’s point is that

the next step in computation of an IM is externally controlled. This is not Turing

computable. He goes on to extend this by describing an Interactive machine with an

interactive grammar M1. If another machine M2 is defined with all the past histories

of M1 then it is more powerful than M1.
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Goldin (2000) has proposed Persistent Turing Machines which she also claims take

computing beyond the “Church-Turing barrier”.

Persistent Turing Machines (PTM) are multitape machines with a per-

sistent worktape preserved between interactions, whose inputs and out-

puts are dynamically generated streams of tokens (strings). They are

a minimal extension of Turing Machines (TMs) that express interactive

behaviour.

A persistent Turing machine transforms an input stream to an output using a

function. In the course of its operation the state of the machine changes. The

evolving state of the machine is recorded on its work tape and the interaction can be

seen as a stream of pairs. The left-hand element in the pair is from the input stream

and the right-hand from the output stream.

She recognises that this type of machine only captures a limited form of interaction

which she calls sequential interaction (Goldin, 2000).

“Sequential interactive computation continuously interacts with its en-

vironment by alternately accepting an input string and computing a cor-

responding output string. Each output-string computation may be both

non-deterministic and history-dependent, with the resultant output string

depending not only on the current input string, but also input strings”

(Goldin and Wegner, 2005)(section 6.2).

Van Leeuwen and Wiedermann (2001) introduced Site and Internet machines to

model individual machines which might be connected to others in a network of site

machines (Van Leeuwen and Wiedermann, 2001). A site machine is modelled on a

personal computer: specifically a personal computer that has a hard disk and can

communicate with its environment by sending and receiving streams of data through

a number of input and output ports.
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The hardware and software of a site machine can be changed by an an external

operator which is part of the machine’s environment and is able to upgrade the ma-

chine. If a function γ is defined to return a description of the hardware/software

upgrade, it will return an empty string if no upgrade takes place, otherwise it returns

the upgrade description. Van Leeuwen and Wiedermann (2001) argue that this func-

tion is not computable in the traditional sense because it takes place at a specific

moment in time and its values cannot be defined in advance.

To this end, a site machine performs a computation that performs an incremental

symbol by symbol translation of an infinite multiple stream of input symbols to a

similar stream of output symbols. More formally, if the site has k input ports and

l output ports, where k, l > 0, then the site machine computes a mapping Φ of the

form (Σk)∞ −→ (Σl)∞ where Σ is a finite alphabet. In this way an infinite stream of

k-tuples is incrementally translated into an infinite stream l-tuples.

These new machines exhibit three new features: advice, interaction and infinity

of operation. In the definition of site machines external information can be presented

the machine through the use of oracles. However, Van Leeuwen and Wiedermann

formally define them as advice functions. Site machines start initially with tapes

filled with blanks. The machine’s operation depends on some controlling device. At

each step the machine reads symbols which appear at its input ports and writes

symbols to its output ports. What the machine will do next is dependent on what

it has already read, what lies under its scanning heads and the instructions being

executed. It can also at any time ti consult its advice but only for values ti ≤ tn

where i, n ∈ N.

4.2.1.2 Actors and process algebras

Agha (1985) proposed an actor model of concurrent computation for distributed

systems based on the work of Hewitt et al. (1973). An actor is a computational entity

that, in response to a message it receives, can concurrently:

• send a finite number of messages to other actors
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• create a finite number of new actors

• designate the behaviour to be used for the next message it receives.

An actor may be viewed as an object augmented with its own control, a mailbox

and a globally unique immutable name. They communicate asynchronously where

no message to any of the actors is given priority over another. In this way the com-

munication is deemed to be fair. Furthermore the path a message takes, and any

network delays it may encounter, are not specified. Therefore the arrival and order of

message is indeterminate. Other properties of actors systems include encapsulation

of state and atomic execution of a behaviour in response to a message and location

transparency enabling concurrent execution and actor mobility. Agha (1985) charac-

terises actors as processes. This characterisation has enabled the ready comparison

of this model in process models such as the π-calculus of Milner (1982).

Milner (1982) sought to extend the Lambda-Calculus of Church to account for

the properties observed in modern computing. He generalised these properties mod-

elling an entity as a process which interacts with other processes. To this end it

is a mathematical theory that can describe the functionality of computer models or

systems.

subsubsectionUnbounded non-determinism Both the actors theory and the π-

calculus each account for the physical phenomenon of unbounded non-determinism.

Actors have the special properties of autonomy of action, of messaging, of being able

to co-operate with each other and being able to move freely from one environment to

another. The Actor model is finding application within multi-agents systems although

actors are considered to be more general than agents because agent systems tend to

impose extra constraints upon actors. These include the requirement that agents

have commitments and goals. However, in this chapter, the discussion of agents can

apply equally to actors.

Carl Hewitt (Hewitt, 2006a) in his participatory semantics of actors suggests that:

Actors are universal primitives of concurrent computation. In response
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to a message it receives, an actor can make decisions, create more Actors

send more messages, and designate how to respond to the next message

received. (Hewitt, 2006a)(pp2-3)

Hewitt’s work has been often cited in agent theory (Wooldridge and Jennings, 1995)(pp4).

One of the crucial concepts Hewitt introduced is the property exhibited by concurrent

systems of unbounded non-determinism.

Unbounded non-determinism is the property that the amount of delay

in servicing a request can become unbounded as a result of arbitration

of contention for shared resources while still guaranteeing that the request

will eventually be serviced. (Hewitt, 2006b)(p1)

If agents communicate over contentious resources while guaranteeing message de-

livery then the order in which messages will arrive at the agent will be unpredictable.

Therefore, it is clear that it is no longer possible to predict the future behaviour of

an agent.

Consider the example of computer systems communicating over the internet from

different sides of the globe. This interaction will be subject to unpredictable delays

due to how the internet works. If the computer systems are sufficiently autonomous

and are communicating asynchronously such as agents, it is clear that unbounded non-

determinism would cause the agents to behave unpredictably as different messages

arriving at different times would cause different behaviours in the agents.

Unbounded non-determinism does not occur just over the internet, but over any

concurrent communication medium where resources are guaranteed but are limited.

For example, if humans cooperate in a joint venture using the postal system (assum-

ing that delivery is guaranteed) as their means of communication then unbounded

determinism will occur. It is not a property of computers alone.
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4.2.1.3 Arguments from physical phenomena against the Church-Turing Thesis

Criticism to these arguments has been made by both Cotogno (2003) and Rocha

(1995) suggesting that it is a circular argument to extend the Church-Turing thesis

by referring to observations of physical computing devices. Turing’s great insight was

to offer a mathematical description of informal mathematical effective procedures. In

other words, to argue from the physical to the mathematics is somewhat circular. As

Rocha puts it, the thesis offers a sort of mathematical alibi by which mathematicians

can write an informal algorithm for some mathematical function, and by invoking the

Church-Turing thesis, save themselves the necessity of writing out in longhand the

full recursive function that computes this effective procedure. What Wegner, Goldin,

van Leeuren, Wiedermann and others are doing is arguing against the Church-Turing

thesis by using descriptions of physical systems to represent mathematical effective

procedures. As Rocha (Rocha, 1995) (pp. 65) remarks:

“There is a circular argument in all the extensions of the Church-

Turing Thesis beyond mathematics; the very first assumption that phys-

ically realizable dynamics represent effective procedures is just what the

thesis aims at hypothesizing.”

If computability is to be refuted, what is needed is a full mathematical theory of

physical computation, rather than a few extensions to Turing machines to account

for perceived differences. Cotogno in a similar vein argues that it is always possible

to rewrite interaction machines’ tapes into recursive functions by rewriting suitable

sub-routines for all the interactions. Interaction therefore, in his opinion, is nothing

more than an efficient computation method for computing certain functions.

However, Rocha points out that defining a new mathematical theory of physical

processes is no easy matter. This is because if, from observation, it is possible to

predict the outcome of a physical process,then there must be an identifiable causal

sequence. If such a sequence exists then anything we can identify in this way is

also computable (Rocha, 1995). For such theory to be successful, it is necessary to
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identify which causal process are computable and which are not. Cotogno argues

that the hypercomputation community, Wegner, Goldin, Van Leeuren and others, do

not do this. Otherwise any putative counter-example device offered must be Turing

computable.

“The Church-Turing Thesis is thus used to correlate the computing

abilities of formal devices with the causal dependencies of natural pro-

cesses: if we can causally reproduce some natural process (extended ef-

fectiveness) then it is computable and it is performing an embodied com-

putation. As a corollary, if we believe the universe is causal, then it is

computable.”

Both Rocha and Cotogno are uneasy with arguments from the physical to the

abstract. They are worried that it is not possible to find the right level of description

where the model is abstract enough to serve as a formal model without losing the

descriptive power of the causal process. They are worried any such abstraction will

be too weak and therefore will describe anything and nothing. As a consequence,

they argue that the physical version of the Church-Turing thesis is just the same as

the logical-mathematical definition.

The phenomenon of unbounded non-determinism is often cited by all as the main

example of how interactive or agent-based systems are fundamentally different from

Turing machines. Wegner and Goldin however, provide a formal Turing-like definition

which they claim enables them to provide an extension to Turing machines to account

for this physical process. From this they argue they have found a counterexample

to the Church-Turing thesis. But unbounded-non-determinism and indeed Wegner’s

temporal input strings for IM’s are physical phenomena which need causal explana-

tion. In contrast, Milner and Hewitt do not shy away from this as their project is to

offer theory of computation as computing.

It is questionable that they can account for the delay of messages due to the

physical characteristics of a communication medium through a Turing-like definition.
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Wegner, Goldin, Van Leeuwen and Wiedermann do not explain how these physical

phenomena can be accounted for in their extensions of Turing machines.

However, it is not unprecedented to offer extensions to Turing machines. Turing

himself, did so by proposing Oracle machines (Turing, 1939). However, these are

logical extensions and, indeed, as has been argued, any extension has to be a logical

one rather than a physical extension. It will be argued further that communication

and cooperation are logical properties of effective procedures. Furthermore this prop-

erty is not predictable and therefore not deterministic and therefore is an extension

like an Oracle or a Choice machine. In section 4.3 this will be explored in more de-

tail and the conclusion will be drawn that, while it will always be possible to refine

Church-Turing thesis further by adding oracle machines or cooperating algorithms,

this does not change the basic Church-Turing thesis or any other part of computabil-

ity theory. It is unlikely that a true counter-example to the Church-Turing thesis will

be found, unless a major new mathematical theory is proposed that changes current

understanding.

4.2.2 Cooperating Agents

As explained in chapters III and II, agents are autonomous, they can work inde-

pendently or they can also work with other agents to solve an internal or collective

goal. They often work for an owner or user cooperating or negotiating with other

agents on their behalf. In this context they have been used in shopping environments

(Arafa et al., 2000) maintaining profiles of their owner’s preferences in order to sug-

gest relevant potential purchases. They have also been used in telecoms, healthcare

and many other industrial applications (Bellifemine et al., 2008). Agent development

platforms such as JADE have been released that (Bellifemine et al., 2008) enable de-

velopers to build agents with respect to the international standard of the Foundation

for Intelligent Physical Agents (FIPA) (Dale and Mamdani, 2001).

When agents cooperate they can use these properties to completely change the

outcome of a computation. Furthermore this can be completely non-deterministic
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if more than two agents are participating, and they are communicating in an envi-

ronment where message delivery is guaranteed but where resources are limited; in

other words, unbounded non-determinism. This happens when, because of possi-

ble communication delays, it is not always possible to determine the order in which

behaviour-changing messages are received. For example, if one agent asks some other

agents to each provide information to help solve a problem, and each agent is tackling

the problem differently, then, because of the uncertainty in delivery order of messages,

the result of the first agents computation cannot be determined. This is because it

is not possible to know which answer will be used by the agent to solve a problem.

This is further complicated if some of the requested agents also need information from

other agents.

Cooperation in agents is achieved by the use of cooperation protocols which are, in

effect, distributed algorithms executed by participating agents where are each agent

plays its part in the algorithm. But the outcome of the algorithm is not predetermined

and the overall state of the algorithm is given by the collective states of all the agents

at a given step in its execution.

In the context of this chapter a state (Hopcroft et al., 1979) is a particular set

of instructions which will be executed in response to the agent’s input. Input in this

case just means data available to the agent either by communication or from some

kind of storage. The combination of the input and state will determine the agents

behaviour. Given these properties the following definitions are proposed.

Definition 1: An agent is capable of communicating its entire state and data.

Definition 2: Cooperation is the process of autonomous agents working together to

the same end. This means agents participate in a distributed algorithm where no

one agent controls the process and they all work towards a collective goal.

It can be seen that cooperating agents are subject to unbounded non-determinism

4.2.1.2. If this behaviour explained either by Agha (1985), or by process algebra
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Milner (1982) where the physical conditions of this phenomena are accounted for,

then it can be seen that agents behaviour cannot be predetermined. As Cotogno has

argued it is possible to look at the agent system after the computation is completed

and derive a Turing machine that will compute what the agents have done. Cotogno

argues that the agents method of computation is just more efficient than a Turing

machine. However, it would be good if it was possible to have a logical-mathematical

definition that captured this efficiency. In the section 4.3 a more formal definition of

cooperation will be provided where the definition of a Turing machine will be refined

to account for cooperating algorithms.

4.3 A Proposed Turing machine definition of cooperation

Cooperation has been explained in section 4.2.2 as autonomous agents working to-

gether towards a collective goal. As a consequence, agents can exchange information

that can change each others behaviour. Furthermore, it has already been explained

that this behaviour is subject to the phenomenon of unbounded non-determinism

where an agent’s future behaviour a priori cannot be determined as a result of coop-

eration.

For what follows it is not necessary that an agent be a software agent or computing

device. The above discussions about Software agents, interaction machines and the

computational power of modern computers were given to show the following that:

a) the mathematical and logical foundations of computer science are being ques-

tioned by researchers

b) agents because of unbounded non-determinism are able to execute computations

which stand alone computers cannot.

The following is purely a logical-mathematical discussion about cooperating algo-

rithms or effective procedures and therefore does not necessarily depend on compu-

tation devices in the real world. It will show that cooperating algorithms are able

to perform computations that are not possible for stand alone algorithms. It will
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be argued that cooperation is indeed a logical property of effective procedures (or

algorithms) and that this can be modelled by Turing machines with additional move

operators. Informally, it can be seen that a Turing machine can communicate by use

of a messaging tape which each machine shares and can read and write information.

This means their instruction set will have to be augmented with the instructions to

read and write to this tape. In this way algorithms can communicate and pass infor-

mation between each other. This messaging tape can be infinite just as the normal

internal tape of a Turing machine is also infinite.

When a cooperating Turing machine has an instruction to look into the messaging

tape, it reads all the information on the tape, moving (without loss of generality) from

left to right, and tries to find information that will enable it to further its ability to

complete its tasks and form a conclusion. By the same token, it will be able to place

information into the tape by the use of a write instruction in its instruction set.

On the face of it this is very similar to the storage work tape proposed by Goldin

Goldin (2000). However her tape is used for the recording of past histories. What is

proposed here is merely a way for cooperating algorithms to pass information to each

other.

Recall a cooperating algorithm is part of a distributed algorithm that is not di-

rectly controlled by any other algorithm. There are two types of distributed algorithm

available in the context of cooperation. These are:

• The computation of this distributed algorithm will halt only if each algorithm

taking part halts. If any participant does not halt then the algorithm does not

halt.

• Each participant in the distributed algorithm does not depend any other par-

ticipating algorithm and will halt (if it is going to) irrespective of the other

algorithms. However information from the other algorithms may well improve

results.

Before going into further detail about cooperating algorithms and their Turing
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machine representation, it is necessary to provide a formal description of a non-

deterministic Turing machine.

4.3.0.1 Definition of a Non-deterministic Turing machine NTM

Firstly, a non-deterministic Turing machine is formally defined using the set the-

oretic model of Hopcroft et al. (1979). From this definition it should be easy to see

how it differs from the cooperating version of a Turing machine described in the next

section.

A non-deterministic Turing machine M can be formally defined as a 6-tuple M =

(Q,Σ, ι, β, δ, A), where:

Q = the set of finite states

Σ = the finite set of symbols used by the machine

β ∈ Σ the blank symbol

ι ∈ Q the initial state of the machine

δ ⊆ (Q \A×Σ)× ((Q×Σ)×{L,R}) is a relation on states and symbols called

the transition relation. {L,R} are tape head moves. L means move one cell to

the left. R means move one cell to the right.

A ⊆ Q the set of accepting states

The NTM is different from a Deterministic Turing Machine (DTM) in that there

can be more than one state to which the machine can legally move. In this respect the

transition relation δ is different from the transition function of a DTM. This means

a tree like structure can be drawn showing the state transitions of an NTM. The

machine will try different next states branching in a tree like manner but will only

move to accepting states.

It can be seen NTM has the property of bounded non-determinism. This means

if an NTM always halts on a given input tape T, then it halts in a bounded number

of steps, and therefore can only have a bounded number of possible configurations.
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4.3.0.2 Proposed definition of a cooperating algorithm as a Turing machine

(CNTM)

In this subsection a Turing machine definition of cooperating algorithm is pro-

posed. Let a cooperating algorithm (CA) be an effective procedure that can partici-

pate with other similar algorithms in a distributed effective procedure. A distributed

effective procedure as just described will be called a conversation. A CA is able by

some method of communication to change the behaviour of another CA.

A cooperating Turing machine (CNTM) is defined to be a machine that models our

(human) intuitive understanding of CA. It has a number of important distinguishing

features:

• autonomy of action

• send and receive operators

• pursuing a collective goal

A CNTM is autonomous in the sense of the second type of distributed algorithm

as described in section 4.3 in that it can complete its goal with or without sending

and receiving information from the information communication tape. This means if

there is no relevant information on the tape when it is directed to look, it will carry

on with its calculation regardless. It is pursuing a goal or algorithm where it can use

cooperation to greatly improve its chances of achieving a good result. The following

discussion will focus on the second type of distributed algorithm as it clearly shows

the differences between non-cooperating and cooperating algorithms.

A group of CNTM’s participate in a distributed algorithm.

Let T be the set of all cooperating algorithms (CNTM) participating in a specific

conversation.

Let Q be the set of possible states used by all CNTM in T.

Let Σ be the set of all possible symbols used by all possible CNTM’s that could

participate in a specific conversation. Let M ⊆ Q×Σ be the infinite unordered set of
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all events passed as messages between the CNTM’s during the conversation. These

events will contain state and data information used by the CA’s to alter each other’s

behaviour during the execution of the conversation.

A cooperating algorithm Ti ⊂ T is a Turing machine which can be formally defined

as an octuple Ti = (Qj,Σk, ι, β, ξl,∅, δ, Am) where i, j, k, l,m ∈ N, and:

Qj where Qj = Q1 ∪Q2 ∪ ... ∪Qj ⊆ Q the set of states.

Σk where Σk = Σ1 ∪ Σ2 ∪ ... ∪ Σk ⊆ Σ the set of symbols used by the CNTM.

β ∈ Σ the blank symbol

ι ∈ Qj the initial state of the CNTM

ξl = (Qa×Σb) ⊆M where a, b ∈ N is the event relation which is a pair consisting

of state(s) and a symbol(s) from the CNTM’s alphabet. These pairs are the

messages passed in the conversation and are elements of the set of all messages

M .

∅ is the empty state where ∅ ∈ Q

δ ⊆ (ξc × ξd) × {L,R, S,RC} where c, d ∈ N. δ ⊆ Qe × Σf × Qg × Σh ×

{L,R, S,RC} where e, f, g, h ∈ N and Qe×Σf ×Qg×Σh ⊆ Q×Σ×Q×Σ is a

relation on states and symbols called the choice transition relation which by the

axiom of choice enables δ to choose the octuples necessary for the agent to move

from state to state in a conversation between CNTMs. {L,R, S,RC} are tape

head move operators. L means move one cell to the left R means move one cell

to the right. S is the send operator meaning copy the contents of the current

cell to the next blank cell on the worktape M means read the next symbol on

the worktape M .

Am ⊆ Qi the set of accepting states
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The CNTM operates much the same way as a standard non-deterministic Turing

machine. It has a tape segmented into squares which can contain characters from

the CNTM’s alphabet. It has a scanning head able to read the contents of each

square one at a time. It also has a means to print onto the tape. The CNTMs can

also translate left or right along the tape or it can send or receive information to

and from other CNTMs. There are a number of ways to describe how the send or

receive operators might work in Turing-like thought experiment. For example, the

CNTMs could be arranged so that their tapes are parallel to each other. The heads

of each machine could not only move from left to right along the tape as in the

original thought experiment but also from tape to tape to where S ∈ {L,R, S,RC}

writes symbols to another machine’s tape and RC ∈ {L,R, S,RC} reads symbols

from another machine’s tape. Another way of doing this, adopted here, is to define

the unordered set M as the set where the read and write operators S and RC of each

CNTM add and remove information by the use of the choice transition relation δ as

described above. The way to think of this is as an unbounded infinite tape where

the CNTMs can read and write information as required. To this end the tape does

not contain the state of the conversation, just the information passed between each

CNTM.

The transition relation defines a quintuple: qi Sj Sk {L,R, S,RC} ql where qi, ql ∈

Qm and Sj, Sk ∈ Σn and {L,R, S,RC} means move left or right or send or receive.

The send and receive move operators S,RC allow the CNTM to send states qi ∈ Qj

and data Sk ∈ Σl to other CNTMs. CNTMs can receive state and data information

by the RC move operator. It receives some state from some other set of states and

some data from some other alphabet not part of the agent qp, Sq ∈ (Qr×Σs) ⊆M and

adds them to its own set of states and alphabet. This relation works much the same

way as the transition function of an NTM. The CNTM’s receive operator chooses

from the set M the state and data pairs from this set that will lead the CNTM to

an accepting state just as with an NTM. However, the set M is infinite and, as other

CNTMs are sending state and data pairs to the set M, it is not clear in which order a
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CNTM will receive new information. This means the choice transition relation does

not guarantee the order in which a CNTM will receive new information that could

change its behaviour and therefore it is not possible to know in advance the behaviour

of a CNTM.

It is proposed that a CNTM without cooperation is the same as a NTM In this

section it is proposed that a CNTM without cooperation is the same as a NTM. To

operate as a normal non-deterministic Turing machine, it is necessary to configure the

CNTM so that it does not have the ability to send or receive information to another

CNTM. This means the CNTM can only move left or right along its internal tape.

In effect only symbols from the agents alphabet will be written and read to and from

tape when operating in this way.

Here is a simple example of this type of operation:

q1 0 1Rq2 q2 0 1Rq1 q2 0 1Rqh

Here without loss of generality, assume that the CNTM only has the symbols 0

and 1 in its alphabet and that blank will be taken to be synonymous with 0. The tape

initially is assumed to be blank. This CNTM then only has three states q1, q2, qh.

State h is the halting state where the machine stops. It starts in state 1 if it reads

a 0 then it will print a 1 in that square and move one square to the right. However

it has a choice for state 2 it can read a 0 print 1 and move to right and go back to

state 1 in which case the machine never stops. It could choose the other version of

state 2 in which case it reads 0, prints 1 moves to the right and then transitions to

the third state where it stops. It can be seen that the agent can act like a normal

non-deterministic Turing machine. Here the machine will opt to transition to state h

as it only transitions to accepting states. State 2 is not an accepting state.

Theorem 4.1. It is propsed that a CNTM is the same as an Non-deterministic Turing

machine if and only if it does not communicate.

Proof. Refer to the formal definitions of a CNTM and non-deterministic machines

above. A non-deterministic machine M is a sextuple M = (Q,Σ, ι, β, δ, A) an CNTM
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as 8-tuple Ti = (Qj,Σk, ι, β, ξl,∅, δ, Am). If A does not communicate then it only

reads data to and from the tape and only moves left and right along the tape. This

means that the transition relation for the agent will be δ ⊆ (Qi \ An × Σj)× ((Qk ×

Σl)×{L,R,∅,∅}). This means a legal configuration for this type of CNTM is defined

as a quintuple:

qi Sj Sk {L,R,∅,∅} ql ≡ qi Sj Sk {L,R, } ql.

Hence a CA that does not communicate is an NTM.

It is proposed that a CNTM with cooperation is not the same as a NTM In this

section it is claimed that a CNTM with cooperation is not the same as a NTM.

The difference between an NTM and an CNTM is that the latter can cooperate with

other CNTMs by being able to participate in a distributed algorithm. This is because

CNTMs can drastically change the outcome of a each others computations. Further-

more CNTMs participating in a distributed algorithm may well have different roles,

which means they will be sharing information asynchronously. Therefore through the

choice transition relation, the order in which the CNTMs participating in a conversa-

tion will send and receive information from the event set M , is not guaranteed. This

is due to the fact the CNTM will read all the events in the set M and determine

if an event will lead to an accepting state for the CNTM. It will do this in a tree

like structure each time trying to find the best accepting state. But these tree like

structures cannot be determined as it will be unknown which accepting states will

be used by the algorithm. In this way the future behaviour of a CNTM cannot be

predicted.

Here is an example of cooperating CNTM’s. Imagine three CNTM’s that are able

to cooperate with each other. The first CNTM called A has the behaviour of reading

a blank square on the tape and then replacing it with the letter A . The next two

CNTM’s B and C have the same behaviour but write the letters B and C respectively.

In this example the CNTM’s cooperate by broadcasting their ability to print their

respective letters. So if CNTM A broadcasts and B receives then B’s behaviour will
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be modified so that it will now print A. Similarly if C receives B’s behaviour then

C will print B. But because of the choice transition relation there is no guarantee

which CNTM will receive A’s broadcast first, and this is true for the others as well.

Therefore this could mean at some time in the future there will be a CNTM A printing

A,B or C and similarly for the other agents. Of course as time goes on all CNTMs will

receive each others broadcast But when this will happen and in what order cannot be

predetermined .

CNTM A

qA1 0ARqA2 qA2 0ARqA1 qA2 0AS qA1 qA2 0ARqA3

qA3 0ARqhalt qA2 0X RC qx qx 0X Rqhalt

CNTM B

qB1 0BRqB2 qB2 0BRqB1 qB2 0B S qB1 qB2 0BRqB3

qB3 0BRqhalt qB2 0X RC qx qx 0, X R qhalt

CNTM C

qC1 0C R qC2 qC2 0C R qC1 qC2 0C S qC1 qC2 0C R qC3

qC3 0C R qhalt qC2 0X RC qx qx 0X Rqhalt

Here are the machine configurations for the above scenario 4.3.0.2. We take 0

to be synonymous with a blank cell. Here each CNTM has the same basic set of

configurations. However each CNTM has a different initial alphabet of symbols it

can read and write. CNTM A knows 0 and the letter A. Similarly CA B only knows 0

and the letter B and CNTM C 0 and C. Each CNTM starts in its state 1 (A1,B1,C1)

reads 0 in a cell and overwrites it with the letter from its alphabet and then moves to

the right. It then transitions to state 2. Here again it reads 0 and prints its letter and

moves to the right but goes back into state 1. If it only had these two configurations

each CNTM would be in a continuous loop. However just as in NTM’s the CNTM

can have more than one version of a state, one leading eventually to an accepting

state. In the case of these three CNTM they also have three other state 2’s. One

state 2 is where the CNTM reads a 0 and prints its letter and moves to state 3. From
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state 3 the CNTM reads a 0 moves to the right and then halts. Another state 2 sends

its state (state 2) and its data (read 0)qA2 0AS qA1 and then moves back to state 1.

In this scenario, when sending information, the CA’s are taken to be broadcasting to

the other two. The final state 2 is for receiving a state and data from another agent.

Here the state and data are not known a priori so the CNTM just has a variable X

for the data received and a state x for the state received. Each CNTM has a final

configuration where having received data X and state x, they move to that state

and read 0 but print whatever X is and then halt. Figure 4.1 below is a diagram

representing the CNTM’s cooperating.

In this example the CNTMs have two accepting states after being state 1. If an

algorithm does not receive state and data information from another, even if it has

communicated itself, it can transition to state 3 and halt having only ever printed

letters from its own alphabet. However if a CNTM receives information from another

then its alphabet will be augmented. In this way CNTMs by participating in the

simple distributed algorithm of being able to broadcast state and data information

to the other CNTMs, are able to change each others behaviour. But because it is not

possible to know how a CNTM will read the set M and in which order it will choose

its next accepting state, it is not possible to predict the outcome of the computation.

This means it is not possible to find an NTM that will perform the same computation.

Hence CA’s compute a class of effective procedure that an NTM cannot.

Theorem 4.2. It is proposed that cooperating algorithms perform computations that

cannot be computed by a normal NTM.

Proof. Refer to the formal definitions of a CNTM’s and non-deterministic machines

above. A non-deterministic machine M is a sextuple M = (Q,Σ, ι, β, δ, A) an CNTM

as octuple A = (Qk,Σl, ξm, ι, β, δ, An).

The states of a CNTM A are given by the setQi whereQi = Q1∪Q2∪...∪Qp ⊆ Q is

the unbounded finite set of finite states. Similarly Σj where Σj = Σ1∪Σ2∪...∪Σq ⊆ Σ

where i ≤ p , j ≤ q and i, j, p, q ∈ Nis the unbounded finite set of symbols used by
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Figure 4.1: Figure 1: Three CNTM’s cooperating

the agent.

Let Qi be the initial configuration of a cooperating algorithm A then as the CA

cooperates by the choice transition relation δ new states ∪Qa , Qb where a, b ∈ N will

be added so Qi = Q1 ∪Q2 ∪ ... ∪Qi ∪Qa ∪Qb . . .

By the same token, by the same application of δ new characters Σx ,Σy where x, y ∈

N will be added to the agents alphabet Σj = Σ1 ∪ Σ2 ∪ ... ∪ Σj ∪ Σx ∪ Σy . . .

Now an NTM is described as computing a function f from Nn to Nm where

n,m ∈ N . Since an NTM is non-deterministic there is only a fixed pool of states and

symbols it can compute. With a CNTM on the other hand, it is not possible to know

what function an agent is computing as the states and symbols it will compute are

not known a priori. Hence an CNTM is not a NTM because while it might compute

a partial function f from Nn to Nm, it is not possible to know which one until it

computes it.

Theorem 4.3. It is proposed that proper cooperation can only take place when there
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are three or more cooperating algorithms.

Proof. If there are only two CNTMs, δ the choice relation can only choose elements

from its states and symbols or the other CNTM’s states and symbols, and so there

is no unpredictability. If the states and alphabet of cooperating algorithm A are: Qi

where Qi = Q1 ∪Q2 ∪ ... ∪Qp ⊆ Q and Σj where Σj = Σ1 ∪ Σ2 ∪ ... ∪ Σq ⊆ Σ where

i ≤ p , j ≤ q and i, j, p, q ∈ N

If the states and alphabet of CNTM B are: Qg where Qi = Q1∪Q2∪ ...∪Qr ⊆ Q

and Σh where Σj = Σ1 ∪ Σ2 ∪ ... ∪ Σs ⊆ Σ where g ≤ r , h ≤ r and g, h, r, s ∈ N

Thus, after full cooperation both CNTM’s can at most have the following states

and alphabets Qa ∪ Qi = Q1 ∪ Q2 ∪ . . . ∪ Qa ∪ Qa+1 ∪ . . . ∪ Qk and Σb ∪ Σj =

Σ1 ∪ Σ2 ∪ . . . ∪ Σb ∪ Σb+1 ∪ . . . ∪ Σl where a, b ∈ N. Hence the cooperation between

two CNTMs is deterministic while three CNTMs cooperating are not.

4.3.0.3 A proposed definition of an cooperation algorithm community

It is now possible to propose a definition of a community of cooperating algorithms.

Ck,n = A1 ∪ A2 ∪ ... ∪ An

Where Al ∈ Ck,n is a CNTM l ∈ n in community Ck,n.

There are a number of properties of CNTM with respect to communities. These

are the abilities: to join and leave a community; move from one community to another;

for a cooperating algorithm to instantiate another CNTM; for a CNTM to terminate

another CNTM.

Theorem 4.4. Joining a community: Let Ck,n be a community and let Cl,m =

A1 ∪A2 ∪ ...∪Am be another community then C(k+l),(n+m) = Ck,n ∪Cl,m = A1 ∪A2 ∪

... ∪ Am ∪ Am+1 ∪ ... ∪ An.

Theorem 4.5. Leaving a community: Let Ck,n be a community and let Cl,m =

A1 ∪ A2 ∪ Am be a community such that Cl,m ⊂ Ck,n and this subset wishes to leave

the community Ck,n then there will be two separate communities Ck,n \Cl,m and Cl,m.
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Proof. (Ck,n \ Cl,m) ∪ Cl,m = Ck,n.

What is interesting about this is that algorithms can cooperate to produce new and

interesting computations that cannot be produced by standard stand alone NTM’s.

4.3.1 Extensions, refinements and squeezing

Gödel described Turing’s approach of providing a formal mathematical definition

for the informal notion of an effective procedure or algorithm, as axiomatic and there-

fore the correct approach (Shagrir, 2006)(section 3). Turing’s method was to model

simple calculations called effective procedures (algorithms) that can be performed by

an idealised human such as Turing’s machines. Indeed in Turing’s day, although me-

chanical computing devices had long been in existence, a computor was often taken to

mean a person employed to perform arithmetic calculations. It is important to make

this distinction because Turing’s approach was a logical mathematical approach. He

was not trying to describe a physical machine, but was trying to find a way to formally

capture our intuitive understanding of algorithms or effective procedures to solve the

decision problem posed by Hilbert in 1928 (Hilbert and Ackermann, 1953).

It is interesting to note how this approach proved so effective that, along with

the work of many others, it led to the development of the electronic programmable

computer. More interesting still is how Turing machines have come to be taken as

the exemplars of an idealised electronic computer. It is now studied by all students of

computer science and forms the basis of the theory of computation or computability

(Goldin and Wegner, 2005). For a fuller discussion also see (Hopcroft et al., 1979) for

a classical text on the theory of computation.

Now many theorists think that computability is not adequate to explain modern

computers and the internet. To this end, they especially criticise the Church-Turing

thesis and have produced many Turing-like machines as well as other formations

which they claim somehow breach the “Church-Turing barrier” (Syropoulos, 2008). A

common approach is to extend Turing machines with some new property of computers.

It is then concluded that there is some mathematical function that a Turing machine
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cannot compute by that the new putative machine can. In this way, a counterexample

to the Church-Turing thesis is provided claiming it to be false. Goldin and Wegner

(2005) argue that modern computers exhibit physical properties such as interaction

or unbounded non-determinism that Turing machines do not encompass.

So when Turing found a function that a Turing machine could not compute he

was using a mathematical process to discover the limits of algorithms not the power

of computers. In 1939 (Turing, 1939) he went on to define Oracle machines which

have more expressive power than Turing machines. He showed however, that each

time a new Oracle is defined it will then be subject to a new version of the decision

problem and therefore it will still not able to compute some mathematical problems

and that this process could go on ad infinitum.

However it is possible to refine the theory of Turing computability by studying

the notion of effective procedures or algorithms. One thing that was missed in the

original formulation is that effective procedures can cooperate. In section 4.3 it was

shown that cooperation uses the relation, δ, defined above, to enable cooperation.

Furthermore that this relation is a kind of choice relation that leads to a computable

function that cannot be predicted until is is computed. Not only that, it is possible

to generate communities of computations whose outcomes are not predictable. This

is novel and interesting and warrants further research.

Finally this work only refines the definition of Turing computability it does not

offer a counter example to the Church-Turing thesis. This is because the refinement

developed shows that there is a way to improve the definition of effective procedure

to account for the possibility of cooperation. To this end the definition of Turing

machines was refined to account for this improved definition. According to the thesis

there will be many formal machines that will be able to account for this refinement

of effective procedures. This will happen because, if the definition of cooperating

effective procedure is true,then the resultant Turing machine will also be true. It is

important to note there can be any number of refinements to effective procedures

which result in suitable formal Turing machine definitions. In this way there is not
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a Turing barrier as Goldin and Wegner (2005) claim, just a possibility to refine the

Church-Turing thesis ad infinitum.

4.4 Conclusion

The purpose of this chapter is to prove that cooperation can offer computational

benefits over stand alone systems. But to achieve this it has been necessary to discuss

the contentious foundations of computation. Furthermore agent-based systems are

an integral part of this debate. There are many who research computation who ar-

gue that modern day computers, including agent-based systems, are not properly ex-

plained by computability theory and that a new theory is needed. Goldin and Wegner

(2005) argue that interaction between computers is one such property of computers

not explained by computability and they offer an extension to Turing machines to

account for this. There are those such as Cotogno (2003) who argue that those who

want a new theory have not understood the power of computability. Furthermore

any arguments from the physical reality of computation to computability are flawed

as these arguments conflate physical properties with logical ones. Others such as

Milner (1982) and Agha and Hewitt (1987) seek to explain these interesting physical

phenomena with new theories entirely which do not try to prop up computability. In

this context unbounded non-determinism has been proposed as a physical property of

communication that occurs in agent-based and interacting computers.

It is proposed in this chapter that agent-based systems undoubtedly exhibit un-

bounded non-determinism. It is agreed that this is a physical property that cannot

be explained by computability theory. This is enough to fulfil the goal of this chapter

to show how agent-based systems differ from standalone systems. However, it is also

possible to offer a new logical-mathematical explanation that, while not offering an

extension to the computability, does refine the theory with respect to cooperating

algorithms. To this end a new theory of cooperating Turing machines is developed.

As a consequence of this theory, it is proposed that cooperating algorithms do add a

new dimension to Turing machines, but it is argued any extension or refinement to
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Turing machines will not change the Church-Turing theory or the core augments of

computability.
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CHAPTER V

THE AGENT-BASED FRAMEWORK FOR COOPERATIVE

SEARCH IN COMBINATORIAL OPTIMISATION

5.1 Introduction

In this chapter the proposed framework is discussed in detail. 5.2 explains how the

framework operates to solve a problem. It also discussed how the agents work. While

section 5.3 examines the meta-heuristics and local search heuristics that are available

for the the agents to use on the platform. The pattern matching protocol which

enables the agents to cooperate is discussed in section 5.4. This involves discussing

the proposed model of combinatorial optimisation developed for the framework. The

section 5.4.1.1 shows how the proposed ontology implements the model and raises

the level of generality of the framework. The chapter is ended with a few concluding

remarks in section 5.5.

5.2 Framework architecture and operation

Cooperative search provides a class of strategies to design more effective search

methodologies through combining (meta-) heuristics for solving combinatorial opti-

misation problems. This area has been little explored in operational research. In

this thesis, a general agent-based distributed framework where each agent imple-

ments a (meta-) heuristic is proposed. An agent continuously adapts itself during the

search process using a cooperation protocol based on reinforcement learning and pat-

tern matching. Good patterns which make up improving solutions are identified and

shared by the agents. This agent-based system aims to raise the level of generality

by providing a simple flexible framework to deal with a variety of different problem

domains.The proposed framework has been so far tested on permutation flow-shop

scheduling, travelling salesman problem and nurse rostering instances yielding promis-

ing results.

The framework makes use of two types of agent: launcher and (meta-)heuristic
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agents (Figure 5.1).

• The launcher agent is responsible for queueing the problem instances to be

solved for a given domain, configuring the (meta-)heuristic agents, successively

passing a given problem instance to the (meta-)heuristic agents and gathering

the solutions from the (meta-)heuristic agents.

• A (meta-)heuristic agent executes one of the (meta-)heuristics or combinations

of local search heuristics that are available in the system for the problem in hand.

The meta-heuristic/ local search combinations and their parameter settings are

all defined in a configuration file the agent reads on launching. In this way

the agents are able to conduct searches using different meta-heuristic and local

search combinations with different parameter settings.

The framework conducts a search where each agent is launched and registers with

the the JADE platform that hosts the framework. Once this is complete the agents

are in a wait state waiting for the launcher agent to read in problem from file and to

run its seed heuristic and then send the problem to each of the meta-heuristic agents.

Only when the meta-heuristic agents receive that problem from the launcher do they

embark on a search. Figure 5.1 illustrates this process.

A search has at its core sequences of messages passed between the meta-heuristic

agents. Each message is sent as a consequence of internal processing conducted by

an agent. A succession of processing and message passing conducted by the agents

according to a fixed pattern, amounts to what is, in effect, a distributed algorithm.

In terms of how this was developed, this distributed algorithm can be broken

down into message passing implemented as a sequence of interaction protocols which

are themselves collection of complex behaviours (See section 3.4.1). The internal

processing is conducted as part of an interaction protocol sequence. Typically as part

of a protocol an agent receives a message. As a consequence it will perform some

internal processing and as a result the protocol will send a response message. The
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Figure 5.1: The generic multi-agent framework

JADE protocols and behaviours used by the framework can be found in Bellifemine

et al. (2007).

One completed sequence of message passing and processing is called a conversation

and is based upon the contract net protocol (Specification, 2003). The contract net

protocol used by JADE complies to the FIPA standard for this protocol (Specification,

2003). It is a very famous interaction protocol (see chapter III) where an initiator

agent asks other agents participating in the protocol to offer proposal for solving an

initiators problem. The initiator may accept a proposal and reject the rest or it may

reject them all. If a proposal is accepted the participator agent performs the proposed

action and informs the initiator it has been done and sends a result if there is one.

Fig 5.2 is an illustration of the contract net protocol. Here n is the number of agents

including the initiator, while m is the number of participants but not the initiator.

i is the number of refusals to participate in the protocol and j is the number of

participants offering proposals to the initiator. Finally k is the number of of rejected

proposals and l (usually 1) are the accepted proposals. How the contract net protocol

is used by the framework is described in detail in section 5.4.3.
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Figure 5.2: FIPA Contract Net protocol

In the course of a search an agent will conduct many such conversations. The

(meta-)heuristic agents do not include the launcher agent in their conversations. Only

when they have finished their conversations do they then send their best solutions

back to the launcher. The launcher chooses the best answer and writes it into an

output file. The launcher then moves on to the next problem.

As already explained, there are only two types of agent defined in the framework.

The launcher has two specific task of reading problems starting the meta-heuristics
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agents off and a search and collecting and presenting results task, at the end of a

search. The meta-heuristic agents conduct searches by having conversations with

each other. However, looking at Figure 5.3, irrespective of whether it is a launcher or

(meta-)heuristic agent, it can be seen that an agent’s role during a search is defined

by reading in a configuration file when it launches.

Figure 5.3: A (meta-)heuristic agent from the framework

The configuration file of a launcher agent lists which problems are to be solved. It

also contains how many conversations the meta-heuristic agents are going to conduct

for a particular problem. A local configuration file is used by each (meta-)heuristic

agent at start-up to determine the meta-heuristic/local search combination and pa-

rameter settings it will employ. The (meta-) heuristic agents then perform the search

based on the problem information sent by the launcher.

Logging facilities can be specified in the configuration files. The system is able

to print out the progress of the search on the screen or write it in a log file. One

interesting facility is the ability for each (meta-)heuristic agent to log the progress of

the search and then have it written to the main log file.

A launcher agent configuration file has the following information:
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• Name of the file of the problem to solve.

• Number of (meta-)heuristic agents to be used.

• Number of conversations to be conducted.

A typical (meta-)heuristic agent configuration file has the following information:

• the meta-heuristic to be instantiated by the agent. The choice is tabu search

(Glover, 1990a) or simulated annealing (Bertsimas and Tsitsiklis, 1993a). These

are very basic implementations of these algorithms.

• the number of iterations the meta-heuristic will perform.

• the size of the tabu list.

• the temperature function to be used for simulated annealing: geometric or

logarithmic.

• the local search heuristic to be instantiated and run in conjunction with the

chosen meta-heuristic. The choices are 2-opt (used mostly with STSP) or a hill

climber with the following moves: swap, insert, reverse and shift.

• the debug information and search progress printed to file.

The framework is designed to be generic and very flexible. This means that all the

information needed to apply the system to different problem domains is given either

in problem data files or in the launcher and (meta-)heuristic agent configuration files.

Once the meta-heuristic agents have completed the required number of conver-

sations they each send their best result to the launcher agent. The launcher then

chooses the best one and then prints an output file with the result solution and ob-

jective function value. This file can either be a text file or an XML as required by

the problem definition.
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5.3 (Meta-)heuristic agents

There are a number of heuristics and meta-heuristics implemented on the platform.

Any meta-heuristic agent can be configured to instantiate any of them by supplying

the correct codes in the agent’s configuration file. The Launcher agent also executes

a number of seed meta-heuristics depending on the problem that is being solved.

Table V.1: Seed Heuristics used by the launcher agent implemented for the framework

Problems Heuristic Reference

STSP Nearest Neighbour algorithm (Flood, 1956)

PFSP NEH (Nawaz et al., 1983b)

nurse rostering Greedy (Bilgin et al., 2012)

Table V.1 lists the different heuristics and references used by the Launcher agent

to produce seed solutions for different problem types. These algorithms have all been

implemented especially for the platform in JAVA from the pseudo-code provided by

the referenced papers.

The use of seed heuristics on the launcher is beneficial but not necessary. Testing

indicates (see table V.2 ) that the seed heuristics reduce the number of conversations

executed by the meta-heuristic agents in order to find good solutions. One reason for

this is that the seed heuristic enables the agents to start from a good position in the

solution space. The distributed pattern matching heuristic executed by the agents

robust. It causes the agents to diversify through the solution space, but starting

from a good position through the use of a seed solution increases their chances of

finding further good solutions. However if the agents start from random seeds they

are already in diverse parts of the solution space and it take longer for them close in

on good solutions.

Compare the TSP instances table in V.2 with those in table VI.1. Both tables were

produced by taking the average of 10 runs of instances were taken from the well known

benchmark library TSPLIB (Reinelt, 1991). The table results are each calculated
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taking the percentage increase from the known optimum value. The instances in

table V.2 were taken from tests where the meta-heuristic agents all started their

search from different random seeds. They also executed 5002 conversations. While

the results in VI.1 were obtained over 3002 conversations with tests using a seed

algorithm. To this end the results are closer to the optimum and therefore fewer

conversations were needed to achieve good results. All other settings for both sets of

tests were exactly the same. These results are suggestive that using a seed algorithm

in the launcher agent tend to help the meta-heuristic agents achieve better solutions

with fewer conversations.

Table V.2: % deviation from optimum of TSP instances with random seed over 5002

conversations

12 Agents 8 Agents 4 Agents 1 Agent SA 1 Agent Tabu

eil101 3.69 2.70 4.13 10.016 10.016

a280 13.57 14.17 13.06 15.82 15.82

gil262 14.83 14.85 15.29 15.43 15.43

pr299 15.80 16.29 17.33 18.06 18.06

rat575 18.18 18.35 18.65 18.81 18.81

The heuristics and meta-heuristics available to the meta-heuristic agents are all

simple classical implementations of famous heuristics which again have been coded

in JAVA from the pseudo-code in the referenced papers.

It should be noted that all the heuristics and meta-heuristics implemented on the

platform have been implemented according to the framework model and ontology as

explained in section 5.4. This means that the (meta-)heuristics instantiated by the

agents never work on problem specific data, but on the generic internal representation

of combinatorial optimisation problems developed for the framework.

Here is the list of Local search heuristics instantiated by the meta-heuristic agents:

• 2-opt (Beullens et al., 2003)
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• Hill-climber with swap

• Hill-climber with random shuffle of sub-list

The hill-climber is a simple perturbation heuristic. It takes a seed solution and

seeks to improve it by taking two random numbers modulo the size of the list. It

then, depending on the choice made in the agent’s configuration file, swaps these two

from the seed solution using the two random numbers as the start and end of the

list. In each case a population of potential solutions is generated and the objective

function of each is evaluated. The best improving putative solution is chosen as the

new solution to be passed back to the relevant meta-heuristic.

The 2-opt used is a version of the famous 2-opt first proposed by Croes (1958).

However this version (Beullens et al., 2003) also uses neighbour lists and active mark-

ing which while it does not improve the overall solution quality, does greatly increase

the speed of the search.

Here is the list of Local search Meta-heuristics instantiated by the meta-heuristic

agents:

• Tabu Search (Glover, 1990a)

• Simulated Annealing (Bertsimas and Tsitsiklis, 1993a)

• Variable Neighbourhood Search (Currently only used for nurse rostering) Bilgin

et al. (2012)

The tabu search agents implement a basic tabu search. In a basic tabu search,

the search starts from a seed solution and iteratively moves from the current solution

to its best neighbouring solution using neighbourhoods even if that neighbourhood

worsens the objective function value. To avoid returning to recently visited solutions,

successful moves are declared tabu for a certain number of iterations. The length

of the tabu list is specified in the instantiating agent’s local configuration file. In

addition, an aspiration criterion is defined to accept tabu neighbourhoods with an

objective function value better than the best available so far.
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The basic simulated annealing meta-heuristic used by the the agents is imple-

mented with a choice of a geometric or logarithmic cooling schedule. The choice is

again specified in an instantiating agent’s configuration file. The search starts from

a feasible solution and iteratively moves from the current solution to its best neigh-

bouring solution. Improved solutions are accepted, while non improved solutions are

accepted with a probability exp ∆
t

where ∆ is the change in the objective function

value, and t is the temperature which controls the acceptance probability. All the

case studies in this thesis use a geometric cooling schedule. It was chosen because

it could be made to diversify easily with ∆ being set at 0.9 and also it performed

more quickly than the logarithmic cooling schedule. The parameter settings for the

platform are further explained in section 6.4.1.

The Variable Neighbourhood Search (VNS) and the local search heuristics are

part of a nurse rostering model developed by Bilgin et al. (2012) and were only used

in conjuction with the nurse rostering case study in chapter VIII. This was taken

and re-coded and added to the framework to prove that it is flexible enough to work

on constrained problems as well. This means that currently VNS is only available for

nurse rostering problems.

The VNS algorithm utilises several local search moves and holds the parameters

of the executed moves in a tabu list. The neighbourhoods utilised are:

• shift: This assigns a nurse to a new shift to the roster.

• Delete shift: This move deletes a shift from the roster

• Single shift day: An assignment is removed from a nurses schedule and added

to another nurse on the same day if the second nurse has no assignment on that

day and has the associated skill type.

• Change assignment based on compatible shift type: The shift type of an

assignment is changed to another compatible shift type defined in the coverage

constraints for the associated day and skill type.
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• Change assignment based on skill type: This neighbourhood can be used

when the nurses have at least two different skill types. It deletes an assignment

and adds another assignment to one of the nurses other skill types.

• General Assignment Change: An assignment is changed to another shift

type where the skill type of the assignment remains the same.

At each iteration of the algorithm, a single move from the list above, is applied.

The moves are chosen in random order. Each possible move is validated against the

hard constraints (they must be complied with) of a given nurse rostering problem.

In this way any potential roster remains feasible throughout the execution of the

algorithm. The algorithm also features a tabu list is used to avoid cycling and getting

stuck in local optima. The best move allowed by the tabu list is executed. The length

of the tabu list is variable during the execution. It is increased at each non-improving

iteration and decreased if there is an improvement.

5.4 Cooperation by pattern matching and reinforcement learning

In this section the pattern matching protocol used by the meta-heuristic agents

is described. In order to do this it is necessary to explain the proposed model for

combinatorial optimisation used throughout the framework.

In chapter IV it has been shown that cooperative agent computation has theoret-

ical benefits. With this in mind, a generic model for multi-agent cooperative search

in combinatorial optimisation is proposed.

5.4.1 Combinatorial optimisation ontology

Many combinatorial optimisation problems can be modelled as hierarchy of prob-

lems with the general non-linear programming problem at one end and linear pro-

grams and flow and matching problems at the other (Papadimitriou and Steiglitz,

1998). The following equations describe a general mathematical model for combina-

torial optimisation problems.
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maximise or minimize (cTx) (5.1)

subject to Ax ≤ b (5.2)

and x ≥ 0 where c,x,b ∈ Rm,A ∈ Rm×n (5.3)

Here c is a cost vector of coefficients and x is a vector of decision variables.

A is a matrix of constraint coefficients and b is a vector of coefficients. Equation

5.1 describes a cost vector and a decision variable vector where the overall cost of

multiplying these two vectors together is to be optimised. Equation 5.2 defines a

matrix of constraints, while equation 5.3 represents the legal values for the decision

variables.

If equation 5.1 is a non-linear function then the whole problem is called non-linear.

Obviously if equations 5.1 and 5.2 are linear then the problem is called linear, but if

equation 5.3 requires the decision variables to be integers then the problem is known

as an integer problem. The problems examined in this thesis are modelled as integer

problems. To this end equation 5.3 is re-written as follows:

and x ≥ 0 where c,b ∈ Rm,A ∈ Rm×n and x ∈ Nn (5.4)

The constraints defined in equation 5.2 check the validity of the decision variables

with respect to the problem being optimised. In the case nurse rostering case study

of chapter VIII, it has many complex constraints representing the many complex

employment and contractual issues involved in assigning nurses to particular shifts.

Some examples of these include the constraint that a nurse may only be assigned to

one shift a day and a nurse cannot be assigned to a day shift the day after night shift.

Mathematically these constraints would be modelled as a long list of inequalities and

characteristic functions.
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xi ∈ x =

1 if xi is assigned to a solution

0 if xi is not assigned

and i ∈ N (5.5)

By studying this mathematical model a general method for modelling its algorith-

mic structure by using ontologies can be determined.

5.4.1.1 Ontologies

Ontologies (see section 3.4.3.1) play an important role within the framework. They

define a set of general representational primitives to model combinatorial optimisa-

tion problems and as such are semantic (Gruber, 1993). A number of representa-

tional primitives are defined with respect to the mathematical model in section 5.4.

These are used by the agents to both share information with each other and by the

heuristics employed by the agents to solve a problem. This makes the agents very

flexible because many combinatorial optimisation problems can be modelled with

these primitives and so the agents can solve problems without recourse to problem

specific details. To substantiate this claim the implemented system was tested on

travelling salesman, permutation flowshop scheduling and nurse rostering problems.

These results are discussed in chapters VI, VII, and VIII respectively.

A possible solution to a combinatorial optimisation problem is often represented

algorithmically as permutation of decision variables (equation 5.3) which is optimised

according to an objective function (equation 5.1). From this permutation the costs of

assigning certain decision variables to a possible solution can be ascertained by looking

them up in a table of costs. Finally the possible solution is verified, according to any

constraints associated with the problem which have been represented algorithmically

as a collection of verification rules with which any potential solution has to comply

(equation 5.2).

The ontology used by the framework generalises these notions as abstract objects.

Any potential solution is called a SolutionData object while any constraints are mod-

elled by the Constraints abstract object. The elements of any possible solution are
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called SolutionElements objects. Finally, another abstract object used by the ontol-

ogy is called a HeuristicData object. These are just pairs of SolutionElements objects.

Referring to the mathematical model above, HeuristicData objects represent pairs of

decision variables. These are used by the pattern matching protocol employed by the

framework. This is explained in section 5.4.2 below.

The ontology is general enough to handle many problems in combinatorial op-

timisation, but are currently used to solve problems in STSP, PFSP and NR. To

this end,currently, the primitives of the ontology are used to represent: a tour, a

job schedule, or a nurse roster as a SolutionData object; a pair of cities, a pair of

jobs on two machines, or a pair of nurse assignments as HeuristicData objects; any

constraints are represented as Constraints Objects; and finally, individual cities, jobs

or nurses are represented as SolutionElements objects.

Figure 5.4: The combinatorial optimisation ontology

The ontology of figure 5.4 consists of four elements.

• SolutionElelments: A SolutionElement is an abstract object that can repre-
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sent a problem specific object such as a job in PFSP or a city in STSP or the

assignment of a nurse with specific skills to a shift on a certain day as required

by a given nurse rostering problem.

• HeuristicData: A HeuristicData object contains two SolutionElements ob-

jects. These are currently used to represent pairs of cities, jobs or assignments in

a permutation that will be in the cooperation protocol to identify good patterns

in improving permutations.

• Constraints: The Constraints interface is the interface between the high level

framework and the concrete constraints used by a specific problem. These are

used to verify a valid permutation.

• SolutionData: A SolutionData object is a list of SolutionElements objects and

therefore is the permutation that is optimised by the framework. It currently

represents a schedule of jobs PFSP or a tour in STSP or a roster in NR

All message passing on the framework including the whole ontology is represented

in XML. This can be very advantageous as many benchmark problems, these days,

are also represented in XML. This makes the interface between problem definition and

ontology seamless in practice. Fig 5.4 shows the structure of the ontology and how

SolutionElements are the interface between the framework and a concrete problem.

The SolutionElements, HeuristicData, Constraints and SolutionData objects are

used also by the agents to facilitate inter-agent cooperation. The pattern matching

protocol, the meta-heuristics and local search heuristics used by the agents in the

framework all manipulate these objects only. This is similar to the so called “domain

barrier” in hyper-heuristics (Ouelhadj and Petrovic, 2010). However, here the inter-

face between the generic framework objects and the domain specific objects, is set at

the decision variables level in this framework, unlike hyper-heuristics which sets its

“domain barrier” at the level of heuristics.
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5.4.2 Cooperation protocol with pattern matching and reinforcement learning

The framework makes use of a pattern matching protocol which is used by the

agents to enable cooperation between them. It is, in effect, a distributed meta-

heuristic which uses the ontology primitives rather than any problem specific data.

One iteration of this distributed meta-heuristic will be called from now on a conver-

sation. The implementation specifics of this process are discussed in section 5.4.3. In

the course of a search the agents may carry many conversations. References to parts

figure 5.5 are provided to show how this more theoretical description of a conversation

relates to its practical implementation.

The search proceeds with intensification and diversification phases. At the start,

the launcher provides each agent with a permutation of SolutionElements objects

whose ID’s are represented as integers. For example, take the permutation where

n = 10: with the following ID’s: 2, 4, 7, 6, 5, 8, 9, 0, 1, 3. The agents then try to

intensify it using their given meta-heuristic/heuristic combinations (see I1 and R1 in

figure 5.5).

Next, in the diversification phase (see I2 and R2 in figure 5.5), each agent splits

their best-so-far permutations into pairs of HeuristicData objects. Given the permu-

tation above, it is possible to generate n pairs from it:

(2, 4), (4, 7), (7, 6), (6, 5), (5, 8), (8, 9), (9, 0), (0, 1), (1, 3), (3, 2)

.

Again the integers represent the ID’s of each SolutionElement object. One pair

represents a HeuristicData object.

This is done as a way of breaking down a permutation into patterns that are

of the same length while retaining the basic order of the permutation. This is the

simplest method for doing this; other pattern lengths such as triplets and quadruplets

or mixtures will be discussed in section 5.4.2.1 below.

The agents can then each compare pairs generated from their own best-so-far
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permutation with pairs generated by the other agents. In any conversation the agents

take on one of two roles: initiator and responder. These roles are not predetermined

but are assigned as the conversation unfolds. This will be explained in section 5.4.3.

After each agent has generated its list of pairs, the initiator collects all the pairs

(see I3 in figure 5.5) from the other agents and scores them based on how frequently

they appear. Only those pairs which occur as frequently as the number of agents in

the conversation, have their relative costs calculated. Table V.3 shows the example

of 4 agents cooperating. Here the pattern (2,3), highlighted in bold, occurs with

the same frequency as the number of agents, in this example, four times. For this

reasons this pattern is retained by the initiator agent. Remember, each integer in

a pair is also the ID of a SolutionElements object in the problem at hand. The ID

is used to look into the cost matrix to calculate the cost of the pair with respect to

the objective function. In the case of STSP this is distance from one city to another,

while for PFSP it is the CMAX (Nawaz et al., 1983b) of pairing one job with another

across a given number of machines and for NR it the cost of a particular pair of nurse

assignments.

Table V.3: The initator collects all the pairs from the agents and only uses those that

have occur all in agents

Agents Patterns

Agent 1 (2,3)(5,1)(7,4)

Agent 2 (1,2)(2,3)(4,5)

Agent 3 (2,3)(7,4)(9,7)

Agent 4 (6,7)(5,8)(2,3)

Once the best pairs have been identified and costed, they are shared out amongst

the agents (see R3 in figure 5.5). Each agent also maintains a pool of good pairs

found so far. When an agent receives a new consignment of good pairs it compares

these with the ones it already has in its pool.
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Once this process is complete each agent tries to build a new permutation using

the pairs in its pool (see I4 and R4 in figure 5.5). It does this by trying to link pairs

which share the same second digit and first digit. For example, if the following pairs

are found in the agent’s pool: (2, 5)(3, 6)(5, 3)(1, 7). The agent then tries to link them

as follows: (2, 5)(5, 3)(3, 6) leaving (1, 7) unlinked. It then builds the new permutation

by taking the linked pairs and generating the first part of the permutation by removing

any repeats of numbers as follows: (2, 5, 3, 6). Any unlinked pairs not used so far fill

in the next part of the permutation giving: (2, 5, 3, 6, 1, 7). Finally, any numbers

missing from the permutation are taken from the agent’s best-so-far permutation.

This is done because a permutation must be a list of all the ID’s in use in a problem.

The new permutation produced is the result of the diversification phase and will be

used by the agent as its new best-so-far permutation. It also marks the end of a

conversation and the new permutation is ready for the start of a new conversation.

5.4.2.1 Discussion of cooperation strategy

As already mentioned, this simple distributed pattern matching meta-heuristics,

like most meta-heuristics, has an intensification and diversification phase. Broadly,

intensification occurs when an agent applies its given meta-heuristic, while the pat-

tern matching and greedy heuristic acts as a diversification phase. However it is

important to qualify this statement given that most meta-heuristics already have in-

tensification and diversification phases anyway. The difference is that this distributed

meta-heuristic is robust: different agents will be working on different parts at or in a

given search space, at the same time.

To this end it is necessary to thoroughly search a given area of the search space,

using perturbation meta-heuristics, to identify a local neighbourhood finding the best

minimum in that area of the search space. This is the intensification with respect

to a distributed search. The diversification phase must not only be robust in getting

the agents to search different parts of the search space, but it must also provide a

method for the agents to converge to good solutions, otherwise the strategy would
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involve nothing more than parallel random starts.

The pattern matching part of the heuristic is based on two assumptions: different

meta-heuristics have different strengths and weaknesses; and, good solutions will

share reoccurring features. The meta-heuristics on the platform use very basic forms

of SA(Bertsimas and Tsitsiklis, 1993a) and TS (Glover, 1990a) and VNS (Bilgin

et al., 2012). The SA uses a geometric cooling schedule that cools slowly so that the

algorithm will diversify more often. The TS, on the other hand is set with a small

fixed tabu tenure of seven causing the algorithm to be more intensive. VNS uses

either a random or looking-ahead choice functions for determining which local search

heuristic to use next.

The local search algorithms used are a hill-climber algorithm using a swap move

for PFSP and 2-OPT for TSP. These are chosen as they are very well known in the

literature as local search techniques best suited to these two problems. Indeed it is the

intention for the generic framework to use problem specific local search heuristics. The

reason for doing this is that they have a large bearing on how a search will progress

and it is relatively easy for each to write and add a new local search heuristic, given

the generic modular framework provided by the platform. However they still optimise

using the permutations of ID’s described above.

The idea behind setting TS to be intensive and SA to be diverse is to increase

the difference between the two algorithms thus increasing coverage of the search

space. Also, for the pattern matching algorithm to be effective, new patterns must be

generated. Therefore, by adopting this strategy, the chance of finding more patterns

is increased. It is still subject to further testing as to how effective this strategy is,

but it seems like a good early strategy to adopt.

It is an assumption of this work that good features of improving solutions will

reoccur if different meta-heuristics are working in parallel. However, it is important

to find a method of identifying good patterns. Given a permutation N there are

2|N | possible subsets that could be seen as features of the permutation. For large

permutations this is an impossible number of features to search. It was decided

74



therefore, just to look at the best-so-far permutation produced by an agent’s meta-

heuristic and try to identify features that preserve its current order and the costs

implied between the different members. The simplest way to do this was to break

the permutation up into pairs maintaining its order as explained in section 5.4.1. It

is intended to explore different pattern lengths and mixed pattern lengths in future

work.

The cooperation protocol shares only those patterns that have a frequency that

is the same as the number of meta-heuristic agents. These patterns are also costed

with respect to the objective function and only those that improve on patterns that

share an element are kept. This ensures that each agents pool does not get too big

and only those patterns that have an improving distance are kept. Having updated

its pool of pairs each agent tries to build a new permutation according to the process

described in section 5.4.1. Because of the scoring and pool updating process there

are unlikely to be enough pairs to build a new permutation from the pool alone.

Therefore the agent’s current best-so-far permutation is used to supply the rest of

the numbers needed. This is a diversification process: the good patterns mean that

the new permutation does not stray too far from good solutions but at the same

time it is a wider diversification process than that used by the agent’s internal meta-

heuristics such as SA or TS. This is because, as mentioned earlier, an agent’s own

meta-heuristic will search a local area and diversify from local minima so a wider

diversification process is needed to get each agent to search a new area of the search

space.

The new permutation generated in this way, is similar the seed solutions commonly

used by researchers when using a meta-heuristic to tackle a specific problem. The seed

is generated typically by a greedy heuristic, so that the meta-heuristic in question

starts from a good position in the search space. By the same token, the patterns found

by the agents provide the basis of new seed solutions that can then be intensified by

an agent’s meta-heuristic at the start of the next conversation.

The pattern matching phase employs a simple form of re-enforcement learning.
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This is achieved by allowing only those patterns that occur in permutations of all

agents during a conversation to be kept. These are stored in a pool of good patterns

where new ones are allowed only if there is an improvement on a previous pattern.

Thus the system only allows a limited number of improving patterns that can be

used from one conversation to another. They form the basis of a new permutation

generated by a diversification process. The idea is that these patterns ensure any new

permutation is not so significantly worse that it hinders the overall progress of the

search.

In future work, tests will be carried out on the frequency of patterns and on the

size of the pool. The permutations and pairs discussed in this section are implemented

by using ontologies. This will be discussed in the next section.

5.4.3 Conversation

Figure 5.5 shows the pattern matching protocol used by the (meta-)heuristic

agents. One complete execution of the algorithm illustrated is a conversation. In

any conversation, there will be a (meta-)heuristic agent that takes on the role of an

initiator and the others are responders. Any (meta-)heuristic agent can be the initia-

tor, but it is determined in the previous conversation which agent will be the initiator

for the current conversation.

In figure 5.5 an agent taking on the role of initiator starts a conversation. It takes a

new permutation either generated from a previous conversation or a seed supplied by

the launcher agent. The new permutation or solution is then improved by the chosen

(meta-)heuristic for that agent. In figure 5.5 this is the box numbered I1. When an

improved solution is generated, it is sent to the other (meta-)heuristic agents and

this marks the start of the conversation. In I2 of figure 5.5 the initiator breaks its

best-solution-so-far into edges or pairs, as explained above in section 5.4.1.

On receiving the initial solution from the initiator, the other (meta-)heuristic

agents also take their best-so-far permutations, R1 in figure 5.5, using their designated

(meta-)heuristics. They too each break their best-so-far solutions into edges or pairs,
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Figure 5.5: The Cooperation Protocol showing one iteration of a conversation

I2 of figure 5.5. HeuristicData objects are created from these pairs storing the first

and second elements of the pair.

The initiator creates its own HeuristicData objects from the pairs generated, I2

of figure 5.5, while the responder (meta-)heuristic agents send their HeuristicData

objects to the initiator. The receiving (meta-)heuristic agents also send the value

of their best-so-far solution. This will be used by the initiator to determine which

(meta-)heuristic agent will be the new initiator in the next conversation (see R2).
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In I3, the initiator receives the HeuristicData objects from the responding agents

and collects them together. Each HeuristicData object is scored and ranked based on

frequency by the initiator. This can be seen in box I3 of 5.5 as the functions getScore

and computeDistances. Tests show that it is best to accept only HeuristicData objects

with a frequency score the same as the number of (meta-)heuristic agents (algorithm

1 getScore).

Each agent keeps a pool of HeuristicData objects which is made up of only of

high scoring HeuristicData objects. When new objects are found during course of

a conversation then the agent will update according to the following strategy. Each

new high scoring pattern is compared with those already in the pool. If a new pattern

shares the same first or last number, but the distance between the two elements of

the pattern is better than that of the pool, then the new pattern replaces the old

pattern. It functions as a short term memory keeping a limited list of good patterns.

Input: List of HeuristicData Objects

Output: Set of HeuristicData Objects

foreach HeuristicData object in List do

score = frequency of this HeuristicData object in List;

if score >= number of agents −1 then

Object.setScore(score);

output.add(object);

end

end

Algorithm 1: getScore: an algorithm for scoring patterns
In figure I3 of 5.5 the initiator using the function createLinkedList then tries to

build a linked list. To do this it uses the high scoring HeuristicData objects found in

the current conversation and with the patterns in the pool. For example, if the pool

contains the following HeuristicData objects with first and second elements expressed

here as pairs (4,7) (6,1) (7,2) (2,6) (5,9) (3,8), the linked list generated from the

HeuristicData objects will have the following order (4,7) (7,2) (2,6) (6,1). Algorithm
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2 shows the pseudo code for this mechanism. Any HeuristicData objects not linked

in this way are stored in an unlinked list (5,9) (3,8).

Input: Set of scored HeuristicData Objects

Output: Set of linked HeuristicData Objects

copy the scored list;

while copy is not empty and output is not unchanged do

foreach HeuristicData object in scored set do

if output set is empty then

output.add(object);

copy.remove(object);

end

if the first element of the object equals last element of the last object in

the output then

add object to the back of the output set;

copy.remove(object);

end

else if the second element of the object equals the first element of the

first object in the output then

add object to the back of the output set;

copy.remove(object);

end

end

end

Algorithm 2: createHeuristicLinkedList: an algorithm creating a linked list of

HeuristicData objects
In I3 of figure 5.5, through the function getInitiator, the initiator also determines

which (meta-)heuristic agent is going to be the initiator in the next conversation.

This is done by taking all the values of the best-so-far solutions sent by each (meta-

)heuristic agent and then identifying which (meta-)heuristic agent has the best ob-
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jective function value. The (meta-)heuristic agent with the best value will be the new

initiator in the next conversation. The initiator then sends the linked and unlinked

lists of HeuristicData objects to the receiving (meta-)heuristic agents. In the same

message it also indicates which (meta-)heuristic agent will be the new initiator in the

next conversation.

The other (meta-)heuristic agents receive the lists of HeuristicData objects from

the initiator (see box R3 in figure 5.5). They also update their internal pools as

described above. In box I4 and R4 of figure 5.5, both initiator and responder (meta-

)heuristic agents then each create a new solution by updating their internal pools and

both the linked list and the unlinked list sent to them. They also use their current

best solution produced by their own meta-heuristic . The new solution is created by

trying to build first a list of numbers from the linked HeuristicData objects. The

unlinked Heuristic Data objects are used next to supply more numbers. Finally the

(meta-)heuristic agent’s best-so-far solution provides any missing numbers. In the

example I3 the createLinkedList function created the following linked list (4,7) (7,2)

(2,6) (6,1) with the (5,9) and (3,8) as the remaining unlinked objects. Therefore

on I4 and I4 in figure 5.5 the following solution would be created by one of the

agents. The linkedlist and unlinked list would produce the following incomplete list

(4,7,2,6,1,5,9,3,8). As our example list is length 10 then the numbers 7 and 10 missing

from our incomplete list. Supposing the best-solution-so-far from the agents meta-

heuristic was (3,5,2,7,8,4,1,10,9,6), then the numbers 7 and 10 occur in the order

(7,10) in this list. This means the missing numbers in our new list will be added as

(7,10) at the end of our list. The complete list is therefore (4,7,2,6,1,5,9,3,8,7,10). In

this way, for each agents, a new unique permutation is generated and the objective

function value is calculated (see boxes I5 and R5).

Whichever (meta-)heuristic agent was deemed to be the initiator from the cur-

rent conversation will be the new initiator for the next conversation. The process

repeats and continues until the number of conversations set from the launcher agent

is completed.
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The framework described here uses ontologies to model problems in combinatorial

optimisation and provides a number of representational abstract primitives so that

the agents are never concerned with problem specific data. This makes the framework

generic and modular. It is possible to add new functionality to the system as long as

the framework primitives are integrated with problem specific primitives. Indeed this

was done for the implementation of the nurse rostering problem described in chapter

VIII where a constraint verification system developed by other researchers was added

to the system as a module so that the system could solve nurse rostering problems.

The agents still only manipulated the ontology’s primitives.

The framework also uses a distributed algorithm with the agent’s cooperation

protocol. They use this protocol to share good features of different problems to enable

more efficient search. Testing has shown that the protocol acts like a diversification

strategy in the early stages when the agents share patterns and then they quickly

intensify finding better solutions. This will be explained in greater detail in chapters

VI, VII and VIII.

5.4.4 A theoretical note

In chapter IV it was proposed that in emergent distributed algorithms agents

cooperate by each playing an equal part in the algorithm. This is only possible if there

was no overall control process. Also each participant must be able, if not cooperating,

to independently solve the problem at hand. In short they are autonomous. The

cooperation protocol used by the agents in the framework, just described in this

section meets all these requirements and therefore is an example of the type of the

emergent distributed algorithm.

5.5 Conclusion

An agent-based framework for cooperative search has been proposed The proposed

combinatorial optimisation ontology developed for the framework makes it easy to

develop and implement new heuristics and meta-heuristics thus raising the level of
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generality. It also means that other (meta-)heuristics developed by other researchers

can be easily integrated into the system as will be seen in chapter VIII. The use of

JAVA means that the platform can be ported from one operating system to another

with no change to the system. Indeed testing of the case studies in chapterVI on

STSP, chapter VII on PFSP and chapter VIII on NR, was done on a mixture of

networks, some running Windows 7 and some running Linux. The pattern matching

protocol is an example of an emergent distributed algorithm. The agents do not share

full solutions but knowledge about good features of potential solutions identified by

statistical frequency. Finally, this framework will be published as an open source

project so that other (meta-)heuristics and cooperation protocols can be added and

tested by other researchers. The project is called MACS (Multi-agent Cooperative

Search) and will be published at the following link http://www.port.ac.uk/maths.
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CHAPTER VI

THE TRAVELLING SALESMAN PROBLEM

6.1 Introduction

This chapter describes the first of the case studies undertaken to test the agent-

based system for cooperative search. It was conducted on the symmetrical travelling

salesman problem. In section 6.2 a short history of the TSP is provided. This

is followed by a mathematical description of the Symmetrical Travelling Salesman

Problem (STSP) in section 6.3. The general experimental settings not for just the

STSP but all the case studies of this thesis are provided in section 6.4.1. Specific

STSP experimental settings are introduced in section 6.5. The STSP benchmarks

used for testing are introduced in section 6.6. In section 6.7 the results of the tests

are presented and analysed. Finally some conclusions are offered in section 6.8.

6.2 A brief history of the TSP

In chapter II, it was explained that there have been a number of problem specific

multi-agent platforms developed, to try and solve specific problems in combinato-

rial optimisation (Xie and Liu, 2009; Vallada and Ruiz, 2010); and also, there have

been more general systems proposed able to tackle many combinatorial optimisation

problems (Talukdar et al., 1998; Malek, 2010). However, these latter systems have

taken different approaches to the work described here: such as breaking big problems

into different jobs and letting the agents solve these (Talukdar et al., 1998) or letting

the agents only use one meta-heuristic to solve problems (Malek, 2010). It was es-

tablished also that as far as it is known there is no framework and platform that is

asynchronous, that uses different meta-heuristic agents and ontologies to solve hard

combinatorial optimisation problems.

As Laporte (2006) has shown, the TSP has it roots in antiquity, but the first

modern formulation of STSP and its solution by exact methods, was provided by

Dantzig et al. (1954). Other important historical articles are Land and Doig (1960);
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Little et al. (1963) which introduce the Asymmetrical Travelling Salesman Problem

(ATSP) using exact solving methods. The first modern use of heuristics for NP-hard

problems in operational research can be traced back to the work of Croes (1958); Lin

(1965). Also it is important to mention the famous algorithm of Lin and Kernighan

(1973b) which continues to be the most effective heuristic algorithm for obtaining

impressive results for all sizes of travelling salesman problem .

A recent agent-based approach to solving the TSP is the Multi-Agent Optimiza-

tion System for solving the TSP (MAOS) by Xie and Liu (2009). The MAOS system

uses a population based evolutionary approach to solve the TSP. Each agent has some

simple rules that enable it use simple hill-climber heuristics to manipulate potential

solutions and share them with the other agents. The results are comparable with

those of the Lin-Kernighan algorithm. Other agent-based systems using population

based techniques such as ant colonies and genetic algorithms are Dorigo and Gam-

bardella (1997); Stützle and Hoos (1997). While population based heuristics have

much in common with the system proposed in this thesis, there are a number of big

differences. In population based systems there are many agents that are relatively

simple normally performing some kind of crossover or perturbation heuristic move.

The meta-heuristic agents of the system proposed in this thesis, are relatively few in

number and execute more complex behaviours. Also population systems only use one

meta-heuristic and are tuned to work on one problem at a time. This is different from

the asynchronous generic modular approach taken in this work, where the agents are

able to work on many different problems with little reconfiguring.

6.3 The formulation Symmetrical Travelling Salesman Problem

The Symmetrical Travelling Salesman Problem (STSP) can be formulated in the

following manner. Given an n by n symmetric matrix of distances between n cities,

the task for the symmetrical travelling salesman problem is finding the minimum

length tour of all the cities, visiting them only once. A tour, or Hamilton cycle, is an

undirected graph G(V,E) where V is a set of vertices and E is set of edges. |V | = n is
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the number of vertices and σi is just a vertex in the ith position in V σi ∈ V . (Reinelt,

1994)

An edge is just two vertices paired together (σi, σi+1) ∈ E where the scripts are

taken to be modulo n so (σn ≡ σ0).

A tour of unique list of cities is S = (σ1, σ2, ..., σi, ...σn). The objective function

value Z(S) is the sum of all the lengths of its edges, thus is:

Z(S) =
n∑

i=1

d(σi, σi+1) (6.1)

6.4 Computation experiments

Three different sets of computational experiments has been conducted on the

STSP, PFSP and NR to test the effectiveness of the framework.

All computation experiments presented in this thesis have the following objectives

The aim of the testing was to show the following:

a) show that cooperation produced better results than no cooperation

b) establish scalability by adding more agents improved results

c) understand if pattern matching protocol behaved as expected

d) establish whether simple heuristics cooperating can achieve good solution qual-

ity

e) establish if the system is flexible enough to work on different types of problem

domains

f) establish if the framework can be extended to constrained problems

g) for the NR only establish that is possible to improve fairness by evaluating

potential solutions with a new objective function.
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6.4.1 Experimental settings

The platform essentially has the same configuration for each of the three case

studies. The only differences concern the local search heuristic used with each problem

and in the case of NR a third meta-heuristic (VNS) is used. This section describes

the experimental settings common to all three of the case studies.

For the STSP and PFSP tests the platform is configured in such as way so that a

meta-heuristic agent can either run Simulated Annealing (SA) or Tabu Search (TS)

in conjunction with the local search heuristic.

All the case studies tests are each conducted with scenarios considering different

groups of agents. These are:

Stand alone (1 meta-heuristic agent) TS, SA and VNS (nurse rostering only)

• 1 launcher agent

• 1 meta-heuristic agent running tabu search

4 Meta-heuristic agents

• 1 launcher agent

• 2 meta-heuristic agents running simulated annealing

• 2 meta-heuristic agents running tabu search

8 Meta-heuristic agents

• 1 launcher agent

• 4 meta-heuristic agents running simulated annealing

• 4 meta-heuristic agents running tabu search

12 Meta-heuristic agents

• 1 launcher agent
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• 6 meta-heuristic agents running simulated annealing

• 6 meta-heuristic agents running tabu search

They were tested in this way so that standalone agents running just one meta-

heuristic at a time could be compared with groups of cooperating agents to see which

produced better results. Moreover different groups of agents were tested to see if

adding more agents improved solution quality.

6.4.1.1 Parameter Settings

Each meta-heuristic agent can be configured from a file which is executed when the

agents start. The agents were configured with different parameter settings described

in the subsections below.

The first parameter setting is the number of conversations to be conducted in

the course of a search. In the case of TSP and PFSP the agents each execute 3002

conversations, while for nurse rostering only 200 were required. Extensive testing

showed that for these case studies these were the most appropriate number because

after that no significant improvement in solution quality was gained. It was decided,

therefore to choose these conversations limits.

6.4.1.2 Meta-heuristic settings

At start-up an agent can be instantiated to run one of the following meta-heuristics

TS, SA and VNS. In the case of SA and TS each meta-heuristic evaluated its objective

function 500 times. The TS tabu tenure was 7. VNS will be discussed in section 8.5.1.

For simulated annealing The geometric cooling schedule was used where the pa-

rameters were set at 0.9 so that meta-heuristic would diversify. As already explained

in chapter V, this was to counter-balance the tabu-search agents which were config-

ured with a small tabu-tenure set for intensification.
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6.4.1.3 Performance measures for the evaluation of results

The results for each problem were averaged and the average percentage deviation

from the known optimum was calculated. The percentage deviation from a known

optimum was calculated using equation 6.2. Therefore, Table VI.4 shows the average

percentage deviation from the known optima for these problems.

Methodsolution −Bestsolution
Bestsolution

× 100 (6.2)

6.5 STSP specific experimental settings

This section describes the experimental settings germane to STSP. The testing

was conducted on the university network running a Linux Ubuntu 12.4 network using

13 student work stations. Each machine was a Hewlett Packard machine with an

Intel dual core processor with 2 GB of RAM.

6.5.1 Local search heuristic

The local search algorithm used for these tests is a variant of the 2-opt algorithm

(Croes, 1958) proposed by Beullens et al. (2003) with active marking and neighbour

lists. The 2-opt algorithm was chosen for STSP because it is a well known local

search heuristic for this problem. This variant finds good solutions more quickly than

standard 2-opt algorithms reaching solutions of a similar quality. In all the tests using

this algorithm the neighbourhood lists were all set to 1 so that each city has a full

list of nearest neighbours.

6.6 STSP Benchmarks

The launcher agent, reads in a benchmark definition file. In the case of the TSP

it reads in all of the benchmark files described below. It then executes a nearest

neighbour greedy heuristic seed heuristic on each STSP problem read from file and

sends each problem instance one at a time to the meta-heuristic agents to be improved.
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Reinelt (1991) has produced a set of benchmark scenarios for all the different

types of travelling salesman problem including a set of problems for the STSP. There

are at least 50 problems in the STSP library alone and there are different types

of problems with the STSP set depending on the coordinates provided for the po-

sition of a city. These coordinates can be given in 2 dimensions or 3 dimensions.

Furthermore, the distance between cities can be calculated in different ways, such

as, the euclidean distance, the manhattan distance, the maximum distance, the geo-

graphical and the pseudo-euclidean distance. For this work 14 STSP problems were

chosen, all using the euclidean distance for 2 dimensions. The instances chosen are:

a280(280 cities), berlin52(52 cities), bier127(127 cities), d198(198 cities), d493(493

cities), d657(657 cities), eil101(101 cities), eil51(51 cities), fl417(417 cities), gil262(262

cities), pr264(264 cities), pr299(299 cities), rat575(575 cities) and ts225(225 cities).

Each benchmark problem was run 10 times for groups of 12,8 and 4 cooperating

agents where for each test the agents conducted 3002 conversations. In other words,

each agent evaluated its objective function 3002 times. These are compared with non-

cooperating stand alone agents which were run firstly executing simulated annealing

and then tabu search.

The stand alone tests were conducted where the agent evaluated its meta-heuristic

3002 × 500 × 12 = 18012000 times. This was done because each cooperating agent

participated in 3002 conversations, each agent’s meta-heuristic was executed at most

500 times and the largest group of agents was 12. Therefore overall the largest

number evaluations of the objective function was done in the 12 agent group, 18012000

evaluations. To make a fair comparison, therefore it was necessary for the stand alone

agents to perform the same number of iterations as the maximum overall iterations

of the cooperating agents.

6.7 Results

It can be seen clearly from table VI.1 that there is quite a difference between agents

cooperating and stand alone agents. The results show that cooperation outperforms
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no cooperation. Although, the results of cooperative search cannot compete with the

state-of-the-art heuristics that have been tailored to solve these benchmark problems

to optimality, it can produce respectable results in a credible time limit. No search

result took longer than 3 minutes. The aim of the framework is to build general

domain-independent search methodologies that are capable of performing well across

a wide range of optimisation problems and it is not expected to outperform meta-

heuristics which are tailored for specific problems, but to give credible results. Table

VI.1 establishes that the agents can produces results that quite close to optimality

for the smaller problems. Indeed for eil51 the optimal results were achieved several

times. It should also be noted that on eil51 the stand alone agent achieved better

results that the 12 agents. This is because eil 51 is a very small example that can

be easily solved to optimality by simple meta-heuristics. The agents conversation

by pattern matching heuristic is a diversification strategy which does not work very

well on small instances as the agents tend to diversify away from the good solutions

provided by an agents meta-heuristic. To this end this diversification strategy is not

suitable for very simple problems that can be solved easily.

It should also be noted that the stand alone agents produce the same results for

each problem. It is because the standalone agents are configured in exactly the same

way as the cooperating agents. In all tests all agents used the same deterministic

2-opt algorithm described in section 6.5.1. This coupled with a function that ter-

minates a meta-heuristic search if the objective function value was repeated more

than twice, means that in stand alone mode a search will always end up at the same

local minimum. This is because such a sharp stopping criterion does not allow a

TS aspiration function or SA objective function to accept worse moves. This always

happened over a variety of testing programs conducted over a period of two years.

Table VI.2 shows some earlier STSP tests conducted early in the PhD. The agents

were configured differently but used the function for detecting local minima. The

stand alone results are identical.

However table VI.3 conducted the same tests as in table VI.1 for stand alone
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Table VI.1: The average percentage deviation from optimum/upper bound for each

problem type

12 Agents 8 Agents 4 Agents 1 Agent SA 1 Agent Tabu

eil51 0.56 0.47 0.75 0.09 0.09

berlin52 6.94 7.51 7.78 16.69 16.69

eil101 1.46 1.40 1.57 11.45 11.45

bier127 2.35 2.44 2.45 5.93 5.93

d198 6.28 6.63 6.27 12.50 12.50

ts225 5.16 5.29 5.44 15.76 15.76

gil262 12.93 12.23 13.12 27.92 27.92

pr264 8.22 7.53 7.95 16.25 16.25

a280 10.28 9.65 10.20 15.47 15.47

pr299 12.94 11.96 12.43 18.06 18.06

fl417 10.57 9.96 10.46 21.29 21.29

d493 10.36 10.71 10.84 16.94 16.94

rat575 12.22 12.60 12.18 18.41 18.41

d657 15.69 16.03 14.68 20.37 20.37

Table VI.2: Historic average percentage deviation tests presented here to show that

the stand alone results are the same

12 Agents 8 Agents 4 Agents 1 Agent SA 1 Agent Tabu

eil101 3.69 2.70 4.13 10.02 10.02

a280 13.57 14.17 13.06 15.82 15.82

gil262 14.83 14.85 15.29 15.43 15.43

pr299 15.80 16.29 17.33 18.06 18.06

rat575 18.18 18.35 18.65 18.81 18.81
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agents. But this time the local minimum detection function had different settings for

the standalone agents conducting the TS and SA tests. The SA stand alone agent

had a local minimum detection function set to 100. This means that if the simulated

annealing algorithm can continue with a search accepting worse values. It can be seen

from table VI.3 that the resuts between the stand alone tests are sightly different.

All other parameters remained the same.

Table VI.3: Standalone agents executing TS and SA where SA has a different local

minimum detection criterion

Problem instance Tabu SA

a280 168508.6 169929.6

berlin52 38469.1 38364

bier127 143330.9 136298

d198 11279.7 10336

d493 14438.2 15408.1

d657 133588.4 133360.1

eil101 108977.2 109819.3

eil51 197581.4 212885.6

fl417 4646.3 4840.1

gil262 822.8 840.8

pr264 5127.1 5288.1

pr299 507.8 505

rat575 80264.7 74797.3

ts225 58006 61699.6

Figure 6.1 is a graph of boxplots validating the statistical significance of the ob-

served differences, an analysis of variance (ANOVA) performed (Montgomery, 2008)

with Tukey intervals. There is no overlap between cooperating and standalone agents

showing that cooperation is better than no cooperation. This can also been seen in
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table VI.1 where the final two columns show that the stand alone results are at least

5

Figure 6.1: Cooperating agents versus no cooperation

A close study of Figure 6.2 and table VI.1 show that on average there is small

improvement between 12 and 4 agents but the improvement is not significant. It

shows that 12 and 8 agents have very similar results while 4 agents produce slightly

worse results. This does not show conclusively that adding more agents improves

results. It will be seen in chapters VII and VIII the trend for better results with more

agents is more pronounced for PFSP and NR. However the results are suggestive of

this trend rather than proof. To establish this claim further tests will need to be

conducted with more agents and over longer testing epocs.

6.7.1 Patterns for robustness and diversification of the search

Tests were also conducted to understand how patterns were used during the search.

These tests were conducted with groups of 4, 8 and 12 meta-heuristic agents. Tables

VI.4 and VI.5 show the average number of patterns generated by these groups of

meta-heuristic agents over the course of 10 iterations of the benchmark problems

gil262(262 cities) and pr264(264 cities). These two examples were chosen because
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Figure 6.2: Comparison of result from 4 to 12 agents

they have roughly the same number of cites and yet they produce two the different

pattern types. The patterns counted were only those that achieved good scores in the

pattern matching algorithm. While in the case of pr264 it is clear that more patterns

are generated by large groups of agents, it can be seen from gil262 that the 8 agent

group produced on average less patterns than the 4 agents group. Extensive testing

has shown that these patterns came in two types. In the first type the patterns were

generated start of a search, usually within the first 3%. For the second type usually

only 2 or patterns were identified as important by the agent but were constantly

used throughout the search to generate new potential solutions. In this way large

amounts of patterns are generated but they were often the same patterns being used

in potential solutions.

Table VI.4 shows the number of patterns where patterns of type 1 predominated.

For example run 1 of 4, 8 and 12 agents are of this type. However table VI.5 shows

pattern numbers where type 2 was more prevalent. Run 6 of 4,8 and agents is a good

example of this pattern type. It is important to note from testing so far it is not

possible to predict which pattern type produced the best results.

This observation matches with the intended design of the pattern matching pro-
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tocol as explained in 5.4.2.1. The idea is that pattern matching is used as a diversi-

fication technique within the protocol. The agents diversify by the exchange of good

patterns in the first 3% of the conversation and then settle down to intensify gener-

ating no new patterns. On the other hand they use the same two or three patterns

intensifying throughout the rest of the search. It is important to note that in any

group of agents engaged on a search both types of patterns behaviour can occur.

Table VI.4: The average number of patterns for different groups of agents of 10

instances of the gil262 problem

gil262 run1 run2 run3 run4 run5 run6 run7 run8 run9 run10 average

4 Agents 33 121 27015 120 27019 26614 27094 82 94 27017 13520.9

8 Agents 150 16 145 772 38868 14695 16 214 22 16 5491.4

12 Agents 24 12141 35285 24 203 987 27630 24 76345 26 15268.9

Table VI.5: The average number of patterns for different groups of agents of 10

instances of the pr2624 problem

pr264 run1 run2 run3 run4 run5 run6 run7 run8 run9 run10 average

4 Agents 28106 4646 28716 29939 53 30018 28008 28359 89 2098 18003.2

8 Agents 118 51368 52086 16 52234 55981 54033 52174 51035 54033 42307.8

12 Agents 77603 78051 229 24 77846 75302 75067 24 75061 24 45923.1

Figure 6.3 is a line graph showing the progress of the search involving 4 agents

for the problem eil51(51 cities). A different coloured line represents each one of the

agents. At each data point, the Y value is the result of one iteration of an agent’s

meta-heuristic and is, therefore, the local minimum attained by each agent, while

each X value is the objective function value achieved for the that agent during each

of the 3002 conversations conducted by the agent in this search. The lower objective

function values range from 428 -430 where 426 is the known optimum value for this

problem. The search therefore ranges between 430 and 660. It can be seen that agent

3 varies the most in it ranges in values from near 430 to 660, while other agents such

are much more compact. However it can mostly been seen that the agents search
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in a range of about 150 in this search. This is in line with the same test on other

problems where it can be seen that the pattern matching protocol diversifies the

search for each agent but does not allow the diversification to be too large so that

the search is effective and can find good results.

6.8 Conclusion

The tests results indeed show that cooperative search produces better results

than stand alone. There is also some evidence that increasing the number of agents

improves solution quality. Furthermore, the pattern matching protocol diversifies a

search allowing it so examine new promising areas of the search space. These results

are achieved with agents using very simple meta-heuristics and local search heuristics

all configured with the same parameter settings. The only thing that changes in each

test group is the number of agents. It has been established that cooperating agents

using different meta-heuristics produce good results for the TSP. To further confirm

generality of the framework the system was tested in the same configuration of the

PFSP the results are presented in chapter VII.
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Figure 6.3: Comparison of result from 4 to 12 agents
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CHAPTER VII

THE PERMUTATION FLOW-SHOP SCHEDULING PROBLEM

7.1 Introduction

The second of the case studies on the permutation flowshop scheduling problem

is described in this chapter. Section 7.2 introduces the problem. The experimental

settings are explained in section 7.3 and the results are analysed in section 7.4. Some

conclusions are offered in section 7.5.

7.2 Permutation Flow shop Problem

The notation for describing this problem was first stated in two important early

papers (Conway et al., 2003; Graham et al., 1979). The notation of Graham et al.

(1979) (see above) is used more commonly these days. It consists of three distinct

fields α/β/γ for describing the problem, as follows:

• the α field indicates the structure of the problem

• while the β field represents a set of explicit constraints

• and the γ field indicates the objective(s) to be optimized.

A complete description of possible values for the above mentioned fields was pro-

posed by T’kindt et al. (2006).

The permutation flow-shop scheduling problem is a well known combinatorial

optimisation problem which can be defined as follows. Given a set of n jobs, J =

{1, ..., n} to be processed on m machines, M = {1, ...,m}, where a job j ∈ J requires

a fixed non-negative processing time, denoted as pj,i on each machine i ∈ M , the

objective is to minimise the makespan, F |prmu|Cmax or Cmax (the completion time

of the last job on the last machine) (Pinedo, 2002).
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The completion time Cj,i of job j on machine i is calculated using the following

formulae:

C1,1 = p1,1 (7.1)

C1,i = C1,i−1 + p1,i, where i = 2, ...,m (7.2)

Cj,i = max(Cj,i−1, Cj−1,i) + pj,i,

where i = 2, ...,m, and j = 2, ..., n (7.3)

Cmax = Cn,m (7.4)

There are n! possible sequences and therefore the problem is known to be NP-

complete (Chen and Bulfin, 1993). Many exact methods, heuristic and meta-heuristic

approaches ranging from simulated annealing to genetic programming have been pro-

posed for solving the permutation flow shop scheduling problem (Nawaz et al., 1983a;

Ruiz and Maroto, 2005; Vázquez-Rodŕıguez and Ochoa, 2011). As far as is known

the only work cooperative search research conducted on this problem is Vallada and

Ruiz (2009). They proposed an island model where a genetic algorithms were used

as islands which communicated whole solutions through a common pool.

7.3 Experimental settings

In these experiments each instance was tested using well known benchmark prob-

lems. To facilitate testing the cooperation protocol some simple (meta-)heuristics

have been developed. The objectives of these experiments are the same as those in

6.4. It should be noted that the overall solution quality will be only as good as the

(meta-)heuristics used. Success will be measured in the difference between perfor-

mance between the same algorithms with or without cooperation.

The testing regime is exactly as that set out in section 6.4.1 “Framework ex-

perimental settings” of the previous chapter. This includes the parameter settings

subsection 6.4.1.1, meta-heuristic settings subsection 6.4.1.2 and measurement of re-

sults subsection 6.4.1.3.

The objective of these tests is the minimisation of the total makespan.
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The testing was conducted on the university network running a windows xp net-

work with Novell NetObjects running on top using 13 student work stations. Each

machine was a Dell 755 with an Intel dual core processor with 2 GB of RAM. The

framework is coded in JAVA with 1 GB of RAM available to each agent.

Taillard (1993) has produced a set of 120 benchmark problems for PFSP which

are known to be very hard to solve. Indeed, the optimum value has not been found

for 33 of these problems. The problems are in various sizes 20, 50, 100, 200 and 500

jobs and 5, 10, 20 machines. There are 10 problems inside every set and in total

there are 12 sets. These are 20x5, 20x10, 20x20, 50x5, 50x10, 50x20, 100x5, 100x10,

100x20, 200x10, 200x20, 500x20.

The tests were conducted using all of Taillard’s problem instances where each one

was executed 5 times. This was because each problem size has 10 different instances

giving a comparable test sample to the ofter case studies in this thesis.

The local search algorithm used by all the (meta-)heuristic agents was a simple hill

climber swapping two jobs. The jobs were chosen at random using a random number

generator modulo the number of jobs. Each time this was done a pool of solutions

was created which was half the length of the number of jobs. The best solution was

chosen from this pool.

As has been explained, each problem instance was tested 5 times where each

instance was tested with the system running 12, 8 and 4 agent scenarios. This was

also applied to each stand alone scenario of simulated annealing and tabu search as

described in section 6.4.1.

7.4 Test results

To compare these results with the best known upper bound or optimum, the 5 runs

for each scenario, for each problem instance were averaged. The average percentage

increase makespan over the upper bound was found according to the equation (6.2)

above using the average for each problem instance. Next the average percentage

increase for each problem type was calculated. This was done by taking the average
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of the average percentage increases found for all 10 instances of a problem size.

Table VII.1 shows this average percentage increase for each problem size for each

agent grouping. The “1 agent” values are given for when each agent ran SA ans TS

as its (meta-)heuristic.

Table VII.1: The average percentage increase above optimum/upper bound for each

problem type

12 Agents 8 Agents 4 Agents 1 Agent SA 1 Agent Tabu

20x5 0.12 0.16 0.30 20.06 10.26

20x10 0.81 1.00 1.07 22.44 12.82

20x20 0.90 0.92 1.13 17.03 9.13

50x5 0.09 0.12 0.16 13.92 5.37

50x10 1.38 1.44 1.54 22.80 10.96

50x20 3.32 3.39 3.47 24.92 13.01

100x5 0.14 0.18 0.18 10.84 2.94

100x10 0.67 0.76 0.77 18.10 6.57

100x20 2.53 2.64 2.68 23.04 11.67

200x10 0.48 0.61 0.66 23.04 4.38

200x20 2.24 2.30 2.32 21.64 9.58

500x20 1.56 1.56 1.61 13.52 4.92

Table VII.1 shows clearly that there is a big difference between cooperating and

non cooperating agents. It is also clear that as the number of agents increases, the

results get better.

It is worth noting that 50x20 and 100x20 problems are especially hard where the

optimum is not known. This can be seen especially in the results from 50x20 problem,

the cooperating agents are between 3 and 3.5 percent above the upper bound while

the stand alone agents range from just over 13 percent to near 25 percent above

the upper bound. But even with these more challenging problems the benefits of
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cooperation compared to no cooperation are clear.

However in the machine tests where there were only 5 machines, the system re-

peatedly found the optimum values. This was especially true of the 20x5 problem

instances.

It should be noted that it took slightly longer for tests where there were 12 agents

rather than 4 agents participating and this was not significantly longer. The smaller

problems 20X5 and 20x10 took about 2.5 minutes to complete but that these times

got progressively longer as the problem size increased. The 500X20 problems took

about 8.5 hours to complete.

The spread of these results can be analysed more clearly using ANOVA performed

with Tukey intervals (Montgomery, 2008). In figure 7.1 it can be seen that the cooper-

ating agents have a clear difference in their performance from the stand alone agents.

This can be seen as there is no overlap between the box-plots of the cooperating and

stand alone agents.

Figure 7.1: Cooperating agents versus stand alone

The second test objective mentioned in section 5.2 above was to see if more agents

cooperating produced better results than fewer agents cooperating. Table VII.1 shows

that while there is an overlap between the box plots of 12,8 and 4 agents cooperating,
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it is clear from the this table that 12 agents perform better than 8 and 8 agents are

better than 4. This can also be seen to some extent in Figure 7.2. There is a clear

pattern emerging showing that more cooperating agents are better than fewer.

Figure 7.2: Comparison between 12,8 and 4 agents

It can also be seen from figure 7.3, that the best results for the cooperating agents

are when the system tries to solve 5 machine problems to 20x5,50x5,100x5. But as

the number of machines increases such as 20x10, 20x20, the system performs less

well. This phenomenon also happens elsewhere in the literature. For example this

can been seen in the results of Vallada and Ruiz (2009).

This phenomenon could be due to the fact that as the number of machines in-

creases so does the possibility of longer times between the end of one job and the start

of another or lag time. This could be explained by the calculation of the makespan

(equation 7.4) taking the maximum between two jobs in different rows of the matrix

of job times. Therefore, as the number of machines increase, the number of rows

in the job times matrix increases and therefore the number of maximum functions

increases. This in turn would lead to the possibility of greater lag times between

the end of one job and the start of another. Consequentially, it would then make it

harder to solve these types of problem as more possibilities have to be explored to
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(a) 5 machines (b) 10 machines

(c) 20 machines

Figure 7.3: Comparing agent performance on 5,10,20 machine problems

find a good permutation with a minimum makespan.

7.4.1 Diversification and robustness of the search by exchanging patterns

The system has a mechanism for recording how much of the search space was

covered by the agents. This is helpful in understanding how much the search is

diversified by exchanging patterns. This was achieved by getting each (meta-)heuristic

agent to record the best value it achieved every time an agent’s (meta-)heuristic

was run. Each agent’s meta-heuristic was run 500 times as set in the configuration

file. However, the meta-heuristic agent has a mechanism to detect when a local

minimum has been reached. To this end, the value recorded was either the detected

local minimum or the best value calculated by the meta-heuristic after 500 iterations.

There are 3002 values for each agent as there are 3002 conversations conducted during

the course of the search.
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Figure 7.4 is a line graph of a 4 agent scenario working on the first of Taillard’s

10 20x5 PFSP problems. As this is a PFSP problem the values recorded on the Y-

axis are the minimum makespan for each permutation of jobs found by each agent.

The X-axis records the conversation number between 1 and 3002 conducted by the

meta-heuristic agents. The different coloured lines represent the values recorded for

each agent. In this way it is possible to compare the search path of each agent.

This mechanism is completely generic and works on any problem type and with any

conversation scenario.

Figure 7.4: A graph of all the local minima or best results achieved by each agent

What is clear from figure 7.4 is that while the agents do traverse different parts of

the search space at the start of the search, they quickly converge to a good solution

which is also a local minimum ( in this case 1297). Meta-heuristic agent 1 is the

only agent that reaches the optimum 1278, which it does twice in the course of the

search. Meta-heuristic agents 2 and 3 achieve good solutions early on, but then get

pulled back to the 1297 local minimum. Meta-heuristic agent 4 starts from the worst

solution of all and gets down only as far as 1297.

One inference that can be drawn from this is that while pattern matching enabled
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meta-heuristic agents 1,2,3 to get into a position to achieve the good solutions early

on in the search, Meta-heuristic agent 4, which started off worse than the others,

seems have converged to the local minimum 1297. And from there it seems to have

influenced the search of the other meta-heuristic agents by sharing patterns that lead

it to converge to 1297, holding back the other meta-heuristic agents from achieving

better solutions. However, the reinforcement mechanism ensured that the meta-

heuristic agents were never pulled to far away from the optimum.

The information collected in table VII.2 shows how many patterns the agents

identify as potentially good patterns for any new solution. It can be seen that, as

might be expected, as the number of agents increase the number of patterns increases,

but as with the STSP there is quite a lot of variation between problem instances.

Some runs generate more patterns than others. Furthermore, on different tests of the

same problem instances there can be big differences between the numbers of patterns

identified by the agents. This variability is to be expected as no search using this type

of distributed algorithm (see chapter IV) is deterministic. However as has already

been mentioned in section 6.7.1 the patterns always occur at the beginning of a search

or the same small number of patterns are used by an agent throughout the search.

In each case this lends weight to the conclusion that the pattern matching protocol

diversifies the search after each conversation just enough to cause the agents to search

promising areas of the search space.

Table VII.2: The average number of patterns for different groups of agents of 10

instances of 20x5 problems

Agents run1 run2 run3 run4 run5 run6 run7 run8 run9 run10 average

4 Agents 10 217 459 416 46 27 516 76 96 29 189.2

8 Agents 202 244 220 16 361 86 939 190 49 260 256.7

12 Agents 681 2445 346 80 708 499 764 819 456 1684 848.2
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7.5 Conclusion

At the beginning of this chapter (see section 6.4), a number of test objectives were

set. By referring back to these objectives, it can be seen that the system has performed

well. With respect to objective a) the system has been tested very successfully on

STSP and PFSP. Furthermore, as required by objective e), the system is in exactly

the same configuration as the system was for STSP, the only difference was the local

search heuristic used. Yet the the system produced good results for both types of

problem. Indeed the system has been particularly successful producing optimal and

near optimal results for many of the benchmarks in PFSP. Another objective (b) was

to show that agents cooperating is better than stand alone meta-heuristics. Again,

the system has outperformed the stand alone agents showing a clear solution quality

advantage. With respect to objective d), the pattern matching protocol behaved as

expected, allowing the agents to diversify just enough to cause the agents to search

promising areas of the search space. Finally it is clearer for PFSP than for STSP

that more agents working on a problem increases the solution quality produced by

the system as required by objective c).
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CHAPTER VIII

THE NURSE ROSTERING PROBLEM

8.1 Introduction

To test the flexibility of the system, It was decided to test the system should not

only be tested on a constrained problem but a new model as well. To this end the

system was adapted to work on problems in fairness in Nurse rostering problem. A

modified version of model of Bilgin et al. (2012) was implemented. The resulting

system was tested on a modified versions of the well known real world benchmark

problems developed by Bilgin et al. (2012). The new fairness model represented nurses

preferences as personal contractual constraints. A new fairness objective function was

different to the standard sum of nurse roster violations in order to focus on an even

distribution of violations across nurse rosters. The aim here is to show that each

nurse’s preferences as violations are treated fairly. In this way the framework and

system could be shown to be able to solve constrained combinatorial optimisation

problems as well as new models.

This work shows that by the use of of ontologies the framework and system are

generic and modular making it easy to implement a new model and adapt the system

with a new heuristic and objective function. Again it was shown that the agent-based

cooperation outperforms the more traditional stand alone approach. But the system

also produced fairer nurse rosters. Furthermore using the standard sum of violations,

the system achieved impressive results as well. The system is therefore generic across

different problems but can also be adapted for new models.

The nurse rostering problem and its background are discussed in sections 8.3 and

8.6. The model of Bilgin et al. (2012) and its adaptation using the framework is

introduced in sections 8.3 and 8.4. The experimental design is discussed in section

8.5.1. The results for the first bank of tests with the tradition sum of roster violations

model are discussed in Section 8.5. While section 8.6.1 introduces the experiments

and results for the new fairness model. Finally section 8.7 concludes the chapter with

108



a discussion on the contribution of this work and some directions for future research.

8.2 Background

The health care sector is under increasing pressure due to the ageing population

and increasing cost of ever improving treatments (Rais and Viana, 2011). Moreover,

many health care organisations suffer from a shortage of nursing staff. Nurses are

responsible for the majority of health care duties and experience a lot of stress on a

daily basis. Job dissatisfaction appears to play a key role in the high resignation rates

of nurses. Mueller and McCloskey (1990) identified ‘scheduling’ as the second most

important factor contributing to job satisfaction, after salary, vacation and other work

benefits. Improving the schedules of nurses is therefore a sensible way to increase their

satisfaction and consequently staff retention (Larrabee et al., 2007).

The task of building a personal schedule for each nurse in a hospital is known

as nurse rostering in the literature and is often classified as a timetabling problem.

The problem usually considers assigning nurses to a set of shifts in such a way that

required shifts are covered by nurses with the best possible skill match. Besides

this requirement, the resulting assignment should optimise constraints on the nurses’

individual rosters to maximise the quality of their work life balance. Burke et al.

(2004b) present an overview of constraints and objectives that are common to many

nurse rostering problems. This survey, in addition, classifies many mathematical as

well as heuristic approaches that have been applied to different variants of the nurse

rostering problem.

The work undertaken on fairness reports on a methodology for increasing the

nurses’ satisfaction with respect to their personal roster. Automatically generated

rosters are commonly evaluated by means of a weighted sum objective function, the

result of which is proportional to the number of soft constraint violations (Burke et al.,

2001b). However, such approaches do not necessarily compare well with the human

way of assessing the quality of a roster. Two rosters with the same objective function

value may differ considerably in terms of a pairwise comparison of individual roster’s
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quality. Beddoe and Petrovic (2006) apply a completely different methodology for

quality assessment, namely case-based reasoning. The approach requires a training

phase in which experts, i.e. nurses, are invited to identify poor elements and to

modify the roster such that the problems are sorted out. Objective function based

approaches and case-based reasoning are hard to compare in a quantitative manner

(Petrovic and Berghe, 2008).

Modelling mathematically the perceived quality of a roster by individual nurses

would definitely be much harder than the weighted sum approach. Such a model

is likely to be blurred by individual time-varying nonlinear dependencies between

constraint violations and by the rosters that have been obtained for the fellow nurses.

Therefore, some assumptions and simplifications are inevitable.

The aims of this chapter are to show how the framework can be easily adapted

to a constrained problems such as nurse rostering thorough the use of the ontology

described in chapter V. Furthermore this is easy to implement because of modular

design of the system as explained in section 8.4. Testing will show that the system

produces results as good as the state of the art.

Another aim of this chapter is to propose a set of new evaluation models for

nurse rostering, which capture the concept of fairness of work better than the exist-

ing models and hence optimise the rosters accordingly. Different fairness measures

are introduced and their attainability is investigated experimentally. Testing is un-

dertaken using data sets that were obtained from a hospital in Belgium and apply

stand alone and cooperative meta-heuristic approaches to generate fair nurse rosters.

Apart from a number of conference presentations, very little publications are avail-

able. Wang and Wang (2009) developed an agent-based approach to self rostering.

Haspeslagh et al. (2009a) addressed the problem of exchanging nurses between wards

and sorting out personnel shortages. Haspeslagh et al. (2009a) present a Pareto op-

timal negotiation approach for assigning the workload across different wards. As far

is known, there is scarce research work on fairness and cooperative search in nurse

rostering.
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8.3 Modelling of the nurse rostering problem

Most real-world nurse rostering problems can be represented as constraint opti-

misation problems using 5-tuples 〈N , D, S, K, C〉:

N : Set of nurses

D: Set of days in the current schedule period and in the related parts of the previous

and coming schedule period

S: Set of shift types

K: Set of skill types

C: Set of constraints.

xn,d,s,k denote the decision variables and ∀n ∈ N,∀d ∈ D, ∀s ∈ S,∀k ∈ K:

xn,d,s,k =

 1 if employee n is assigned to shift s and skill k at day d

0 otherwise

Where the 4-tuples n, d, s, k ∈ mathbbN is the assignment.

The nurse rostering problem can be defined as an integer program. Let N be a set

of nurses and T be a set of tasks representing the requirements of shift a on specific

day needing certain skills. To this end D,S,K,C ∈ T .

Also let P be a penalty function for violating soft constraints if nurse i is assigned

to task j defined as:

P (i, j) ∈ R ∀i ∈ N and j ∈ T (8.1)

The nurse rostering problem can be formulated as an integer program as follows.

The objective function is defined as:

min
∑
i∈N

∑
j∈T

P (i, j)xi,j (8.2)

Subject to the following constraints:∑
j∈T

xi,j ≥ 1 where i ∈ N and j ∈ T (8.3)
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The variable xij represents the assignment of nurse i to task j. The constraint

requires that every nurse is assigned to at least one task.

The assignment of values to the decision variables is strongly restricted by con-

straints. The literature presents various ways to dealing with the constraints by, for

example, considering some as hard and some as soft constraints. The former need

to be satisfied in order to produce a feasible solution, while the latter need to be

satisfied as much as possible in order to find high quality solutions. Most problems

are very complex and it is usually impossible to generate solutions satisfying all soft

constraints.

Common models distinguish between coverage constraints and time related con-

straints. The first category includes constraints limiting the difference between re-

quired nurses on a shift, skill, day and nurses actually assigned to this shift, skill,

day.

In contrast, time related constraints restrict the assignments within nurses’ timeta-

bles. The class of time related constraints includes on one hand contractual con-

straints covering all the permanent rules such as minimum/maximum working time

and on the other, minimum/maximum consecutive assignments to shifts, days, and

so on. Contractual constraints are typically grouped into full time nurses, weekend

workers and many different part time contracts (30%, 75%, 90%, or never on Wednes-

day afternoon). It should be clear that the possible contract definitions are endless.

On the other hand, personal requests for a day on/off or for another short leave also

belong to this class. Some particular time related constraints are noteworthy in a

fairness context. Balancing working hours or weekend work among full time nurses

are examples of fairness related constraints.

In the present model, the following are hard constraints:

• A solution is feasible when only a nurse can be assigned to one shift each day.

• No assignments are allowed for which a nurse is not qualified.

• Assignments which occur on two consecutive days but one after each other are
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not allowed.

• Assignments are only considered feasible if they are defined in the coverage

constraints

This last constraint is motivated by the fact that in practice there are assignments

which will never occur, such as a head nurse will never be assigned to a night shift.

No such coverage constraints will be defined, and by imposing this constraint as a

hard constraint, such assignments will never be made in a solution.

There are also a number of soft constraints which while a potential solution remain

be feasible, violation will result in a penalty.

(1) Coverage constraints are considered soft constraints. This allows for assigning

nurses to a particular shift, skill, day, even when the maximum has been reached. In

practice, this is sometimes necessary in order to meet the nurses’ required working

time.

(2) Another soft constraint is the minimum required rest time between two con-

secutive shifts, which is typically set to 11 hours.

(3) Multi-skilled nurses can be defined in the present model. Typically, this is

used to model primary and secondary skills by assigning weights to the different skill

types. Assignments in which a nurse uses a secondary skill are feasible, but will incur

a penalty for doing so.

(4) The aforementioned time related constraints can be further categorised into

three types of soft constraints: counters, series and successive series (Bilgin et al.,

2012).

(5) Counters are used to limit the occurrence of a specific subject in a particular

period. Examples of counter constraints are no night shifts in a weekend or maximum

36 hours worked each week.

(6) Series restrict the successive occurrence of a specific subject in the scheduling

period, e.g. minimum 3 and maximum 5 consecutive night shifts or no isolated idle

days.
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(7) Finally, successive series are used to restrict the occurrence of two consecutive

series. Successive series are used to model constraints such as no early shift after a

late shift or a series of night shifts have to be followed by at least 2 free days.

Many previously proposed approaches often define a weighted sum objective func-

tion WO to evaluate the quality of a roster. It is defined as follows:

WO = min
∑
i∈N

∑
j∈T

P (i, j)xi,j (8.4)

The agent-based system is tested using this objective function and the results are

compared with those of Bilgin et al. (2012).

Several meta-heuristics have been successfully used to solve the nurse rostering

problem (Edmund et al., 2004). However, to obtain the best performance from a

meta-heuristic a lot of experimentation is required to determine the best parameter

settings. Section 8.4 explains how the agent-based system has been developed to work

nurse rostering problems. The nurse rostering system is a module of the main agent

based system so that any agent executes its given meta-heuristic and generates new

potential solutions that are validated against the constraints of the problem.

8.4 Implementation of the Nurse Rostering Model in the framework

The nurse rostering model developed by Bilgin et al. (2012) was implemented in

Java and added to the platform. This was accomplished by making the Assignments

class of the model a subclass of the SolutionElements abstract class of the platform

(see figure 5.4). The Assignments class is where nurses of the correct skill type are

assigned to shift to satisfy the requirements of a nurse rostering problem. In this way

they form the basic elements of any potential roster which might be a solution to a

given nurse rostering problem.

The SolutionElements class as has been explained in 5.4.1.1 is the basic element

of any potential solution in a Combinatorial Optimization problem. These therefore,

are the interfaces between any concrete problem and the generic agent-based system.
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As such they are the obvious superclass of the Assignments objects as they are the

building blocks of any potential valid roster. In this way the system was able to inter-

face with the nurse rostering module quite simply, in that the Assignments objects,

as they were generated by the module were given unique ID’s and stored in memory.

The agent-based system used its meta-heuristics to optimise potential solutions of

ID’s as explained in 5.4.2. These were then translated back into assignments object

and passed to the nurse rostering module for verification against the constraints.

The model also uses the Variable Neighbourhood Search (VNS) meta-heuristic and

the local search heuristics developed by Bilgin et al. (2012). These were implemented

in Java and added to the platform. This is described in detail in section 5.3.

8.5 Experiments

The NR experiments have been conducted as explained in section 6.4. The final

two additional objectives are to test the framework on a highly constrained problem

(f) in section 6.4) and to use a new objective function with the aim of producing

fairer nurse rosters (g) in section 6.4).

8.5.1 Experimental settings

Experiments have been conducted to evaluate the performance of the agent-based

cooperative meta-heuristic approach compared with the stand alone approaches.

The experiments have been carried out using four different scenarios. These sce-

narios are based on existing wards in a Belgian hospital: emergency, geriatrics, psy-

chiatry and reception (Bilgin, 2008). Table VIII.1 gives an overview of the instance

characteristics. For each ward, two cases are considered: one where all the nurses have

the same contract, and one where each nurse has an individual contract with both

common and personalised constraints. The amount of constraints defined in each

contract greatly differs between the instances. For example, nurses in the geriatrics

ward are only subject to two constraints (limiting working hours and the number of

consecutive days worked). In the psychiatry ward on the other hand, a large number
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Instance Nr of nurses Nr of shifts Nr of skills Planning period

Emergency 27 27 4 28 days

Geriatrics 21 9 2 28 days

Psychiatry 19 14 3 31 days

Reception 19 19 4 42 days

Table VIII.1: Instance characteristics

of constraints are specified in each contract, restricting working time as well as specific

patterns. In the cases where for each nurse an individual contract is defined, again

the number of specified constraints differs greatly. Some of these constraints will be

personalised, but there still exist a number of common constraints which apply to all

nurses in the ward. For both cases, nurses follow one contract during the scheduling

period, i.e. they do not change contract types during this period.

The meta-heuristic agents implemented in the framework to solve fairness in nurse

rostering are described in section 5.3.

The experimental setting are exactly the same for the basic set up of the system

and test testing scenarios used as described in section 6.4.1.

The experiments were first conducted using the standard WO objective function.

The results of these experiments are given in section 8.5.2. In section 8.6.2 exper-

iments were conducted using a new objective function modelling fairness. These

results are also compared with the WO results.

As described in section 6.4.1 The tests are designed to compare different groups

of agents with their stand alone counterparts.

For each scenario, the experiments were conducted over 10 runs for each problem

instance. These experiments were run using the WO objective function. The agents

conducted only 200 conversations to complete each search taking no longer than 6

minutes to produce a new roster for each problem instance. Each agent ran on a HP
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Compaq 6000 pro with Intel Core 2 duo E8400 processor with 4 gigabytes of RAM

in a 2x2 gigbyte configuration. The agents were configured to use only 1 gigabyte of

memory.

The launcher agent reads in the problems and executes a greedy heuristic seed

algorithm. The launcher then sends the seed and the problem definition to each of

the meta-heuristic agents to solve. When the search is complete the launcher takes

the best result from the meta-heuristic agents and outputs an XML file with the final

roster and its objective value.

The meta-heuristic agents are configured in exactly the same way as the other

case studies (see section 6.4.1.2).The only difference was that the a VNS agent was

added.

In the case of stand alone mode, a meta-heuristic agent executes a given meta-

heuristic for 200 × 12 × 500 = 1200000 iterations, where 12 is the number of agents

involved in the 12 agents network, 200 is the number of conversations and 500 is the

number of times the agents meta-heuristic is executed per conversation. This is used

to produce the greatest number of iterations used by any of the agent networks.

The number of conversations 200 is chosen because experimentation shows that

the rate of solution improvement is reduced after that number. The 200 conversations

lasts no longer than about 6 minutes and this is deemed to be a good stopping point.

8.5.2 Experimental results for the WO objective function

Table VIII.2 shows the overall average results respectively over 10 runs for each

of the different scenarios. In each case the agents tackle the problems in groups of

12,8 and 4 and these are compared with the standalone case for each meta-heuristic

used. Furthermore the results of Bilgin et al. (2012) are given as a comparison and

show that the agent-based approach produces better results. Finally where known,

the values for each roster of the human planner are given, these are also taken from

Bilgin et al. (2012). While it is clear the human planner gets the best results, the

agent-based approach gets best of all the algorithmic approaches.

117



Instance 12 Agents 8 Agents 4 Agents Tabu SA VNS

Emergency-i 104,796.00 103,900.50 102,212.50 191,330.50 193,745.00 191,301.50

Emergency-d 103,534.00 105,705.00 112,119.50 148,844.00 161,888.50 150,685.50

Geriatrics-i 106,484.50 107,112.00 107,469.00 172,607.50 174,051.50 170,278.00

Geriatrics-d 104,640.00 103,702.00 105,234.50 175,540.50 174,370.50 164,053.50

Psychiatry-i 103,705.00 103,455.00 105,342.00 190,893.50 209,846.50 186,482.00

Psychiatry-d 105,330.00 107,597.00 108,878.50 160,882.50 154,293.50 146,529.00

Reception-i 105,015.00 103,532.50 105,071.50 172,759.00 181,258.50 176,850.00

Reception-d 104,727.50 106,520.00 112,210.00 174,476.00 170,824.50 170,170.00

Table VIII.2: Results for WO function for 12,8,4 agents and stand alone meta-

heuristics running 3 meta-heuristics

To validate the statistical significance of the observed differences, an analysis of

variance (ANOVA) has been conducted (Montgomery, 2008) with Tukey intervals. Fig

8.1 shows the ANOVA box plots. It shows the average results for agents calculating

each problem instance over 20 runs. The different groups of agents solve the same

problem and are compared with the stand alone agent running each meta-heuristic in

turn to represent the case where a meta-heuristic is used with no cooperation. The

results clearly show that there is clear gap between the stand alone approach and

cooperative search. Also the distribution of results is much tighter for cooperative

search than the stand alone approach.

8.6 Fairness in nurse rostering

A recent survey on operational research in health care points at the importance of

optimising resource planning and scheduling (Rais and Viana, 2011). It is noteworthy

that among the extensive number of papers discussed in that review, only a few pay

attention to fairness of work distribution. Felici and Gentile (2004), for example,

assume that the extent to which the contractual constraints are met is correlated with

the nurse’s satisfaction. However, the objective function sums ‘satisfaction’ over all

the roster elements, thereby making no distinction between individual nurses’ overall

satisfaction. Some work schedules, especially those involving shift work, induce high
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Figure 8.1: Comparison of Agents and stand alone calculating WO function averaged

overall instances.

levels of fatigue. Yuan et al. (2011) present recommendations on shift sequences, days

off and overtime so as to reduce the risk of fatigue as much as possible.

One of the most informative overview papers on nurse rostering (Warner, 1976)

puts forward fairness as a quality measure. Warner indicates that an even distribution

of work has a considerable advantage over cyclic schedules, despite their limited flex-

ibility. Burke et al. (2004b) noticed also that the majority of nurse rostering papers

do not explicitly address fairness. Approaches paying attention to this concern tend

to model fairness as a balance constraint on working time accounts, while solving

the problem with an optimisation algorithm (Burke et al., 2006; Meyer auf’m Hofe,

2001b). It is noteworthy that many recent nurse rostering papers take some work

balancing measures into consideration (Causmaecker and Berghe, 2011).

Kellogg and Walczak (2007) investigated why only a small number of automated

nurse rostering approaches are being used as decision support systems in hospitals.

They pointed out, among some other causes, that academic models fail to meet the

complex needs that health care organisations face. Interactive rostering, also referred

to as self scheduling, is a mostly manual mode of operation that has gained attention
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particularly because it potentially increases nurses’ satisfaction (Robb et al., 2003).

The nurses put together a roster by expressing their preferences and negotiating until

the hospital’s requirements are met. One major drawback of manual self scheduling is

that the quality of the result depends on the nurses’ ability to cooperate and negotiate,

and therefore Rönnberg and Larsson (2010) advocate an automated approach.

They enforce some degree of fairness by means of an auxiliary variable representing

the requests by the least favoured nurse, which was included in the objective to be

maximised.

Grano et al. (2009) combine aspects from self rostering and from common optimi-

sation methods into a two-stage approach. First, an auction is set up in which nurses

can spend a number of points to bid for preferred shifts or days off. After the best

bid assignments have been made, the remaining part of the problem is solved with a

mathematical solver so as to meet the ward’s staffing demands. This hybrid approach

was tested on data sets from a real hospital ward but without active involvement of

the nurses. The bids were derived from the nurses’ preferences instead. Grano et al.

(2009) indicated issues that require further research. Knowledge on popular shifts,

for example, may influence a nurse to set a bid. In addition, fairness requires that

points of bids not granted should be transferable to the next scheduling period. The

next section 8.6.1) attempts to sort out such unfairness issues.

8.6.1 New model considering fairness

Despite its simplicity, WO includes some weaknesses when considering fairness.

The function does not allow for distinguishing solutions with the same objective but

composed of unbalanced violations with respect to the individuals. Therefore, it is

worth considering a different objective function FO equation 8.5, which is equal to

the maximum weighted sum of violations in an individual’s roster. Again, FO should

be minimised. Good values for FO are expected to correspond to rosters that are

more fair than those obtained when optimising WO.
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FO = min(max∀i∈N(
∑
∀j∈T

P (i, j)xi,j)) (8.5)

8.6.2 Experimental results on fairness using FO objective function

For these experiments the agents are set up exactly as described in section 8.5.1.

However these experiments were run using the FO objective function.

Instance 12 Agents 8 Agents 4 Agents Tabu SA VNS

Emergency-i 77,864.50 77,627.50 79,507.50 138,761.50 138,761.50 122,709.50

Emergency-d 76,480.00 77,449.00 79,349.50 108,328.00 108,328.00 100,426.00

Geriatrics-i 78,125.00 78,012.00 80,065.50 115,394.00 115,394.00 114,948.00

Geriatrics-d 77,451.50 78,382.50 78,993.00 109,664.00 109,664.00 108,078.50

Psychiatry-i 77,561.00 77,972.50 79,863.50 130,234.50 130,234.50 121,514.00

Psychiatry-d 77,747.00 77,652.00 78,960.50 105,739.50 105,739.50 95,764.50

Reception-i 77,799.50 78,048.00 78,599.00 122,855.50 122,855.50 117,683.00

Reception-d 77,212.00 77,729.50 79,956.50 105,741.00 105,741.00 103,058.50

Table VIII.3: Results of averages for each problem for FO function for 12,8,4 agents

and stand alone meta-heuristics

Table VIII.3 show the average over 10 runs of 12,8 and 4 agents cooperating for

each of the fairness nurse rostering instances. The table also shows the results where a

stand alone agent executes in turn each of the meta-heuristics used by the platform on

the fairness nurse rostering instances. It can be clearly seen that agents cooperating

produce fewer violations that stand alone agents. To validate the statistical signif-

icance of the observed differences, an analysis of variance (ANOVA) (Montgomery

2000) was performed with Tukey intervals is performed. Fig 8.2, show the ANOVA

box plots. The figure shows the results for the identical contracts problems.

The box plots are grouped in two’s from left to right 12 agents calculating WO
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and 12 agents calculating FO through to the stand alone agents each running one of

the three meta-heuristics. The results clearly show that there is clear gap between

the stand alone approach and cooperative search. Also the distribution of results is

much tighter for the FO search than the WO. This indicates that because of the

even distribution of violations over the nurse rosters that these are fairer than the the

WO rosters.

(a) Emergency (b) Geriatrics

(c) Psychiatry (d) Reception

Figure 8.2: Distribution of fairness in case of identical contracts

Fig 8.3, shows the results for the different contracts case. Again they show a sim-

ilar trend that FO is a more effective objective function than WO in generating fairer

rosters. Furthermore the cooperating search outperforms the stand alone approach.

These results show that cooperating agents produce is more effective results than

their stand alone equivalents. The results clearly show that cooperative search that

combines the strength of a variety of meta-heuristics outperforms the performance of

a single meta-heuristic. In each case there is a clear gap between cooperative search
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(a) Emergency (b) Geriatrics

(c) Psychiatry (d) Reception

Figure 8.3: Distribution of fairness in case of different contracts

and stand alone results. It is also noticeable that as the number of agents increases

the overall roster quality is improved. This tends to show that adding more agents

to solve a problem increases the solution quality which as was explained earlier is the

reason for testing with different sizes of agent network. However more work will have

to be done to substantiate this conclusion.

This work also shows that the framework can easily be extended to new models

such as fairness in nurse rorstering. Here the results show that the new fairness model

using FO produced results that had more even distributions of violations across

the nurse rosters then the WO model. Furthermore, this result achieved amongst

all the test instances. Furthermore cooperating agents executing this model also

outperformed their standalone equivalents.
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8.7 Conclusion

In this chapter the agent-based system was augmented with a model developed

from the work of Bilgin et al. (2012) for solving problems in nurse rostering (Ouelhadj

et al., 2012). This work was undertaken to show that the framework is modular

and that the ontology was robust enough to be used to solve contained problems in

combinatorial optimisation. The system was also used to investigate a set of new

fairness measures as new objective functions of the nurse rostering problem.

Experiments were conducted using cooperative meta-heuristic search with the

standard WO function achieving better results than the stand alone alternative.

Experiments were also conducted to explicitly model fairness into the objective

function using FO. The resulting rosters proved to be fairer without deteriorating

the quality with respect to other constraints. Furthermore, the results showed that

cooperative search has generated the fairest rosters compared to the standalone ap-

proach. This conclusion should be adopted in future nurse rostering work because

the modelling effort is limited and the complexity of the problem is not affected.
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Figure 8.4: Comparison of Agents and stand alone calculating overall FO function
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CHAPTER IX

CONCLUSIONS

It has been the aim of this thesis to show that there are two gaps in the operational

research literature where: a) there has been little research into cooperating algorithms

as Turing machines (IV), b) no research has been conducted on direct, autonomous

cooperating agents instantiating different meta-heuristics (chapter II). These are

addressed by the development of a generic, flexible, scalable and modular agent-based

framework which can solve different types of combinatorial optimisation problems

with little problem specific configuration. Also a new formal theory of cooperating

Turing machines has been proposed to show they can execute a new type of algorithm

that standard Turing machines cannot embody.

Chapter IV discusses formal representations of algorithms and proposes a system

of Cooperating Non-deterministic Turing Machines (CNTM) with a choice transition

relation. It also discussed more physical representations of agent-based system that

exhibit the property of unbounded non-determinism. To expand on these represen-

tations, it has been necessary to study the mathematical and philosophical founda-

tions of computation looking at claims that agent-based systems break the so called

“Church-Turing Barrier” (Goldin and Wegner, 2005). It is also proposed that this

type of argument from the physical to the logical is mistaken in that the causal inter-

actions of a physical phenomenon cannot be explained at the logical level. However, it

is argued that cooperation can be explained logically with the help of a CNTM. This

does not trouble the Church-Turing thesis as it will always be possible to “extend”

the thesis forever by squeezing refinements, as indeed Turing did himself (Turing,

1939), but without ever affecting the results of recursive function theory.

Chapter V describes the agent-based framework developed to address problem b)

above. The stated aims of this thesis are to find a way to enable meta-heuristics

to work together to play to each others strengths in order to produce an improving

search. In so doing another aim is to build a generic modular framework and platform
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that uses cooperation to solve many different problems in combinatorial optimisation.

To achieve this an ontology for combinatorial optimisation was proposed and devel-

oped as well as a distributed pattern matching protocol. The ontology allows the

system’s heuristics and meta-heuristics to maintain a “domain barrier” (Ouelhadj

and Petrovic, 2010) between the generic part of the system and the concrete problem

specific details needed to solve a specific problem. This barrier is maintained so that

the interface between the generic and the concrete maintained at the level of decision

variables rather than at the level of heuristics as is common with hyper-heuristics.

To build the cooperation protocol it was necessary to use a novel class of parallel

asynchronous algorithm where any participant can complete a given search on its own

but if they cooperate with other agents then improving solutions can be found. This

prosed that this class of algorithms is only possible system that exhibit this property

such as agent-based systems.

The system has been tested extensively on the STSP in chapter VI, PFSP in

chapter VII, and NRP in chapterVIII. It is established that cooperating agents in-

stantiating relatively simple meta-heuristics produce better results than their stand

alone counterparts. Furthermore the meta-heuristics themselves need little reconfig-

uring from one problem type to another. Also cooperating meta-heuristics executing a

simple pattern matching protocol can use their relative strengths to produce improv-

ing solutions. It was also shown that the framework is scalable in that more agents

cooperating produce better results. The system is shown to be generic, flexible and

modular by being tested on a number of combinatorial optimisation problems where

one was constrained.

To summarise the contributions of this thesis are:

• a new formal theory of cooperating Turing machines

• a generic flexible scalable agent-based framework for combinatorial optimisation

• a flexible, generic, pattern matching cooperation protocol using ontologies
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• different cooperating meta-heuristics can by careful handling be made to work

on different problems without specialised configuring

• new ontologies have been proposed

• better than state of the art results for nurse rostering for the Belgian hospital

benchmarks

• impressive results for a new fairness measure.

9.1 Future work

This is an interesting and little researched topic that warrants further investiga-

tion. The work in this thesis is a first pass at building a generic agent-based platform

for combinatorial optimisation. There are many more things that need to be un-

derstood, such as refining the current pattern matching protocol and finding other

cooperating protocols. Here is a list of future work for the platform.

• extend the ontology and test on different problems such as vehicle routing prob-

lems or more contained problems

• establish if adding more meta-heuristics improves results

• find out if there is a pattern or trend to adding more agents to achieve better

results

• improve the pattern matching protocol to share more patterns

• continue the work on fairness on agent-based systems by representing a nurse

or group of nurses per agent

• continue work on finding new fairness models using objective functions and

other model of nurses such as preference profiles
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Finally, this framework will be published as an open source project so that other

(meta-)heuristics and cooperation protocols can be added and tested by other re-

searchers. The project is called MACS (Multi-agent Cooperative Search) and will

published at the following link http://www.port.ac.uk/maths.
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T. Crainic, N. Hail, and Québec) Centre for Research on Transportation (Montréal.
Parallel meta-heuristics applications. Montréal: Centre for Research on Trans-
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Elina Rönnberg and Torbjörn Larsson. Automating the self-scheduling process of
nurses in swedish healthcare: a pilot study. Health Care Management Science, 13:
35–53, 2010.

143



R. Ruiz and T. Stutzle. A simple and effective iterated greedy algorithm for the per-
mutation flowshop scheduling problem. European Journal of Operational Research,
177(3):2033–2049, 2007.

Rubén Ruiz and Concepción Maroto. A comprehensive review and evaluation of
permutation flowshop heuristics. European Journal of Operational Research, 165
(2):479–494, 2005.

B. Russell and A. N. Whitehead. Principia mathematica. Cambridge University Press
Cambridge, UK, 1968.

J. R. Searle. Speech acts: An essay in the philosophy of language. Cambridge univer-
sity press, 1970. ISBN 052109626X.

J. R. Searle. Expression and meaning: Studies in the theory of speech acts. Cambridge
Univ Pr, 1985.

O. Shagrir. Godel on turing on computability. Church’s Thesis after 70 years, page
393, 2006.

U. Shardanand and P. Maes. Social information filtering: algorithms for automating
“word of mouth”. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 210–217, 1995.

S. P. Siferd and W. C. Benton. Workforce staffing and scheduling: Hospital nursing
specific models. European Journal of Operational Research, 60:233–246, 1992.

R. Silvestro and C. Silvestro. An evaluation of nurse rostering practices in the national
health service. Journal of Advanced Nursing, 32(3):525–525, 2000.

R. G. Smith. The contract net protocol: High-level communication and control in a
distributed problem solver. Computers, IEEE Transactions on, 100(12):1104–1113,
1980.

F. C. N. I. P. Specification. At: http://www. fipa. org/specs/fipa00029. SC00029H.
pdf.

F. C. N. I. P. Specification. Link: http://www. fipa. org/specs/fipa00029. SC00029H.
html, 2003.

M. Stannett. Computation and hypercomputation. Minds and Machines, 13(1):115–
153, 2003.

K. Steiglitz and P. Weiner. Some improved algorithms for computer solution of the
traveling salesman problem. 1968.
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APPENDIX
ABBREVIATIONS

TSP Travelling Salesman Problem
STSP Symmetrical Travelling Salesman Problem
ATSP Asymmetrical Travelling Salesman Problem
PFSP Permutation Flow-shop Scheduling
NR Nurse Rostering
NRP Nurse Rostering Problem
TS Tabu Search
SA Simulated Annealing
VNS Variable Neighbourhood Search
TM Turing Machine
DTM Deterministic Turing Machine
NTM Non-Deterministic Turing Machine
CNTM Cooperating Non-Deterministic Turing Machine
CA Cooperating Algorithm
CMAX Maximum Makespan
NEH Nawaz, M. and Enscore Jr, E. E. and Ham, I. Designers of an Algorithm known
as NEH (Nawaz et al., 1983b)
AMS Agent Management System
DF Directory Facilitator
MAOS An agents-based system for solving the TSP developed by Xie et al 2009. (Xie
and Liu, 2009)
GB Gigabyte
RAM Random Access Memory
WO Weighted Sum Objective function
FO Fair Objective Function
IO Individual Weighted Sum Objective function
WIO Individual Weighted Sum Objective function per agent
FIPA Foundation for Intelligent Physical Agents
JADE JAVA Agent Development Framework
KQML Knowledge Query Manipulation Language
KIF Knowledge Interchange Format
DARPA Defence Advanced Research Projects Agency
FIPA-CL FIPA Agent Communication Language
DAI Distributed Artificial Intelligence
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