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“For something to exist, it has to be observed.

For something to exist, it has to have a position in time and space.

And this explains why nine-tenths of the mass of the universe is unaccounted

for. Nine-tenths of the universe is the knowledge of the position and direction

of everything in the other tenth. Every atom has its biography, every star its

file, every chemical exchange its equivalent of the inspector with a clipboard.

It is unaccounted for because it is doing the accounting for the rest of it, and

you cannot see the back of your own head.

Nine-tenths of the universe, in fact, is paperwork.”

- Terry Pratchett, Thief of Time



Abstract

This Thesis investigates how Type Ia supernova intrinsic luminosity dispersion depends

on the local environment of the explosion, traced using global host galaxy properties.

Our sample of Type Ia supernovae (SN Ia) is from the 5 year Dark Energy Survey and

the Australian Dark Energy Survey (DES/OzDES). SN Ia are powerful cosmological

probes; understanding how their intrinsic luminosities (which one relies on to calculate

cosmological distances) and their light curve parameters may be a�ected by their envi-

ronments could provide insight into the systematic errors which currently dominate in

SN Ia cosmology.

We select a sample of 1296 likely Type Ia SNe classi�ed by the software SNNova

Möller & de Boissière (2020), which have cosmologically useful light curve properties and

good quality host galaxy spectra from OzDES. We determine the host galaxy properties

for each galaxy in our sample of spectra, using strong emission line calibrations.

We derive the star formation rates using H� and [Oii ] diagnostics for 924 galaxies

(with the remaining 372 galaxies being designated a SFR=0) and measure the gas-phase

metallicities for a sub-sample comprising 250 of our galaxies. We also measure the stellar

mass for each galaxy using photometric techniques. We calculate cosmological distances

and Hubble residuals for our sample of SNe Ia using 1D and 5D bias corrections from

snana (Kessler et al., 2009) andbbc (Kessler & Scolnic, 2017).

We con�rm a relationship exists between SN Ia light-curve width (stretch) and host

galaxy environment, �nding that high-stretch (brighter) SNe Ia are hosted by highly

star-forming, low mass galaxies, high metallicity galaxies.

We have shown that a mixture of both host galaxy dust and progenitor age are likely

the cause of the luminosity dispersion in Type Ia supernova. We �nd that SN Ia hosted

in the extremes of host galaxy populations (starburst or passive) are better standard-

isable candles than those formed in complex, mixed stellar population, star forming

environments, with lower values of intrinsic luminosity dispersion and less dispersion

present in the rms of their Hubble residuals.

In future SNe Ia cosmological analysis, We recommend selecting SNe Ia from the

extremes of galaxy types, removing any SNe Ia which have host galaxies that fall into

the category � 12 < log(sSFR/M � yr � 1) < � 9:5, where the e�ects of extinction and
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progenitor age are di�cult to disentangle. We also recommend both a 2-value� cor-

rection dependent on host galaxy type, and two separate sets of bias corrections (on

each sample) which depend on the host galaxy characteristics including dust and likely

population age. We also emphasise the need to better model the dependence of SN Ia

light curves on host galaxy properties to perform accurate bias corrections on a large

sample of SN Ia. The study and classi�cation of SN Ia environment using similar tech-

niques to those presented here, will become as important a part of determining future

cosmological constraints as measuring the light-curves of the SNe Ia themselves.

We also perform large-scale simulations of the upcoming Time Domain Extragalactic

Survey (TiDES), which is focused on obtaining spectra of live transients detected by

the Vera Rubin Observatory (VRO) and their host galaxies. We determine that the

TiDES survey will produce a sample of over 15,000 spectroscopically con�rmed Type

Ia supernovae and over 50,000 photometrically classi�ed Type Ia supernova with host

galaxy redshifts. We conclude that TiDES will be able to create a Hubble Diagram of

� 60,000 high-redshift cosmologically-useful SNe Ia and determinew to < 2%. This will

be the largest survey of its kind ever conducted. Such simulations are not only vital to

survey planning and optimising survey strategy, but will be vital in understanding our

selection e�ects in future studies.
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Chapter 1

Introduction

�Much human ingenuity has gone into �nding the ultimate Before. The

current state of knowledge can be summarized thus:

In the beginning there was nothing, which exploded.�

- Terry Pratchett, Lords and Ladies

Over the last half century, cosmology - the study of the origin and evolution of the

Universe - has been revolutionised through the observations of supernovae explosions,

the violent deaths of massive stellar objects. Supernovae not only play an important

role in the study of cosmology, but also in astrophysical processes such as the chem-

ical evolution and enrichment of galaxies, as supernovae are main producers of iron

throughout the Universe.

Type Ia supernovae (SN Ia singular, or SNe Ia in the plural) were the �rst probes

used to measure the expansion history of the Universe. This particular type of super-

novae have luminosities that can be standardised through the measurement of their

light curve properties (how the brightness of the event evolves with time). However the

diversity of these objects and their progenitor systems are still not well understood. The

aim of this Thesis is to explore the environments of Type Ia supernovae, and attempt

to probe what physical processes could be driving SN Ia diversity.

In this Chapter we will �rst introduce the standard cosmological model in Section

1.1, where we explore the equations thought to govern the evolution of the Universe.

We then give an overview of Type Ia supernova physics in Section 1.2, looking at the

diversity of transients in Section 1.2.1, exploring in detail the physics of SN Ia in Section

1.2.2 and showing how SN Ia are classi�ed using spectral features in Section 1.2.3. We

cover how Type Ia Supernova have been used as cosmological probes in Section 1.3,

exploring some common light-curve standardisation methods in Section 1.3.1, and how

these have been used to measure cosmological parameters in Section 1.3.2. We look

at the competing theoretical models of SN Ia progenitor systems in Section 1.3.3, and
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1.1. The Standard Cosmological Model 2

we explore how galaxy properties can inform us about SNe Ia progenitor systems in

Section 1.3.4. We outline the current method of correcting for correlations between

host properties and SN Ia cosmological distances in Section 1.3.5. Finally, we discuss

some of the unanswered questions about SN Ia that are still up for debate in 1.3.6, and

provide an outline of the scope of this work in Section 1.4.

1.1 The Standard Cosmological Model

Cosmology is the branch of physics and astrophysics that deals with the study of the

physical origins and evolution of the Universe. The current theories of how the Universe

behaves on the largest scales are based upon Einstein's equations of General Relativity.

The basis for studies into the evolution of the Universe is the Cosmological Principle.

This principle states that on the largest scales, the Universe appears homogeneous at

any given time and isotropic at any given point. Therefore, there are no preferred

places in the Universe (Misner et al., 1973; Milne, 1933). These principles have been

veri�ed through observations of the Cosmic Microwave Background (CMB) which is the

remnants of the radiation left over from the Big Bang. One such modern experiment

that has veri�ed these principles is the Planck mission (Planck Collaboration et al.,

2018, 2019) which has shown that the Universe appears to be isotropic to one part in

100,000.

1.1.1 The Cosmological Model and Friedmann Equations

To model the evolution of the Universe using mathematical principles, one assumes

that the energy density of the Universe acts as a perfect �uid. This gives rise to the

Friedmann equations (Friedmann, 1924):

H 2 =
�

_a
a

� 2

=
8�G�

3
� ka2 (1.1)

which describes the acceleration of the Universe, and

•a
a

= �
4�G

3
(� + 3p) (1.2)

which describes the evolution of the Universe. In these equations� and p are the

density and pressure of the perfect �uid,G is Newton's gravitational constant, H is the

Hubble parameter,k describes the curvature of the Universe anda(t) is the scale factor

that describes the relative expansion of the Universe, and is dimensionless. Therefore

a(t) = 1 today, where _a is the �rst derivative with respect to time, and •a is the second

derivative.

The curvature of the Universe k is governed by the energy and matter content of

the Universe. In cosmologyk is often expected to take one of three values:
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ˆ k = +1 for a closed Universe with positive spatial curvature,

ˆ k = 0 for a `�at' Euclidean Universe which has no spatial curvature,

ˆ k = � 1 for a geometrically open Universe which has negative spatial curvature.

The parameterH is the Hubble parameter, and is given the valueH0 when measured

at today's epoch (whena(t) = 1 ). H0 is often called the Hubble constant. Hubble was

the �rst to measure the Hubble constant (Hubble, 1929) by showing that the recession

velocities of distant galaxiesv, is proportional to their absolute physical distanceD so

that

v = H0D: (1.3)

More recently the Hubble constant has been measured by several di�erent surveys which

use di�ering techniques. The recent Planck Collaboration et al. (2018) uses a combi-

nation of measurements from the CMB and another cosmological probe called Baryon

Acoustic Oscillations (BAO) to derive cosmological measurements. Their results mea-

sure an H0 = 67:66 � 0:42 (Planck Collaboration et al., 2019). However this value of

H0 derived from observing the `early time' probes (CMB & BAO) is in contention with

other measurements ofH0 that arise from `late time' probes, such as SN Ia. We discuss

this further in Section 1.3.6.

In cosmology the conservation of energy is expressed as

_� + 3H (� + p) = 0 ; (1.4)

which informs us how the density of each component of the Universe expands. In

cosmology it is common to assume that the `perfect �uid', that is the Universe, is

governed by the equation of state

p = w�; (1.5)

where w is either treated as a constant or wherew is allowed to evolve with time such

that

w(a) = w0 + wa(1 � a): (1.6)

When w is treated as a constant that does not evolve with time, the density of the

Universe � evolves as

� (t) / a� 3(1+ w) : (1.7)

The parameter w is often termed the `equation of state' parameter, a unitless constant

which describes how the perfect �uid behaves under di�erent conditions. We further

discuss the importance of the parameterw in Section 1.1.1.2.
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1.1.1.1 The Density Parameter

Before we move on to discussing the energy contents of the Universe, we introduce the

value � crit , where

� crit =
3H 2

8�G
: (1.8)

This represents the density that is required for the geometry of the Universe to be �at.

This parameter is often expressed using the density parameter
 , where 
 = �=� crit .

This is related to the Hubble parameter and the curvature of the Universe through


 � 1 =
k

a2H 2 ; (1.9)

which shows that if the density of the Universe is greater than the critical density, the

Universe will have positive curvature, whereas if the density of the Universe is less than

the critical density it will have a negative curvature.

Current measurements from Planck Collaboration et al. (2018) show that the ge-

ometry of the Universe is consistent with zero curvature, which we will assume for the

remainder of this work.

1.1.1.2 The Contents of the Universe

So far we have modelled the energy contents of the Universe as a perfect �uid. In reality

however, the Universe contains several independent components of energy. Here we

introduce the individual energy components of the Universe; matter (including baryonic

matter and dark matter), radiation and the vacuum energy where

� = � m + � 
 + � � ; (1.10)

where� m , � 
 and � � is the density of matter, radiation and vacuum energy respectively.

Consequently,


 tot = 
 m + 
 
 + 
 � ; (1.11)

where 
 m = � m =� crit , 
 
 = � 
 =� crit and 
 � = � � =� crit . We now brie�y explore how

each of these energy components of the Universe are thought to evolve with time, and

provide current measurements of their constraints.

Observations have shown that the total matter content of the Universe is dominated

by `dark matter', an unknown substance which interacts normally with gravity but

has no electromagnetic interaction. The existence of this matter was �rst inferred by

Zwicky (Zwicky, 1933) and later con�rmed by Vera Rubin (Rubin et al., 1980) through

measuring the rotation curves of nearby galaxies. The other matter component of

the Universe interacts both electromagnetically and gravitationally and is known as

baryonic matter. Recently the Planck 2018 results measured the density of dark matter

in the Universe to be
 ch2 = 0 :120� 0:01 and baryon density of
 bh2 = 0 :0224� 0:0001
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(Planck Collaboration et al., 2018). This estimates that the total matter content of the

Universe today is 
 m = 0 :3111� 0:0056.

The dark matter component of the Universe is thought to be collisionless. Therefore

it exhibits zero pressure, and so its expansion should be proportional to the volume of

the Universe. Therefore

� DM / a� 3; (1.12)

and

a / t2=3; (1.13)

where t is lookback time.

The second component of the Universe that we explore is radiation. The energy due

to radiation was dominant in the early expansion of the Universe just after the Hot Big

Bang. The radiation component evolves as

� 
 / a� 4; (1.14)

which can be rewritten as

a / t1=2: (1.15)

This implies that the radiation component dilutes faster than the matter component

over time. Therefore, the total contribution to the energy density of the Universe

today from radiation is insigni�cant when compared to the other energy contents of the

Universe.

The last component that we investigate is the vacuum energy, also known as `dark

energy', the force that is driving the accelerated expansion of the Universe. Dark energy

is an unknown form of energy that a�ects the Universe on the largest of scales. The most

widely accepted theory for dark energy is called the `cosmological constant', which is

thought of as a constant energy density �lling space homogeneously such that� � = � 0.

The cosmological constant is denoted� , and is characterised by its dark energy equation

of state, w, where w = � 1 and is related to the density of the Universe as in Equation

1.7. When w = � 1, p� = � � � and 
 � (z) = 
 � .

However, the cosmological constant (wherew does not evolve with time) is not the

only possible form that dark energy could take. The focus of many current experiments

is to verify if w is constant at all epochs. Currently, quantum �eld theory predicts

a value of � that is 120 orders of magnitude di�erent to the value that cosmologists

measure when assuming the cosmological constant model. In order to understand this

problem, it will be essential to either verify or disprove that w is constant over cosmic

time. All cosmological studies to date have measured a value ofw consistent with a

constant w = � 1, and so we will assume a cosmological constant model throughout
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this thesis. We will further discuss the observations used to determine the dark energy

parameters (including w) in Section 1.1.3.

At early times, the energy density of � would be much smaller than that of matter

or radiation. However as the Universe evolves with time, the� component comes to

dominate the energy density of the Universe as the other components of the Universe

become diluted over cosmic time. By rearranging Equation 1.1, we can see that

a / eH 0 t ; (1.16)

so when the Universe is dominated by the vacuum energy component, the Universe will

undergo an accelerated period of expansion. The Planck Collaboration et al. (2018)

have measured the value of
 � today to be 
 � = 0 :6889� 0:0056.

1.1.2 Measuring Distances in Cosmology

In the standard cosmological model, the values of energy density and curvature govern

the geometry of the Universe. However these parameters must be measured observation-

ally, which requires calculating the distances and brightness of objects in the Universe.

Here we explore the methods used to calculate cosmological distances.

A common method of distance measure is to calculate the Doppler shift of the

spectral features of an object due to the expansion of the Universe, also known as an

object's redshift or z. Redshift is de�ned as

z =
� obs

� em
� 1; (1.17)

where � obs is the observed wavelength of a spectral feature, and� em is the emitted

wavelength of that spectral feature. However this method which is inferred from the

recession velocity of an object is not a measure of the absolute distance to the object.

If we convert this to the scale factor,� e = a(te)r , wherer is the comoving distance and

a(te) is the scale factor at the time the light was emitted. After the expansion of space

has stretched the wavelength, we observe the light as� obs = a(tobs)r , where a(tobs) is

the scale factor today (a(tobs) = a(0) = 1 ). Therefore,

1 + z =
a(tobs)r
a(tem)r

=
1
a

: (1.18)

Consequently, redshift measures the change inrelative size of the Universe.

The luminosity distance or dL represents the distance to an object with a known

luminosity or brightness L , or �ux (F) on a comoving scale such that

F =
L

4�d 2
L

: (1.19)
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The measure ofdL is dependent on the expansion history of the Universe and is de-

scribed by the Friedmann equations. In a �at Universe with negligible contribution

from radiation energy, it can be derived that

dL = (1 + z)
c

H0

Z z

0

dz0

[(1 + z0)
 m + 
 � ]1=2
; (1.20)

where the vacuum energy component� is constant.

The angular diameter distance dA , is the distance to an object of dimensionl,

subtending an angle� as viewed from earth, and is de�ned by

dL = l=�: (1.21)

The luminosity distance is related to the angular diameter distance through

dL = dA (1 + z)2: (1.22)

Often to derive distances in cosmology we must be able to measure an object's

brightness, also known as magnitude. The apparent magnitude of an object,m, is the

brightness of an object as measured from earth. In this system, an object has a lower

magnitude the brighter it is. The apparent magnitude is de�ned as

m = � 2:5 log(Fi =F i
0); (1.23)

whereFi is the observed �ux in a passbandi , and F i
0 is the �ux of a reference object in

the band i . Historically, F i
0 was often calibrated to the star Vega such that Vega had

a magnitude of 0. In modern astronomy the most commonly used system is known as

the AB system, and is calculated using the formula

mi = � 2:5 log(f i ) � 48:60; (1.24)

wheref i is a �ux density measured in erg sec� 1cm2Hz� 1. This equation is selected such

that a source ofF� = 3631Jy has an apparent magnitude of zero.

An object's absolute magnitudeM is de�ned as the apparent magnitude of an object

if it was placed at a distance of 10 parsecs from the observer.

The last cosmological distance measurement we introduce here is the distance mod-

ulus � . This is the relationship between the apparent magnitude of an objectm and

the absolute magnitude of an objectM . The distance modulus is de�ned as

� = m(z) � M = 5 log
�

dL

10pc

�
; (1.25)

where dL is measured in parsecs and is dependent on the cosmology of the Universe.

For objects whose intrinsic luminosities are known (i.e.,M is known), it is possible to

constrain cosmological parameters by measuring an object's apparent magnitudem and

its redshift z, to derive � (z). Such objects are known as standard candles.
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1.1.3 Cosmological Probes

One standard candle that is used to probe cosmological distances are Type Ia supernovae

(SNe Ia). This work focuses on the use of SN Ia as standard candles, and we explore

this probe thoroughly in Section 1.2. Here we brie�y explore the other observational

distance probes used to measure cosmological parameters.

As we show later on, SNe Ia inform us about the rate of acceleration of the Universe.

However they do not constrain all cosmological parameters well, such as the curvature

of the Universek and the matter content of the Universe 
 m . Often di�erent comple-

mentary cosmological probes are required to constrain such parameters, each with its

own pros and cons. Here we will brie�y discuss the probes of the CMB and Baryon

Acoustic Oscillations (BAO), which constrain the total content of the Universe 
 and

the matter content of the Universe 
 m respectively. Combining all these di�erent cos-

mological probes enables us to obtain a complete view of the Universe and determine

which models satisfy all observations.

The most conclusive evidence for the Big Bang is the CMB. The CMB is isotropic

radiation that is the leftover remnant of the radiation created in the Big Bang. Within

approximately three minutes of the beginning of the Universe, the majority of the light

elements in the Universe (Hydrogen and Helium) were created. This process is known

as Big-Bang Nucleosynthesis (Alpher et al., 1948; Olive, 1995). Initially the Universe

was so hot that matter and photons could not separate and existed in an ionised plasma

state. As the Universe expanded and cooled this plasma expanded and lost density for

about 400,000 years. Once the temperature had dropped to around 3000K, photons

became free to radiate away from the matter in the plasma, and neutral atoms could

form.

The radiation that escaped during this process is known as the CMB. Through

measurements of the tiny �uctuations in the temperature spectrum (also known as

anisotropies) across di�erent scaled angles on the sky, one can estimate the intrinsic

curvature of the Universek and the total density 
 total . Several experiments and groups

have performed such an analysis, the most notable of which were the WMAP experiment

(Larson et al., 2011) and the Planck experiment (Planck Collaboration et al., 2018).

The other probe we brie�y explore is termed Baryon Acoustic Oscillations, or BAO.

BAO are a feature of known size and shape in the late time clustering of galaxies. BAO

are the imprints of sound waves that propagated throughout the early Universe during

the period prior to Big-Bang Nucleosynthesis and the free streaming of photons away

from the CMB. Once the Universe underwent recombination, these sound waves became

imprinted in the distributions of the density of galaxies. This measured change in density

can be detected today as a slight over-density in the number of galaxy pairs separated

by 150 Mpc (Eisenstein et al., 2005; Bassett & Hlozek, 2010). The BAO signal is very
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weak and can only be detected statistically over large scales. Through measurement

of the BAO signal at di�erent redshifts one can derive the angular diameter distance

DA (z) and the Hubble parameterH (z).

Through extensive observations of many di�erent cosmological probes, Cosmolo-

gists have reached a concordance cosmological model of the Universe, which we have

described in Section 1.1.1. Often the multiple probes of cosmology will be combined

in cosmological analyses to infer cosmological parameters, such as in the well known

analysis of Planck Collaboration et al. (2018) or Betoule et al. (2014). An example of

combining these di�erent probes (from the Betoule et al. (2014) analysis) can be seen

in Figure 1.6, which we show in Section 1.3.2.

We now move on to discussing one of the most critical contemporary cosmological

probes, a subtype of stellar explosion known as Type Ia supernovae.

1.2 Supernova

Supernova is the term used for the explosive death of a massive stellar object. Amongst

these events, the diversity in explosion mechanism, luminosity and evolution can vary

dramatically. This has led to two broad sub-classes of supernovae to be de�ned: Type

I supernova and Type II supernova. Type II supernovae have Hydrogen lines present

in their spectra, whilst Type I supernovae do not contain Hydrogen. In this Section

we brie�y explore the di�erences between transient sub-populations. We then focus on

the mechanisms and the physics of Type Ia supernovae that allow them to be used as

standardisable candles. We then explore the common features in SN Ia spectra, before

turning to how SN Ia are used as cosmological distance indicators.

1.2.1 Transient Diversity

As stated above, there are two broad classes of supernovae known as Type I and Type

II. We �rst investigate Type II supernovae.

Type II supernovae are the deaths of stars that have masses8M � & M & 50M � .

Their spectra contain Hydrogen, as the progenitor stars retain a signi�cant fraction of

their Hydrogen envelopes prior to their explosion. Properties of these object's light

curves (the evolution of their brightness over time) further divides Type II into two

main classes - IIL and IIP. SNe IIL show a rapid linear decline in their light curves

after maximum brightness (Barbon et al., 1979), and SNe IIP show a plateau in their

light curves as the thick Hydrogen surrounding progenitor is energised by the explosion

(Faran et al., 2014).

The Type II population can be divided further based upon their spectral features.

For example, Type IIb spectra can initially appear identical to a normal Type II, but
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the Hydrogen (H) emission weakens and disappears simultaneously with the occurrence

of Helium (He) in the spectra. SN IIn show interaction with a circumstellar medium

(CSM) via narrow Balmer emission. An overview of the progenitors to such objects and

their physics can be found in (Smartt, 2009).

Type I supernovae are distinguished by the absence of Hydrogen in their spectra.

The Type I class can be further broken down based upon the presence of Silicon Siii

doublet absorption at wavelengths� = 6347Å & � = 6371Å, often known as the 6355Å

feature. If this feature is present in the spectrum, it is classi�ed as a Type Ia supernova.

If it is not, then the supernova classi�cation is made upon the presence of Helium lines. If

Helium lines are present in the spectrum the supernova is classed as a Ib. If Helium lines

are not present, the objects are classed as a Ic. Both of these subtypes are believed to

have Wolf-Rayet progenitors (Begelman & Sarazin, 1986) and are often termed `stripped

envelope SNe'. SNe Ib and Ic are often di�cult to distinguish from one another due

to a transitional population of weak-Helium SNe Ib (Liu et al., 2016). For this reason

these supernovae are often grouped together as `SNe Ibc'.

Recently a new sub-class of supernovae were discovered called Superluminous Super-

novae (SLSNe). These objects are also split into the Type I and II categories (Gal-Yam,

2012). As the name suggests these objects are extremely bright, with SLSNe-I objects

having an absolute B-band magnitudeM B < � 21 (Quimby et al., 2011). The current

favoured energy source is the loss of energy of a highly magnetic compact object - a

magnetar (Woosley, 2010). Such events are relatively rare, but due to their luminous

nature can be observed at extreme distances.

Figure 1.1 shows a classi�cation scheme for the most common types of transients

observed in the extragalactic Universe. We now turn to the objects that are the focus

of this thesis - thermonuclear Type Ia supernovae. In the next section we explore Type

Ia physics, likely progenitor systems, SN Ia spectra and SN Ia light curve evolution.

1.2.2 Type Ia Supernovae

Supernovae Type Ia are best known for their role as cosmological distance indicators.

However there remain many unknowns about their formation mechanisms. Type Ia

supernovae are known as thermonuclear supernovae, and in the early studies of Type

Ia objects it was theorised that they consisted of an exploding Carbon-Oxygen white

dwarf (WD) (Woosley et al., 1986). Recent observations of nearby objects such as

2011fe (Bloom et al., 2012) have con�rmed that Type Ia objects are likely formed from

a degenerate compact star such as a white dwarf.

The explosion mechanism of SNe Ia is uncertain, with the main competing theo-

ries being the single and double degenerate scenarios. The double degenerate channel

theorises that the progenitor system of a Type Ia is two Carbon-Oxygen white dwarfs



1.2. Supernova 11

Figure 1.1: A decision scheme for determining the classi�cation of a SN from the

emission or absorption features present in the spectrum.

.
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in a binary system. In the single degenerate scenario the companion to the primary

WD is a main sequence or red giant star. All of the explosion models for both of these

scenarios involve the transfer of mass onto the primary WD, which triggers a runaway

thermonuclear reaction in the WD, causing it to explode.

Type Ia supernovae are some of the brightest transient events known, and they

can be detected at extreme distances with their luminosities rivalling that of their host

galaxies. The observed emission of SN Ia is powered by the radioactive decay of iron

group elements that are synthesised during the explosion. In the early phase of a SN

Ia (20 days before peak brightness), the luminosity of the explosion is driven by the

distribution of Nickel in the ejecta, and depends on the shock velocity of the object

(Firth et al., 2015). During the peak of the explosion, a large part of the central white

dwarf is burned to produce 56Ni, which is highly radioactive, and the outer layers of

the white dwarf burn to produce other elements such as Calcium (Ca), Silicon (Si),

Sulphur (S) and Magnesium (Mg). The peak of a SN Ia light curve is driven by56Ni

into 56Co decay, and as such the maximum brightness of a SN Ia is proportional to the

amount of 56Ni produced in the explosion, which is known as `Arnett's rule' (Arnett,

1982). The late time light curve (30 days post peak brightness) of the SN Ia is powered

by the decay of 56Co into stable 56Fe. These three phases of a light curve can be seen

in Figure 1.2.

The optical light-curves of SN Ia are very homogeneous, displaying similar charac-

teristics and evolution with time (Kowal, 1968; ?). They typically rise to maximum

light (in the B-band) in around 20 days, and once they have passed the peak their

brightness declines slowly for approximately 20 days, and starts following an exponen-

tial decay after about 50 days post-peak brightness. Figure 1.2 shows the light curve of

a typical Type Ia in the optical and NIR bands B; V; R; I; J; H; K . The use of SN Ia as

cosmological indicators relies on the fact these relatively homogeneous light curves can

be standardised using empirical correlations based upon their luminosity evolution.

So far we have focused on SN Ia `normal type' objects. However there are transient

objects that are very similar to typical Type Ia SNe, but are not. The three most

common subtypes that �t this description are called SN Ia-91bg like, SN Ia-91T like

and SN Iax. SN Ia-91bg like objects are under-luminous objects much fainter in theB

and V bands than normal Type Ia SNe (Filippenko et al., 1992a). These events often

also have lower expansion velocities, indicating that these objects are less energetic

than their standard counterparts (Benetti et al., 2005). SN Ia-91T like objects are

over-luminous and show relatively weak absorption of Silicon, Calcium and Sulphur

compared to normal events (Filippenko et al., 1992b; Phillips et al., 1992). Type Iax

events are a sub-luminous branch of Type Ia supernovae that have lower explosion

energies than a typical Type Ia. These events never become fully nebular (ie. the white
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Figure 1.2: Left panel: BV RIJHK band light curves of a `normal' SN Ia (SN 2002bo)

at maximum light. Optical data originates from Ganeshalingam et al. (2010) and near-

infrared data from Krisciunas et al. (2004). Right panel: The B-band light curve of SN

2002bo is shown. The light curve pre-peak rises over 15-20 days, followed by a steep

decline after maximum light for around 30 days before the light curve settles onto a

post-peak radioactive decay tail powered by56Co decaying to 56Fe. Figure adapted

from the Alsabti & Murdin (2017).
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