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ABSTRACT

As part of the cosmology analysis using Type la Supernovae (SN Ia) in the Dark Energy Survey (DES), we present photometrically
identified SN Ia samples using multiband light curves and host galaxy redshifts. For this analysis, we use the photometric
classification framework SUPERNNOVAtrained on realistic DES-like simulations. For reliable classification, we process the DES
SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of
more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more
robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1863 SNe Ia
from which we select 1484 cosmology-grade SNe Ia spanning the redshift range of 0.07 < z < 1.14. We find good agreement
between the light-curve properties of the photometrically selected sample and simulations. Additionally, we create similar SN Ia
samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We
test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we
discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory
Legacy Survey of Space and Time.

Key words: methods: data analysis — surveys — supernovae: general —cosmology: observations.

1 INTRODUCTION

To fully exploit the power of current and future time-domain surveys,
it is necessary to classify astrophysical objects using only photom-
etry. Surveys such as the Supernova Legacy Survey (SNLS), Sloan
Digital Sky Survey (SDSS) SN Survey (SDSS-II), Pan-STARRS
(PS1), and the Dark Energy Survey (DES) have discovered thousands
of supernovae (SNe) but the majority have not been spectroscopically
classified (Astier et al. 2006; Frieman et al. 2008; Bernstein et al.
2012; Rest et al. 2014; Foley et al. 2018; Sako et al. 2018; Smith
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et al. 2020). Photometric classification will be particularly crucial
for the upcoming Legacy Survey of Space and Time (LSST) at the
Vera C. Rubin Observatory, which is expected to discover up to 107
SNe over the next decade (LSST Science Collaboration 2009).

The Dark Energy Survey Supernova programme (DES-SN) ob-
tained photometry of more than 30000 candidate SNe over its five
years of operation. These include thousands of high-redshift SNe Ia,
of which only several hundred have been spectroscopically classified.
The first three years of the DES-SN detected and spectroscopically
classified 251 SNe Ia (Smith et al. 2020). Together with low-redshift
SNe from the Harvard—Smithsonian Center for Astrophysics surveys
(CfA3, CfA4; Hicken et al. 2009, 2012) and the Carnegie Supernova
Project (CSP; Contreras et al. 2010; Stritzinger et al. 2011), these SNe
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were used to constrain cosmological parameters (Dark Energy Sur-
vey 2019). The DES-SN candidate sample also contains other types
of transients that have been used for astrophysical and cosmological
studies: core-collapse SNe (de Jaeger et al. 2020), superluminous
SNe (SLSNe; Smith et al. 2018; Angus et al. 2019; Inserra et al.
2021), rapidly evolving transients (Pursiainen et al. 2018; Wiseman
et al. 2020b) and ‘peculiar’ events (Gutiérrez et al. 2020; Grayling
et al. 2021).

To classify SNe without spectroscopy, a number of methods
have been developed to classify them using their light curves, i.e.
their observed brightness evolution in different filters. Due to their
cosmological use, much work has focused on disentangling SNe
Ia from other SN types. The majority have been trained and tested
on simulations, with only a handful applied to large SN surveys
(Sako et al. 2011; Moller et al. 2016; Moller & de Boissiere
2019; Muthukrishna et al. 2019; Villar et al. 2019, 2020). Several
photometric classifiers have been developed and incorporated into
the SNIa-cosmology analysis pipeline PIPPIN (Hinton & Brout 2020),
including SNIRF (based on the architecture developed by Dai et al.
2018), SUPERNNOVA (Moller & de Boissiere 2019), and SCONE (Qu
et al. 2021).

In this work, we use the non-parametric framework SUPERNNOVA
(SNN; Moller & de Boissiere 2019) to obtain photometrically
classified SN Ia samples from DES-SN. SNN has several strengths it:
(i) requires only photometric information (fluxes and time) for clas-
sification, (ii) does not rely on the extraction of features, (iii) can be
trained to classify any type of transient event, (iv) can use redshifts to
improve accuracy, (v) has been thoroughly tested using simulations,
(vi) includes algorithms that assign uncertainties to classification
probabilities such as Bayesian Neural Networks (BNNs), and (vii) is
already being applied to real survey data, including early light-curve
classification in alert streams (FINK broker; Moller et al. 2021).

Photometrically classified SN Ia samples have started to be used
in cosmology. First constraints on the cosmic expansion using data
from SDSS-II and PS1 have shown the feasibility of using these
samples for cosmology and their competitive constraining power on
the Dark Energy (Sako et al. 2011; Hlozek et al. 2012; Campbell
et al. 2013; Jones et al. 2017, 2018). Most of these results use the
Bayesian Estimation Applied to Multiple Species method (BEAMS;
Kunz, Bassett & Hlozek 2007) and its extension ‘BEAMS with
Bias Corrections’ (BBC; Kessler & Scolnic 2017). These methods
incorporate classification probabilities of SNe Ia into the analysis,
thus requiring accurate classification probabilities. Recent work
estimates the contamination for cosmological constraints in the DES-
SN sample using SNNat less than 1.4 percent (Vincenzi et al.
2022). Aside from cosmology, photometrically classified samples
with SNN have also been used to study SN Ia rates (Wiseman et al.
2021).

This paper is organized as follows: We introduce the DES survey
and DES-SN candidate sample in Section 2. In Section 3, we present
pre-processing needed for accurate classification, SUPERNNOVA,
realistic simulations, training and classification mechanisms and
their metrics. In Section 4, we select photometrically classified SNe
Ia using host galaxy redshift information together with multiband
photometry. We explore the use of BNNs for classification in
Section 5. Finally, in Section 6, we discuss our results and their
implications for future surveys such as LSST.

2 DES-SN 5-YR

The Dark Energy Survey (DES) was a 6-yr photometric survey that
used the Dark Energy Camera (DECam; Flaugher et al. 2015) on
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the Victor M. Blanco telescope in Chile to survey 5000 deg? of the
Southern hemisphere. For time-domain science, DES imaged ten
3-deg? in the griz filters during the first 5 yr (Abbott et al. 2018).
Eight of these ten fields (X1, X2, E1, E2, C1, C2, S1, and S2) were
observed to a single-visit depth of m ~ 23.5 mag (‘shallow fields’),
and the other two ‘deep fields’ (X3,C3) were observed to a depth of
m =~ 24.5 mag.

2.1 DES-SN candidate sample

Transients were identified using the DES Difference Imaging
Pipeline DIFFIMG (Kessler et al. 2015) coupled with a machine-
learning algorithm (Goldstein et al. 2015) to reduce artefacts. A
candidate SN is defined from the difference image measurements by
requiring at least two detections with a signal-to-noise ratio (SNR)
larger than five in any filter. This criteria is designed to remove
artefacts and asteroids.

Each DES-SN candidate was originally associated with a host
galaxy using the shallower SVA survey, created from DES Science
Verification data. For the DES-SN analysis, we use deep co-adds in
Wiseman et al. (2020a). The major source of host galaxy redshift
information was the Australian Dark Energy Survey (OzDES)
programme obtaining spectra with the 2dF fibre positioner and
AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope
(Yuan et al. 2015; Childress et al. 2017; Lidman et al. 2020). SN
hosts in OzDES were observed up to a limiting » magnitude of ~24.
Further details on host galaxy association can be found in Gupta et al.
(2016), Vincenzi et al. (2020).

For the 31636 candidates, 29 113 have an identified host and
11 350 have a spectroscopic redshift (~30 per cent of the candidates).

A sub sample of candidates were selected for real-time spectro-
scopic follow-up observations for classification. For the first 3 yr
of the survey, the spectroscopically classified sample is presented in
Smith et al. (2020). In this work, we use for comparison a preliminary
spectroscopic sample containing additional classifications from the
full 5 yr of DES-SN. This sample contains 415 spectroscopically
confirmed SNe Ia (including all 251 spectroscopically classified SNe
Ia from the DES-SN 3-yr analysis), 84 core-collapse SNe, 2 peculiar
SNe Ia, 20 SLSNe, 55 AGN, 1 Tidal disruption event (TDE), and
2 M-stars. We highlight that this spectroscopically classified sample
is not complete (Kessler et al. 2019b) and does not represents the
true abundances of different transients in nature.

In this work we use the fluxes and uncertainties obtained from
DIFFIMG (Kessler et al. 2015) for the DES-SN candidate sample.

2.2 Filtering multiseason and other transients

The DES-SN 5-yr candidate sample contains not only supernovae
but also astrophysical events such as fast transients and AGNs. These
events, called out-of-distribution (OOD) or anomalies, can be hard
to characterize and thus simulate, therefore photometric classifiers
are usually not trained to identify them.

To reject fast, very low SNR transients or transients that have
a limited photometric sampling (e.g. transients occurring near the
end or beginning of the observing season), we select only transients
that have at least 3 nights with a detection that has passed the DES
Real/Bogus image classifier (Goldstein et al. 2015).

To reduce the number of slowly evolving transients that span
several observing seasons or multiseason candidates (e.g. AGNs)
and spurious detections we make use of two selection criteria. First,
we compute the ratio between number of epochs with detections that
pass the Real/Bogus classifier, and the total number of epochs with
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detections. To reject light curves with long variability periods, we
require this ratio to be the same as in the real-time classification
pipeline in Smith et al. (2020). Secondly, we remove artefacts and
transients that have detections in multiple observing seasons. We
note that this cut can remove real supernovae, i.e. multiple SNe very
close-by in the same galaxy, and is not 100 per cent efficient.

With this filtering, the sample is reduced from 31636 to 14070
candidates. This reduces the number of candidates and their contami-
nation; however, some residual AGN and other types of SNe remain.
We find that this sample includes 405 spectroscopically classified
SNe Ia (247 of which are in the DES-SN 3yr sample), 83 core-
collapse SNe, 2 peculiar SNe Ia, 19 SLSNe, 37 AGN, 1 TDE, and
1 M-star.

2.3 Selection requirements (cuts)

We apply a series of selection cuts on both the quality of the light
curves and the quality of the redshifts. A thorough review on these
cuts and their impact on systematics can be found in Vincenzi et al.
(2022).

2.3.1 Loose selection cuts

We select transients that have redshifts obtained from spectra from
either the SN or its host galaxy (Lidman et al. 2020) using quality
tags in Vincenzi et al. (2020). In this work, we also include lower
resolution redshifts from PRIMUS since they are precise enough for
photometric classification.! After this selection cut we obtain 6635
SN candidates.

Furthermore, we restrict these redshifts to be within the range of
the SNe Ia expected for DES-SN and thus in our simulations, z €
[0.05,1.3]. This cut also removes stars in our catalogues.

We fit the light curves using the SALT2 model (Guy et al. 2007).
We require that: (i) at least two filters have at least one observation
with SNR larger than 5, (ii) at least one photometric measurement
before peak brightness #y, and (iii) at least one photometric point ten
days after peak brightness.

We select a sample of 2381 light curves that satisfy these sampling
criteria and have a SALT?2 fit that converges and is within SALT2
model boundaries for stretch, x1 € [—4.9, 4.9] and colour ¢ € [—0.49,
0.49]. We photometrically classify these candidates in the following.
This sample contains a subsample of spectroscopically classified
candidates which we will use as a reference: SNe Ia: 366 (DES-SN 3
yr: 228), CC 13, SLSN 2, AGN 3. The SALT2 parameters (amplitude,
stretch, and colour) are not used by SNN.

2.3.2 JLA-like cuts

We will consider an additional set of cuts after photometric classifi-
cation based on the criteria in Vincenzi et al. (2022). They will only
be applied when specified.

These cuts are designed to select cosmology-grade SNe Ia and
are based on those from the Joint Light-curve Analysis: —3.0 <
x; <3.0,-03 <c<03,and 0,, <1 and o, < 2 (Betoule et al.
2014). Where ¢, x1, 0 9, 0y, are estimated using SALT?2 and represent

I The redshifts from the PRIsm MUIti-object Survey (PRIMUS) were obtained
using the Inamori Magellan Areal Camera and Spectrograph camera on the
Magellan I Baade 6.5 m telescope (Coil et al. 2011). They are less accurate
and they have a higher rate of catastrophic failure, thus not suitable for
cosmological constraints.

5161

colour, stretch, and uncertainty on #, and x;, respectively. These
cuts are implemented in SN Ia cosmology analyses to restrict SNIa
parameters to the valid model range, and to reject peculiar SNIa. We
also use a SALT? fit probability >0.001 selection.

3 PHOTOMETRIC CLASSIFICATION

We use the photometric classification algorithm SUPERNNOVA (SNN)
to select SN Ia from the DES-SN 5-yr candidate sample that pass
loose selection cuts. We introduce pre-processing necessary for accu-
rate photometric classification of our DES-SN 5-yr data (Section 3.1).
We generate realistic simulations of the DES-SN survey to train
and test our photometric classification method (Section 3.2) and the
framework SNN (Section 3.3). We evaluate performance and find
the best configuration for our framework using small simulations
(Section 3.4). We then train optimized models for photometric
classification of the DES-SN 5-yr sample using larger simulations
(Section 3.5).

3.1 DES-SN data pre-processing

For accurate photometric classification, the simulations used to train
the models and the data to be classified should be similar. While light-
curve simulations strive to resemble survey data, pre-processing of
the survey data is required to assure this.

First, DES-SN data were taken over five consecutive seasons.
Each DES season represented about five months of observations per
year. SNe last only for months, thus are only detected in a subset
of this photometry. In our simulations (see Section 3.2), supernovae
are simulated within a rest-frame time-span, e.g. —30 d before to
100 d after peak luminosity. To select an equivalent time window
in the DES-SN 5-yr data, we first obtain an estimated time of peak
brightness (#p) using the SuperNova ANAlysis software (SNANA;
Kessler et al. 2009). This 7, estimate is not obtained using SALT2
(Guy et al. 2007), but instead based on max flux in region of dense
detections to avoid pathological estimates from a single pathological
flux in another season. Once the peak has been determined for each
light curve, we select and classify photometric points within an
observed time-window around the light-curve peak of [—30, 100] d.

Light curves may contain photometry that has been flagged as
flawed. We require that SNNdiscard photometry that is not reliable
using the bitmap flag provided by SOURCE EXTRACTOR (Bertin &
Arnouts 1996) and DIFFIMG (Kessler et al. 2015). These photometric
outliers are not present in the simulations used to train our photomet-
ric classifier. This is in particular important when using normalization
schemes, which will be introduced in Section 3.3.1, since they use
maximum fluxes to normalize the light curves. If that maximum flux
comes from a bad photometric point, the light curve will be distorted
and therefore classification will not be accurate. This photometry
quality criteria reduces the number of photometric measurements by
6 per cent but keeps the number of transients unchanged.

3.2 Simulations of the DES-SN survey

SNNis used with simulations from the supernova analysis software
(snana Kessler et al. 2009) and within the PIPPIN orchestration
framework (Hinton & Brout 2020). The simulations incorporate
information from DES-SN observations (PSF, sky noise, zero-point),
with detection efficiencies versus SNR estimated on fake SNe that
were overlaid on images and processed with DIFFIMG. Simulations
include SNe that have partial light curves due to season boundaries
or observing gaps imitating realistic weather conditions. Detailed
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Table 1. Simulations used for training and testing SNN. Columns
indicate simulation name, approximate number of light curves generated
and number of light curves when balancing simulations to have the same
number of normal Type Ia and other SNe.

Simulation Number of Balanced number of
name light curves (10%) light curves (10%)
TRAIN-SIM 4.5 3.63
S-TRAIN-SIM 2.0 1.4
TEST-SIM 0.8 Not applicable

information on the inputs necessary to obtain realistic DES-SN
simulations can be found in Kessler et al. (2019b). We also make
use of recent updates in the library of simulated host galaxies for
DES-SN as introduced by Vincenzi et al. (2020). This host galaxy
library includes the dependence of SN rates on galaxy properties
such as stellar mass and galaxy star formation rate.

We simulate a variety of SNe using volumetric rates and input
parameters as described in Vincenzi et al. (2020). Our simulations
are performed over a redshift range 0.05 < z < 1.3. These simulations
contain normal SNe Ia, peculiar SNe Ia, and core-collapse SNe.

Normal SNe la are generated using the SALT2 SED model
presented in Guy et al. (2007), trained for the JLA sample (Betoule
et al. 2014) and extended to UV and IR wavelengths (Pierel et al.
2018) to improve the redshift coverage of our simulated SNe.
Volumetric rates from Frohmaier et al. (2019) are used. The intrinsic
stretch and colour distributions are taken from Scolnic & Kessler
(2016) and we use the G10 intrinsic scatter model from Kessler
et al. (2013) based on Guy et al. (2010). Peculiar SNe Ia include
SN91bg-like (Kessler et al. 2019a) and SNe lax (Jha 2017) with
models updates in Vincenzi et al. (2022).

We make use of three different core-collapse SN template col-
lections: V19 (Vincenzi et al. 2019), J17 (Jones et al. 2017),
and templates used in the Supernova Photometric Classification
Challenge (SPCC; Kessler et al. 2010). The main differences between
these templates include: the number of SNe used to create them, the
rates used, and the interpolation methods and wavelength coverage.
Detailed information on these templates can be found in Vincenzi
et al. (2019).

Our baseline simulations, and used unless specified, are generated
using V19 core-collapse SN templates. Relative core-collapse SN
rates are given by Li et al. (2011) updated in Shivvers et al. (2017)
and the total rate is assumed to follow the cosmic star formation
history presented in Madau, Weisz & Conroy (2014) normalized by
the local SN rate of Frohmaier et al. (2019).

We generate different simulations to train (TRAIN-SIM and a
smaller S-TRAIN-SIM for computing efficiency of certain evaluation
tasks) and test (TEST-SIM) SNNas shown in Table 1. For training,
after generating the simulation, we randomly trim the simulation to
ensure a balanced training sample, with the same number of normal
SNe Ia and non-normal Ia (core-collapse SNe and peculiar SNe
Ia). Volumetric rates guarantee that the mixture of non-Ia SNe is
consistent with measured rates. We note that the size of the S-TRAIN-
SIM training set is the same as the complete sample used in Moller &
de Boissiere (2019). Having defined our simulated samples we now
turn to methods of classifying them.

3.3 SUPERNNOVA (SNN)

SUPERNNOVA (Moller & de Boissiere 2019) is a deep learning
framework for light-curve classification. It makes use of fluxes and
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Figure 1. SNN classification for the DES-SN candidate DES17C2hgm
at redshift 0.473 £ 0.001 using three different neural networks: baseline
RNN, BNN MC dropout (MC), and BNN Bayes by Backprop (BBB). All
methods were trained with the TRAIN-SIM simulation. Top row shows the
SN candidate light curve from DES (normalized flux with cosmo_quantile
method in band-passes g, 7, i, z; time in Observer Frame days). Bottom rows
shows the classification scores for each method (SN Ia: maroon, non-SN Ia:
orange). Classification scores use all the data before a given date. The BNN
methods provide classification uncertainties (shadowed regions show 68 and
95 percent contours). Each BNN method provides different estimations,
this is explored in Section 5.2. The large uncertainties in the classification
probability represent the lack of confidence in this classification. For this
example, uncertainties around days 20-30 are correlated with the lower SNR,
while around days 50-60 that correlation is less straight forward to interpret
and could be linked to the secondary peak visible in most filters.

their measurement uncertainties over time for accurate classification
of time-domain candidates. Additional information such as host
galaxy redshifts can be included to improve performance.

SNN includes different classification algorithms, such as LSTM?
Recurrent Neural Networks (RNNs) and two approximations for
Bayesian Neural Networks (BNNs). We show in Fig. 1 the classifi-
cation probabilities from different methods for a given SN light curve.

%Long short-term memory (LSTM; Hochreiter & Schmidhuber 1997).
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These probabilities can be used to select a sample by performing a
threshold cut or by weighting the contribution of candidates by their
classification score as in the BEAMS and BBC methods (Kunz et al.
2007; Kessler & Scolnic 2017; Vincenzi et al. 2022).

Light-curve simulations are used to train SNNto classify can-
didates into different classes. For cosmology, it can be trained to
accurately classify SNe Ia versus other other kinds of transients. For
time-domain astronomy, where brokers are designed to disentangle
multiple types of transients, SNNcan classify subtypes of SNe or
transients simultaneously.

Throughout this work we only perform a binary classification, i.e.
anormal SN Ia or a non-Ia SN. Our results are expressed in the form
of a prediction of the SN type by using a threshold on the obtained
SN Ia probability, P, larger than 0.5.

3.3.1 SNN normalization schemes: cosmo and cosmo quantile

Since light-curve fluxes and uncertainties exhibit large variations,
SNNsupports different input data (e.g. fluxes, flux-uncertainties,
and time-steps) and normalization schemes (Moller & de Boissiere
2019). In previous work, the default was the global® normalization.
However, to avoid cosmological bias when using redshifts for
classification, it is important to avoid using distance information
encoded in the apparent magnitudes.

For classification using redshifts, we introduce two new normal-
ization schemes in SNNthat ignore distance information: cosmo and
cosmo_quantile.* In these schemes, for a given light curve, fluxes,
and their respective uncertainties are normalized by the maximum
light-curve flux in any filter (cosmo) or the 99th quantile of the flux
distribution to avoid normalization using an outlier (cosmo_quantile).
This normalizes the fluxes for each light curve to 1 or near 1, and
retains colour and signal-to-noise information for the classification.
The normalization of the time-step, given as an input to SNN, remains
log transformed and displaced to zero as in the global normalization
scheme.

To evaluate these new normalization schemes, we measure the
classification accuracy of SN Ia versus non-SN Ia including redshift
as an input using simulations from Moller & de Boissiere (2019) since
these were the simulations used to benchmark the SNNframework.
We find that they slightly improve performance with accuracies
of 99.33 £ 0.02 percent for both cosmo and cosmo_quantile as
compared to the 98.43 £ 0.08 percent accuracy of the global
normalization scheme using same data set, redshift information
and default settings (seeds and hyper-parameters). In the following
analysis, we will use only the cosmo_quantile norm since it has
similar accuracy to cosmo for the simulations but is more robust
against photometry outliers in real data.

3.4 SNN configuration for performance and robustness

We next study the performance of SNNwhen classifying SNe using
photometry and host galaxy redshifts. We also characterize the
classification robustness with respect to the training templates, and

3Features, f, are log transformed and scaled. The log transform (f;) uses the
minimum value of the feature in all band-passes min(f) and a constant (¢) to
centre the distribution at zero as follows: f; = log (— min(f) + f + €). Using
the mean and standard deviation of the log transform (u, o (f;)), standard
scaling is applied: f =(f1—pul(f))/a(f).

4Both normalization schemes are available at: https:/github.com/supernnov
a/SuperNNova
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Table 2. Classification accuracies for models trained by replacing a subset
of templates from the original configuration in Section 3.2.

Changed template Accuracy

JLA instead of extended SNIa model 97.96 £ 0.05
without peculiar SNe Ia 98.21 + 0.01
J17 instead of V19 core-collapse model 98.06 + 0.07
SPCC templates instead of V19 core-collapse model 98.59 £ 0.02

find the best set of hyperparameters for our DES-SNIa sample.
We use the S-TRAIN-SIM simulations introduced in Section 3.2,
for computational efficiency and to compare results with those of
Moller & de Boissiere (2019), to train a classification model. Our
simulation was class-balanced (half normal SNe I and half non-Ia
SNe) and randomly split in 80 per cent for training, 10 per cent for
validation and 10 per cent for metrics evaluation. Uncertainties in
the accuracy represent the standard deviation of predictions from
five models obtained with different seeds.

Using the default configuration of SNNwe obtain a classification
accuracy of 97.73 £ 0.04 per cent for the cosmo_quantile norm.
While this accuracy is high, it is ~ 1 per cent lower than the
benchmark in Moller & de Boissiere (2019) for a similar training set
size. Since the SNNarchitecture has not been changed, we investigate
if this can be attributed to the more complex and realistic DES-SN
5-yr simulations in Section 3.4.1. We then investigate whether a
modified architecture can improve the classification model and thus
its accuracy in Section 3.4.2. We highlight that SNN does not reach
its peak performance when trained using the smaller S-TRAIN-
SIMS. Thus, larger simulations are needed to improve the model
performance.

3.4.1 Templates impact on performance

Here, we study how the set of templates used to generate the training
simulation impacts the metrics of our classification algorithm. We
train different models using simulations that are similar in size
(equivalent to S-TRAIN-SIM) but are generated by replacing a subset
of templates from the original configuration. Obtained accuracies are
shown in Table 2.

Models trained with SPCC and J17 templates obtain higher
accuracies than those trained with V19 templates. This is consistent
with the accuracy decrease of our present model when compared
to that of Moller & de Boissiere (2019). This is evidence of the
more complex classification task with the updated simulations. We
highlight that V19 uses a large variety of core-collapse templates
with greater diversity than previous core-collapse models, J17 and
SPCC. From these, SPCC has the fewest number of non-la templates
and thus less diversity. SPCC templates were used in Moller &
de Boissiere (2019) simulations. The impact of changes like using
the JLA SALT2 model is less. This shows that the complexity of
the classification task increases largely with the updated and more
diverse core-collapse SN population in the V19 templates and the
inclusion of peculiar SNe Ia.

We thus attribute the decrease on accuracy to the more complex
task of disentangling SNe Ia from core-collapse and peculiar SNe Ia
generated with updated templates.

3.4.2 Hyperparameters
We investigate whether network hyperparameters could be modified

to improve performance (for a list of available hyperparameters,
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Table 3. SNN Baseline Performance versus method on TRAIN-SIM without
cuts. The chosen method in this work is the Ensemble (probability average)
and is highlighted in bold.

Method Balanced accuracy Efficiency Purity
cosmo
Single model 98.33 £0.01 98.65+0.05  98.03 £ 0.06
Ensemble (target av.) 98.43 £ 0.02 98.81 £0.02  98.08 £ 0.02
Ensemble (prob. av.) 98.45 £ 0.01 98.80 £0.02  98.11 +£0.02
cosmo_quantile
Single model 98.35 £0.01 98.68 +£0.07  98.03 = 0.05
Ensemble (target av.) 98.45 + 0.00° 98.84 £0.02  98.09 £ 0.01
Ensemble (prob. av.) 98.46 £+ 0.01 98.83+£0.03 98.10 +0.03

SWe provide only two-significant figures. The uncertainties are negligible and
less than 0.005.

Table4. SNN baseline performance versus method on TEST-SIM with loose
selection and JLA-like cuts.

Method Balanced accuracy Efficiency Purity
with loose selection cuts
Single model 98.61 £0.03 99.61 £0.02  99.43 +£0.02
Ensemble (prob. av.) 98.69 £ 0.01 99.68 £0.01  99.45 4+ 0.005
+ JLA-like cuts
Single model 98.26 £ 0.06 99.81 +0.01 99.7 +0.01
Ensemble (prob. av.) 98.36 + 0.01 99.86 +0.01 99.71 + 0.005

see Moller & de Boissiere 2019). We train our models using
using 20 percent of the S-TRAIN-SIM simulations (280033 light
curves). We modify: batch size (128, 512), dropout (0.05, 0.1, 0.2),
bidirectional (True, False), hidden dimensions (32, 64, 128), number
of layers (2,3,4), two learning policies (cyclic and non-cyclic), and
different cyclic phases when using cyclic ([5, 10, 15], [20, 40, 60]).
We find that the accuracy in different configurations varies up to
~ 2 per cent. We find that deeper (3 or 4 layers) and wider networks
(up to 64 hidden dimensions) result in the biggest changes to the
accuracy. This reflects the increasing complexity of the classification
task with updated SN templates. Our chosen configuration for S-
TRAIN-SIM is: batch size 512, dropout 0.05, bidirectional network,
64 hidden dimensions, 4 layers, and non-cyclic learning policy. Using
the whole S-TRAIN-SIM data set with this new configuration, the
classification accuracy rises to 98.10 % 0.06 per cent.

3.5 SNN trained models for DES-SN 5-yr analysis

In the following, we use SNNmodels trained with a larger data set to
improve classification accuracy, TRAIN-SIM, and the best configura-
tion of SNNfound in the previous section. We increase the batch size
to 1024 for efficient resource allocation. The larger simulation and
optimized hyperparameters provide a better classification accuracy
with accuracies above 98 per cent as shown in Table 3. Accuracies
are computed with a balanced test set, where half of the candidates
are SNe Ia and half are non-Ia SNe.

To evaluate the accuracy, efficiency, and purity of our photometric
samples, we estimate the performance of our models in the indepen-
dent TEST-SIM. This simulation is not balanced and thus reflect the
relative rate between SN types. We present performance metrics for
different levels of selection cuts in Table 4. We highlight that we
provide the balanced accuracy which shows that after the JLA-like
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cuts, the remaining non-Ia SNe are harder to disentangle. A thorough
analysis on systematics linked to this classification method can be
found in Vincenzi et al. (2022).

In this work, the traditional classification method is named
‘single model’. This method represents classifications done using
probabilities obtained from one SNN trained model with a single
seed. In the following, we provide a mean value and uncertainty
on the metric or classified sample of the ‘single model’ method by
taking the probabilities obtained with 5 models trained with different
seeds. These probabilities are then used to compute the mean and
standard deviation of the metrics listed in Table 3.

3.5.1 Ensemble methods

For cosmology, we aim to have a classification method that is not
highly sensitive to statistical fluctuations in the model and training
data set. In ML, ensemble methods have been shown obtain more
robust predictions (Dietterich 2000; Lakshminarayanan, Pritzel &
Blundell 2017) and have been introduced for regression in astron-
omy (Carrasco Kind & Brunner 2014; Kim, Brunner & Carrasco
Kind 2015). To produce ensemble classifications, predictions from
multiple models are combined. This can be viewed as a mechanism
of Bayesian marginalization (Wilson & Izmailov 2020; Izmailov
et al. 2021) and an alternative to Bayesian Neural Networks using
Variational Inference explored in Section 5.

We explore two possible ensemble methods: ‘probability averag-
ing’ and ‘target averaging’. Probability averaging uses the probability
scores and averages them to select light curves that are above
the 0.5 probability threshold of being SN Ia. The ‘target average’
method averages the predictions and selects the most common one.
Uncertainties are computed using the standard deviation of the metric
for three different sets of five models with different seeds.

‘We find that ensemble methods increase the accuracy and purity &
0.1 per cent from just using one model prediction, or ‘single model’,
as can be seen in Table 3. We find a 99.4 per cent overlap between
photometrically selected Type la SNe using both the ensemble and
single model methods. In the following, we will use the ‘probability
average’ from different models as our ensemble method.

Each ensemble in this work is obtained using the predictions of
5 models trained with different seeds, also called an ‘ensemble set’.
To study the performance of ensemble methods, we compute metrics
using the output of 3 ensemble sets, quoting their mean and standard
deviation.

3.5.2 Generalization

In this Section, we verify the ability of our trained models to classify
data generated using different simulation templates. This is called
generalization and showcases the adaptation of our SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with
simulations generated using SNe Ia, peculiar SNe and the V19 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as J17 or SPCC. We observe a decrease
of < 0.5 per cent in accuracy, which shows that our V19 trained
models generalize well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average
reduces the loss in accuracy due to changes in the data by 0.2 per cent
relative to the single model. This is expected as ensemble methods
are usually more robust and thus generalize better than single models.
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3.6 Bayesian Neural Networks (BNNs)

In scientific analyses using machine-learning outputs, it is important
to evaluate the reliability of a model’s predictions, expressed through
uncertainties. Uncertainties can be divided into: Aleatoric, usually
linked to measurement uncertainties (e.g. noise or other effects of
data acquisition); Epistemic or model uncertainty, which encom-
passes uncertainties in the training set and NN architecture.

In this section, we introduce BNNs which are a promising method
to provide uncertainties reflecting the model’s confidence on the
prediction.

To compute uncertainties, we obtain different classification prob-
abilities for a given input and evaluate their variance. In NNs, this
is equivalent to finding a posterior distribution of weights. Typically,
this posterior distribution is intractable for deep neural networks, thus
different methods have been developed to approximate it. A review
on BNNSs, approximation methods and their use in astronomy can be
found in Charnock, Perreault-Levasseur & Lanusse (2020).

In this Section, we use two BNN implementations approximating
the posterior distribution of weights: MC dropout (Gal & Ghahramani
2016) and Bayes by Backprop (Fortunato, Blundell & Vinyals 2017).
MC dropout (MC in the following) provides a Bayesian interpretation
by using the same dropout mask at the different NN layers including
the recurrent ones (each time-step). Bayes by Backprop (BBB in the
following) learns a posterior distribution of weights which can then
be sampled. Both methods have been previously implemented and
tested on simulations in SNN (Moller & de Boissiere 2019).

3.6.1 BNN classification probabilities and uncertainties

For both methods, to obtain the classification probability distribution,
we sample the predictions from our BNN 50 times. This sampling
number is also known as the number of inference samples, n,. In the
following we compute the classification probability, P; for a given
light curve, x; as the mean of sampled probabilities:

1 e
Pl»:— i(X; N 1
o ,;p,(m )

where j € [1, n] is the index of inference samples, p;(x;) is the ™
sample of the classification probability distribution for the light-curve
X;.

We compute the classification probability uncertainty for a given
light-curve x; as the standard deviation of sampled probabilities:

_ 1 | 2

0; = . 2:1 (pix)— Pi)", )
j=

where j € [1, ng] is the index of inference samples, p;(x;) is

a classification probability for the given light-curve x; for each

inference sample j, and P; is given by equation (1).

3.6.2 BNN trained models

Using the TRAIN-SIM simulations we train the two Bayesian
models, MC and BBB, for light-curve classification with host galaxy
redshifts. Both methods obtain high classification accuracies for the
ensemble probability average method, 98.33 £0.01 and 98.11 £ 0.01
for MC dropout and BBB, respectively. Balanced accuracies are
slightly lower than the ensemble method in Table 3. These may be
improved by adjusting of the hyperparameters. We choose to keep the
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Table 5. Performance metrics of BNNs evaluated using TEST-SIM simu-
lations with JLA-like cuts. These simulations are indicative of the expected
purity and efficiency of our photometrically classified samples.

Method Accuracy Efficiency Purity
MC with JLA-like cuts

Single model 98.01 £ 0.03 9841 + 0.03  97.63 £ 0.07

Ensemble (prob. av.) 98.11 £ 0.01 9851 £ 0.06  97.73 £ 0.05
BBB with JLA-like cuts

Single model 98.01 £ 0.03 9841 £+ 0.03  97.63 £ 0.07

Ensemble (prob. av.) 98.11 £ 0.01 9851 £ 0.06  97.73 £+ 0.05

current configuration and focus on the behaviour of the classification
uncertainties.

Traditionally, BNNs are not used in ensembles, combining pre-
dictions by different models. To do so, ideally, the probability
distributions for each model in the ensemble set should be con-
catenated into a ‘joint probability distribution’. Then, the ensemble
classification probability would be computed using equation (1)
sampling 7, times the ‘joint probability distribution’. However, this
can be computationally expensive. Using TEST-SIM simulations,
we find that averaging the mean probability obtained for each
model in the ensemble set is a close approximation of the one
obtained using ‘joint probability distribution’. We find that the
differences between probabilities using the approximation and the
‘joint distribution’ are centred at 0.00 £ 0.01 and accuracies change
by less than 0.1 per cent. We use this approximation in the following
for computational efficiency.

We also test approximating ensemble uncertainties as the sum
of uncertainties from each model in the ensemble set assuming
the covariance between models is zero. We find on average that
the uncertainties obtained with this approximation and from the
‘joint probability distribution’ are similar. However, we note that
the approximation for the BBB method has a larger dispersion than
the one for the MC method. We will evaluate the potential use of
BNN classification uncertainties in Section 6.2.

We use TEST-SIM to evaluate the expected metrics for our
photometrically classified samples with JLA-like cuts in Table 5. The
samples obtained with BNNs have less than 3 per cent contamination
but that is higher than our Baseline DES-SNIa samples with JLA-
like cuts. BNN performance could be eventually be improved with
a different network configuration and initialization. However, for
comparison we keep this architecture for the analysis in Section 5.

4 DES-SN 5-YR PHOTOMETRICALLY
CLASSIFIED SNE IA

In this Section, we photometrically classify DES-SN 5-yr candidates
with host spectroscopic redshifts using our baseline RNN trained in
Section 3.5.

First, we classify candidates that pass loose cuts using SNN trained
with host galaxy redshifts in Section 4.1. We further constrain the
sample using JLA-like cuts and visual inspection in Section 4.2. We
discuss possible contamination of this sample in Section 4.3 and its
classification efficiency in Section 4.4. We summarize the properties
of the baseline photometrically classified SN Ia sample with JLA-like
cuts in Section 4.5.

4.1 Photometric classification

We use our baseline RNN model to select photometrically clas-
sified SNe Ia. We show the number of selected light curves in
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Table 6. DES-SNIa photometric samples with different selection cuts. In the
last row, we define the Baseline DES-SNIa sample using a single ensemble
set probability threshold. Columns indicate: the number of photometrically
selected SNe Ia and the number of spectroscopically classified SNe Ia
contained in that sample.

+ JLA-like cuts
photoIa  spec Ila

Loose selection cuts

Method photola  specla

1861717 35373 1478%)% 32013
Ensemble (prob. av.) 18673 354 148272 321%)
Baseline DES-SNIa sample 1863 354 1484 321

Single model

Table 6 and their overlap with spectroscopic SN samples defined in
Section 2.

As shown in Sections 3.5.1 and 3.5.2, ensemble methods provide
more robust predictions than single model methods. We select our
Baseline SNe Ia sample using the ‘probability average’ method and
the cosmo_quantile norm. This normalization is more robust towards
photometry outliers present in our analysis. We note that the overlap
between cosmo and cosmo_quantile probability average sample is
larger than 98 per cent and between cosmo_quantile probability
average and single model samples is larger than 99 per cent.

Our Baseline DES-SNIa sample contains 1863 photometrically
identified SNe Ia passing loose selection cuts. In this sample, 12
spectroscopically classified SNe Ia are not selected, representing
less than 1 per cent of the photometric sample. We do not find a
particular redshift or SALT?2 parameter preference for these lost SNe
Ia. Visual inspection reveals some light curves have variable quality
photometry which could contribute to the misclassification.

The baseline sample with loose selection cuts can be used to
study astrophysical properties of SNe Ia like correlations with their
host galaxies, diversity, and rates. In the following, we further
constrain this sample with cosmology-grade cuts as in Vincenzi et al.
(2022).

4.2 Cuts towards a cosmology sample (JLA-like)

We further constrain our sample by applying selection cuts based on
SALT?2 light-curve fits and redshift quality.

First, we implement additional requirements on the fitted SALT2
parameters of the photometrically selected SNe Ia. As in Vincenzi
et al. (2022), we implement the JLA-like SALT2 cuts from the
Joint Light-curve Analysis (Betoule et al. 2014) introduced in
Section 2.3.2. Secondly, we select only candidates which have a
high-precision spectroscopic redshift. We eliminate those candidates
that have redshifts provided by PRIMUS since the spectra are of
lower resolution, more prone to catastrophic failures and not high-
quality enough for cosmology analysis.

The results of these cuts in the photometrically selected samples
are shown in Table 6. We highlight that the JLA-like cuts reduce the
scatter in the number of SNe, as can be seen by the reduced standard
deviation in the table when compared to the sample without JLA-like
cuts. We obtain a Baseline DES-SNIa sample with JLA-like cuts of
1484 photometrically classified SNe Ia. The missing spectroscopic
SNe Ia are found to be redder in average and at all redshifts with a
median around 0.5.

A summary of the selection criteria used to obtain this sample can
be found in Table 7. General properties of these samples are further
studied in Section 4.5.
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4.3 Contamination

As shown in Vincenzi et al. (2022) and in Table 4 contamination
from core-collapse and peculiar SNe in a SNN classified sample
with quality cuts is expected to be less than 1 per cent. This estimate
was obtained using SN simulations containing various types of
core-collapse and peculiar SNe. We inspect the Baseline DES-SNIa
sample with JLA-like cuts obtained in the previous section and do not
find any spectroscopically identified core-collapse or peculiar SNe.
We note that spectroscopic samples are not complete and DES-SN
follow-up preferentially targeted suspected Type Ia SNe.

In this section, we explore a different type of potential con-
taminant, ‘out-of-distribution’ candidates such as AGNs and other
unknown transients. These candidates can be erroneously classified
since they are not present in the simulated training sample and thus
we do not know how SNNclassifies them.

We find no spectroscopically identified AGN, SLSNe, or other SN
spectral types in our Baseline DES-SNIa sample but 5 candidates
with host spectra showing AGN features. We find that DES16E2nb,
DES16X1ext, DES13X3dbe are displaced by more than 1 arcsec
from the centre of the galaxy (additionally DES16E2nb is a spec-
troscopic Type Ia SN) and the other two candidates are displaced
between 0.5 and 1 arcsec. At these separations, the light curves
from these candidates are not dominated by the AGNs which we
confirm by inspection of the light curves. Therefore we keep these
photometrically selected SNe Ia in our Baseline DES-SNIa sample.

We also perform visual inspection of the light-curves in the
Baseline DES sample. We find three candidates that can be visually
tagged as multiseason visually: DES16E2nb a spectroscopic SN Ia
with close by AGN, DES16C3nd two SN la in a galaxy (Scolnic
et al. 2020), DES14E2rpm a spectroscopic SN Ia with a fake SN
inserted at the same coordinates (fakes were inserted to evaluate the
detection efficiency in DES-SN images, see Brout et al. 2019).We
keep all these candidates since they are real supernovae with fake or
other SN light curves that do not overlap.

Photometrically classified Type Ia SNe samples are expected to
have some level of contamination from core-collapse and peculiar
SNe and possibly by other transients. For the Baseline DES-SNIa
sample in this work we find no clear evidence of contamination from
core-collapse and peculiar SNe or long-term variables such as AGNs.

4.4 Classification efficiency

Traditionally, in cosmology analyses using spectroscopically classi-
fied SNe samples, modelling selection effects is crucial to estimate
biases and systematic uncertainties.

Selection effects arise from a combination of SN detection and
other effects. They are usually modelled as an efficiency with respect
of an observed magnitude. For host galaxy selection, Vincenzi et al.
(2020) use the host galaxy r band magnitude, m"®. For spectroscopic
classification, Smith et al. (2020) and Kessler et al. (2019b) use the
modelled supernova peak magnitude in the i band, 7. computed
from the best-fitting SALT2.

To determine if there is a selection efficiency decrease due to
photometric classification, we inspect the differences between the
peak observed magnitude in the i band of our Baseline DES-SNIa
sample compared to simulated SNe Ia in DES-SN 5-yr in Fig. 2.
Our Baseline DES-SNIa photometric sample follows the expected
SN Ia peak magnitude distribution from simulations but we find an
excess on the maximum magnitude with a reduced x? = 2.1. We do
not find evidence for additional selection efficiency effects from the
photometric classification procedure.
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Table 7. Effect of the selection cuts on the candidate sample. We show results for the shallow and deep fields, as well as the total
number. Note that some events belong to both shallow and deep fields due to field overlap. Columns show the cut, the number of selected
candidates, the number of spectroscopic SN Ia in the sample and the Section where the sample is described.

Cut Shallow Deep Total
Selected spec la Selected spec la Selected spec la Section

DES-SN 5-yr candidate sample 29203 415 7500 93 31636 415 2.1
Multi-season 13868 405 4428 88 14070 405 2.2
Redshifts in 0.05 <z < 1.3 6556 401 1812 85 6590 401 23.1
SALT?2 loose selection 2380 366 698 77 2381 366 2.3.1
RNN>0.5 (Baseline DES-SNIa) 1863 354 502 76 1863 354 4.1
JLA-like (Baseline DES-SNIa JLA) 1484 321 408 73 1484 321 4.2
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Figure 2. Distributions of redshift, SALT2 x1, SALT2 c, and peak magnitude in i band ipeqx for our Baseline DES-SNIa sample from Section 4 for the shallow
(yellow) and deep (maroon) fields. We show one simulated realization of DES-SN 5-yr sample. Poisson uncertainties are assumed. Both the simulation and data
pass JLA-like cuts. The goodness of fit for each histogram is shown as the x 2/number of bins on each plot.

4.5 Colour and stretch evolution

We study the properties of the Baseline DES-SNIa sample with JLA-
like cuts and compare it to that expected from realistic simulations.
In Section 4.4, we found that the effects of classification efficiency
are negligible, thus we do not correct for this efficiency and
use simulations including only detection and host galaxy redshift
efficiency introduced in Section 3.2.

Fig. 2 shows the redshift zHD and SALT2 fitted colour c,
stretch x; and ijeq¢ distributions for the DES-SNIa 5-yr photometric
sample classified using host galaxy redshifts. Fig. 2 also shows one
realization of a DES-SN 5-yr simulated SNe la. Uncertainties are
calculated as the square-root of the number of candidates per bin.
There is decent agreement between the simulation and data, although
the reduced x? are somewhat larger than expected from statistical
fluctuations.

In Fig. 3, we show the redshift evolution of our sample’s colour
and stretch. Our baseline sample matches the trends expected from
the simulation. Although there are some slight differences outside
the 68 per cent simulation contour (equivalent to 1o for a Gaussian
distribution) in particular for the shallow fields.

These differences might result from the small number of can-
didates (the last two redshift bins have only 24 and 16 SNe Ia),
unaccounted classification contamination, unaccounted selection
effects or whether there is redshift evolution in the intrinsic SN
population (Scolnic & Kessler 2016; Nicolas et al. 2021; Popovic
et al. 2021) or the effect of dust needs to be introduced (Jha, Riess &
Kirshner 2007; Mandel, Narayan & Kirshner 2011; Mandel et al.
2017; Brout & Scolnic 2021). The optimization of the simulation
and systematics studies is outside the scope of this work.

We now turn to select other photometric samples using the novel
Bayesian Neural Networks and explore their possible use.
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Figure 3. Redshift dependence of SALT2 ¢ and x; for he Baseline DES-SNIa photometric sample and simulated SNe Ia for shallow (yellow, left) and deep
(right, maroon) fields using the DES-SN host galaxy spectroscopic efficiency (Vincenzi et al. 2020) both with JLA-like cuts. For the simulation, orange lines are
rolling averages of the measured parameters, in grey 150 realizations of SNe Ia in the DES-SN 5-yr survey and in solid grey the area covered by the 68 per cent
of these realizations. The mean and the standard deviation are shown for data using black markers.

5 PHOTOMETRICALLY CLASSIFIED SNE IA
WITH BAYESIAN NEURAL NETWORKS

In this section we explore the use of BNNs for classification. While
the accuracy of these Networks is equivalent to the baseline RNN
used in Section 4, BNNs also provide classification uncertainties.

We first obtain photometric samples using two BNN schemes
(MC and BBB, Section 5.1). We then evaluate the classification
uncertainties from BNNs (Section 5.2), and summarize our findings
(Section 5.3).

5.1 BNN photometric sample

We apply our BNN trained models to candidates passing loose and
JLA-like cuts introduced Sections 2.3.1 and 2.3.2. This candidate
sample contains 1701 light curves that are then photometrically
classified, as shown in Table 8.

Using BNN probabilities, the average probability ensemble
method and a threshold of P larger than 0.5, we obtain about
3 per cent more candidates than our Baseline DES-SNIa sample with
JLA-like cuts in Table 6 for both BNN methods. The additional
BNN selected supernovae, 52 MC and 51 BBB, have distributions of
colour, stretch, and redshifts that are representative of the Baseline
DES-SNIa sample selected using the RNN models (Section 4). We
find that 1 and 6 SNe la in the Baseline DES-SNIa sample are not
selected by MC and BBB methods. These missing SNe Ia have red
colours and are at median redshifts close to 0.5. The BNN samples
are thus probing a similar parameter space to the Baseline DES-SNIa
sample.

As in the previous sample, we find no spectroscopically identified
AGNSs, SLSNe, or other SN spectral types in our BNN photometric
sample. We find the same 5 candidates with nearby spectra showing
AGN features which are kept due to their large enough separation
>0.5 arcsec, with the AGNs. In a cosmological sample, however,
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these candidates will be eliminated due to possible issues with the
measured photometry.

5.2 BNN uncertainties

In this Section we try to interpret which types of uncertainties are
captured in the outputs of the BNN model: aleatoric or epistemic.
BNNs provide classification probability distributions that a priori
indicate a confidence level on the prediction. These uncertainties are
shown in Fig. 1 for each classification step. Here, we only evaluate
the final uncertainty (final time-step) for each event.

In Fig. 4, we show the distribution of classification uncertainties
for different samples. We compare the uncertainties derived from
the data and from simulations. For most samples, the simulation
and data uncertainty distributions are similar. This indicates that the
simulations and data resemble closely after JLA-like cuts. However,
a large difference is found where there is no selection cut which is
further explored in Section 6.2.

Both BNN methods provide different order of magnitude of
uncertainties estimates and distribution of mean uncertainties (e.g.
BBB is more clustered in low uncertainty regions), possibly due to
initialization parameters or intrinsic properties of the method. Ac-
counting for those differences is not straight-forward, see Moller &
de Boissiere (2019) for a discussion on this topic.

We compare BNN uncertainties as a function of light-curves
properties in Fig. 5. We find that MC dropout and BBB exhibit
different behaviours for both data and simulations.

We find both indications in favour (+) and against (—) interpreta-
tion of classification uncertainties as a particular type:

a. aleatoric uncertainty: linked to measurement uncertainties
(+) classification uncertainties are correlated to SNR in data. Bright
candidates and those with higher quality light curves have on average
smaller classification uncertainties for both BNNs.
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Figure 4. Classification uncertainties obtained for BNN ensemble models.
Columns indicate which sample is used. For each event in a given sample,
we obtain their classification uncertainties from the two BNN methods, MC
and BBB (orange and blue, respectively). We show median uncertainties for
data in circles for: all DES-SN 5-yr data (no selection cuts), and Baseline
BNN SNIa samples with JLA-like cuts. For comparison, we show in squares
the median uncertainties obtained for the whole simulation (first column) and
simulated photometric samples with JLA-like cuts (second column). For both
the data and simulations, we show as errorbars the extent of the 68 per cent of
the distribution. The different behaviour of simulated MC uncertainties and
that of DES-SN 5-yr candidate sample is further studied in Fig. 7.

(—) this correlation is not seen in the simulations for any of the
BNNs.

b. epistemic uncertainty: linked to training sets or model
(+) Large uncertainties are more prevalent in classification proba-
bilities far from 1 (high probability of being a SN Ia) and 0 (low
probability of being SN Ia) for both simulations and DES-SN 5-yr
data.
(—) candidates that fulfil selection cuts should more closely resemble
simulated SNe Ia, thus it is puzzling the increase on median
uncertainty when applying cuts in particular for the MC method
(see Fig. 4).

These various behaviour highlights the challenges on quantifying
uncertainties in complex problems such as astronomical data clas-
sification. In Appendix A, we explore further correlations between
classification uncertainties and SALT?2 fit light-curve properties.

We continue exploring the interpretability of the BNNs uncer-
tainties by adding a threshold on the uncertainties for SNIa sample
selection, as in Moller & de Boissiere (2019) and more recently
in Butter et al. (2022). We note that establishing a threshold for
uncertainties is not straight-forward. While the whole probability
distribution has a calibration that can be verified using diagnostic
as reliability diagrams (DeGroot & Fienberg 1983; Moller & de
Boissiere 2019), the probability uncertainties do not. We chose
to eliminate candidates with the highest uncertainties (eliminating
candidates that are outside of 99 percentile of the uncertainty
distribution). This cut rejects candidates that were in the RNN
sample: 12 for the MC model and 45 for BBB. These candidates are
not found to be distributed preferentially in a c, x, or redshift. We
visually inspect these light-curves and found that a large proportion
have photometry that are outliers.

5.3 BNN photometric sample contribution

The SNIa samples obtained using BNN methods are found to be
similar to the one provided by our Baseline DES-SNIa sample
in Section 4. We evaluate BNN uncertainties and show that they
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are consistent between simulations and data in average after JLA-
like cuts, showing a good agreement between data and simulation
predictions. However, BNN uncertainties are difficult to interpret and
assess quantitatively (e.g. assigning an uncertainty threshold).

We find that uncertainties exhibit different behaviours in the two
BNN methods and between data and simulations. While the higher
uncertainties in the MC BNN method for the data could point
towards the presence of out-of-distribution candidates, the evidence
is not conclusive and is not seen in the BBB method. We will
further explore the possible contribution of BNNs in photometric
classification without any selection cuts in Section 6.2.

Cuts on uncertainty values potentially improve our photometric
SNIa samples by rejecting candidates with photometry that contains
outliers. These is a promising avenue shown to improve the quality
of samples, both in quality of the data and rejection of out-of-
distribution events, in previous work using simulations Moller &
de Boissiere (2019) and more recently with astronomical data in
Butter et al. (2022).

6 FROM DES TO RUBIN OBSERVATORY LSST

For the LSST survey, where up 107 SNe will be detected over 10 yr,
photometric classification will become increasingly important.

In this work, we have presented different methods for photometric
classification with redshift information. We compare the samples
obtained with these different methods in Section 6.1 and explore
possible applications of Bayesian Neural Networks in future surveys,
such as LSST, in Section 6.2.

6.1 DES-SNIa photometric samples

The DES-SN 5-yr data contains thousands of potential SNe Ia. We
show in Table 7 the different steps used in this work to obtain our
Baseline DES-SNIa JLA sample from the DES-SN 5-yr candidate
sample. Cuts applied before photometric classification reduce the
candidate sample by 90 per cent. Photometric classification and JLA-
like cuts refine the sample with a small 20 per cent reduction. While
this reduction is small, it reduces contamination from ~ 10 per cent
to below 1.4 percent, as shown in Vincenzi et al. (2022) and in
Section 4.

In addition to our Baseline DES-SNIa sample classified using
RNN probabilities, we have explored identifying samples with
Bayesian Neural Networks. We compare these samples with with
the preliminary DES-SN 5-yr spectroscopically classified SNe Ia
sample in Fig. 6. As expected, we find that photometric samples
using RNNs or BNNs provide larger numbers of SNe Ia than the
spectroscopic sample, probing a larger parameter space. We do not
find a substantial difference in the parameter distributions between
different photometric classification methods.

We highlight that the photometric samples peak at fainter mag-
nitudes and higher redshifts than the preliminary DES-SN 5-year
spectroscopic SNe Ia sample.This has the potential to reduce selec-
tion biases and opens the possibility of stronger statistical analyses
with the large numbers of SNe Ia. This will also be true for the
immense SN samples obtained with LSST.

6.2 Bayesian Neural Networks as a proxy

Introduced as a promising method to quantify model uncertainties,
BNNs have not yet been widely used in classification tasks. In
Section 5, we have shown the difficulties for uncertainty interpre-
tation given the different uncertainty values for the BNN methods.
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Table 8. Photometric classification of light-curves with Bayesian Neural
Networks. Columns indicate: the number of photometrically selected events
and the number of spectroscopic SNe Ia contained in that sample. We show
these samples with JLA-like SALT2 cuts as in Section 4.2 and when adding
a cut in the BNN classification uncertainty.

+ JLA-like +JLA-like + unc

Method photo Ia spec la photo Ia spec la
MC dropout
Single model 15327 3357 151375 3337
Ensemble (prob. av.) 153573 33670 152073 33310
Baseline MC sample 1535 336 1520 333
BBB

Single model 152678 3347} 148713 32872
Ensemble (prob. av.) 15287} 3357, 148379 3247}
Baseline BBB 1529 336 1483 324
sample

However, a potential use could be rejecting candidates with large
uncertainties, as they sometimes have light curves with photometry
outliers.

Here, we explore other possible uses of BNN uncertainties, using
samples that have not been constrained with selection cuts. We aim
to answer two questions: (i) can BNN uncertainties be used as an
indicator of the representativity of the training set for a given data
set? (ii) can BNN uncertainties replace selection cuts? We address
these questions in Sections 6.2.1 and 6.2.2, respectively. The former
could be useful to choose the set of SED templates to simulate a
survey. As some selection cuts require feature extraction, the latter
could be valuable to avoid this time-consuming process by using
instead classification uncertainties from non-parametric classifiers
as SNN.
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6.2.1 BNNs uncertainties versus simulation representativity

First, we use simulations to assess the expected behaviour of
uncertainties when training sets are not representative of the testing
data.

‘We examine how the uncertainties change when using the trained
model in Section 3.6.2 and applied to individual simulations with
normal Type Ia supernovae and core-collapse SNe generated with
the V19, SPCC and J17 templates. We expect that the trained model
is representative of the V19 simulation. This will not be true for J17
and SPCC.

We find that both the single seed and ensemble methods have
accuracies which decrease for J17 and SPCC simulations by
~ (.5 per cent for both types of BNNs. We see an increase in
the mean model uncertainty on classified light curves generated
with J17 and SPCC, however this change is within uncertain-
ties. For both BNNs we find a longer and more significant
tail for the uncertainty distributions when classifying J17 and
SPCC simulations (ending at ~0.4-0.43 compared to ~0.35 for
V19).

Next, we compare uncertainties when classifying DES-SN 5-yr
data with independent BNN models trained with the V19, J17, and
SPCC simulations. We find that the mean model uncertainty increases
for SPCC and J17 classification models for MC dropout but not for
BBB SPCC model but again within uncertainties. The tail of the
uncertainties varies between ~0.40 and 0.47 for all classification
models. We see a longer tail for the uncertainty distributions for
BBB but not for MC SPCC classification.

In summary, we do not find strong evidence of BNN uncertain-
ties being sensitive to models trained with different core-collapse
templates. There is a small but inconclusive tendency to increase
uncertainties for J17 and SPCC in simulations. While these templates
are different, the changes may be too small to be captured by BNN
uncertainties.
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6.2.2 BNN uncertainties as a proxy for selection cuts?

We further study the distribution of classification uncertainties for
samples selected with different cuts.

First, we check the behaviour of uncertainties with simulations.
Uncertainties are distributed with a peak at low values and a
decreasing long tail. We find that as the sample is refined through
cuts in redshift, SALT2 convergence, and others, the maximum
uncertainty is reduced. For example, if the simulated sample passes
loose selection cuts and then a JLA-like cut is applied, the maximum
uncertainty in the distribution reduces from 0.37 to 0.26 in MC
dropout and from 0.34 to 0.25 in BBB. We do not find a significant
change in the median distribution since it is dominated by small
uncertainty values.

For the DES-SN 5-yr data we show the distribution of classification
uncertainties in Fig. 7 with different selection cuts (see Section 2.3.1).
As selection cuts are applied, the maximum uncertainties reduces for
both methods as in simulations.

We highlight an interesting behaviour seen for MC dropout
classification uncertainties. We find that this method assigns high
uncertainties to candidates that do not have a secured redshift and
candidates that are filtered with the multiseason cut. While the model
was trained to use host galaxy redshifts, it can provide a classification
for objects using a default value provided, here an assigned redshift of
—9. While these candidates are clearly outliers (the redshift provided
for classification is —9) and can be eliminated using simple cuts, this
could indicate that MC dropout uncertainties are indicative of out-of-
distribution candidates. Importantly, many of these high-uncertainty
candidates are classified with probability larger than 0.5 which,
without selection cuts, would end up in our photometric sample
if no selection cuts were applied. We do not see this behaviour in the
BBB model.

The multiseason veto and redshift availability cut effectively
eliminates the light curves producing the high-uncertainty peak for
MC dropout. After these cuts, the most impactful cut for higher
uncertainties is linked to the SALT and JLA quality cuts. This is not
surprising since these cuts restrict the SN properties range to the ones
for normal SNe Ia.

In summary, we find that BNN methods behave differently when
classifying out-of-distribution candidates defined as light curves
without redshift. Interestingly, the high-uncertainty peak found for
the MC dropout method in Fig. 7 reflects a possible interpretability
of these uncertainties. This interpretability could help to quickly
identify the presence of anomalies in the data set which were not in
the training sets of the model.

For current surveys, our candidate samples are small enough to
easily identify out-of-distribution events using feature distributions.
However, for future surveys such as Rubin LSST this may prove
difficult given the expected detection of 10 million transient can-
didates per night. Here we find that BNN uncertainties from MC
dropout scheme can provide an indication whether there are out-of-
distribution events in a given candidate sample and further selection
cuts may be required.

7 CONCLUSIONS

In this work we train Type Ia versus non Ia classification models using
large realistic DES-like simulations and apply them to DES-SN 5-yr
data.

We introduce pre-processing of DES-SN light curves for accurate
photometric classification. This includes selection of light curve
time-span, photometry quality cuts, and selection cuts to limit out-
of-distribution candidates that are not included in the training set
(e.g. AGNs).

We present samples classified with host galaxy redshifts using
SNNRecurrent Neural Networks and explore the use of Bayesian
Neural Networks. We introduce the use of ensemble predictions for
SN classification. We find that selecting SNe using an ensemble of
models is more robust and stable than any single model.

Using host galaxy spectroscopic redshifts, we select a Baseline
DES-SNIa sample of 1863 photometrically identified Type Ia SNe.
This sample can be used for astrophysical studies of the properties of
SNe Ia and their environments. For cosmology, we apply JLA-like
cuts and select 1484 photometrically classified SNe la. This sample is
more than three times larger than the DES-SN 5-yr spectroscopically
confirmed SN Ia sample and covers a larger redshift range. Most of
the spectroscopically identified SNe Ia in DES-SN are included in
this photometric sample. These 1484 photometrically identified SNe
Ia are currently the largest single-survey high-quality SN Ia sample
and is being used for studies such as rates and SNe la host-galaxy
properties.

We find that the properties of the SNe la in our Baseline DES-
Ia sample are reproduced in the simulations. We anticipate that
with further refinements (improved host galaxy libraries and more
accurate dust models), the agreement between the simulations and
the data will improve.

Additionally, we explore the use of uncertainties provided by
Bayesian Neural Networks for identifying out-of-distribution can-
didates and defining representative training sets. We highlight some
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of the BNN npitfalls and the difficulty of comparing classification
uncertainties between variational inference methods. We find that
the MC dropout BNN provides potentially interpretable uncertainties
for out-of-distribution event detection and improving the photometric
sample. This work is the first known application of two BNN methods
on real astrophysical data for classification tasks.

This work is part of the DES-SN 5-yr cosmology analysis. We have
optimized simulations, the SNNarchitecture, as well as developed
data pre-processing methods. These methods are a revision from
those presented in Vincenzi et al. (2022) where contamination is
found to be less than 1.4 per cent for photometrically classified sam-
ples. We find that photometric quality is key for robust classification,
and an improved sample can be expected from using high-quality
Scene Modelling Photometry (Brout et al. 2019).

For future surveys such as LSST, photometric classification will
be key to fully harness the power of these surveys. Photometric clas-
sification with host redshift information will enable using large, low-
contamination, high-quality samples for measuring cosmological
parameters. Potentially, MC BNN could provide useful information
to filter transient samples in large surveys. Extensions to this work
include photometric classification without redshift, which will assist
in the allocation of follow-up resources for host galaxy redshift
acquisition (such as Time-Domain Extragalactic Survey TiDES;
Frohmaier et al. in preparation; Swann et al. 2019) and for other
astrophysical studies.
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APPENDIX A: UNCERTAINTIES AND FITTED
PARAMETERS

In Section 5.2, we explored the interpretability of BNN uncertainties.
We concluded that this interpretation was not straight forward from
our results. Here, we extend this discussion by exploring possible
correlations with other light-curve properties derived from a SALT2
fitin Fig. Al.

In general, we find that uncertainties tend to be larger for the data
when compared with simulations. The uncertainties in BBB method
varies more with the parameters.

We note that the classification uncertainties are large for red and
high stretch SNe in the DES 5-yr sample. The median classification
probability is also lower for these candidates. If the uncertainties are
epistemic due to a smaller training set, then they would be large for
the ends of the normal SNe la SALT2 parameter distributions since

training sets have fewer such candidates. However, we do not
find this behaviour. Another possible effect could be that bluer SNe
Ia are more easily standardizable as previous literature suggests
and thus their classification is more robust (Brout & Scolnic 2021;
Kelsey et al. 2021). However, as this tendency is only observed in
data and not simulations, no conclusion can be confidently drawn.

The peak magnitude in i-band behaviour in data agrees with that
of the SNR of the light curve. Brighter candidates are classified with
higher confidence than fainter ones. However, as in the previous
Section we do not see such a behaviour in the simulation.

While the correlation between supernova properties and classifi-
cation uncertainties are interesting to explore, they are difficult to
interpret since multiple effects could be contributing to the uncer-
tainties. Tests based on simple physical systems could provide hints
towards further interpretability, such as recent work by Caldeira &
Nord (2020).

APPENDIX B: DES 5-YR PHOTOMETRICALLY
SELECTED SNE IA

A table with photometrically classified SNe Ia from all selection
methods with their respective probabilities for a subsample of DES
5-yr data is provided at https://doi.org/10.5281/zenodo.5904368.
Samples are selected using P larger than 0.5 for each method plus
selection cuts.

MC dropout

._.
=
L

1073

.

Bayes by Backprop

1071

._.
=
Y

,_.
S
&

L 4

classification uncertainty classification uncertainty
—
<
b

5 10 15
SNRMAX3

jpeak

classification probability

0.0 0.2 0.4

0.6 0.8 1.0
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