
Excommunication: Transforming π-Calculus
Specifications to Remove Internal

Communication

G.W. Hamilton∗, B. Aziz†

∗School of Computing, Dublin City University, Dublin, Ireland
†School of Computing, University of Portsmouth, Portsmouth, United Kingdom

Abstract. In this paper, we present a new automatic transformation
algorithm called excommunication that transforms π-calculus processes
to remove parallelism, and hence internal communication. We prove that
the transformation is correct and that it always terminates for any spec-
ification in which the named processes are in a particular syntactic form
we call serial form. We argue that this transformation facilitates the
proving of properties of mobile processes, and demonstrate this by show-
ing how it can be used to simplify a leakage analysis.

1 Introduction

Unfold/fold program transformation techniques were first defined for functional
languages by Burstall and Darlington [4] and have since been studied extensively
for both functional and logic programs [17, 18, 20, 16, 8, 14, 10]. However, these
techniques have rarely been applied to concurrent languages (some notable ex-
ceptions are [19, 15, 5, 6] and the partial evaluation approaches in [11, 7, 3]). This
is partly due to the fact that the non-determinism and synchronisation mech-
anisms used in concurrent languages substantially complicate their semantics,
and thus their corresponding transformation. However, such transformation can
be very useful for concurrent languages, since the resulting programs will be
easier to analyse and prove properties about as we do not have to deal with the
complications of parallel composition and internal communication.

In this paper, we present an automatic transformation algorithm called ex-
communication that transforms π-calculus [12, 13] specifications to remove par-
allelism, and hence internal communication.

Example 1. As a simple example of applying the excommunication algorithm,
consider the following π-calculus specification:

(νm)(Bbl,mc|Bbm, rc)
where

B
4
= (i, o).i(x).ox.Bbi, oc

This is the definition of two single cell buffers that are chained together. One cell
receives its input at l, and emits this at m. The other cell receives its input at m,

and emits this at r. This specification is transformed by the excommunication
algorithm to the following:

Cbl, rc
where

C
4
= (l, r).l(x).Dbl, r, xc

D
4
= (l, r, x).rx.Cbl, rc+ [l = r]Dbl, r, xc+ l(y).rx.Dbl, r, yc

The named process C corresponds to a state in which both single cell buffers
are empty, and the named process D corresponds to a state in which one of the
buffers is full. All parallelism, and hence all internal communication, has been
removed by the transformation. The resulting specification is equivalent to the
original one, which means that it will have the same observable behaviour within
all contexts. This is why the definition of the named process D contains a match
between l and r; if the process appears in a context in which the same name
is substituted for l and r, then the contents of the second buffer can be passed
directly to the first buffer.

The excommunication algorithm for the π-calculus that we present here is
inspired by and similar in form to the deforestation algorithm for the λ-calculus
[20, 8], except that the goal here is to remove parallelism and hence internal
communication rather than the intermediate structures that are removed by
deforestation. We prove that the transformation is correct and that it always
terminates for any specification in which the named processes are in a particular
syntactic form we call serial form. We argue that this transformation facilitates
the proving of properties of mobile processes as we do not have to deal with the
complications of parallel composition and internal communication, and demon-
strate this by showing how it can be used to simplify a leakage analysis.

The remainder of this paper is structured as follows: In Section 2, we define
the syntax and semantics of the π-calculus. In Section 3, we define serial form
and the excommunication algorithm, and prove the excommunication theorem
which states that excommunication is correct and always terminates for any
specification in which the named processes are in serial form. In Section 4, we
show how excommunication facilitates the static analysis of π-calculus specifi-
cations by defining a leakage analysis on the simplified processes resulting from
transformation. Section 5 concludes and considers possible further work.

2 The π-Calculus

In this section, we describe the syntax and semantics of the π-calculus.

Definition 1 (Syntax of the π-Calculus). The syntax of the π-calculus is
shown in Fig. 1. 2

A specification consists of a process and a number of named process defini-
tions. A process can be null, a prefix action (input, output or silent), match,
restriction, non-deterministic choice, parallel composition or named process ap-
plication. A match [x = y]P only proceeds as process P if the names substituted

S ::= P where D1 . . . Dn Specification

D ::= p
4
= (x1 . . . xn).P Named Process Definition

P,Q ::= 0 Null Process
| x(y).P Input
| xy.P Output
| τ.P Silent Action
| [x = y]P Match
| (νx)P Restriction
| P +Q Non-Deterministic Choice
| P | Q Parallel Composition
| pbx1 . . . xnc Named Process Application

Fig. 1. Syntax of the π-Calculus

for x and y are the same; otherwise the process blocks. A named process defini-
tion has a number of parameters x1 . . . xn and a process body defined over these
parameters. Named process parameters, input variables and restricted variables
are bound within a process. A name is free in a process if it is not bound. We de-
note the set of names which are free in process P by fn(P). We write P ≡ Q if P
and Q differ only in the names of bound variables and are therefore α-equivalent.

Definition 2 (Renaming). We use the notation σ = {x1 7→ x′1, . . . , xn 7→ x′n}
to denote a renaming. If P is a process, then Pσ = P{x1 7→ x′1, . . . , xn 7→
x′n} is the result of simultaneously replacing the free names x1 . . . xn with the
corresponding names x′1 . . . x

′
n respectively, in the process P while ensuring that

bound names are renamed appropriately to avoid name capture. 2

We define (possibly non-terminating) reduction rules for the π-calculus that
reduce processes to the following normal form that contains no parallel compo-
sition or named processes.

Definition 3 (Normal Form). Normal form is defined as shown in Fig. 2.

P,Q ::= 0
| x(y).P
| xy.P
| τ.P
| [x = y]P
| (νx)P
| P +Q

Fig. 2. Normal Form

Definition 4 (Reduction Rules). The reduction rules for the π-calculus are
given in Fig. 3.

(1) R[[P where D1 . . . Dn]] = RP [[P]][[0]] {} {D1 . . . Dn}

(2) RP [[[x = y]P]][[Q]] θ ∆ = RP [[Q]][[[x = y]P]] θ ∆

=

RP [[P]][[Q]] θ ∆, if x = y
0, if x ∈ θ ∨ y ∈ θ
[x = y](RP [[P]][[Q]] θ ∆), otherwise

(3) RP [[(νx)P]][[Q]] θ ∆ = RP [[Q]][[(νx)P]] θ ∆
= RP [[P [x′/x]]][[Q]] (θ ∪ {x′}) ∆ (x′ /∈ fn(Q))

(4) RP [[P1 + P2]][[Q]] θ ∆ = RP [[Q]][[P1 + P2]] θ ∆
= (RP [[P1]][[Q]] θ ∆) + (RP [[P2]][[Q]] θ ∆)

(5) RP [[P1|P2]][[Q]] θ ∆ = RP [[Q]][[P1|P2]] θ ∆
= RP [[RP [[P1]][[P2]] {} ∆]][[Q]] θ ∆]]

(6) RP [[pbx1 . . . xnc]][[Q]] θ ∆ = RP [[Q]][[pbx1 . . . xnc]] θ ∆
= RP [[unfold(pbx1 . . . xnc,∆)]]][[Q]] θ ∆

(7) RP [[P]][[Q]] θ ∆ = (RL[[P]][[Q]] θ ∆) + (RL[[Q]][[P]] θ ∆)

(8) RL[[xy.Q]][[x′(z).P]] θ ∆

=

0, if x ∈ θ
(νy)((RP [[[x = x′]P]][[Q[y/z]] θ ∆) + xy.(RP [[P]][[Q]] θ ∆)), if y ∈ θ
(RP [[[x = x′]P]][[Q[y/z]]] θ ∆) + xy.(RP [[P]][[Q]] θ ∆), otherwise

(9) RL[[xy.P]][[Q]] θ ∆

=

0, if x ∈ θ
(νy)xy.(RP [[P]][[Q]] θ ∆), if y ∈ θ
xy.(RP [[P]][[Q]] θ ∆), otherwise

(10) RL[[x(y).P]][[Q]] θ ∆

=

{
0, if x ∈ θ
x(y′).(RP [[P [y′/y]]][[Q]] θ ∆), otherwise (y′ /∈ fn(x(y).P |Q))

(11) RL[[τ.P]][[Q]] θ ∆ = τ.(RP [[P]][[Q]] θ ∆)

(12) RL[[0]][[Q]] θ ∆ = 0

Fig. 3. Reduction Rules for π-Calculus

These rules closely mirror the denotational semantics for the π-calculus given in
[1]. Rule (1) of the form R[[S]] defines the reduction of the specification S.

Rules (2)-(7) of the form RP [[P]][[Q]] θ ∆ define the reduction rules for the
parallel composition of the processes P and Q. The parameter θ contains the set
of names that are restricted to one of the two processes, and can therefore not be
used as a communication channel between them unless there is a scope extrusion.
The parameter ∆ contains the set of named process definitions. The reduction
rules are followed in a top-down order, so rules (2)-(6) are firstly followed to
reduce matching, restriction, choice, parallel composition and named process
application.

In rule (2), if matching can be performed then it is removed. If either of the
names being matched is restricted then the matching fails, otherwise the match
remains. In rule (3), a restriction is removed and the restricted name is added
to θ; this is renamed so as not to clash with the free names of the other process.
In rule (4), a choice is distributed across the parallel composition. In rule (5), a
parallel composition in one process is reduced before further reducing the sur-
rounding composition. In rule (6), a named process application is unfolded. The
function unfold replaces a named process application with the process body, with
the formal names of the body replaced by the actual names in the application.
This is defined more formally as follows:

unfold(pbx1 . . . xnc, ∆) = P [x1/x
′
1, . . . , xn/x

′
n] (where (x′1 . . . x

′
n).P ∈ ∆)

When none of the rules (2)-(6) apply, both processes will be either 0 or
prefixed by an action. Rule (7) is then applied to give a choice of two possible left-
prioritised parallel compositions for each possible ordering of the two processes.
In a left-prioritised parallel composition, the left process must first perform an
action before the residue is composed with the right process. Rules (8)-(12) of the
form RL[[P]][[Q]] θ ∆ define the left-prioritised parallel composition of processes
P and Q, where the next action must be performed by process P .

In rule (8), if the left process is prefixed by an output action and the right by
an input action, then communication may or may not take place. If the output
channel is restricted to the left process, then the communication cannot take
place so the result is 0. If communication does take place, then the names of the
channels in the two actions must be the same so a matching operation is created
and the residues of the two processes are composed. Otherwise, the output action
is retained and the residue composed with the right process. If the output name
is restricted to the left process its scope is extruded, so a restriction is added.

In rule (9), if the left process is prefixed by an output action but the right
process is not prefixed by an input action, then if the output channel is restricted
to the left process, communication cannot take place so the result is 0. Otherwise,
the output is retained and the residue composed with the right process. If the
output name is restricted to the left process, then this is a bounded output, so
a restriction is added.

In rule (10), if the left process is prefixed by an input action, then if the
input channel is restricted to the left process, communication cannot take place
so the result is 0. Otherwise, the input is retained and the residue composed
with the right process where the input name is renamed so as not to clash with
the free names of the right process. In rule (11), if the left process is prefixed

by a silent action, then the action is retained and the residue composed with
the right process. In rule (12), if the left process is null, then no action can be
performed so the result is also null.

3 The Excommunication Algorithm

In this section, we present the excommunication algorithm. This is a set of trans-
formation rules (similar in form to the deforestation algorithm for the λ-calculus
[20, 8]) that convert a given process into an equivalent process from which par-
allel composition, and hence internal communication, has been removed.

The input to the algorithm is a specification in which all named processes
are in serial form. Processes in serial form contain no parallel composition and
therefore no internal communication.

Definition 5 (Serial Form). Serial form is defined as shown in Fig. 4.

P,Q ::= 0
| x(y).P
| xy.P
| τ.P
| [x = y]P
| (νx)P
| P +Q
| pbx1 . . . xnc

Fig. 4. Serial Form

Note that the top-level process in the input specification may still contain parallel
compositions and internal communication; it is these that are removed by the
excommunication algorithm.

3.1 Transformation Rules

The transformation rules for excommunication are very similar to the reduction
rules defined in Fig. 3.

Definition 6 (Excommunication Algorithm). The transformation rules for
the excommunication algorithm are shown in Fig. 5. 2

Rule (1) of the form T [[S]] defines the transformation of the specification S.
Rules (2)-(7) of the form TP [[P]][[Q]] ρ θ ∆ define the transformation rules for
the parallel composition of the processes P and Q. The parameter ρ contains a
set of previously encountered memoised processes. The parameter θ contains the
set of names that are restricted to one of the two processes, and can therefore

(1) T [[P where D1 . . . Dn]] = TP [[P]][[0]] {} {} {D1 . . . Dn}

(2) TP [[[x = y]P]][[Q]] ρ θ ∆ = TP [[Q]][[[x = y]P]] ρ θ ∆

=

TP [[P]][[Q]] ρ θ ∆, if x = y
0, if x ∈ θ ∨ y ∈ θ
[x = y](TP [[P]][[Q]] ρ θ ∆), otherwise

(3) TP [[(νx)P]][[Q]] ρ θ ∆ = TP [[Q]][[(νx)P]] ρ θ ∆
= P[[P [x′/x]]][[Q]] (θ ∪ {x′}) ∆ (x′ /∈ fn(Q))

(4) TP [[P1 + P2]][[Q]] ρ θ ∆ = TP [[Q]][[P1 + P2]] ρ θ ∆
= (TP [[P1]][[Q]] ρ θ ∆) + (TP [[P2]][[Q]] ρ θ ∆)

(5) TP [[P1|P2]][[Q]] ρ θ ∆ = TP [[Q]][[P1|P2]] ρ θ ∆
= TP [[TP [[P1]][[P2]] {} {} ∆]][[Q]] ρ θ ∆]]

(6) TP [[pbx1 . . . xnc]][[Q]] ρ θ ∆ = TP [[Q]][[pbx1 . . . xnc]] ρ θ ∆

=

Pσ, if ∃(P = Q′) ∈ ρ, σ.Q′σ ≡ (pbx1 . . . xnc|Q)

p′bx′1 . . . x′kc where p′
4
= (x′1 . . . x

′
k).P ′, otherwise

where
{x′1 . . . x′k} = fn(pbx1 . . . xnc|Q) \ θ
P ′ = TP [[unfold(pbx1 . . . xnc,∆)]]][[Q]] (ρ ∪ {p′bx′1 . . . x′kc = pbx1 . . . xnc|Q}) θ ∆

(7) TP [[P]][[Q]] ρ θ ∆ = (TL[[P]][[Q]] ρ θ ∆) + (TL[[Q]][[P]] ρ θ ∆)

(8) TL[[xy.Q]][[x′(z).P]] ρ θ ∆

=

0, if x ∈ θ
(νy)((TP [[[x = x′]P]][[Q[y/z]] ρ θ ∆) + xy.(TP [[P]][[Q]] ρ θ ∆)), if y ∈ θ
(TP [[[x = x′]P]][[Q[y/z]]] ρ θ ∆) + xy.(TP [[P]][[Q]] ρ θ ∆), otherwise

(9) TL[[xy.P]][[Q]] ρ θ ∆

=

0, if x ∈ θ
(νy)xy.(TP [[P]][[Q]] ρ θ ∆), if y ∈ θ
xy.(TP [[P]][[Q]] ρ θ ∆), otherwise

(10) TL[[x(y).P]][[Q]] ρ θ ∆

=

{
0, if x ∈ θ
x(y′).(TP [[P [y′/y]]][[Q]] ρ θ ∆), otherwise (y′ /∈ fn(x(y).P |Q))

(11) TL[[τ.P]][[Q]] ρ θ ∆ = τ.(TP [[P]][[Q]] ρ θ ∆)

(12) TL[[0]][[Q]] ρ θ ∆ = 0

Fig. 5. Transformation Rules for Excommunication

not be used as a communication channel between them unless there is a scope
extrusion. The parameter ∆ contains the set of named process definitions.

Rules (8)-(12) of the form TL[[P]][[Q]] ρ θ ∆ define the left-prioritised parallel
composition of processes P and Q, where the next action must be performed by
process P .

Any potentially infinite sequence of transformation steps must involve the
unfolding of a named process application in rule (6); these processes are therefore
memoised by being added to ρ. A new named process is also defined in which
the arguments are the names within the process that are not contained in θ (and
must therefore be internal to the process). If a renaming of a memoised process
in ρ is subsequently encountered, it is replaced by an appropriate application of
the previously introduced named process.

Example 2. Consider the transformation of the specification given in Example
1:

(νm)(Bbl,mc|Bbm, rc)
where

B
4
= (i, o).i(x).ox.Bbi, oc

During the transformation, the process Bbl,mc|Bbm, rc is encountered. A new
named process C with parameters l and r is defined for this (the name m is
internal to this process, so is not included in the parameters). Later in the
transformation, the process Bbl,mc|Bbm, rc is re-encountered, so a recursive
application of the named process C is added.

Similarly, during transformation the process Bbm, rc|mx.Bbl,mc is encoun-
tered. A new named process D with parameters l, r and x is defined for this (m is
again internal). Later in the transformation, the processes Bbm, rc|mx.Bbl,mc
and Bbm, rc|my.Bbl,mc are encountered, so they are replaced with the corre-
sponding applications of the named process D. The overall result of the trans-
formation is therefore as follows:

Cbl, rc
where

C
4
= (l, r).l(x).Dbl, r, xc

D
4
= (l, r, x).rx.Cbl, rc+ [l = r]Dbl, r, xc+ l(y).rx.Dbl, r, yc

The excommunication theorem can now be stated as follows.

Theorem 1 (Excommunication Theorem). Every π-calculus specification
in which all named process definitions are in serial form can be transformed
by the excommunication algorithm into an equivalent process which is in serial
form. 2

In order to prove that the process generated by excommunication is equivalent
to the original process, we need to show the result of reducing the transformed
process is the same as that of reducing the original process.

Lemma 1 (On Equivalence). R[[T [[P]]]] ≡ R[[P]] 2

Proof

As the process P may actually be non-terminating, the proof is by co-induction.
This is fairly straightforward since the rules for excommunication are almost
identical to those for reduction, with only the addition of folding.
2

Lemma 2 (On The Form of Output Produced by Excommunication).
The output process produced by the excommunication algorithm is in serial
form. 2

Proof

The proof is by structural induction on the transformation rules. This is fairly
straightforward since we can see that there is no parallel composition on the
right hand side of the transformation rules.
2

Theorem 2 (Termination of Transformation). The transformation algo-
rithm always terminates.

Proof. In order to prove that the algorithm always terminates, it is sufficient
to show that there is a bound on the size of processes which are encountered
during transformation. If there is such a bound, then there will be a finite number
of processes encountered (modulo renaming of variables), and a renaming of a
previous process must eventually be encountered. The algorithm will therefore
be guaranteed to terminate.

First of all, it must be defined what is meant by the size of a process:

S[[0]] = 1

S[[x(y).P]] = 1 + S[[P]]

S[[x〈y〉.P]] = 1 + S[[P]]

S[[(νx)P]] = 1 + S[[P]]

S[[P +Q]] = S[[P]] + S[[Q]]

S[[pbx1 . . . xnc]] = n

S[[P |Q]] = S[[P]] + S[[Q]]

We then define the level of composition of a process as follows:

C[[0]] = 1

C[[x(y).P]] = C[[P]]

C[[x〈y〉.P]] = C[[P]]

C[[(νx)P]] = C[[P]]

C[[P +Q]] = max(C[[P]], C[[Q]])

C[[pbx1 . . . xnc]] = 1

C[[P |Q]] = C[[P]] + C[[Q]]

We then prove, for an input process with level of composition c and maximum
named process size s, that the size of processes encountered during transforma-
tion is bounded by c × s. This is done by structural induction on the transfor-
mation rules.

4 Example Application: A Leakage Analysis

The excommunication transformation provides us with a simple serial form for
the π-calculus on which we can define static analyses to detect any interesting
properties of the resulting observable process behaviour. In this section, we give
an example of one such analysis that can detect leakages of sensitive data given
a security partial ordering relation.

We start first by assuming a partial order of security labels, (Ξ,≤`), where
the set Ξ is ranged over by labels, `, `′, . . ., and is ordered by a partial ordering
relation, ≤`. We use these labels to annotate all channel names to reflect the
trustworthiness of the sub-process owning those channels. Hence, we annotate as
x`(y).P and x`

′
z.Q. In a real scenario, this annotation would be subject to some

predefined multi-level security policy derived using a requirements analysis.
We next define an input/output data analysis on an annotated specification

as the interpretation function, AS [[S]] φIφO ∈ (Φ⊥×Φ⊥), where Φ⊥ : N → ℘(Ξ)
is the domain of mappings, φ, from names to sets of security labels. The bottom
element mapping in this domain, ⊥Φ, is defined as the element that maps every
name to an empty set of labels:

∀x ∈ N : ⊥Φ(x) = {}

We also define the union of such mappings,]φ : Φ⊥ × Φ⊥ → Φ⊥, as follows:

∀x ∈ N , φ1, φ2 ∈ Φ⊥ : (φ1]φ φ2)(x) = φ1(x) ∪ φ2(x)

and the pairwise union,]φ,φ, distributes]φ over a pair of mappings:

∀φ1, φ′1, φ2, φ′2 ∈ Φ⊥ : (φ1, φ
′
1)]φ,φ (φ2, φ

′
2) = ((φ1]φ φ2), (φ′1]φ φ′2))

We distinguish between two types of such mappings: φI ∈ Φ⊥, which maps input
variables to the security labels of the channels over which their input actions
happen, and φO ∈ Φ⊥, which maps message names to the labels of the channels
over which they are sent.

The formal rules defining the analysis are shown in Figure 6. The two most
notable rules in this analysis are (3) and (4), which update the input and output
mappings, respectively, with new elements that pair the input variable, y in Rule
(3), and output message, y in Rule (4), with the security label of the channel x
over which the input and output actions happen.

(1) AS [[P where D1 . . . Dn]] φIφO =
⊔
F

where
F = {(φI , φO),AP [[P]] φIφO {D1 . . . Dn}}

(2) AP [[0]] φIφO ∆ = (φI , φO)

(3) AP [[x`(y).P]] φIφO ∆ = AP [[P]] φI [y 7→ {`}]φO ∆

(4) AP [[x`y.P]] φIφO ∆ = AP [[x`y.P]] φIφO[y 7→ {`}] ∆

(5) AP [[τ.P]] φIφO ∆ = AP [[P]] φIφO ∆

(6) AP [[[x = y]P]] φIφO ∆ =

{
AP [[P]] φIφO ∆, if x = y
φ, otherwise

(7) AP [[(νx)P]] φIφO ∆ = AP [[P]] φIφO ∆

(8) AP [[P +Q]] φIφO ∆ = AP [[P]] φIφO ∆]φ,φ AP [[Q]] φIφO ∆

(9) AP [[pbx1 . . . xnc]] φIφO ∆ = AP [[unfold(pbx1 . . . xnc,∆)]] φIφO ∆

Fig. 6. An I/O Analysis of Normalised Processes

The remaining rules are described as follows. Rule (1) interprets a specifi-
cation using the operator,

⊔
F , which computes the least fixed point of AP .

Rule (2) returns the same pair of mappings for a null process. Rules (5) and
(7) remove input and silent actions and name restrictions as they have no effect
on the two mappings. Rule (6) will continue analysing the process if its condi-
tional matching evaluates to an equality, otherwise, it returns the same pair of
mappings. Rule (8) distributes the analysis onto the two sides of a choice and
combines the results. Finally, Rule (9) unfolds a named process application.

Based on the above analysis, it is possible to define the property that a system
is leaky, as follows.

Property 1 (A Leaky System). Define a leaky system as one whose specification,
S, has an analysis result, AS [[S]] φIφO = (φ′I , φ

′
O), that satisfies the following

condition:
∃x ∈ bn(S), `1 ∈ φ′I(x), `2 ∈ φ′O(x) : `2 ≤` `1

A leaky system is therefore characterised as being unable to keep sensitive data
received over high-level channels, from being output over low-level channels.

4.1 An Application of the Leakage Analysis

We next show how this analysis can be applied in the context of Example 1 in
the Introduction to model an Internet-of-Things (IoT) publish-subscribe (pub-
sub) server, such as the one defined in [2]. A pub-sub server receives data from
various IoT devices, e.g. sensors, and outputs those data onto the relevant topics.
Interested applications, which have already subscribed to those topics, receive
the data either through a pull or a push mode of communication. Figure 7 shows
an example of an IoT system set-up running an MQTT broker [2] collecting
atmospheric humidity data.

Fig. 7. Example of an IoT (MQTT-based) System Set-up for Collecting Humidity Data

The humidity sensor collects this data and then publishes the data (e.g.
humidity level of 32%) to a topic called “humidity”. This topic is subscribed to
by two software applications: an on-premise (local) analytics application and a
cloud-based analytics application that stores data remotely.

In general, a pub-sub server can be modelled as the parallel composition of
n-number of pairs of data-processing chained cells:

Server
4
=

n∏
i=1

(νtopic)(Databsensor, topicc | Databtopic, applicationc)

where

Data
4
= (i, o).i(x).ox.Databi, oc

Each first cell receives data from a sensor and outputs those data to an internal
topic. The second cell then takes the data from that topic and outputs it to
a subscribed application. Every data cell will have similar but distinguished
behaviour due to the uniqueness of topics. As was demonstrated in Example 1,
any of the above individual pairs of cells can be excommunicated into a single
cell, as follows:

Databsensor, applicationc
where

Data
4
= (l, r).l(x).Dbl, r, xc

D
4
= ((l, r, x).rx.Databl, rc+ [l = r]Dbl, r, xc+ l(y).rx.Dbl, r, yc)

Returning to the humidity data system of Figure 7, we can model the server in
this system as follows:

Server
4
= (νhumidity)(DatabHumidity Sensor, humidityc |

Databhumidity,On-Premise Analyticsc |
DatabHumidity Sensor, humidityc |
Databhumidity,Cloud Analyticsc)

with the excommunicated version modelled as follows:

Server
4
= (νhumidity)(DatabHumidity Sensor,On-Premise Analyticsc |

DatabHumidity Sensor,Cloud Analyticsc)

The latter allowing the humidity sensor to sometimes pass the data to the on-
premise analytics application, and sometimes to the cloud-based analytics ap-
plication, without necessarily revealing the topic being subscribed to.

If we assume that `2 ≤` `1 and `3 =` `1, and we adopt the following security
labelling scheme:

DatabHumidity Sensor`1 ,On-Premise Analytics`3c,
DatabHumidity Sensor`1 ,Cloud Analytics`2c

Then by applying our static analysis, AS [[Server]] φIφO, we obtain the result,
(φI [x 7→ {`1}, y 7→ {`1}], φO[x 7→ {`2, `3}]), which indicates the presence of
information leakage according to Property 1, since ∃x : φO(x) ≤` φI(x).

We note here that our analysis of the excommunicated specification is sim-
pler than if we were analysing the original specification, since we do not have to
deal with internal communication, in this case over the humidity topic internal
channel. In addition, including the humidity channel may hide the leakage in the
case where there are multiple Humidity Sensors and one of these sensors is anno-
tated with a lower label than the humidity channel, but still higher than either
the On-Premise Analytics or Cloud Analytics channels. In this case, no leakage
would be detected between the Humidity Sensor and the humidity topic chan-
nels, only between humidity and the Cloud Analytics channels, the latter being
too strong a condition as to exclude all sensor communication to application in
our more general definition of the pub-sub system.

5 Conclusion and Further Work

In this paper, we have presented an automatic transformation algorithm which
removes all parallel composition, and hence all internal communication, from π-
calculus specifications in which all named processes are in a specialised form we
call serial form. We have proved that the transformation preserves equivalence,
and also that it always terminates. We argue that this transformation facilitates
the proving of properties of concurrent systems, and have demonstrated this by
showing how it can be used to simplify a leakage analysis.

There are a number of possible directions for further work. Firstly, as was
done for the deforestation algorithm [9], an extended version of the excommu-
nication algorithm could be developed that can be applied to all π-calculus
specifications. This would involve the identification of terms that could prevent
the termination of the algorithm so they are transformed separately. In [9], this
required the identification of intermediate data structures within function defi-
nitions. Here, it would involve the identification of parallel compositions within
named process definitions.

Secondly, a transformation analogous to the supercompilation transforma-
tion [18, 16] for functional languages could be developed for the π-calculus. This
would involve the use of a homeomorphic embedding relation on processes to
determine when generalisation should be performed. Positive information prop-
agation could also be performed using the results of matching operations.

Finally, a transformation algorithm analogous to the distillation algorithm
[10] for functional languages could be developed for the π-calculus. Just as the
distillation algorithm builds on top of the supercompilation algorithm, this al-
gorithm could build on top of the transformation corresponding to supercompi-
lation for the π-calculus.

References

1. B. Aziz and G.W. Hamilton. A Denotational Semantics for the π-Calculus. In
Proceedings of the 5th Irish conference on Formal Methods, pages 37–47, 2001.

2. Andrew Banks and Rahul Gupta. MQTT Version 3.1.1 Plus Errata 01. Technical
report, OASIS, 2015.

3. Nacéra Bensaou and Irène Guessarian. Transforming Constraint Logic Programs.
Theoretical Computer Science, 206(1-2):81–125, 1998.

4. R.M. Burstall and J. Darlington. A Transformation System for Developing Recur-
sive Programs. Journal of the ACM, 24(1):44–67, January 1977.

5. Nicoletta de Francesco and Antonella Santone. Unfold/Fold Transformations of
Concurrent Processes. In International Symposium on Programming Language
Implementation and Logic Programming, pages 167–181. Springer, 1996.

6. Sandro Etalle, Maurizio Gabbrielli, and Maria Chiara Meo. Transformations of
CCP programs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 23(3):304–395, 2001.

7. M. Gengler and M. Martel. Self-Applicable Partial Evaluation for the π-Calculus.
In Proceedings of the ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-Based Program Manipulation, pages 36–46, 1997.

8. G. W. Hamilton. Higher Order Deforestation. In Proceedings of the Eighth In-
ternational Symposium on Programming, Logics, Implementation and Programs,
pages 213–227, 1996.

9. G. W. Hamilton. Extending Higher Order Deforestation: Transforming Programs
to Eliminate Even More Trees. In Trends in Functional Programming (Volume 3),
pages 25–36. Intellect Books, 2002.

10. G.W. Hamilton. Distillation: Extracting the Essence of Programs. In Proceedings
of the ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, pages 61–70, 2007.

11. Haruo Hosoya, Naoki Kobayashi, and Akinori Yonezawa. Partial Evaluation
Scheme for Concurrent Languages and its Correctness. In European Conference
on Parallel Processing, pages 625–632. Springer, 1996.

12. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I. Informa-
tion and Computation, 100(1):1–40, 1992.

13. R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, II. Infor-
mation and Computation, 100(2):41–77, 1992.

14. A. Pettorossi and M. Proietti. Rules and Strategies for Transforming Functional
and Logic Programs. ACM Computing Surveys, 28(2):360–414, 1996.

15. Dan Sahlin. Partial evaluation of AKL. In Proceedings of the First International
Conference on Concurrent Constraint Programming, 1995.

16. Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A Positive Supercom-
piler. Journal of Functional Programming, 6(6):811–838, 1996.

17. H. Tamaki and T. Sato. Unfold/Fold Transformations of Logic Programs. In
Second International Conference on Logic Programming, pages 127–138, 1984.

18. V.F. Turchin. The Concept of a Supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3):90–121, July 1986.

19. Kazunori Ueda and Koichi Furukawa. Transformation rules for GHC Programs.
Institute for New Generation Computer Technology Tokyo, 1988.

20. P.L. Wadler. Deforestation: Transforming Programs to Eliminate Trees. Theoret-
ical Computer Science, 73:231–248, 1990.

