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INTRODUCTION
Iron is an essential micronutrient for intra-

cellular processes, and in many macronutrient-
replete oceanic regions (high nutrient, low chlo-
rophyll [HNLC]), primary production is limited 
by the availability of Fe (Martin, 1990). Conse-
quently, the supply of Fe to HNLC regions has 
been proposed as a major contributing factor to 
the regulation of carbon drawdown on glacial 
to interglacial time scales (Martin et al., 1990). 
Much of the Fe input in HNLC regions has 
commonly been attributed to aerosol deposi-
tion and dissolution, but, increasingly, studies 
highlight the potential importance of sedimen-
tary Fe sources for the coastal, and even open, 
ocean (Lam et al., 2006; Nishioka et al., 2007). 
In continental margin sedimentary settings, the 
benthic transport of dissolved Fe has been found 
to be signifi cant (McManus et al., 1997; Berel-
son et al., 2003; Elrod et al., 2004), and enrich-
ment of Fe in the pore fl uids and bottom waters 
is driven by the reductive dissolution of Fe dur-
ing organic carbon decomposition.

Iron isotopes have emerged as a new tool 
to evaluate iron cycling in aquatic environ-
ments (Anbar and Rouxel, 2007; Johnson et 
al., 2008). Incubation experiments have dem-
onstrated that the reduction of Fe(III) in the 
presence of dissimilatory Fe-reducing bacteria 
produces aqueous Fe2+ with δ56Fe values that 
are 0.5‰–2‰ lower than the initial Fe(III) 
substrate (Beard et al., 1999; Icopini et al., 
2004; Crosby et al., 2007). Pore fl uids from 
sediments where organic matter oxidation pro-

ceeds through signifi cant microbial Fe reduc-
tion yield isotope compositions for dissolved 
Fe2+ that are ~1‰–3‰ lighter than average 
igneous rocks, suggesting that benthic Fe 
inputs to the ocean may carry a unique isotopic 
fi ngerprint (Severmann et al., 2006).

Dissimilatory iron reduction (DIR) is a form 
of chemolithotrophy that is widespread during 
diagenesis of marine sediments, and the rate of 
this process is controlled by organic carbon oxi-
dation and the availability of Fe(III) substrates 
(Froelich et al., 1979). DIR was one of the ear-
liest metabolic pathways to evolve on Earth 
(Vargas et al., 1998), and it has been suggested 
that sedimentary Fe isotopes may be used to 
reconstruct past Fe cycling in the Archean ocean 
(Rouxel et al., 2005; Yamaguchi et al., 2005; 
Severmann et al., 2008).

Pore-fl uid Fe isotope measurements have so 
far been restricted to the continental shelves 
where DIR is extensive (Bergquist and Boyle, 
2006; Severmann et al., 2006). There have 
been no measurements of Fe isotopes in low–
organic-carbon, suboxic sediment pore fl uids, 
in deep-water settings where sediment accu-
mulation rates are much slower and oxygen 
penetration is deeper than on the continental 
shelves, or in sediments where abiotic pro-
cesses such as adsorption or ligand complex-
ation may signifi cantly imprint the pore-fl uid 
Fe isotope composition. The need for compari-
son of Fe isotopes in shallow- and deep-water 
environments has been identifi ed (Johnson et 
al., 2008), and characterization of the Fe iso-
topic fi ngerprint of DIR in natural, complex 
aqueous systems is important for the effective 

interpretation of the sedimentary record, and 
for developing the potential utility of Fe iso-
topes as a tracer of benthic Fe fl uxes.

We present here new δ56Fe data for surface 
sediment pore fl uids (0–25 cmbsf [centimeters 
below seafl oor]) from two distinct sedimentary 
settings: (1) a riverine-dominated site on the 
northern California margin (Eel River shelf; 
120 m water depth), where the organic carbon 
accumulation rate is high (~26.7 g C m–2 a–1; 
Sommerfi eld and Nittrouer, 1999) and carbon 
remineralization is driven by extensive Fe redox 
cycling, and (2) mixed biogenic opal-rich vol-
caniclastic sediments from two deep-sea sites 
in the Southern Ocean (M6: 4222 m; and M10: 
3227 m), where organic carbon accumulation 
rates are low (M6: ~0.011 g C m–2 a–1; M10: 
~0.113 g C m–2 a–1) and diagenetic Fe cycling 
is limited by the availability of reactive organic 
carbon (see the GSA Data Repository1 for addi-
tional sample site information).

RESULTS
Pore-fl uid nitrate penetration depth provides 

a qualitative tool for comparing the sedimentary 
redox status of our study sites. This depth is 
greatest at the Southern Ocean site (M6; 20–30 
cmbsf), intermediate at the Southern Ocean 
northern site (M10; ~10 cmbsf), and shallow-
est at the Eel River shelf site (~5 cmbsf) (Fig. 
1A). The shallowest nitrate penetration depth 
occurs at the site of highest mean organic car-
bon content at the Eel River shelf (0.87%, 0–22 
cmbsf), which also has the greatest propor-
tion of highly labile Fe phases (Feh-lab) relative 
to reactive hydrous Fe oxide (HFO) substrates 
(Feh-lab/[Feh-lab + HFO] = 0.63–0.69 for Eel River 
compared to 0.02–0.20 in Crozet sediments; see 
Table DR1 in the Data Repository). The rela-
tive proportions of Feh-lab (Na acetate leachable) 
and HFO (hydroxylamine-HCl leachable) were 
estimated using the sequential sediment extrac-
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reducing bacteria, but to date, pore-fl uid Fe isotope measurements have been restricted to 
continental shelf settings. Here, we present δ56Fe values of pore fl uids from two distinct sedi-
mentary settings: (1) a riverine-dominated site on the northern California margin (Eel River 
shelf; 120 m water depth) and (2) biogenic opal-rich volcaniclastic deep-sea sediments from 
the Southern Ocean (north and south of the Crozet Plateau; 3000–4000 m water depth). The 
Fe isotope compositions of Crozet region pore fl uids are signifi cantly less fractionated (δ56Fe = 
+0.12‰ to –0.01‰) than the Eel River shelf (δ56Fe = –0.65‰ to –3.40‰) and previous studies 
of pore-fl uid Fe isotopes, relative to average igneous rocks. Our data represent the fi rst mea-
surements of Fe isotope compositions in pore fl uids from deep-sea sediments. A comparison of 
pore-fl uid δ56Fe with the relative abundance of highly labile Fe in the reactive sedimentary Fe 
pool demonstrates that the composition of Fe isotopes in the pore fl uids refl ects the different 
extent of sedimentary Fe redox recycling between these sites.

1GSA Data Repository item 2009180, full descrip-
tion of materials and methods (including sample site 
descriptions, sampling and analytical procedures, 
justifi cation of Rhizone sampling for pore-fl uid nu-
trients, and critical evaluation of Crozet region pore-
fl uid Fe concentrations), is available online at www.
geosociety.org/pubs/ft2009.htm, or on request from 
editing@geosociety.org or Documents Secretary, 
GSA, P.O. Box 9140, Boulder, CO 80301, USA.
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tion procedure given in Poulton and Canfi eld 
(2005) (see the Data Repository for details of all 
methods and analyses). The ratio Feh-lab/(Feh-lab + 
HFO) provides an estimate of the extent of dia-
genetic redox recycling of Fe.

Crozet region pore-fl uid δ56Fe values range 
between +0.12‰ and –0.01‰ relative to aver-
age igneous rocks (Fig. 1B) and closely resem-
ble those of average continental weathering 
products (0.2‰ ± 0.7‰; Beard et al., 2003). 
In contrast to both these sites, Eel River shelf 
δ56Fe pore-fl uid values lie between –0.65‰ 
and –3.40‰, and the greatest isotopic frac-
tionation is closest to the sediment-seawater 
interface (Fig. 1B). Crozet pore-fl uid Fe con-
centrations are ~1–80 µM at M10 and M6, and 
they are characterized by similar Mn distribu-
tions (up to 4 µM), with maxima at ~17 and 25 

cmbsf at M10 and M6, respectively. At the Eel 
River shelf site, pore-fl uid Fe concentrations 
reach a subsurface maximum of 167 µM at 5 
cmbsf, and Mn concentrations are highest (14 
µM) in the upper 0–5 cmbsf (see Data Reposi-
tory Table DR2).

DISCUSSION
The distributions of Fe and Mn in Eel River 

shelf pore fl uids are broadly consistent with 
the biogeochemical zonation of respiratory 
processes (Froelich et al., 1979), indicating the 
transition from aerobic respiration through to 
DIR between 0 and 5 cmbsf. However, Fe and 
Mn values in Crozet region pore fl uids are not 
typical of deep-sea profi les, and values are rel-
atively high (1–20 µM Fe; 0.1–0.3 µM Mn) in 
the upper 10 cm compared with previous mea-

surements from deep-sea Southern Ocean sites 
(<0.1 µM Fe; King et al., 2000); the equatorial 
Pacifi c (<5 µM Fe; Haeckel et al., 2001); tropi-
cal northeast Atlantic (1–13 µM Fe; Froelich 
et al., 1979); and many coastal shelf settings 
(Canfi eld et al., 1993; McManus et al., 1997). 
Additionally, the biogeochemical zonation of 
NO3

–, Mn, and Fe in the Crozet region pore fl u-
ids is less apparent than at the Eel River shelf 
site and provides little evidence for DIR-dom-
inated diagenesis.

An analysis of two different dissolved size 
fractions (0.2 µm and 0.02 µm; see the Data 
Repository) in Crozet region pore fl uids 
demonstrates that signifi cant colloidal and/
or nanoparticulate (herein after “colloidal”) 
phases are present (Fig. 2). We speculate that 
these colloids are composed of adsorbed and/
or organic ligand–bound Fe2+/Fe3+ that may be 
utilized during DIR along with nanoparticulate 
basaltic weathering products. We suggest that 
the distribution of colloidal phases in the pore 
fl uids is infl uenced by the episodic supply of 
organic carbon, which disrupts the steady-state 
pore-fl uid composition (Gehlen et al., 1997); 
the vertical mixing of volcaniclastic sediments 
through slumping and turbidite emplacement 
in this region (Marsh et al., 2007); the infl u-
ence of bioirrigation and bioturbation (Aller, 
1990); and the uncertain role of stabilizing 
organic complexes in the pore-fl uid environ-
ment (Luther et al., 1992).

Eel River shelf pore-fl uid δ56Fe composi-
tions are consistent with previous studies of Fe-
reducing continental margin sediments where 
DIR catalyzes the fractionation of Fe isotopes 
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µ µFigure 1. A: Pore-fl uid nitrate, solid-phase organic carbon, and the proportion of highly labile 
Fe (Feh-lab) relative to hydrous Fe oxide (HFO) profi les. Nitrate penetration depth provides a 
qualitative tool to assess the redox conditions of the study sites. The Feh-lab/(HFO + Feh-lab) 
ratio records the relative proportion of highly labile Fe in a reactive Fe pool utilized during 
dissimilatory iron reduction (DIR). B: Concentration of Fe, Mn, and δ56Fe in Crozet region and 
Eel River shelf pore fl uids.

Figure 2. Pore-fl uid Fe and Mn concentration 
at M10 and M6 sampled sequentially by two 
different fi lter sizes. Pore-fl uid Fe and Mn 
are partitioned between <0.2 to >0.02 µm, 
and <0.02 µm size fractions at these sites, 
and they are inferred to make up a signifi -
cant colloidal and/or nanoparticulate com-
ponent of the pore fl uids.
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during redox cycling (Severmann et al., 2006) 
(Fig. 3). Crozet region pore-fl uid δ56Fe values 
are signifi cantly less fractionated than previous 
values reported for suboxic pore fl uids (Fig. 
3). Severmann et al. (2006) noted that near-
zero δ56Fe values for pore fl uids might refl ect 
equilibrium with FeS. There is no evidence for 
sulfi de diagenesis in Crozet region Holocene 
sediments (Marsh et al., 2007). Therefore, the 
comparison of the Eel River shelf and Crozet 
region suggests that either a mechanism other 
than DIR is releasing a substantial amount of 
Fe (up to 80 µM; δ56Fe ~0.0‰) into the Crozet 
pore fl uids, or that DIR alone may be insuf-
fi cient to generate the low δ56Fe values we 
observe in continental margin sediments.

Experiments have shown that Fe isotope frac-
tionations of >1‰ in aqueous systems can also 
be produced by abiotic processes. For exam-
ple, ligand-promoted dissolution of mineral 
substrates, such as goethite, ferrihydrite, and 
hornblende (Brantley et al., 2004), abiotic sorp-
tion and surface exchange (Icopini et al., 2004; 
Crosby et al., 2007), and isotope exchange 
between free and organically or inorganically 
complexed Fe (Dideriksen et al., 2008) could 
potentially contribute to variations in isotope 
compositions in nature that are indistinguish-
able from biological fractionations. Deconvo-
lution of these processes in nature presents a 
major challenge; however, it has been argued 
that abiotic processes alone cannot generate the 
large inventories of isotopically fractionated Fe 
that have been identifi ed in continental margin 
sediments (Johnson et al., 2008). We hypoth-
esize that the observed variation in Fe isotope 
composition between our study sites refl ects dif-
ferences in the extent of biogenic benthic recy-
cling of the reactive Fe pool.

The sedimentary reduction and oxidation of 
Fe during early diagenetic redox recycling has 
been estimated to occur 100–300 times prior to 
ultimate burial below the redoxcline (Canfi eld et 
al., 1993), where the extent of bioturbation and 

bioirrigation may enhance the redox recycling 
of Fe substrates by oxidizing Fe2+ and suppress-
ing the onset of sulfi de diagenesis (Canfi eld 
et al., 1993). The composition of Fe isotopes 
in sediment pore fl uids is inferred to refl ect 
the extent of redox recycling of Fe between 
DIR-derived Fe2+

aq and highly labile oxidation 
products, such as amorphous Fe-(oxyhdr)oxide 
(Severmann et al., 2008). Experimental investi-
gations of the mechanism producing Fe isotope 
fractionation during DIR have shown that the 
generation of light dissolved Fe2+

aq can be attrib-
uted to a coupled electron and isotope exchange 
between sorbed Fe2+ and a reactive ferric Fe 
component on the surface of the Fe-oxide that is 
open to isotope exchange (Crosby et al., 2007). 
These authors argue that changes in the absolute 
δ56Fe values of Fe2+

aq in their experiments refl ect 
changes in the relative sizes of the reactive Fe 
pools. The reactivity of Fe-oxide minerals may 
therefore be the primary control on the pore-
fl uid Fe isotope composition. Although we did 
not quantify the reactive Fe(III) component in 
the ferric oxide surfaces directly, the coincidence 
of low pore-fl uid δ56Fe values with high Feh-lab/
(Feh-lab + HFO) in sediments from the Eel River 
shelf is consistent with the continuous reoxida-
tion of Fe2+

aq to amorphous Fe-(oxyhydr)oxides, 
providing an abundance of surface sites for iso-
tope exchange, which are lacking in the Crozet 
sediments (Fig. 4).

We interpret the organic carbon supply to the 
Eel River shelf to be suffi cient to sustain DIR 
and the redox recycling of Fe, thereby enrich-
ing highly labile Fe phases in the reactive Fe 
pool and accounting for the highest pore-fl uid 
Fe isotope fractionation. In contrast, the low 
organic carbon input to the deep Crozet region 

sediments limits DIR and redox recycling of 
Fe. We speculate that highly seasonal organic 
carbon inputs to M10 (Pollard et al., 2009) may 
promote the episodic contribution of DIR to 
sediment respiration and account for the relative 
enrichment of highly labile Fe in M10 surface 
sediments and in M6 turbidite layers. In these 
circumstances, processes that contribute to the 
generation of colloids and/or nanoparticulates 
in the pore fl uids (van der Zee et al., 2003) are 
likely to have near crustal isotope compositions 
and dilute the isotopic signature of DIR.

CONCLUSIONS
High dissolved Fe pore-fl uid contents indi-

cate suppression of sulfi de diagenesis in Eel 
River shelf sediments and volcaniclastic weath-
ering in Southern Ocean sediments. We dem-
onstrate that the pore-fl uid Fe isotope compo-
sitions refl ect the extent of Fe recycling during 
early diagenesis, which is driven by supply of 
reactive organic carbon and Fe. We invite future 
interpretations of the rock record to consider the 
importance of Fe isotope processing in carbon-
limited environments. Additionally, the unique 
isotopic fi ngerprint of pore-fl uid Fe in continen-
tal shelf settings is confi rmed, drawing further 
attention to the potential utility of Fe isotopes as 
a tracer of shelf-derived Fe inputs to seawater.
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Figure 3. Comparison of Crozet region and 
Eel River shelf pore-fl uid Fe isotope compo-
sitions with published data from dissimila-
tory iron reduction (DIR)–dominated reduc-
ing sediments on continental shelves.

Figure 4. Comparison 
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and Crozet region (M10 
and M6) sediment Feh-lab/
(HFO + Feh-lab) composi-
tion with pore-fl uid δ56Fe. 
The sample depth of 
data is represented by 
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(HFO + Feh-lab) ratio pro-
vides an estimate of the 
relative enrichment of 
highly labile Fe phases 
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