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Abstract

An algorithm for fitting multiple modelsthat characterize the projective relationships
between pointatches in pairs of (or single) images is proposed hefecifically,the
problem of estimating multiple algebraic varieties that relate the projectionsf 3
dimensional (3D)pointsin one or more viewss predominantly turned into a problem of
inference over Markov random field IRF) using labels that include outliers ardsetof
candidatemodelsestimaté from subsets of the point match&hus, not only the MRF can
trivially incorporate the errorsof fit in singleton factors, but the sheer benefit of this
approach is thability to considetthe interactions between data points.

The proposeé method (CSAMMFITYefines the outlierposterior over the course of
consecutive inferenceweeps until the process settles at a local minimum. The inference
Afengi neodo e Markoo @haid Monts CadoMCMC) method whiclsamples new
labelsfrom clusers of data pointsTheadvantageof this techniqugertains to the fact that
clusterformation can bemnanipulatedto favourcommon label assignments between points
related to each othdvy image based criteridMoreover, although CSAMMFIUises a Potts

like pairwise factorthe inference algorithm allows for arbitrary prior formulations, thereby
accommodating the needs for more elaborate feature based constraints

Keywords: Multiple model fitting clustering,Markov chain Monte Carlotwo-view geometry,
Markov random field.

1. Introduction

The detection of multiple projective varieties has signifigaatticalramifications in the
fields of computer visionrobotics pattern recognition and architectuesignificant category of
suchvarietiesare lines, onics andprojectivities (homography tensoid), 2] which can lead to
the discovery of planar surfaces and objects within sdéh8ls In terms of motion, multifocal
tensorg 6, 7] can be used to detect multiple moving objects, camera movement and degenerate
configurationg[8, 9]. The detection of such models in onenwore views becomes an arduous
task afflicted not only by thquality (or the lack thereof) dhe point matches but also by the
lack of prior knowledge on the nature of the outliers which magtbéutedto a number of
reasons (occlusions, multiple motionkanges in lighting, etc.peveral methodsvolving least
squares fitting or iterative optimization of cost functidtrvae been proposed for the estimation



of the parameters of these varieties. Rahorough treatmendvn thesemethods the reader is
defared toHartley and Zissermd3].

Parameter estimation yields an optimal solution in terms of some distance measure with
respect to all data points. This however implies that all data points indieed be the chosen
mode| an assumption which is usually not trli@us,the task ofmodel fittingtypically includes
inlier dekction, giventhat a certain typef model exists in the datBy far, the most popular tool
to achieve thisis random samplingonsensu¢$RANSAC) [10]. The algorithm has been widely
employed, not only because of its simplicity, but also because of its remarkably accurate results
in a wide variety of model fitting applications

One of the early wiks that attempt to capture the best maalabngst the set of point
mat ches i s Phil |11, m RANSAC @santhdt aBetnpi€d find the single
optimal subset omatchingpoint-pairs which minimize the average squared error over the entire
set of matches In the same spirit, but with a rather different approach to candidate model
computation Ondrej Chum proposed DEGENSA®C?], yet another RANSAC variant trying to
find a bestfit homography for a scene that contains a dominant plane. The algorithm uses
RANSAC to computeéhe homography of the dominant plane with respect to the two views and
thereby estimates the fundamental matrix using the plane in¢uiceel) parallax trick[13].

1.1 Methods for nultiple model detection

While both MLESAC and DEGENSAC silently assume the existence of some urpgusl

model fitting the correspondees, a method proposed by Td®) is not constrained by any

such assumption, as it attempts to discover multiple fundamentiat@safor an arbitrary set of
correspondences by propagating information through tensor fields in 4D. To compute the models
however, RANSAC is employed in a cascaded manner: Each model is calculated by using the set
of outliers of the previous RANSAC asgput to a new RANSA@xecution Cascaded RANSAC
execution( al so referred t o iraliteratirg reagheawidely enploydiIANNS A C 0O
order to cope with the existence of multiple mod@|d.2, 14].

The MultiRANSAC algorithm, a actualgeneralization of RANSAC for multiple models,
was introduced by Zullianet al. [15]. As the name implies, the algorithm generalizes the
RANSAC core concept to fitig a predetermined number of models to the data. MultiRANSAC
expands the minimal samplisgts (MSS)n a cascademanner, but the consensus sets (CS) are
computel based not only on the expanded MSSs but also in terms of the CSs estimated in the
previous setsThe authorgresentresultsthereinsuperior tothe ones obtained with cascaded
RANSAC executions.

An algorithm that builds on the MultiRANSAC concept by auducing a clustering
procedure amongst the data points following the initial determination of consensus 3ets, is
linkage by Rdberto Toldo and Andrea Fusiel[d6]. Jlinkage determines the initial consensus
sets wvithout excluding overlaps. Intleer words, data points may belong to more than one



consensus sets. Multiple participafdsta pointskare joined to form the initial clusters and the
processthereafter evolves bwnifying clusterswith the smallestJakard distance, thereby
yielding new model parameters from the#spective suppat(i.e., the sets of points used to
estimate the model pameters) Unlike MultiRANSAC, Jlinkage can automaticallgonclude
with the actual number of models throughout successive clusi@nthmerging steps.

1.2Inference based model detectiprelated workand contributions

Recently,Isack and Boykov presentd&PARL, an algorithm that minimizes an enerfynction
comprisingthe errors of fit and simple pairwise interactions for multiple geometric mgtals
To the best of our knowledge, this is the closest analogue to the method introduced in this paper.

In PeARL Isack and Boykov argue based on their restiita; greedy approaches to
model updatesia the estimation of their respective consensus sets usklihikage clustering,
RANSAC, MultiRANSAC, or evenHough transforni18] with meanshift [19] leave plenty of
margin for model misclassifications, especially for increased levels of noise in the data. Instead
of the rather greedy approaches for refinement and/or unification of consenstiseygisopose
theminimization of the following energy function:
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whereQ is some error functioregardingdata pointr andits respectivassignednodel labelX;,
T is apositiveconstant! is the indicator function i is the Markov blanket (neighbourhood)
of r, 0 j is a distanceelated constansuch thatd ; QwnA4 {iA£7%, andA i&isthe
distance between ands. The algorithm samples random groups of points and estimates the
initial parameters of a number of candidate models. It then perfoapsatedenergy
minimization sweeps by festimating model parameters from the minimization resulte T
energy functiond minimized using grapleuts [20], a method for efficient approximation of
local minima The results reported by the authors are clearly in favour of ¢tieostas opposed
to Jlinkage,MultiRANSAC and measshift in Hough space

The energy mimization in PeARL implies probabilistic inference over a Markov
networkin which pairwise interactianare obtained by imposing a graph structure to the data
points In such a framework, one is able to incorporate several factors that characterize not only
the distribution of the error of fit, but aldbe interactions between the point matches, such as
distance, local gradient histogram similarities, etc., in ordermiake inference more
Aknowl edgeabl e daspectof vistiahcentent Is is wartts notmmd here that a key
limitation of graphcuts is that they can be applied only to specific types of pairieses
(specifically, ones that aremetrics or semimetrics). This clearly excludesa wide varietyof
priorswhich arelikely to significantly improve optimization.



In this paper, we generalize the notion of energy minimization by restating the pioblem
terms ofobtaining thgoint assignment that maximes the followingprobability.
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where! is a set of candidat¢or proposejl models,& is the label of data point, « is a
singleton factomssociated with and] j; a pairwisefactorassociated with ands. The label®
assumes valuga ! “° ¢ whereo denotes an outliePlease note here that, unliReARL in
our formulationoutliers are a valid label just like any candidate model. The existence of outliers
in the label set cagenerallyprevent thenference algorithnf r om over esti mating
As will be iown in the following sectionshe singleton factor is modeled insuch a way as
to approximate thposteriorof & given thesetof groundtruth models(i.e., the most suitabkeet
of models for the dajaWhen this approximation is not realistic, outliers should appear in
greater numberg-inally, we introduce aslightly more elaborate prior than the indicator function
which penalizes nonniformity of labels byconsideringthe distance between poinis the
context of all edge lengthén the MRF (whereasPeARL weighs the prior with a function of
absolute distance)

Since the proposed distribution can be fairly generic especially in terms of choice of
prior, we proposehe genealized SwendseVangMHMCMC algorithm (henceforth, GSWhy
Barbu and zZhy21] asthe preferred inferencéengin@®. The results provided itheir paper
suggest thalGSW performs generally better thanaghcuts Most importantly, GSW is a
clustering algorithm at its core and inference progresses by reorganizing the connectivity on the
edges of an underlying graph structit® Dh , wheren is a set of vertices corresponding to
data points and is a set of edge#\n activation probability is assigned to each edge' . .
Thus, thegraphnot only provide a neighbourhoodystem for the MRF, buwtlsoa framework of
topological connections for the GSW algorithRormally, our sampling strategy equivalent to
sampling from thgoint distribution of (2), augmentedvith a set of Boolean variablesY

6dp ' -Qedleh-N. ,corresponding to the actiovati on
Ai O F FRawd)mposinga hard constraintor same labehssignment tall variablesconnected with

an edge that :is switched AONO

bafive 0 -6 T oM p 6 Pl e (3)
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where "6IQ denotes the edge between thandj™ vertices (dataoints).It can be easily seen

that the marginal oveU yields back the joint idtribution of (2).Note here thatthe separate
productindexeson theright in (3) allowfor different structures between the MBRdthe graph

2. Method
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Fig. 1.a) A set of data points and the respective Delaunay d@yderd buildings datasg®2]). b) A
factor subgraph of the resulting MRF fartriangle defined by vertices (data points$ andt.

As a first step, a graph structii® Dh is obtained over thdata points (Figure 1a) using
Delaunay triangulatiorf23]; this type oftriangulation ensure connectivity between closest
neighbours.

To initialize iteration,a set of candidate models, , is estimatd from respective
minimal sample sets. From the candidate modetseach vertex (data point) an error vector
Q Qrn 8 Qp s is computed. Usind, singleton factors are definedn the set of
labels! ° ¢ . Pairwise factors j are merely penalty functions of distance between p@imts
the context of the graphalbeitmore elaborate formulations can be used

As part of theGSW algorithmpreparationactivation probabilitie§ should be specified
for every edge- N . . These pobabilitiesreflect proximity in he spatial context of the graphd
thereforedo not depend on the label set.

The proposed method executes inference iteratively until a global energy measure
(section 3.3) has reached a local miniméwillowing each inference sweep, the set of candidate
models is estimated based on the current label assignnibatseader isaferred to the paper by
Barbu and Zh{21] for more details on GSW cuts.

2.1Singletan factors

As mentionedearlier, singleton factorsare designedo foverestimateé  tpbsteriorof a data

point r being an outlier given a set of models , as if this setwvas an Ai delml 0 s el
particular, weexaggeratéhe magnitude of the greatest likelihood of egimen some model and

thereby obtain an unormalized probability measure which typically overestimates outliers for a

bad set of models, but wiljet close to the actual posterior when these models are ttos
groundtruth.



The aforementioned desigof singleton factorselies on modelling the probability of the
error vectorQ associated witldata pointr, asa Gaussian mixture model contaminated with
uniform noisgnotion is loosely adopted an eany publication byTorr and Zissermafill]):

g S
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wheref) Q@ x 0 mh andf & aretheerrorlikelihood and prior of modeft , & Tis a
constant relatetb outliers andxis the probability of any data point beingiaher. With a series
of manipulationsthe posterior probability of data pointbeing an outliecan be written in the
following form (see appendiA for derivation):

I nQu
BY *nQe T
where, AOCI ABxx is the index that maximizes therar likelihood of a model

label, a is related to the quality (in terms of errors of fit) of the set of candidate modefsiand
relatedto the percentage of outliers in the daténps. In generalp | g sandf T

C

(5)

To define the singletom , we treatthe quantitiesa and b as parametersThus, ¢
becomes thein-normalized measure of a distribution that approximates the true posterior of all
labels int € given the error vectoilQ with respect to the parametet$and b (the
distribution implied by  will henceforth be referretb as thd-b approximation)
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Values ofUin the vicinity of 1will typically overestimate the quality of the given candidate
models andmost likely, will cause many outliers to appeaarthe joint(i.e., the result of the
GSW inference)However, as the set of candidate models is behwgpmgutedafter successive
inference sweepshe U-b approximation will move closer to the actual fo®r and the joint
produced by the GSW inference will become more representative of the ground truth. On the
other hand, values @fclose to O indicate a very low percentage of outliers in the data points, an
assumption which typically is tr@ut not always)

The error likelihood) Qg  is a multivariate Gaussiabut it depends onlyn the k-th
error component Q. Formally, the information matrix of the likelihood has zero elements
everywhere except for theth diagonal entry:

. QQIQ



where &  p p' Tch'Q phsdg s and, is the variance Consequently,the
likelihood is a degenerataultivariate(in practice univariatg normal distribution

P s P : P .. P Qj
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whereQ'Q 6 denotes the pseudteterminant of A.
2.2 Pairwise factors

Pairwise factors imposkbeluniformity considering distances between vertices in the context of
the graphSpecifically, a pairwise factor j is given by the following expression:

Q'Y & h & &
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where i)  is an activation probability for the edgei i (see section 2.3) andY , Y are
positiveit e mp er at wi(irepdacticedYriLs'Y a Tt ). Sincery j reflects distance
in relation to other edges in the graph, the penalty is context allagely, considering the rich
informational content of imagesuggestions foa more elabora prior can be limite@nly by
imagination

2.3 Activation probabilities forthe graph edges

The GSW algorithmproduces samples from tjant of (3). It is therefore necessary, except new
labels, to produce new edge activation states at each step of the sampling process. To do so, the
algorithm ativates ordeactivates edges that have same label assignment on their vertices by
some probabilityy or p 1 respectively Activation probabilities do not depend on label
assignments, but can be related to the edges and/or the image local/global featureevwsince
samples arassignedo groups of variables that belomg graph clusters, it would be reasble

for the activation probabilities to reflect distance or other irtzaged similaritycriteria so that

data points thabelong tothe same modeleek tabe clusteedtogether

For the method introduced in this paper, edge activation probabilitiedeargnedto
reflect distance in the context of the graph. In other words, we seek to establish a soft distinction
bet ween edge vertoealeotheatnhda te dagree viecrltoisceeoss t hat
other,in relation to all edge distances letgraph. This can lregarded as thgroblem of fitting
a Gaussian discriminative model over 1D data; typically, this is done with the expectation
maximization algorithm for two classes for small andd for largedistancesThealgorithm is
initialized with two Gaussian®f equal variancevith meanssetto the minimum and maximum
edge lengthrespectively (see Figurg ) so that the EM iteration
towards these extremes rather than risking settlement in some local miclosento a median



point. Following convergence, the activation probabilitie:s be obtained as the joint probability of
the length of an edge and cladssf A i AD

N & nAa iad, nA i, 9)
wheren A A0 hOv 1ip is the likelhood of the ege length given that the edge belongs
to class0 and “ is the class priorln detailed steps, the algorithm that computes the edge

probabilities is as follows (EM steps are omitted):

Computation of edgectivationprobabilitie Smms
Input: a) Set oflistanceD.. QdQ A (A IR ~Noo
Outpu:f) 5 nA (4D
1. Initialize the EM algorithm withthe following parameters: Two classés andd with respective
means ° a . and ad W'@. and variances i ‘ * ¥g; the class priors
“ and“ are setto %. Aemarginalprobability of lengthis therefore given hy
p .., A g " p .. A ig "
nAa i£ —Qwn “ ——Qowr :
I/Ic“ ” CH I/Ic“ ” CH
E A £ B

2. Run EM until some convergencéterion is met.
3. Obtain the edge probability ; n A A0

T —
-
i _gl T
5§
& &
o ™
25
|

sity

rr

e length probability de

Edge |
—
e ]
—
T
e
e

7

100 m 30 40 500 600

Edge length (pixels)

Fig. 2 a) Delaunay edges on tlsecond view of Mertah (Oxford buildngs datasef22]). b) The initial
mixture (we choosehte greatest length as initial variange, T v&otfor numerical stability and
the mean ' o® ¥ capd' T v&wT Tag the smallest and greatest edge length) andhitkterre
after EM training(* o@ oTI'X p c8yo xard variances T i@ ¢ Thy ¢ @ @)y



2.4 Proposal distribution and acceptance ratior the GSW algorithm

Our choiceof proposal distribution for th&SW algorithmresults in a sampling process which
can be regarded as a Gibbs sampler uginy» andr) @SY from (3). In the context of the
GSW algorithnthis is equivalent tthe following acceptangarobability.
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whereY  ®RY is the state of the graph at time 6P 6 is the set of edges between the
sets of verties A andB, D & is the subset of vertices to which the lalmak assignedy is a
selected connected component in the grapldg  is the target distribution as given in (2)
and,

Rd  asn 0 ahy o (12)
wheredy, denotes the joint assignmetat all data points except the ones belongingrto
Obviously, Gy, (h as a direct consequence of the fact that we only change the labels

of data pointsin Y. Hence, thewo rightmost fractions of the ratio inl{) will cancel out,
yielding the following simplified expression for the acceptance probability:

YO Y G4 Q¢
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(12)

3. Clustering basedSAMpling for Multiple Model FITting (CSAM MFIT): | ntuition and

tuning

Given a set of data points, the set of all possible modelsis a space of combinations with size
complexity 0 s s ¢¥% CSAMMFIT searchesq by starting from a random subset and
throughout successive inference sweeps, it discarderamdombines models until settles at a
local minimumwith respect t@a global energy measure.

Let' P be the initial set of candidate model$iere are many way® obtain! ;
typical strategie involve the classic RANSAJ21] approach that involvethe sampling of
random pointdn 0O, or slightly more elaborate sampling schemes such as thesedeimu J
linkage [16]. Generally, at iteratioh, given a set of candidate models , the algorithm
constructs the respective factgsgesections2.1 and 2.2and executea GSW inference sweep.
Following a sufficient number of Markov chatnanstions, the assigned labeldefinethe new
supportsof the models in . The algorithm dicards the models with no (orrydittle support),



a step which can be thoughitas regularization in terms of number of models and thereafter re
estimates the parameters of each remaining model fromnieisupports Finally, if some of

the reestimated model parameters differ from others by a distance less than a threshold, the
respective supports are fused and they are replaced by a single model inThe process
repeats until the change ingéobal energymeasurds close to zeroor amaximumnumber of
iterations has been reached.

From the above, at a fairly abstract levke algorithm can be described as follows:

Clustering based Sampling for Multiple Model FITtingGSAMMFIT )

Input: a) Set of data point®, b) Model parameter vector (model type) Number of initial models,
g §d) Maximum number of iterationsaxlter.

Outpu: Optimal set of models P and respective joint assignmeéit D0 &9

1. Compute! by sampling random points .

2. Generate agrap® Dh and computan edge activation probability for each-N .. .

3. ONTONTO N1 ON H

4. Repeatuntildo ad ®@@OrQO T

5. Using the edges db as a neighborhood system and kdieelset! ° € compute
singleton and pairwise factoas shown in equations (6) and.(8)

6. Run the generalized Swends@fang algorithmfor the joint probability distribution
defined by the singleton and pairwise factaising edge activation probabilitigs in
order to sample new graph partitions.

7. O N O.

8. ComputeO as a measure proportiorialthe unnormalizednegative logikelihood.

9. w0 O 0©°

10. Create a set of models by slecing the models i which have norempty
support and restimatehdr parameters.

11. For each moded M ' | find the subsetd a¢h P' such thatfor every model
av 0 & h the parameter vector ah differs from the parameter vector bho more
thanU In other words, if we denote the parameter vectonbj —a , then/—a
—Aa A& - by a given metric.

12. ! n,

13. For each class ipartiton 0 & h f) & B &g St , generate single
model by unifying the supportsf the models that belong to the class andragthe
resulting seto!

14. oN 0 p.

3.1 Selecting the initial set of candidate models

The nitial set of candidate models can be sampled in many different ways, given the nature of
the models. For instance, it seems prudent to sample two random points from the dataset in order
to obtain a line, yet if we sample four points uniforratyandom, the radtant homography will

have a very poor impact on thi&elihood. On the other hand, if one abs®s to obtain the
minimal sampling set of a homography by randomly choosing a center point and then adding its

1C



three closest neighbors, the resulting model wdve a greater likelihood than most
homographies obtained by fitting the paramete four random data points. In general, sampling
strategiesnayvary depending on the type of model.

3.20btaining a new set of models

In theory, he GSW inferencenaximizes the joinX. Usingthe label assignmest® N ! , the
supportingsetsn & P D for everya N ! are obtainedFrom thesupports a new set of
models § obtained as,

@M 4T Ol emEn G Fa v (13

where Q-RY is an eror function expressing goodness of 6if the parameter vecter-to the
point set™Y q is the space of all possible models that can be obtaineddramd—¢& is the
parameter vector associated with maaeln other words! is the set of new models obtained
by re-estimating the modeia! that endup having norempty supportollowing theinference
sweep It is evident that the restimation of the original models can only improve a global
likelihood measure, as pointedtan [17].

Another factor thamustbe accounted for during the-estimation of candidatmodels
is the multiplicity of entries il that correspond tthe same modeWe dub these entries
spuriousmodels.To account for spurious modeks,distance metrigB&in parameter space is
consideredSuch metricxan be geodesics d@he manifoldson which themodel parameters lie
Given a threshold) one can define a simple equivalence relationshipg the following classes
forexh@ N '

0 oh aN ! gEa  —O0A - (14)

Having obtained the set of classes, O @ hh D @ K B Ty S , whichis a
partition oft , the new set of candidate models is obtainedby computing the parameters

of a single model for each equivalendass,using thecombined supports of the models that
belongto the class

! an @ pi8fSs e O "0ome na 19

3.3A global energy measure

Although the umormalizednegativelog-likelihood (energy)of each GSW sweep is a valid
guality measure of convergence, it cannot however be used for comparison between successive
inferences. Thiss becauseach inference sweep concerns a distinct set of factmrgsponding

to a distinct set ofandidate modelsio obtaina measureof convergence which is independent

11



of the formulations of the GSW sweemse is required tagonsicer a nore global view of the
problem.

Formally stated, the distribution of label assignments to a data painterms of the
sample spaceg and its subsets can be expressed as the following marginal over all possible
model subsets:

oo (16

wherey is the power set of.

In this global model, it is reasonable to assume independence between any twavlabels
and® , since all possible model subsets are taken into considerationrimatiygal distribution
and therefore, the singletons should be Astro
the joint:

0 6 b o an
ND Y ONY

Following several manipulations on (1(Bee Appendix Bor derivations and rationgle
we conclude that maximizing & dependsnainly onthe maximization ofhejoint 0 ¢
The lattercan be expressed ihe following regularized likelihood measure:

0 Gh VEANOSE DS a¢ "QS?S (18)
‘0 . Na g

A quick examination of (1Breveals that the energy does not concern outliers as defined for use
in the GSW sweeps. The likelihood term referslabelsin ! only. To cope with this in
practice,for the casethat some point is labeled outlidyy inference then theworst model
poserior is used in the formula. Eadtly, the energy measure of jI&sembles the Bayesian
information criterion (BIC)24] in that the first summation the negative lodikelihood, while
the second summation is a regularization term that penalizes the number of models inversely
proportionally to the respectiveumber of points in the support sets.

4. Results

SincePeARL[17] is the closest known method @ AMMFIT, we used the Oxfd buildings
datasef22] asabenchmarkor loose comparisowith it.
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Typically, neighboring points in twagiew geometry support the same projectivity,
whereas randomly sampled points are unlikely to verify the same model. Hence, a reasonable
strategy to obtain the imal set of candidate motewould beto randomly sample a point and
thereafter, obtain the 3 closest neighbors in the graph.

4.1 Projectivities

Figure 3 illustrates plane detection usingws 1 and 2of the first Merton College scene
(Merton 1)in the Oxford buildings datas¢2?]. Figures 3a and 3b displayhe resultsobtained
with CSAMMFIT;i n or der t o PefARBLswihout usifgegnaphl catd, wedobtained
results(Figure 4)usingsingleton factors witla very largevalue fora (i.e., outlier labels have
very low probabiliy) and the Potts prior of (2).

5
L

0 5 0 s
Process step

a) Resultswith CSAMMFIT. b) Global energy
Fig. 3. Multiple plane detection in Merton, Yiews 1 and 2 (red circles denote outliesile letters
correspond to the varioyslanes recovered in the scgna) Results using th€SAMMFIT. b) The
respective global energy per execution step in log scale

Typical parameter values were p$, T 1 Y v mand”Y 1 number of initial
candidate planed0 (4 pointsused forhomagraphy estimation) the threshold for model fusion

was 0.01 using the Euclidean distance (Frobenius norm) betwemmalized homography
matrices (normalization constastobtainedfrom the singular value decompositiohthe matix

[29]), tolerance for the logarithm of the energy measure was 0.004 and maximum number of
iterations, 15 The GSW algorithm is always employed for infere sweeps of 800 Markov
chain transitionsThe rationale behind this selection relies on the results by Barbu af2ilzhu
favoring the GSW algorithm against graph cuts.
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Process step

a) ResultaisingPeARL b) Global energy
Fig. 4 Multiple plane dete@n in Merton 1 views 1 and 2a) Results usinghe energy formulation of
PeARL b) The respective global energy per execution step in log.scale

5 10 1
Process step

a) Results usin@SAMMFIT. b) Global energy
Fig. 5 Multiple plane detdon in Merton 1, views 2and 3 a) Results usin€SAMMFIT; b) The
respective global energy per execution step in log scale

We executed the algorithm with tiReARL energy based configation using the same
parameters that we used with our methodbdtomesobvious thatPeARL overestimates
spurious models, although the energy levels achieved are slightly worse than theloeesd
by CSAMMFIT. At the end of the process, the resultsaoidd withPeARL contain a great deal
of spurious models (the few outliers appear as a consequence of usingtamearot-zero
outlier posterior of 18%). This suggests thaCSAMMFIT is more robust to lower fusion
thresholds thaRPeARL, owed to the uterlying cluster based inference and the use of a centext
aware prior

Results for views 2 and 3 of Merton 1 (Figure 5 anda@ain suggest thaPeARLS s
energy formulationperformsless effectivelyin grouping similar models, hence the squared
errors dominate energt the expense of the regularization term
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10 1

Process step

a) Results usinfeARL b) Global energy
Fig. 6. Multiple plane dete@n in Merton 1 views 2and 3 a) Results usinghe energy formulation of
PeARL; b) The respective global energy per execution step in log.scale

Except for energy formulations, the effeof priors in the resultaiere exploredFigures
7 and 8 depict the results obtained witie CSAMMFIT prior and thePeARL prior respectively
for views 1 and 2 of Merton 2As mentioned earlier, thBeARL prior considers the distance
between two nodes, but only in absolute terms, whereas the proposed prior uses the edge
activation probability to egulate the pairwise penalty. The temperature was increased to
“Y v min order b slightly amplify the effectsf prior-imposed grouping in the results.

Global energy (log scale)
©
"

Process step

a) Resultaising theCSAMMEFIT prior. b) Global energy
Fig. 7. Multiple plane detetion in Merton 2, viewsl and2; a) Resultausingthe CSAMMEFIT prior; b)
The respective global energy per execution step in log.scale
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Global energy (log scale)
b
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Process step

a) Resultsusing thePeARL prior.
Fig. 8 Multiple plane deteion in Merton 2, views 1 and; 2) Results using thBeARL prior; b) The
respective global energy per execution step in log scale

b) Global energy

Please note here that the algorithms will always require initial tuning of a few parameters
(namely,U b, T and the threshold used in model fusion). We note howevelOBAMMFIT
yields good results for a wide variety of settings, while ReARL energy appears to be very
sensitive to temperature changes. MoreoverP®&ARLp r i or need-s u h everyp e
time a new pair bimages is used; this is most likedyeto the fact that coefficientd j reflect
absolute distances. Model fusion is also a proces€B®AMMFIT seems to be more robust than
PeARL since it generally produces uniform labekignments just throughout the inference
process, while fusion occurarely. Figures 4 and 6 suggest that spurious models are generally
resilient to inferencén PeARL and thereforgin order to eliminate them, one must increase the
fusion thresholdTable 1 reports success rates for the Oxford dataset witbaatingspurious
modelsas misses; outliers on the other hand do count

i ha

CSAMMFIT PeARL
Views 1 and 2 Views2and 3 | Viewsland?2 | Views 2 and 3
Merton 1 91.12% 97.39% 88.4% 91.91%
Merton 2 99.13% 98.98% 91.28% 89.80%
Wadham 95.22% 87.99% 92.93% 93.29%

Table. 1 Results for the Oxford buildings datas€olumns 1 and 2 correspond to the results of the
proposed method for pairs of views2land 2 3; columns 3 and 4 correspond to the results obtained with
thePeARLenergy formulation (GSW inference used).

4.2 Multiple motions

Multiple motions in two views are similarly characterized by bilinear relationships between the
tracked points. Thus, it is poske to formulate singletons based on some error fundtian
evaluates model fitnessypically the Sampson distan{8]. For the sake of completeness, we
report results obtained imo several different pairs of views taken from tegyuencs in the
Hopkins 155datasef26]. lllustrativeresultsare shown in Figus® and 10
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a) Ground truth b) Results.
Fig. 9. Moving car in front of a movingamera(cars1l) Results obtained using CSAMMFIT on a pair of
views in the sequeng@&ames 1, 12)

Table 2 eports success rates on twldferent pairs 6 framesin sequencesarsl and
cars2_06of the Hopkinsl55dataset.

CSAMMFIT PeARL
Framesl and12 | Frames 1 and 7| Frames 1 and 14 Framesl and 7
Card 94.38% 89.23% 91.67% 87.6%
Cars2 06 88.620 92.68% 91.06% 90.24%

Table2. Indicative esults for théHopkins 155datasetComparisorbetween CSAMMFIT and PeARior
pairs offramesl, 12 and 17 of sequencesarsl andcars2_06

a) Ground truth b) Results.
Fig. 1Q A sequence withvto moving cars (@rs2_06). Results obtained using CSAMMFIT on a pair of
views in the sequengé&ames 1, 12)

5. Conclusion
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