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ABSTRACT 

 

In Oman, a comprehensive study of the annual reproductive cycles of male and 

female house geckos, Hemidactylus flaviviridis was conducted. Circulating 

testosterone (T), oestradiol (E2) and progesterone (P) concentrations were measured 

using a sensitive HPLC-MS/MS detection technique. Data were collected from a 

natural population over two consecutive seasons.  The annual patterns of circulating 

concentrations of T, E2 and P were measured for both sexes. In males, peak plasma T, 

E2 and P concentrations occurred in the active phase, coinciding with the stages of 

spermatogenesis, courtship and mating, but gradually declined in the second half of 

the mating period with a significant drop in the quiescent phase, coinciding with 

testicular regression. In females, elevated plasma E2 and T concentrations in the active 

phase were associated with vitellogenesis and mating. Plasma E2 concentrations 

decreased significantly during the quiescent phase, coinciding with follicular 

regression. Plasma P concentrations were elevated during gravidity but fell 

significantly prior to oviposition.  

The plasma steroid concentrations were related to the steroidogenic ultrastructural 

features and expression of progesterone receptors (PR) throughout the reproductive 

cycle. The steroidogenic ultrastructural features were characterized by the presence of 

smooth endoplasmic reticulum (SER) in the form of cisternal whorls and tubular 

cisternae, presence of swollen vesiculated mitochondria and association between SER, 

mitochondria, and lipid droplets. In the male, the rise in the three plasma steroid 

concentrations during the active phase was closely associated with the development of 

the ultrastructural features and strong PR expression in Leydig and Sertoli cells. 

During the quiescent phase, there was a significant decline in plasma steroid 

concentrations, undeveloped steroidogenic features and weakly expressed PR. In the 

female, the appearance of the steroidogenic ultrastructural features in the preovulatory 

and lutein granulosa cells was correlated with the significant rise in the three steroid 

concentrations and the strong expression of PR. As the steroid concentrations 

declined, the granulosa cells underwent general degeneration and disruption of the 

ultrastructural steroidogenic features. These detailed findings are the first to be 

reported for this species in the Arabian Peninsula. 
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Based on histological and gross morphological observations, the house gecko ovulates 

two eggs at a time, one from each ovary. This is followed by a second two egg clutch, 

suggesting that this species lays two clutches of eggs annually, each clutch containing 

two eggs. 

The comprehensive data obtained from this study may be of some value for 

comparison with reproductive cycles of other closely related species in this region. In 

addition, conservation awareness for the protection of this widely distributed species 

may be beneficial for the protection of other wildlife. 
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1.1 Introduction: mating and reproductive cycles in reptiles/lizards 

The class Reptilia includes the orders Crocodilia, Sphenodontia, Squamata, and 

Testudinea (Muller and Reisz, 2006) that originated around 300 million years ago 

(Lovern, 2011). Lizards and snakes (which arose within the lizard lineage) comprise 

the order Squamata. At present there are 8883 extant squamate species recognised, 

including 5537 species of lizards (JCVI/TIGR Reptile Database, 2011). Lizards are 

recognised as the suborder Sauria and are divided into two clades based on foraging 

mode and associated tongue morphology and function: (1) the Iguania are ófleshy-

tonguedô lizards that use the tongue for feeding and (2) the Scleroglossa are óhard-

tonguedô lizards that use their jaws for feeding and tongues primarily for 

chemoreception (Pianka and Vitt, 2003; Pough et al., 2004). However, their 

phylogenetic relationships are still debatable (Townsend et al., 2004; Vidal and 

Hedges, 2005; 2009). Within Sauria there are four recognised infraorders, including 

Gekkota. Gekkota occur in the suborder of Scleroglossa and are divided into seven 

families, including the family Gekkonidae (Han et al., 2004). Recent estimates of 

Gekkotan diversity recognise approximately 1110 species in 116 genera (Kluge, 2001; 

Bauer, 2002) and many new taxa are described each year. According to recent 

molecular phylogeny studies of lizards, the Gekkonidae are thought to have originated 

around 100 million years ago (Figure 1.1) (Vidal, and Hedges, 2009). Lizards inhabit 

all continents except Antarctica, in habitats ranging from desert to rainforest, and 

exhibit arboreal, terrestrial, fossorial, and even semi-aquatic lifestyles (Pough et al., 

2004).  

This high species diversity and widespread geographic distribution is reflected in the 

variety of their reproductive biology and associated life histories. For example, 

although most lizard species are oviparous, approximately 20% are viviparous 

(Blackburn, 1982).  Also, typical clutch sizes can vary greatly in the oviparous lizards. 

Some species exhibit one egg [e.g., Anolis (Smith et al., 1973)] or two-egg clutches 

[e.g., many geckos including Eublepharis (LaDage et al., 2008)], whereas other 

species produce 20ï30 eggs clutches per breeding season [e.g., Phrynosoma (Endriss, 

et al., 2007)]. 
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Figure 1.1. Molecular phylogeny of lizard families and associated divergence time 

estimates (Vidal and Hedges, 2009).  

 

However, evidence is reported that many reptile populations, including lizards, are 

declining (Pianka and Vitt, 2003). Numerous factors are involved such as habitat 

alteration, human population growth, release of pollutants and agrichemicals into the 

environment, disease, parasitism (Pianka and Vitt, 2003), and global warming (e.g., 
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Huey, et al., 2009; Kearney, et al., 2009). Monitoring these species may allow using 

them as indicators of environmental stability. Therefore, the study of reproductive 

cycles and their endocrine regulation is important as many lizards are particularly 

sensitive to environmental cues, such as temperature, for determining the onset of 

breeding (Lovern, 2011). 

Reproductive studies of lizards have dealt with three distinctive aspects of 

reproduction. First, the reproductive period has been investigated to determine 

whether a species reproduces continuously or discontinuously throughout the year, 

and whether the level of reproductive activity is constant or temporal; secondly, which 

environmental factors can be correlated with reproduction and may dictate the timing 

of these activities; and third, which evolutionarily important selective pressures can be 

linked with successful reproduction in the various periods of the year. While some 

authors have focused on a single aspect of lizard reproduction, most studies have 

examined all three (Sherbrooke, 1975). 

1.1.1 Types of reproductive cycles 

Detailed knowledge of reproductive cycles and their endocrine mediation, although 

increasing, is available for only a small percentage of these species and even less 

when both males and females are considered (Lovern, 2011). In lizards, the 

reproductive cycles have been characterized based on relationships between mating 

behaviour, sex steroid production, and gametogenesis (Licht, 1984). Three general 

types of reproductive cycles are recognised: prenuptial (or associated), postnuptial (or 

disassociated) (Crews, 1984; Lance (1998)) and constant (or continuous) cycles 

(Pough et al., 2004). Prenuptial reproductive cycles are those in which gonadal 

recrudescence, sex steroid production, and gametogenesis occur in advance of mating, 

whereas in postnuptial cycles they occur following mating. In the constant 

reproductive cycle, gonadal activity is maintained at nearly maximum level almost 

year round. 

Associated and dissociated reproductive cycles are characterized by the presence of a 

discontinuous mating season. Associated reproductive cycle is common in species that 

live in a predictable environment in the temperate (James and Shine, 1985; Castilla 

and Bauwenes, 1990; Vitt, 1992; Diaz et al., 1994; Shanbhag, 2003; Ikeuchi, 2004) 
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and the tropical and subtropical regions (Varma and Guraya, 1975; Vitt and 

Blackburn, 1991; Shanbhag and Prasad, 1993: Censky, 1995; Huang, 1997). Among 

geckonids, Hemidactylus frenatus breeds seasonally on Islands of the Ryukyu 

Archipelago and in Taiwan (Ota, 1994). The Indian house gecko Hemidactylus 

flaviviridis is known to breed between mid-March and mid-May in northwestern India 

(Varma and Guraya, 1975). A dissociated cycle is typically observed in species that 

live in temperate habitats and have brief mating seasons (Méndez de la Cruz et al., 

1988; van Wyk, 1995). Several species of tropical lizards exhibit a constant 

reproductive cycle (Somma and Brooks, 1976; Jenssen and Nunez, 1994).  

Seasonal reproduction is common in lizard species (Licht, 1984; Pianka and Vitt, 

2003) in which the climate produces well-defined seasons and lizards typically mate 

in the spring with the offspring hatching in the summer. This coordinates reproduction 

with the time of year providing the necessary sunlight, heat, moisture, and availability 

of food necessary for offspring production and survival (Duvall et al., 1982; Whittier 

and Crews, 1987; Rubenstein and Wikelski, 2003). The relationships between 

reproductive cycles and climate suggest that reproduction in lizards is affected by 

environmental variables such as ambient temperature (Marion, 1982), precipitation 

(Guillette and Casas-Andreu, 1987), and photoperiod (Licht, 1967). Phylogenetic 

constraints may also play a major role in shaping the reproductive characteristics of 

lizards (Dunham and Miles, 1985). If so, it can be beneficial to study the reproductive 

cycles of species within a single diverse and wide-ranging lineage (Ikeuchi, 2004). 

1.1.2 Mating  

During the mating season the male lizard usually locates a female for mating by 

following her scent trail, tongue-flicking at airborne signals or searching familiar sites 

(Bull et al., 1993). Male courtship behaviour has been described in many lizard 

species (e.g., Brandt and Allen, 2004; Ruiz et al., 2008). Males assess whether 

unfamiliar females are receptive through visual (LeBas and Marshall, 2000) and 

chemical means (Cooper and Perez-Mellado, 2002). In many species, males prefer 

new females to those they may have already mated with (Tokarz, 2006). In the lizard 

Sceloporus graciosus, male courtship display was positively correlated with female 

latency to lay eggs, with males displaying more often toward females with eggs that 
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had not yet been fertilized. Courtship behaviour was not well predicted by the number 

of eggs laid or by female width, both measures of female quality. Thus, it appears 

male alter courtship intensity more in response to signals of female reproductive state 

than in response to variation in potential female fitness (Ruiz et al., 2008). 

A mating attempt by a male (e.g., H. flaviviridis) begins by him approaching a female 

from the side and grasping the resisting female from her neck with his mouth (Figure 

1.2). Once in position, the male curls his body around the female, positioning his 

cloaca alongside hers. A receptive female usually responds by raising her tail and 

gaping her cloaca and allowing the male to intromit a hemipenis (Edwards and Jones, 

2003). The duration of copulation is highly variable in lizards. Edwards and Jones 

(2003) reported that in the lizard Tiliqua nigrolutea, the male grasps a female for 

approximately six hours, with intromission only occurring towards the end of that 

time, while in another male it lasted only about 30 minutes. Females underwent 

several rhythmic contractions from posterior to anterior immediately after copulation, 

before the maleôs bite hold was released. This may be the occurrence of ovulation, or 

to help the sperm move into the reproductive tract (Edwards and Jones, 2003). 

 

Figure 1.2. Mating positions of house gecko H. flaviviridis (Panchbudhe, 2011).  
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1.2 Endocrine regulation of reproductive cycles in reptiles, including effects of 

stress  

The hypothalamusïpituitaryïgonadal (HPG) axis is the main regulatory pathway for 

reproduction in male and female vertebrates, including reptiles (Godwin and Crews, 

2002). Gonadotropin-releasing hormone (GnRH) from the hypothalamus stimulates 

the release of gonadotropins (GTHs) from the anterior pituitary (adenohypophysis). In 

mammals, these GTHs are follicle-stimulating hormone (FSH), which primarily 

influences gamete development, and luteinising hormone (LH), which primarily 

influences sex steroid production and gamete release (Norris, 2007) (Figure 1.3). 

Studies to elucidate the role of GTHs in the regulation of spermatogenesis and Leydig 

cell function in lizards are inconsistent and confusing. Hypophysectomy caused 

regression of testes during the recrudescence phase in both H. flaviviridis (Reddy and 

Prasad; 1970a) and C. versicolor (Gaitonde and Gouder, 1981). A decrease in 3ɓ-

HSD and 17ɓ-HSD activities in the Leydig cells, regression of the epididymis and 

RSS in the hypophysectomised lizards also implies lower output of androgens 

(Gaitonde and Gouder, 1981). The mammalian FSH could stimulate spermatogenesis 

in hypophysectomised as well as intact H. flaviviridis during the regression phase 

(Reddy and Prasad; 1970a; Rai and Haider; 1986), while LH and T failed to stimulate 

the testes. Stimulation of the RSS following FSH treatment in H. flaviviridis suggests 

that a mammalian FSH-like hormone functions as a gametogenic as well as a 

steroidogenic hormone. In contrast, both ovine FSH and LH stimulated 

spermatogenesis as well as Leydig cell activity in C. versicolor (Gaitonde and 

Gouder, 1985) during both the quiescent and recrudescent phases. Experimental 

studies demonstrated that exogenously administered T inhibited spermatogenesis, 

whereas administration of FSH alone regulates meiotic divisions, spermatogenesis 

and also Leydig cell activity in H. flaviviridis (Rai and Haider; 1991; 1995). 

The work on endocrine regulation of ovarian functions is mostly confined to reptiles 

of temperate zones (Shanbhag, 2002). In the quiescent phase, mammalian FSH, and 

not LH, induced ovarian growth in H. flaviviridis (Rai and Haider, 1989). The 

treatment with FSH for a week caused an increase in the number of oocytes, 

primordial and previtellogenic follicles; continuation of treatment for 21 days induced 
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even vitellogenesis. Furthermore, in FSH-treated lizards, no atretic follicles were 

found. Similarly, in M. carinata administration of bovine FSH in the postbreeding 

quiescent phase caused an increase in the number of oogonia, oocytes and induced 

vitellogenesis, and elevated plasma E2 concentrations (Nijagal and Yajurvedi, 1999). 

These studies suggest that in lizards mammalian FSH-like hormone performs the 

functions attributed to FSH and LH in higher vertebrates. 

Studies on the ovarian cycle of C. versicolor suggest that pituitary GTHs are needed 

for the oogonial proliferation and oogonesis. An increase in the number of oogonia 

and primary oocytes in the germinal bed coincides with preparatory and early 

breeding phases in lizards (Shanbhag and Prasad, 1993). Variation in the response of 

the ovary to unilateral ovariectomy in the two different phases of the reproductive 

cycle is attributed to expected differences in the levels of GTHs prevailing in the 

particular season, i.e., low concentrations during postbreeding phase and high during 

prebreeding and breeding phase. 

 

Figure 1.3. Concentrations of sex hormones in male (a) and female (b) reproductive 

systems are regulated by a negative-feedback mechanism with the hypothalamus. 

When the hypothalamus detects excessive amounts of sex hormones in the blood, it 

reduces its secretion of GnRH. In response, the anterior pituitary reduces its 

production of LH and FSH, which results in a decrease in the production of the sex 

hormones by the gonads (Cliffsnotes.com, 2012). 
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1.2.1 Effects of stress on reproduction 

Inhibitory effect of stress on reproduction has been observed in different groups of 

vertebrates (Greenberg and Wingfield, 1987; Guillette et al., 1995; Herbert, 1995; 

Nijagal and Yajurvedi, 1999; Tilbrook et al., 2000; Yajurved and Menon, 2005; 

Tokarz and Summers, 2011). Although, several studies reported a decrease in sex 

steroid secretion due to stress, the impact on gametogenesis has not been thoroughly 

investigated. So far, only a few studies have been reported in reptiles (Summers, 

1988; Cree et al., 1990a,b; Moore et al.,1991; Summers et al., 1995;  Mahmoud and 

Licht, 1997; Amey and Whittier, 2000; Ganesh and Yajurvedi, 2002; Yajurved and 

Menon, 2005; Wack et al., 2008; Lind et al., 2010; Klukowski, 2011). In male reptiles 

stress induces alteration in spermatogenesis, whereas in females stress interferes with 

vitellogenic growth of ovarian follicles.  

A classic marker of the stress response is an increase in plasma glucocorticoids due to 

the increase in secretion of the adrenal gland. The magnitude of the glucocorticoid 

response to stress is highly context-dependent and can be modulated by season, 

gender, time of day, social status, and other environmental conditions (Greenberg et 

al., 1984; Sapolsky, 1992; Astheimer et al., 1994; Dunlap and Wingfield, 1995; 

OôReilly and Wingfield, 2001; Romero and Remage-Healey, 2000; Tokarz and 

Summers, 2011). One factor that has not received much attention is how reproductive 

status affects the glucocorticoid response to stress. In many species of reptiles, 

baseline levels of glucocorticoids differ between females of different reproductive 

status and it is possible that the glucocorticoid stress response might also differ among 

females of different reproductive status (Woodley and Moore, 2002).  

Lizards are excellent model systems for studies on stress because of the ease of short-

term capture in the field (e.g. Moore, 1987; Moore et al., 1991), and thus the effects 

of long-term captivity on plasma glucocorticoids can be avoided. In lizards, baseline 

levels of corticosterone (C), which is the primary glucocorticoid in reptiles, vary 

depending on reproductive status, although there is wide species variation. The 

magnitude of the C stress response and how it varies with reproductive status has only 

been studied in one species of geckos, Hoplodactylus maculatus (Girling and Cree, 

1995; Cree et al., 2003; Preest et al., 2005). Girling and Cree (1995) reported that 
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pregnant and spent (females that had just given birth) females showed no increase in 

plasma C concentration after 2.5 h of capture and handling stress.  

In addition to oestradiol (E2), testosterone (T), and progesterone (P), C may also play 

important roles in vertebrate reproductive cycles. Elevated plasma C concentrations 

have been reported during reproductive events in several reptile species in order to 

mobilize energy stores when resources are limited (Romero, 2002; Moore and Jessop, 

2003), so species that experience strong energy limitations during reproduction may 

have elevated plasma C concentrations associated with reproductive events. 

1.3 Mechanisms of action of sex steroids: production through to intracellular 

actions  

Steroids are lipoidal compounds derived from cholesterol, sharing a basic four-ring 

structure known as the steroid nucleus (Kime, 1987; Norris, 2007). The gonadal 

steroids are traditionally classified as androgens, oestrogens and progestogens, 

according to the primary physiological processes they mediate (Norris, 2007). In some 

vertebrate groups these are converted to more biologically active derivatives in either 

the gonads or the peripheral tissue (Klicka and Mahmoud, 1977; Kime, 1987) (Figure 

1.4). 

 

Figure 1.4. Steroid hormone synthesis pathways. All steroid hormones are synthesised 

from cholesterol and the end products can be classified according to their principal 

effects; mineralocorticoids (aldosterone), glucocorticoids, progestins, androgens and 

oestrogens (Herkules.oulu.fi, 2012).  
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1.3.1 Steroid production in reptiles 

Different cell populations in the gonads are responsible for different aspects of 

reproductive function and steroid production. In the reptilian testis, Sertoli cells play a 

major role in spermatogenesis whereas Leydig cells mainly are responsible for 

androgen production (Gist, 1998; Norris, 2007). However, in some reptiles it is likely 

both Leydig and Sertoli cells are capable of significant androgen production and one 

or the other may be the primary source of androgen, depending on the time of year 

(e.g., Lofts, 1987; Mesner et al., 1993; Gist, 1998). T production in some species is 

maximal when the testes are regressed and spermatogenically inactive. The Sertoli 

cells may produce sufficient androgens, along with up-regulation of ARs and 

production of androgen-binding proteins, to maintain spermatogenesis when the testes 

are spermatogenetically active, whereas during testicular regression Leydig cells 

produce androgens that result in a rise in plasma androgen concentrations associated 

with reproductive behaviour (Gist, 1998; Benner and Woodley, 2007). 

In the mammalian ovary, granulosa cells of the follicular wall are responsible for egg 

maturation, whereas thecal cells, more exterior in the follicular wall, are responsible 

for the initiation of sex steroid production (Norris, 2007). Thecal cells primarily 

synthesise androgens, most of which are then converted to oestrogens by the 

granulosa cells. Granulosa cells also form the bulk of the CL following ovulation 

which produces P (Norris, 2007). The reptilian ovary functions very similarly to that 

which was described above for mammals, although squamate reptiles possess multiple 

granulosa cell types, one of which is unique to the group: pyriform cells, which form 

cytoplasmic connections to the egg in previtellogenic follicles that degenerate once 

follicular development (vitellogenesis) begins (Motta et al., 1995; Lance, 1998; 

Norris, 2007). 

1.3.2 Mechanisms of action of sex steroids 

The effects of sex steroids are mediated through receptor proteins, which, by and 

large, discriminate between progesterone, oestrogen and androgen signalling and are 

distributed in a sex-specific pattern among female and male target organs, 

respectively. Binding of the steroids to their respective receptors leads to 
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conformational changes of the protein that allow it to interact with the transcriptional 

machinery directly, or indirectly via protein- protein interactions with other 

transcription factors (Kousteni et al., 2001).These steroid hormones may act in a 

paracrine manner or circulate to act at target tissues in an endocrine fashion 

(Wierman, 2007).  

In mammals, two nuclear estrogen receptors (ERŬ and ERɓ), one androgen receptor 

(AR), and two forms of progesterone receptors (PR-A and PR-B, which are encoded 

on the same gene locus) have been identified (Ellmann et al., 2009). Nuclear ER, AR, 

and PR also have been characterized in amphibians, reptiles, and birds (Katsu et al., 

2008; 2010). 

Steroids circulate in the bloodstream in free and carrier protein-bound forms. At their 

target tissues, steroids pass through the cell membrane by passive diffusion or 

facilitated transport. Once in the cytosol, the steroids bind to specific receptors that 

are complexed with heat-shock protein. Upon binding of a steroid to its receptor, the 

complex changes conformation, the heat-shock protein dissociates, and two steroid-

receptor complexes dimerize. The steroid-receptor dimers pass into the nucleus, 

where they interact with specific portions of the DNA termed óhormone response 

elementsô and trigger the transcription of the corresponding DNA sequence. 

Transcription results in increased production of mRNA and ultimately gene product 

proteins, which contribute to the familiar long-term effects of steroids (Figure 1.5A). 

This widely known mechanism is often called the ógenomicô mechanism of steroid 

action (Craig et al., 2005). 
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Figure 1.5A.  Steroid binds to its receptor in the cytoplasm and the complex moves 

into the nucleus where it interacts with DNA to initiate protein synthesis 

(http://www.thepepproject.net). 

 

This unified concept applies to all classes of steroid hormones except androgens. T, 

the principal circulating androgen, is converted intracellularly by a 5Ŭ reductase 

enzyme to an active metabolite, dihydrotestosterone (DHT), before receptor binding 

(Hughes, 1984). 

The reduction of T to DHT is necessary for the androgenic actions of T in androgen 

target tissues such as the testis; the oxidation of T by the enzyme aromatase produces 

estrogens which is necessary for E2 action in target tissues such as the ovary. The 

androgenic actions of T are due to the binding of DHT to its nuclear receptor, 

followed by dimerization of the receptor complex and binding to a specific DNA 

sequence. This binding of the homodimer to the androgen response element leads to 

gene expression, stimulation of the synthesis of new mRNA, and subsequent protein 

biosynthesis (Figure 1.5B) (Brueggemeier, 2005). 
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Figure 1.5B. Function of the androgen receptor. T enters the cell and, if 5-alpha-

reductase is present, is converted into DHT. Upon steroid binding, the androgen 

receptor (AR) undergoes a conformational change and releases heat-shock proteins 

(hsps). Phosphorylation (P) occurs before or after steroid binding. The AR 

translocates to the nucleus where dimerization, DNA binding, and the recruitment of 

coactivators occur. Target genes are transcribed (mRNA) and translated into proteins 

(Meehan and Sadar, 2003). 

 

As a member of the nuclear receptor family, PR contains three functional domains 

including the N-terminus, a centrally located DNA binding domain (DBD), and C-

terminal ligand binding domain (LBD) (Figure 1.5C). The N-domain is functionally 

important, as it is required for full transcriptional activity of steroid hormone receptors 

and for many cell- and target gene-specific responses. In addition to binding steroid 

hormone, the LBD contains determinants for dimerization (DI) in the absence of 

DNA, binding of heat shock proteins (hsps) and for nuclear localization sequence 

(NLS). The DBD contains a second NLS and dimerization domain that is dependent 

on DNA binding. Steroid receptors contain at least two transcription activation 

domains (AFs), AF-1 in the N-terminal domain and highly conserved AF-2 in the C-

terminal LBD. These are autonomous transferable domains required for the DNA 

bound receptor to transmit a transcriptional activation response and they function as 

specific binding sites for coactivators. AF-2 located in the LBD is hormone-dependent 

and becomes activated as a result of the steroid hormone inducing a conformational 

change that creates a hydrophobic binding pocket for members of the p160 family of 

steroid receptor coactivators (Leonhardt et al., 2003). 
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Figure 1.5C. Domain organization of the human PR-A and -B isoforms. N-domain, N-

terminus; DBD, DNA binding domain; h, hinge; LBD, ligand binding domain. 

Transcription activation domains; AF-1, AF-2, and AF-3; dimerization domain, DI; 

inhibitor domain, ID; hsp, heat shock protein binding region; PXXPXR, class II 

consensus peptide ligand for Src kinase like SH3 homology domains (Leonhardt et 

al., 2003). 

 

The general pathway of progesterone (P) inducible PR-mediated gene transcription 

has been well characterized. P binding induces a conformational change(s) in PR that 

promote dissociation from a multi-protein chaperone complex, homodimerization and 

binding to specific progesterone response elements (PREs) within the promoter of 

target genes (Tsai and OôMalley, 1996; Cheung and Smith, 2000). DNA bound 

receptors increase or decrease rates of gene transcription by influencing recruitment of 

RNA polymerase II to the initiation site. Through proteinïprotein interaction, 

hormone activated PR recruits coactivators that serve as essential intermediates for 

transmitting signals from the receptor to the transcription initiation complex. 

Coactivators facilitate transcription initiation through protein interactions with 

components of the general transcription machinery and by promoting local 

remodeling of chromatin at specific promoters (Figure 1.5D). 
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Figure 1.5D. Progesterone (PG) activation of progesterone receptor (PR). Binding of 

PG to the inactive receptor complex induces a conformation change which leads to 

immunophilin and heat shock protein (hsp) dissociation, receptor dimerization, DNA 

binding, and recruitment of coactivators to facilitate communication with the basal 

transcription apparatus. PRE, progesterone response element (Leonhardt et al., 2003). 

 

1.3.3 Progestrone receptors in reptiles 

Using either binding studies or Western blot analysis, progesterone receptors (PR)  

have been identified in several species of reptiles (Trachemys scripta, Tokarz et al., 

1981; Selcer and Leavitt, 1991, Nerodia, Kleis-San Francisco and Callard, 1986; 

Chelydra serpentina, Mahmoud et al., 1986; C. picta, Riley et al., 1988; 

Cnemidophorus inornatus and Cnemidophorus uniparens, Young et al., 1994) and the 

hypothalamus (Godwin et al., 1996) implying that these are target tissues for this 

steroid. The receptors involved in ovarian function are PRA and PRB (Custodia-Lora 

and Callard, 2002a). A recent study by Hammouche et al. (2007) on the ovary of the 

lizard Uromastyx acanthinura showed that during vitellogenesis PRs were weakly 

detected in the nucleus of some follicular cells and well expressed in the TI cells. In 

previtellogenic follicles PRs were strongly expressed in the follicular cells and the 

signal was localised in the nucleus. In the post-reproductive period, PRs were 

expressed in both the nucleus and cytoplasm of follicular cells and thecal cells. 

During sexual quiescence, the previtellogenic follicles were all negative for PR 

immune-expression.  

Steroid binding affinities for the two binding sites of P are also similar for the oviduct 

and liver of C. picta (Giannoukos et al., 1995). P was the most effective competitor 
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for both sites, affinity for androgens was low, and E2 and corticosterone (C) were 

weak competitors for the high-affinity site. Immunohistochemical studies of turtle 

oviduct and liver demonstrated a nuclear localisation for PRs in both tissues. In the 

oviduct PRs were seen in epithelial, glandular and smooth muscle components 

(Giannoukos et al., 1995; Giannoukos and Callard, 1996). 

1.4 Action of sex steroids (E2, T and P) in lizards 

1.4.1 Androgens  

Androgens are the major male sex steroids and stimulate both the development of 

male physiological and secondary sexual characteristics (Norris, 2007) and male 

aggressive and sexual behaviours (Kime, 1987). Androgen receptors (AR) have been 

identified in a number of reptilian tissues, indicating that, among others, the testis 

(Cardone et al., 1998) and oviduct (Smith et al., 1995) are potential target tissues for 

androgens. The most biologically active androgen is T which is synthesised in the 

testes and adrenal glands of male vertebrates, and in the ovaries and adrenal glands of 

females (Kime, 1987, Mesner et al., 1993). 

In males, seasonal changes in plasma T concentrations are well correlated with 

reproductive events. Usually, both plasma T concentration and testis mass increase 

during spermatogenesis and peak in the final stages of gamete maturation, coinciding 

with mating, and falling rapidly thereafter (Bona-Gallo et al., 1980; McKinney and 

Marion, 1985; Mahmoud et al., 1985a; Ando et al., 1992; Bonnet and Naulleau, 1996; 

Radder et al., 2001; Kumar et al., 2011). However, recent studies reported no 

correlation between plasma T concentration and testes morphology (Johnson et al., 

2011). 

Androgens are sometimes considered in the context of the reproductive cycle in 

female squamates. In squamates plasma T concentrations can be variously elevated 

during late vitellogenesis and ovulation (Whittier and Crews, 1987), until oviposition 

(Bona-Gallo et al., 1980; Edwards and Jones, 2001a), only during gravidity (Arslan et 

al., 1978a) or may be low to undetectable throughout the cycle (Moore et al., 1985). 

Elevated plasma T concentrations may also be involved in the hypertrophy of the 

oviduct (Mahmoud and Licht, 1997; AlKindi et al., 2006) and may initiate breeding 
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behaviour in females (Licht et al., 1979). In addition, T is known to work 

synergistically with P to inhibit E2-induced vitellogenesis in reptiles (Ho, 1987; Ho et 

al., 1982; Jones, 2011). 

1.4.2 Oestrogens 

Oestrogens are produced from androgens, primarily in the vertebrate ovary (Norris, 

2007). They are responsible for the development of female sexual characteristics in 

many vertebrates, and the induction of vitellogenesis in reptiles (Ho et al., 1982; Ho, 

1987). Additionally, oestrogens play a vital part in the sexual differentiation of the 

vertebrate brain (Kime, 1987). The most active naturally occurring oestrogen in 

reptiles is E2. Oestrogen receptors (ER) have been identified in reptilian oestrogen 

target tissues including the gonad (Bergeron et al., 1998), the oviduct (Paolucci and 

Di Fiore, 1994; Vonier et al., 1997), the liver (Riley and Callard, 1988; Yu and Ho, 

1989) and the hypothalamus (Godwin et al., 1996). 

Elevated plasma E2 concentrations in female squamates generally correlate very well 

with vitellogenesis and follicular development, dropping rapidly at ovulation (Klicka 

and Mahmoud, 1977; Lewis et al., 1979; Bona-Gallo et al., 1980; Kleis-San Francisco 

and Callard, 1986; Bonnet and Naulleau, 1994; Diaz et al., 1994; Jones and Swain, 

1996; Jones et al., 1997; Amey and Whittier, 2000; Radder et al., 2001; Jones, 2011). 

Elevated plasma E2 has also been correlated with the hypertrophy of the female 

genital tract (Jones and Guillette, 1982; Gavaud, 1986) and mating (Joss, 1985; Saint 

Girons et al., 1993). Mating can also be temporally dissociated from peak plasma E2 

concentrations (Jones and Swain, 1996; Jones et al., 1997). A second oestrogen, 

oestrone (E1), has been identified in ovarian extracts of the lizard Lacerta sicula 

(Lupo Di Prisco et al., 1968) and Joss (1985) proposes a role for E1 during mating in 

females of the lizard, Lampropholis guichenoti. Moreover, the ovary is not always the 

major source of circulating E2. In the viper, Trimeresurus flavoviridis, the adrenal 

gland is credited with the majority of E2 production (Yokoyama and Yoshida, 1994). 

1.4.3 Progestogens 

Progestogens maintain pregnancy in mammals (Kime, 1987) and plays an important 

role in the maintenance of gravidity in lizards (Moore et al., 1985; Fox and Guillette, 
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1987). They also have the ability to delay ovulation (Frieden and Lippner, 1971). The 

most common progestogen is progesterone (P) (Norris, 2007) which is also an active 

androgen antagonist in mammals, competing for androgen binding sites (Rhoades and 

Pflanzer, 1992). Progestogens are secreted by the CL in the ovary following 

ovulation, as well as by the testes and adrenal glands in both males and females 

(Klicka and Mahmoud, 1977; Kime, 1987). While many are biologically active 

themselves, progestogens such as P and pregnenolone also act as intermediates in the 

formation of most other steroids and are, consequently, synthesised in all 

steroidogenically hyper-active tissues of the body (Frieden and Lippner, 1971). 

Studies in reptiles have suggested that P is an important inhibitory regulator during 

seasonally cyclic decreases in vitellogenic synthesis (Custodia-Lora and Callard, 

2002a). 

Variation in patterns of P production has been documented in female reptiles during 

reproduction. Ovulation typically results in increased P in the ovary and plasma of 

oviparous reptile species (Yaron, 1972). In oviparous squamates, plasma P 

concentrations often becomes elevated during follicular development, peaking after 

ovulation during the gravid period, then falling to basal concentrations at oviposition 

(Arslan et al., 1978a; Bona-Gallo et al., 1980; Joss, 1985; Diaz et al., 1994). 

Postovulatory plasma P concentrations are also usually elevated, but the timing of the 

P peak varies. P is described as having an important role in ovulation (Chieffi and 

Pierantoni, 1987), and as an anti-oestrogen or inhibitor of vitellogenesis during 

pregnancy and gravidity (Ho et al., 1982; Callard and Ho, 1987; Radder et al., 2001; 

Jones, 2011), probably by acting directly on the liver (Callard et al., 1972a; Callard et 

al., 1990). It is assumed that the CL is the source of P during gravidity (Fox and 

Guillette, 1987; Diaz et al., 1994; Radder et al., 2001; Shanbhag et al., 2001).  

1.4.4 Action of E2 and P in male reptiles 

Other than T, data on plasma steroids in male reptiles are few. In those species in 

which plasma P or E2 have been examined, little attempt has been made to find causal 

relationships between temporally coincidental reproduction and steroid physiology. 

Saint Girons et al. (1993) provided one of the few published studies in which the 

timing of reproduction was correlated with changes in concentrations of all three 
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primary gonadal steroids in the plasma of a male squamate. While plasma P 

concentrations were highly variable, sexually inactive male Vipera aspis exhibited 

elevated plasma E2 and low plasma androgens concentrations, and in breeding-males 

the situation was reversed. However, in male Podarcis sicula sicula, plasma E2 

concentrations increase post-reproductively (Ando et al., 1992). Recent studies 

reported that high oestrogen concentrations have an inhibitory effect on 

spermatogenesis and epididymal development (Cardone et al., 2002). 

1.5 Reproductive anatomy in lizards: male and female 

1.5.1 Male reproductive anatomy 

1.5.1.1 The testes 

All male reptiles possess a pair of compact testes in the abdominal cavity (Shanbhag, 

2002) (Figure 1.6). The testis consists of convoluted seminiferous tubules containing 

permanent germinal epithelia and Sertoli cells (Figure 1.7). Leydig cells are found in 

the interstitium between seminiferous tubules surrounded by connective tissue, blood 

and lymph spaces (Al-Hajj et al., 1987; Dehlawi and Ismail, 1990; Al -Dokhi, 1996; 

Shanghag et al., 2000b; Vieira et al., 2001; Ferreira et al., 2002; Röll and van Düring, 

2008; Ferreira et al., 2009; Rheubert et al., 2009; Rheubert et al., 2011a). 

The morphological characteristics of lizard testes typically vary with the stage of the 

annual reproductive cycle (Ferreira et al., 2002). There are also changes in the 

developmental stages of germ cells, and in the quantity and metabolic activity of 

interstitial tissue (Wilhoft, 1963; Wilhoft and Quay, 1961). Changes in the Leydig 

cells apparently vary inversely with the periods of germ cell production (Goldberg 

and Lowe, 1966).  

Studies on testicular cycles of lizard species indicated that spermatogenic patterns are 

specific to each species. Many male lizards exhibit a prenuptial spermatogenic cycle 

with variations in the testicular or seminiferous tubule size (Fitch, 1970; Sarkar and 

Shivanandappa, 1989; Shanbhag et al., 2000b; Noriega et al., 2002; Ferreira et al., 

2009). In recent years, a new temporal germ cell development strategy during 

spermatogenesis has been described in all major taxa within Reptilia [Sauria (Gribbins 
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and Gist, 2003; Rheubert et al., 2009); Chelonia (Gribbins et al., 2003); Serpentes 

(Gribbins et al., 2005; 2008); Crocodylia (Gribbins et al., 2006)]. This strategy 

follows a prenuptial pattern of spermatogenesis, in which germ cells enter the 

spermatogenic cycle with a number of predictable cytological changes during their 

development in association with Sertoli cells, leading to a single spermiation event at 

the end of the cycle (Gribbins and Gist, 2003).  

However, recent histological evaluations of testicular structure and germ cell 

development strategies within reptiles have been restricted to temperate species only. 

Spermatogenesis in these species is typically limited to warmer months, due to the 

lack of resources, which are presumably used to facilitate metabolically demanding 

processes such as spermatogenesis (Olsson et al., 1997) in colder periods of the year. 

 

 

Figure 1.6. Urogenital organs in lizards. (A) Male organs of Varanus. (B) Female 

organs of Sphendon (Romer and Parsons, 1978).  
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Ultrastructural studies detailing the morphology of mature spermatozoa, which 

describe the steps of spermiogenesis, have been reported for many lizard species (e.g. 

Jamieson et al., 1996; Giugliano et al., 2002; Teixeira et al., 2002; Ferreira and 

Dolder, 2003b; Vieira et al., 2004; Rºll and von Düring, 2008; Rheubert et al., 2011a) 

(Figure 1.8). Spermiogenesis is the step-wise development of spermatids into mature 

spermatozoa, and many of the characteristics observed in mature spermatozoa are 

seen throughout this developmental process. Some studies have used ultrastructure of 

the mature spermatozoa in phylogenetic analyses (Newton and Trauth, 1992; 

Jamieson, 1995, 1999; Jamieson et al., 1996; Vieira et al., 2005; Colli et al., 2007). 

Recent ultrastructural analyses that infer evolutionary trends among reptiles have 

shown that some spermatozoa morphological characteristics may be synapomorphic 

(shared trait among two or more taxa) in squamates. For example, Jamieson (1995) 

found that a single perforatorium may be a synapomorphy for squamates in their study 

of Iguania, and Jamieson (1999), Vieira et al. (2004), and Rheubert et al. (2010a) 

corroborated these data in their analysis within the Squamata. In addition, the 

peripheral fibers associated with microtubule doublets 3 and 8 are grossly enlarged in 

squamates (Jamieson, 1995, 1999; Cunha et al., 2008), whereas in Sphenodon they are 

not (Healy and Jamieson, 1992). Few studies have been reported on the mature 

spermatozoa of geckos (Furieri, 1970; Jamieson et al., 1996; Rºll and von Düring, 

2008); however, only one study highlights the ultrastructure of spermiogenesis within 

the Gekkonidae (Rheubert et al., 2011a). 

 

 

 

Figure 1.7. Spermatogenesis. Diagrammatic representation of a cross section through 

a seminiferous tubule in a reptile testis (Zug et al., 2001; Elsevierdirect.com, 2012). 
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In the reptilian testis, the steroidogenic activity has been characterized by 

histochemical and ultrastructural studies, mainly detecting the presence of 3ɓ-

hydroxysteroid dehydrogenase (3ɓ-HSD), and occasionally 17ɓ-HSD. The secretion 

of hormones is associated with the development of steroidogenic ultrastructural 

features in Leydig and Sertoli cells such as smooth endoplasmic reticulum (SER), the 

presence of mitochondria with tubular cristae associated with lipids droplets, and a 

reduction of cytoplasmic lipid droplets (Mori, 1984; Mahmoud et al., 1985a; Dubois 

et al., 1988; Mesner et al., 1993; Mahmoud and Licht, 1997; Ferreira and Dolder, 

2003a). The presence of lipids in Leydig and Sertoli cells is an indication of 

steroidogenic activity. The lipid droplets usually become abundant in both cells 

during spermatogenic inactivity but decline during the active period (Callard et al., 

1976; Lofts and Tsui, 1977; Mahmoud et al., 1985a; Dubois et al., 1988). In Sertoli 

cells, the presence of 3ɓ-HSD varied seasonally in turtles (Callard and Ho, 1980; 

Dubois et al., 1988) and the presence of ultrastructural features related to 

steroidogenic activity in Sertoli cells has been documented in the lizard Liolaemus 

darwini (Gutierrez and Yapur, 1983) and in the snake Eryx jayakari (Al -Dokhi et al., 

2004).  

Recently, the ultrastructural features of steroid activity in Leydig and Sertoli cells, and 

serum testosterone (T) concentrations have been reported in the lizard Phymaturus 

antofagastensis (Boretto et al., 2010). Leydig and Sertoli cells presented 

ultrastructural features characteristic of steroid synthesis during spermatogenesis. 

Leydig cell steroidogenic activity is synchronized with proliferation and 

differentiation of germ cells (Licht, 1984), indicating the important role of androgens 

in spermatogenesis. The Sertoli cells function in support and nutrition of the germ 

cells (Rºll and von Düring, 2008). They have also been reported to play a major role 

in Leydig cell proliferation and steroidogenesis (e.g., Skinner et al., 1991; Bardin et 

al., 1994; Lejeune et al., 1996).  

1.5.1.2 The epididymis 

The Wolffian duct in reptiles gives rise to vas deferens. The genital region of the 

Wolffian duct differentiates into the epididymis (Figure 1.6). The vas deferens is a 
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simple structure composed of a convoluted tubule of varying diameter along its 

length, lined by a layer of epithelial cells in lizards (Shanbhage, 2002). The 

epididymal structure has been described in detail in many lizard species (e.g., Haider 

and Rai, 1987; Mesure et al., 1991; Averal et al., 1992; Jones, 2002; Akbarsha et al., 

2006, 2007; Rheubert et al., 2010b). 

 

Figure 1.8. Drawing of spermatozoon in longitudinal and corresponding transverse 

sections from the lizard Ameiva ameiva. The drawing was produced from several 

TEM micrographs (Giugliano et al., 2002). 

 

The epididymis can be morphologically divided into several regions, depending on 

the species, with considerable variation in epithelial cell height and luminal diameter 

along its length. The ductus epididymis of H. flavivridis consists of a small ductuli 
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epididymis, and a large ductus epididymis. The ductus epididymis increases markedly 

in diameter posteriorly and ends in a vas deferens (Haider and Rai, 1987).  

Recent studies reported that ducts in lizards and snakes are differentiated into: rete 

testis tubules, ductuli efferentes, ductus epididymis, ductus deferens, and ampulla 

ductus deferentis (Akbarsha et al., 2006, 2007; Rheubert et al., 2010b; Sever, 2010) 

(Figure 1.9). Rheubert et al., (2010b) reported that in the gecko, Hemidactylus 

turcicus, the seminiferous tubules unite into a single rete testis tubule, where the rete 

testis divides into 3ï4 ductuli efferentes which drain into the cranial portion of the 

ductus epididymis.   

In reptiles, the epididymis is involved in sperm maturation. The spermatozoa become 

motile and are then capable of fertilizing the eggs during their transit through the 

epididymis. The lizard epididymis is a conspicuous secretory organ controlled by 

steroid hormones (Depeiges and Dufaure, 1981; Dufaure and Saint-Girons, 1984). It 

produces large secretory granules that mix with the spermatozoa in the epididymal 

fluid. The secretory granules contain specific proteins that are able to bind to the 

heads of the spermatozoa (Depeiges and Dufaure, 1983). 

 

Figure 1.9. Schematic drawing of the urogenital system in the lizard Lacerta vivipara 

showing the rete testis, ductuli efferentes, ductus epididymis, and ductus deferens 

(Martin Saint Ange, 1854). 
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During the annual reproductive cycle, the epididymal cells undergo drastic 

morphological, physiological and biochemical modifications (Depeiges et al., 1988) 

corresponding to successive and well characterized quiescent, maturation 

(recrudescent), active and degenerative (regression) phases (Haider and Rai, 1987; 

Mesure et al., 1991). These modifications are probably correlated with the 

steroidogenic Leydig cells activity. During the quiescent phase, the epithelial cells 

appear small and cuboidal with hyperchromatic nuclei. Experimental studies 

involving castration and androgen replacement therapy have shown androgen 

dependency of the epididymis in lizards (Sarkar and Shivanandappa, 1984; Haider; 

1985a; Shivanandappa and Sarkar, 1987). Treatment with anti-androgens such as 

cyproterone acetate and flutamide caused epididymal regression in P. dorsalis 

(Shivakumar and Sarkar, 1980) and H. flaviviridis (Haider and Rai, 1986). This 

indicates that androgens are needed for normal epididymal growth and activity in 

lizards (Shanbhage, 2002).   

The vas deferens in lizards is a simple convoluted tube carrying the sperm from the 

epididymis. The anatomy of the vas deferens is described for Calotes versicolor 

(Akabarsha and Meeran, 1995). During the breeding season, the terminal part of the 

vas deferens appears swollen and is comparable to the ampulla of mammalian vas 

deferens. During the quiescent phase, the vas deferens cannot be distinguished as a 

duct and ampulla. However, after administration of androgens during the quiescent 

phase, the ampullary region becomes distinct and glandular, suggesting its androgen 

dependency (Akabarsha and Meeran, 1995).  

1.5.1.3 Renal sexual segment 

In the male gecko Hemidactylus turcicus, the nephrons are composed of five distinct 

regions: 1) a renal corpuscle and glomerulus, 2) a proximal convoluted tubule, 3) an 

intermediate segment, 4) a distal convoluted tubule, and 5) the sexual segment of the 

kidney/collecting duct (Rheubert et al., 2011b). In most lizards, the renal sexual 

segment (RSS) mostly includes distal convoluted tubules and in some, the collecting 

tubules form its main part (Fox, 1977; Gabri 1983; Sarkar and Shivanandappa, 1989; 

Sever Hopkins, 2005) (Figure 1.6). Kidneys of female Hemidactylus turcicus, 

however, are similar to that of the male but lack the sexual segment (Rheubert et al., 
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2011b). Sever and Hopkins (2005) studied seasonal variation of the RSS in the ground 

skink, Scincella lateralis (Scincidae) with light and electron microscopy. They 

reported data from lizards collected throughout the entire year and found that, like 

most snakes, the RSS of S. lateralis is discernible from other nephridic tubules during 

the inactive season, which differs from that of other lizards (Sever et al., 2002). 

Although histological studies on the RSS of geckos have been reported (Misra et al., 

1965; Sanyal and Prasad, 1966; Saint Girons, 1972), only one ultrastructural study 

(Rheubert et al., 2011b) has been reported so far. In recent years, the seasonal 

ultrastructure of the RSS in lizards has been under study to better understand the 

evolution of the RSS in order to establish phylogenetic relationship between 

squamates. 

Seasonal variation in the RSS has shown strong correlation with spermatogenic 

activity, mating, and increased androgen concentrations (Bishop, 1959; Misra et al., 

1965; Prasad and Sanyal, 1969; Krohmer, 1986). 

1.5.2 Female reproductive anatomy 

1.5.2.1 The ovaries 

The ovaries of oviparous lizards are a pair of oval sacs attached to the dorsal wall of 

the abdominal cavity by a mesovarium (Figures 1.6 & 1.10) (Uribe et al., 1996). The 

ovary is covered by a simple cuboidal epithelium with a basement membrane 

separating the surface epithelium from the underlying stroma. The ovarian stroma 

mainly consists of fibrous connective tissue, degenerating corpora lutea (CL) and 

atretic follicles, lymphatics, blood vessels, nerves and interstitial gland cells 

(Shanbhag et al., 1998). The amount of interstitial gland cells varies depending upon 

the phase of the ovarian cycle. The interstitial gland cells in the ovary of C. 

versicolor, H. flaviviridis, and C. calcaratus (Gouder and Nadkarni, 1976) exhibit 3ɓ-

HSD activity. The oogonia and oocytes are restricted to one or more isolated small 

regions in the ovary known as germinal beds (GBs) (Jones et al., 1982; Shanbhag et 

al,, 1998). The number of GBs varies between species. In the monoautochronic 

lizards such as H. flaviviridis (Guraya and Verma, 1976) and H. brooki (Shanbhag et 

al,, 1998) each ovary contains one GB. The polyautochronic lizard C. versicolor has 

two GBs in each ovary (Jones et al., 1982; Shanbhag and Prasad, 1993). Although 
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many lizard species produce a clutch size of two, the number of ovulations at one time 

can be as low as one or as high as 50 or more (Fitch, 1970; Ballinger, 1978). Thus, in 

different species a single ovary can ovulate one to several eggs during each ovulatory 

period.  It is believed that the number of GBs may have a role in controlling the clutch 

size in reptiles (Jones et al., 1982).  

 

Figure 1.10. Position of the ovaries and oviducts of female lizard (Universe-review.ca, 

2012). 

 

The ovaries of reptiles exhibit various developmental and degenerative processes 

depending on the stage of development and/or the phase of the ovarian cycle. These 

include the processes of oogonial proliferation, oogenesis, follicular growth, 

vitellogenesis, ovulation, luteogenesis, luteolysis and follicular degeneration. In most 

reptiles, oogonial proliferation and oogenesis occur throughout life (Shanbhag, 2002). 

Lizard follicular growth not only involves the growth and maturation of the oocyte, 

but also requires the storage of large quantities of yolk in the ooplasm (Guraya, 1989). 

Although the general sequence of folliculogenesis has been described in a number of 

reptiles, some variation between species has been reported (e.g., Klosterman, 1987; 

Uribe et al., 1996; 2000; Gómez and Ramírez-Pinilla, 2004; Vieira et al., 2010). In 

particular, there is still a need for information on the cytoplasmic changes occurring 

during oocyte growth and vitellogenesis in most reptiles. 
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The ovarian follicle is composed of a central oocyte surrounded by a bi-layered, 

acellular membrane, the zona pellucida, which is bound by a follicular epithelium. In 

lizards, the follicular epithelium, the granulosa, is a highly dynamic structure that 

significantly changes in morphology and function in relation to oocyte growth. During 

early follicular growth, the primary follicles are composed of a single layer of small 

stem cells. In mid-previtellogenesis, some small cells differentiate into pyriform cells 

via intermediate cells, and the epithelium becomes multi-layered (Andreuccetti 1992). 

As follicular development progresses, the zona pellucida is clearly subdivided into 

two distinct regions: an outer homogeneous layer adjacent to the granulosa and an 

inner, thicker striated layer (zona radiata) lying against the oolemma. During late 

previtellogenesis pyriform cells regress via apoptosis (Motta et al., 1996) and the 

follicular epithelium gradually reorganize and re-establishes a monomorphic 

monolayered condition in which the small cells persist as a unique component of the 

epithelium until ovulation (Filosa et al., 1979). Surrounding the ovarian follicle are 

the thecal layers, the theca interna (TI) and theca externa (TE), composed of 

connective tissue, blood vessels, and secretory cells. 

The ovary produces a variety of steroids (Di Prisco et al., 1968; Chieffi and Botte 

1970), which contribute to plasma sex hormone concentrations (Ciarcia et al., 1986). 

Typically, high oestrogen (E2) concentrations are present in the blood during oocyte 

growth, whereas progesterone (P) concentrations are higher during ovulation and 

postovulation and remain high as long as eggs are in the oviducts (Ciarcia et al., 

1986). Histochemical distribution of steroid dehydrogenases in gonadal tissues 

identifies several putative sites of steroidogenesis, i.e., follicular walls (thecal and 

granulosa layers), peripheral ooplasma of young oocytes, postovulatory CL, and 

atretic follicles (Botte and Delrio 1964). These steroidogenic sites are indicative of the 

ovarian steroid synthesis which regulates vitellogenin synthesis (Ho, 1987) and 

regulate oviductal activity (Botte et al., 1976; Botte and Granata 1977). In all 

vertebrates, including reptiles, the ovarian sex steroid production is linked to the 

hypothalamusïhypophysis axis through gonadotropin-releasing hormone (GnRH) and 

is under its control with positive and/or negative feedback (Everett, 1988; Sherwood 

et al., 1993). Several ultrastructural studies in reptiles reported that GnRH induces 

ultrastructural steroidogenic changes characteristic of active ovarian tissue which lead 
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to an increase in the secretion of sex hormones (Lewis et al., 1979, Mahmoud et al., 

1985b, 1986; Mahmoud and Licht, 1997; Al -Kindi et al., 2001; Mahmoud et al., 

2006).  

Many species of oviparous snakes and lizards retain their eggs for at least half of the 

period of embryonic development (Shine, 1983; Andrews and Mathies, 2000) with the 

majority of taxa ovipositing at stages 26ï33 (according to the staging system of 

Dufaure and Hubert, 1961). The endocrine basis for such egg retention appears to be 

the ability of the postovulatory follicles to secrete P (Rothchild, 1981). Plasma P 

concentrations generally rise in the postovulatory period, falling shortly thereafter, 

and there is a strong correlation between the duration of egg retention and the period 

of activity of the CL (Jones and Guillette, 1982; Mahmoud and Licht, 1997).  

Among squamates, the pattern of plasma P concentrations and particularly the timing 

and duration of the peak during gestation or gravidity varies markedly between 

species (Xavier, 1987). For example, in the snake Thamnophis elegans (Highfill and 

Mead, 1975), and the lizard Tiliqua rugosa (Bourne et al., 1986a), plasma P 

concentrations are highest during the second trimester of pregnancy, falling during the 

third trimester; but in the snake Natrix taxispilota the peak occurs during early 

pregnancy (Chan et al., 1973). The physiological basis for such variations in plasma P 

profiles among squamates remains obscure, but may reflect species differences in the 

degree of embryonic dependence upon yolk nutrition vs. maternal transfer during 

gravidity or gestation (Jones et al., 1997). 

1.5.2.2 The oviducts 

The reptilian oviduct includes all structures of the female reproductive tract derived 

from the embryonic Müllerian duct (Wake, 1985). In general, the oviducts of lizards 

are paired, thin-walled tubes that extend length wise along the body cavity on either 

side of the midline (Figures 1.6 & 1.10) (Blackburn, 1998), and supported by dorsal 

mesenteries that are continuous with the peritoneum (Corso et al., 2000).  The paired 

ovaries, suspended from the dorsal midline via their mesovaria, lie medial to the 

oviducts and caudal to their infundibular ostia (Blackburn, 1998). The position of the 

ovary relative to the oviductal ostium varies considerably among species. In some 
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species, the ovaries are adjacent to the ostia, whereas in others they lay considerably 

caudal to the oviductal opening (Blackburn, 1998). The oviducts may be of different 

lengths on each side of the body (Perkins and Palmer, 1996), presumably to make 

efficient use of body space during gravidity (Girling, 2002) (Figure 1.11).  

In the majority of reptiles, the oviduct can be subdivided into five regions. The 

infundibulum, which receives the oocyte, the uterine tube, where albumen production 

and sperm storage occur, the isthmus, followed by the uterus, which is responsible for 

the eggshell production, and the vagina that leads to the cloaca. (e.g., Palmer and 

Guillette, 1988; 1990; Guillette et al., 1989; Aldridge, 1992; Palmer et al., 1993; 

Sarker et al., 1995; 2003; Perkins and Palmer, 1996; Girling et al., 1997; 1998; 2000; 

Blackburn, 1998; Girling, 2002; Adams et al., 2004; Sever and Hopkins, 2004; 

AlKindi et al., 2006; Siegel and Sever, 2008). However, the five oviductal regions are 

not recognised in every reptilian species, and additional regions may also be present 

in some species (Girling, 2002; Nogueira et al., 2011) (Figure 1.11).  

 

 

Figure 1.11. Schematic diagram of the female reproductive tract and cloaca of the 

lizard H. mabouia. Infundibulum (a), uterine tube (b), uterus (c), vagina (d), ovaries 

(e). Cloaca (* ). Bar: 2 mm (Nogueira et al., 2011). 
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The site of fertilization in reptilian species has yet to be determined (Blackburn, 1998; 

Girling, 2002). Presumably, fertili zation occurs before albumen or shell membranes 

cover the ovulated oocyte. Eggs are coated with oviductal secretions after they enter 

the infundibular ostium (Palmer et al., 1993) (Figure 1.12). Fertilization, therefore, 

occurs either in the infundibulum or in the uterine tube, where sperm is stored in these 

regions. For instance, in a gecko Heteronotia binoei the sperm were observed in the 

oviductal wall of the infundibulum that surrounded the unshelled ovum (Whittier et 

al., 1994). This suggests that fertilization occurs in the infundibulum of this species. 

 

Figure 1.12. Development of eggs in reptiles. Fertilization occurs after eggs are 

ovulated into the oviducts (Zug et al., 2001; Elsevierdirect.com, 2012).  

 

During the active phase of the reproductive cycle, the luminal epithelium shows 

secretory activity throughout the oviduct which includes albumen, eggshell membrane 

and eggshell formation components and sperm storage (Blackburn, 1998; Girling, 
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2002) (Figure 1.12). Three cell types are found in the luminal epithelium: ciliated, 

microvillous nonciliated, and bleb-like nonciliated cells. The function of ciliated cells 

is presumably for movement of mucus and cellular debris down the oviduct (Palmer 

and Guillette, 1988). The cilia may also aid in the movement of sperm, and the 

ovulated egg. Apical protrusions and blebbing of the ciliated cells have also been 

reported, suggesting that ciliated cells may also have some secretory function (Girling 

et al., 1997). Microvillous nonciliated cells are presumably mucus-producing, which 

is necessary to keep the lumen of the oviduct moist and clear of debris (Leese, 1988). 

The oviductal lumen is continuous with the exterior (via the urogenital sinus) and so 

is vulnerable to contamination. Bleb-like nonciliated cells have been identified in 

some reptilian species (Palmer and Guillette, 1988; Girling et al., 1997; 1998; 

AlKindi et al., 2006), and their function is still unknown. 

The lizard oviduct is a dynamic organ that undergoes major structural changes 

associated with hormonal stimulation as a function of the cyclic reproductive activity. 

During the vitellogenic period E2 is responsible for cell hypertrophy, glandular 

development and secretory activity (Abrams Motz and Callard, 1991; Girling et al., 

2000; AlKindi et al., 2006). P has been implicated in the regulation of oviductal 

function in oviparous reptiles (Klicka and Mahmoud, 1977; Jones and Guillette, 1982; 

Paolucci and Di Fiore, 1994; Shanbhag et al., 2001; AlKindi et al., 2006) and egg-

shelling (Cuellar, 1979; Radder et al., 2001; AlKindi, 2006). 

The thick muscular coat of the vagina is well designed for movement of eggs 

(Blackburn, 1998). The hormones involved in rhythmic contraction of the oviduct 

include; arginine vasotocin (AVT) and prostaglandins, as well as neural factors 

(Guillette et al., 1991), but AVT appears to play a major role in the process of 

oviposition.  

1.6 Model organism 

1.6.1 The family Gekkonidae 

Gekkonidae are a cosmopolitan family and one of the largest primitive families with 

over 1000 species of lizards (Han et al., 2004). The family gekkonidae are distributed 

throughout the tropics, subtropics and warm temperate regions, including; Central and 
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South America, Africa, Madagascar, Southern Europe, Asia, Indo-Australian 

Archipelago, New Guinea, Australia and Oceania (Cogger, 2003). There are about 85 

genera and more than 1000 species of this family (Ananjeva et al., 2004). Many have 

distinctive adhesive climbing pads on their toes, formed by modified scales which 

allow them to climb on smooth vertical surfaces. Most are nocturnal and oviparous, 

but some are both diurnal and viviparous. All lack movable eyelids and many are 

known to use their fleshy tongues to lick their eye-spectacle clean. Many geckos also 

communicate by vocalization, uttering species-specific yaps, chirps and coughing 

sounds. Most are small to medium sized (50-400 mm total length) (Cogger, 2003).  

1.6.2 The genus Hemidactylus 

The genus Hemidactylus belongs to the subfamily Gekkoninae which is the largest 

and most widely distributed subfamily containing 670 species in 72 genera worldwide 

(Mattison, 2004). With more than 80 species inhabiting all warm continental land 

masses and hundreds of intervening continental and oceanic islands, Hemidactylus 

geckos are one of the most species-rich and widely distributed of all reptile genera 

(Carranza et al., 2006) and newly described species are discovered every few years.  

The genus was named by Gray (Gray, 1825) and referred to as house geckos. 

Lizards belonging to the genus Hemidactylus are medium-sized, nocturnal and 

oviparous (egg-laying), brown to pinkish in colour, with a scattering of tubercular 

scales among their granular ones, and with well developed toe-pads (Mattison, 2004). 

Each finger or toe has a slender distal-clawed joint, angularly bent and rising from 

within the extremity of the dilated portion (Boulenger, 1890). The fingers and toes are 

free, and more or less webbed and dilated; underneath they bear two rows of lamellae 

in a pattern resembling a paripinnate compound leaf (Boulenger, 1890). This leads to 

their other and more ambiguous common name, "leaf-toed geckos", used mainly for 

species from South Asia and its surroundings to prevent confusion with the many 

"leaf-toed" Gekkota not in Hemidactylus. The dorsal lepidosis is either uniform or 

heterogeneous. The pupil of the eye is vertical. Males have pre-anal or femoral pores.  

Apart from houses, Hemidactylus live in a variety of habitats, including rocks, dry-

stone walls and trees (Mattison, 2004). 
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1.6.3 The investigated animal, the house gecko Hemidactylus flaviviridis 

The animal used in this study is the common house gecko H. flaviviridis, which was 

named by Rüppell (Rüppell, 1835), an abundant, relatively small lizard common in 

many places in open or in wooded habitats. While quite cryptic and secretive, it is 

extremely easy to catch.  

Many studies on this species in relation to its geographic distribution, natural history, 

ecology, life history, diet, home range and activity patterns have been documented 

(e.g., Ibrahim, 2000; Henkel, 2003; Carranza et al., 2006; Sivaperuman et al., 2008; 

Baig et al., 2008). The reproductive biology of this species has also been studied 

(Sanyal and Prasad, 1967; Prasad and Sanyal, 1969; Reddy and Prasad, 1970a,b; 

Reddy et al., 1972; Varma and Guraya, 1975; Gouder and Nadkarni, 1976; Guraya 

and Varma; 1976; Duda, 1980; Duda and Annalakshmi, 1982; Rai and Haider, 1986; 

1991; 1995; Haider and Rai, 1987; Shanbhag, 2002; Rai and Nirmal, 2003; Khan and 

Rai, 2004; 2005). The reproductive cycles of this species have also been studied in 

detail in relation to the timing of reproductive events, as well as the endocrine and 

paracrine controls (Sanyal and Prasad, 1967; Duda, 1980; Haider and Rai, 1987; Rai 

and Haider, 1986; 1989; 1991; 1995; Khan and Rai, 2004; 2005; 2008; Bharti et al., 

2011). 

To date, there are no available data about the reproductive cycle of this species in 

Oman and the neighbouring countries in the Gulf Region and the Arabian Peninsula. 

1.6.3.1 Geographical distribution  

The gecko H. flaviviridis is mainly found in the warm temperate and subtropical 

regions, and has been reperoted in the studied areas including; Egypt (Ismailia, Sinai), 

Kuwait, Saudi Arabia, United Arab Emirates, Oman, Iraq, Iran, Afghanistan, Nepal, 

Pakistan, India (Andhra Pradesh, Assam, West Bengal, Bihar, Uttar Pradesh, Delhi, 

Punjab, Maharashtra, Gujarat, Rajasthan, Madhya Pradesh, Haryana, Orissa), Socotra 

Island (Yemen), Somalia, Sudan, Ethiopia, and Eritrea (Figure 1. 13) (JCVI/TIGR 

Reptile Database, 2011). 

 




