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Abstract 

An algorithm for fitting multiple models that characterize the projective relationships 

between point-matches in pairs of (or single) images is proposed herein. Specifically, the 

problem of estimating multiple algebraic varieties that relate the projections of 3 

dimensional (3D) points in one or more views is predominantly turned into a problem of 

inference over a Markov random field (MRF) using labels that include outliers and a set of 

candidate models estimated from subsets of the point matches. Thus, not only the MRF can 

trivially incorporate the errors of fit in singleton factors, but the sheer benefit of this 

approach is the ability to consider the interactions between data points. 

The proposed method (CSAMMFIT) refines the outlier posterior over the course of 

consecutive inference sweeps, until the process settles at a local minimum. The inference 

ñengineò employed is a Markov Chain Monte Carlo (MCMC) method which samples new 

labels from clusters of data points. The advantage of this technique pertains to the fact that 

cluster formation can be manipulated to favour common label assignments between points 

related to each other by image based criteria. Moreover, although CSAMMFIT uses a Potts-

like pairwise factor, the inference algorithm allows for arbitrary prior formulations, thereby 

accommodating the needs for more elaborate feature based constraints. 

Keywords: Multiple model fitting, clustering, Markov chain Monte Carlo, two-view geometry, 

Markov random field. 

1. Introduction 

The detection of multiple projective varieties has significant practical ramifications in the 

fields of computer vision, robotics, pattern recognition and architecture. A significant category of 

such varieties are lines, conics and projectivities (homography tensors) [1, 2] which can lead to 

the discovery of planar surfaces and objects within scenes [3-5].  In terms of motion, multifocal 

tensors [6, 7] can be used to detect multiple moving objects, camera movement and degenerate 

configurations [8, 9]. The detection of such models in one or more views becomes an arduous 

task afflicted not only by the quality (or the lack thereof) of the point matches but also by the 

lack of prior knowledge on the nature of the outliers which may be attributed to a number of 

reasons (occlusions, multiple motions, changes in lighting, etc.). Several methods involving least 

squares fitting or iterative optimization of cost functions have been proposed for the estimation 
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of the parameters of these varieties. For a thorough treatment on these methods, the reader is 

deferred to Hartley and Zisserman [8]. 

Parameter estimation yields an optimal solution in terms of some distance measure with 

respect to all data points. This however implies that all data points indeed belong to the chosen 

model, an assumption which is usually not true. Thus, the task of model fitting typically includes 

inlier detection, given that a certain type of model exists in the data. By far, the most popular tool 

to achieve this, is random sampling consensus (RANSAC) [10]. The algorithm has been widely 

employed, not only because of its simplicity, but also because of its remarkably accurate results 

in a wide variety of model fitting applications. 

One of the early works that attempt to capture the best model amongst the set of point 

matches is Phillip Torrôs MLESAC [11], a RANSAC variant that attempts to find the single 

optimal subset of matching point-pairs which minimize the average squared error over the entire 

set of matches. In the same spirit, but with a rather different approach to candidate model 

computation, Ondrej Chum proposed DEGENSAC [12], yet another RANSAC variant trying to 

find a best-fit homography for a scene that contains a dominant plane. The algorithm uses 

RANSAC to compute the homography of the dominant plane with respect to the two views and 

thereby estimates the fundamental matrix using the plane induced (virtual) parallax trick [13]. 

1.1 Methods for multiple model detection 

While both MLESAC and DEGENSAC silently assume the existence of some unique optimal 

model fitting the correspondences, a method proposed by Tong [9] is not constrained by any 

such assumption, as it attempts to discover multiple fundamental matrices for an arbitrary set of 

correspondences by propagating information through tensor fields in 4D. To compute the models 

however, RANSAC is employed in a cascaded manner: Each model is calculated by using the set 

of outliers of the previous RANSAC as input to a new RANSAC execution. Cascaded RANSAC 

execution (also referred to as ñsequential RANSACò in literature) has been widely employed in 

order to cope with the existence of multiple models [9, 12, 14]. 

 The MultiRANSAC algorithm, an actual generalization of RANSAC for multiple models, 

was introduced by Zulliani et al. [15]. As the name implies, the algorithm generalizes the 

RANSAC core concept to fitting a predetermined number of models to the data. MultiRANSAC 

expands the minimal sampling sets (MSS) in a cascaded manner, but the consensus sets (CS) are 

computed based not only on the expanded MSSs but also in terms of the CSs estimated in the 

previous sets. The authors present results therein superior to the ones obtained with cascaded 

RANSAC executions. 

An algorithm that builds on the MultiRANSAC concept by introducing a clustering 

procedure amongst the data points following the initial determination of consensus sets, is J-

linkage by Roberto Toldo and Andrea Fusiello [16]. J-linkage determines the initial consensus 

sets without excluding overlaps. In other words, data points may belong to more than one 
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consensus sets. Multiple participants (data points) are joined to form the initial clusters and the 

process thereafter evolves by unifying clusters with the smallest Jackard distance, thereby 

yielding new model parameters from their respective supports (i.e., the sets of points used to 

estimate the model parameters). Unlike MultiRANSAC, J-linkage can automatically conclude 

with the actual number of models throughout successive clustering-and-merging steps. 

1.2 Inference based model detection, related work and contributions 

Recently, Isack and Boykov presented PeARL, an algorithm that minimizes an energy function 

comprising the errors of fit and simple pairwise interactions for multiple geometric models [17]. 

To the best of our knowledge, this is the closest analogue to the method introduced in this paper. 

In PeARL, Isack and Boykov argue based on their results, that greedy approaches to 

model updates via the estimation of their respective consensus sets used in J-linkage clustering, 

RANSAC, MultiRANSAC, or even Hough transform [18] with mean-shift [19] leave plenty of 

margin for model misclassifications, especially for increased levels of noise in the data. Instead 

of the rather greedy approaches for refinement and/or unification of consensus sets, they propose 

the minimization of the following energy function: 

Ὁὢ Ὡ ὢ Ὕ ύȟꞋὢ ὢ

ﬞ

 (1) 

where Ὡ is some error function regarding data point r and its respective assigned model label Xr, 

T is a positive constant, Ꞌ is the indicator function, ﬞ ὶ is the Markov blanket (neighbourhood) 

of r, ύȟ is a distance-related constant  such that, ύȟ Ὡὼὴᴁὶ ίᴁȾ„  and ᴁὶ ίᴁ is the 

distance between r and s. The algorithm samples random groups of points and estimates the 

initial parameters of a number of candidate models. It then performs repeated energy 

minimization sweeps by re-estimating model parameters from the minimization results. The 

energy function is minimized using graph-cuts [20], a method for efficient approximation of 

local minima. The results reported by the authors are clearly in favour of the method as opposed 

to J-linkage, MultiRANSAC and mean-shift in Hough space. 

 The energy minimization in PeARL implies probabilistic inference over a Markov 

network in which pairwise interactions are obtained by imposing a graph structure to the data 

points. In such a framework, one is able to incorporate several factors that characterize not only 

the distribution of the error of fit, but also the interactions between the point matches, such as 

distance, local gradient histogram similarities, etc., in order to make inference more 

ñknowledgeableò of other sorts of aspects of visual content. It is worth noting here that a key 

limitation of graph-cuts is that they can be applied only to specific types of pairwise terms 

(specifically, ones that are metrics or semi-metrics). This clearly excludes a wide variety of 

priors which are likely to significantly improve optimization. 
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In this paper, we generalize the notion of energy minimization by restating the problem in 

terms of obtaining the joint assignment that maximizes the following probability: 

ὖὢȿִי ᶿ • ὢ ‪ȟὢȟὢ

ﬞ

 (2) 

where ִי  is a set of candidate (or proposed) models, ὢ is the label of data point r, • is a 

singleton factor associated with r and ‪ȟ a pairwise factor associated with r and s. The label ὢ 

assumes values in ִי ᷾έ where o denotes an outlier. Please note here that, unlike PeARL, in 

our formulation outliers are a valid label just like any candidate model. The existence of outliers 

in the label set can generally prevent the inference algorithm from overestimating ñbadò models. 

As will be shown in the following sections, the singleton factor • is modeled in such a way as 

to approximate the posterior of ὢ given the set of ground-truth models (i.e., the most suitable set 

of models for the data). When this approximation is not realistic, outliers should appear in 

greater numbers. Finally, we introduce a slightly more elaborate prior than the indicator function 

which penalizes non-uniformity of labels by considering the distance between points in the 

context of all edge lengths in the MRF (whereas PeARL weighs the prior with a function of 

absolute distance). 

 Since the proposed distribution can be fairly generic especially in terms of choice of 

prior, we propose the generalized Swendsen-Wang MHMCMC algorithm (henceforth, GSW) by 

Barbu and Zhu [21] as the preferred inference ñengineò. The results provided in their paper 

suggest that GSW performs generally better than graph-cuts. Most importantly, GSW is a 

clustering algorithm at its core and inference progresses by reorganizing the connectivity on the 

edges of an underlying graph structure Ὃ ꜡ȟם , where ם is a set of vertices corresponding to 

data points and ꜡ is a set of edges. An activation probability ὴ is assigned to each edge –ɴ .꜡ 

Thus, the graph not only provides a neighbourhood system for the MRF, but also a framework of 

topological connections for the GSW algorithm. Formally, our sampling strategy is equivalent to 

sampling from the joint distribution of (2), augmented with a set of Boolean variables, Ὗ

όȡ ό Ꞌ– Ὥί ͼὕὔͼȟ–ɴ ꜡, corresponding to the activation status of the edges (ñONò or 

ñOFFò) and imposing a hard constraint for same label assignment to all variables connected with 

an edge that is switched ñONò: 

ὖὢȟὟȿִי ᶿ • ὢ ‪ȟὢȟὢ

ﬞ

ρ ό Ꞌ    ρ

ȟ ᶰ꜡

ὴꞋ ρ ὴ
Ꞌ

 (3) 

where ὭȟὮ  denotes the edge between the i
th
 and j

th
 vertices (data points). It can be easily seen 

that the marginal over U yields back the joint distribution of (2). Note here that the separate 

product indexes on the right in (3) allow for different structures between the MRF and the graph. 

2. Method  
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Fig. 1. a) A set of data points and the respective Delaunay edges (Oxford buildings dataset [22]). b) A 

factor sub-graph of the resulting MRF for a triangle defined by vertices (data points) r, s and t. 

As a first step, a graph structure Ὃ ꜡ȟם  is obtained over the data points (Figure 1a) using 

Delaunay triangulation [23]; this type of triangulation ensures connectivity between closest 

neighbours.  

To initialize iteration, a set of candidate models, ִי , is estimated from respective 

minimal sample sets. From the candidate models, for each vertex (data point) r, an error vector 

Ὡ Ὡȟ ȣ Ὡȟȿִיȿ  is computed. Using Ὡ, singleton factors • are defined in the set of 

labels ִי ᷾έ. Pairwise factors ‪ȟ are merely penalty functions of distance between points (in 

the context of the graph), albeit more elaborate formulations can be used 

 As part of the GSW algorithm preparation, activation probabilities ὴ should be specified 

for every edge –ɴ .꜡ These probabilities reflect proximity in the spatial context of the graph and 

therefore do not depend on the label set. 

 The proposed method executes inference iteratively until a global energy measure 

(section 3.3) has reached a local minimum. Following each inference sweep, the set of candidate 

models is estimated based on the current label assignments. The reader is referred to the paper by 

Barbu and Zhu [21] for more details on GSW cuts. 

2.1 Singleton factors 

As mentioned earlier, singleton factors are designed to ñoverestimateò the posterior of a data 

point r being an outlier given a set of models ִי , as if this set was an ñidealò selection. In 

particular, we exaggerate the magnitude of the greatest likelihood of error given some model and 

thereby obtain an un-normalized probability measure which typically overestimates outliers for a 

bad set of models, but will get close to the actual posterior when these models are close to 

ground-truth.  
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 The aforementioned design of singleton factors relies on modelling the probability of the 

error vector Ὡ associated with data point r, as a Gaussian mixture model contaminated with 

uniform noise (notion is loosely adopted by an early publication by Torr and Zisserman [11]): 

ὴὩ ὴὩȟȟȣȟὩȟȿִיȿ ‗ ὴὩȿά ὴά

ȿִיȿ

ρ ‗ὧ (4) 

where ὴὩȿά ὔͯπȟ   and ὴά  are the error likelihood and prior of model ά , ὧ π is a 

constant related to outliers and ɚ is the probability of any data point being an inlier. With a series 

of manipulations, the posterior probability of data point r being an outlier can be written in the 

following form (see appendix A for derivation): 

ὖέȿὩ
‌ὴὩȿά

В ὴὩȿά
ȿִיȿ ‍

 (5) 

where ‚ ÁÒÇÍÁØὴὩȿά  is the index that maximizes the error likelihood of a model 

label, a is related to the quality (in terms of errors of fit) of the set of candidate models and ɓ is 

related to the percentage of outliers in the data points. In general, ρ ‌ ȿִיȿ and ‍ π. 

To define the singleton •, we treat the quantities a and ɓ as parameters. Thus, • 

becomes the un-normalized measure of a distribution that approximates the true posterior of all 

labels in ִי ᷾έ given the error vector Ὡ with respect to the parameters Ŭ and ɓ (the 

distribution implied by • will henceforth be referred to as the Ŭ-ɓ approximation): 

• ὢ

ừ
Ử
Ừ

Ử
ứ

ὴὩȿὢ       ȟ     ὢ ᶰִי

ὴὩȿά

ȿִיȿ

ρ ὥὴὩȿά ‍ȟ ὢ έ (6) 

Values of Ŭ in the vicinity of 1 will typically overestimate the quality of the given candidate 

models and, most likely, will cause many outliers to appear in the joint (i.e., the result of the 

GSW inference). However, as the set of candidate models is being re-computed after successive 

inference sweeps, the Ŭ-ɓ approximation will move closer to the actual posterior and the joint 

produced by the GSW inference will become more representative of the ground truth. On the 

other hand, values of ɓ close to 0 indicate a very low percentage of outliers in the data points, an 

assumption which typically is true (but not always).  

 The error likelihood ὴὩȿά  is a multivariate Gaussian, but it depends only on the k-th 

error component, Ὡȟ. Formally, the information matrix of the likelihood has zero elements 

everywhere except for the k-th diagonal entry: 

  „ ὨὭὥὫὥ ,  
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where ὥ ρ ρꞋ ȾςȟὭ ρȟȢȢȟȿִיȿ and „  is the variance. Consequently, the 

likelihood is a degenerate multivariate (in practice, univariate) normal distribution: 

ὴὩȿά
ρ

ς“
ὨὩὸ  Ὡὼὴ

ρ

ς
Ὡ  Ὡ

ρ

Ѝς“„
Ὡὼὴ

ρ

ς

Ὡȟ
„

 (7) 

where ὨὩὸὃ denotes the pseudo-determinant of A.  

2.2 Pairwise factors 

Pairwise factors impose label uniformity considering distances between vertices in the context of 

the graph. Specifically, a pairwise factor ‪ȟ is given by the following expression: 

‪ȟὢȟὢ
ὩὼὴὝὴ ȟ       ȟ ὢ ὢ   

ὩὼὴὝὴ ȟ       ȟ ὢ ὢ  
 (8) 

where  ὴ ȟ  is an activation probability for the edge ὶȟί  (see section 2.3) and  Ὕ , Ὕ are 

positive ñtemperatureò constants (in practice, ὝḺὝ or Ὕ π). Since ὴ ȟ  reflects distance 

in relation to other edges in the graph, the penalty is context aware. Clearly, considering the rich 

informational content of images, suggestions for a more elaborate prior can be limited only by 

imagination. 

2.3 Activation probabilities for the graph edges 

The GSW algorithm produces samples from the joint of (3). It is therefore necessary, except new 

labels, to produce new edge activation states at each step of the sampling process. To do so, the 

algorithm activates or deactivates edges that have same label assignment on their vertices by 

some probability ὴ or ρ ὴ respectively. Activation probabilities do not depend on label 

assignments, but can be related to the edges and/or the image local/global features. Since new 

samples are assigned to groups of variables that belong to graph clusters, it would be reasonable 

for the activation probabilities to reflect distance or other image-based similarity criteria so that 

data points that belong to the same model seek to be clustered together. 

 For the method introduced in this paper, edge activation probabilities are designed to 

reflect distance in the context of the graph. In other words, we seek to establish a soft distinction 

between edge vertices that are ñcloseò to each other and edge vertices that are ñfarò from each 

other, in relation to all edge distances in the graph. This can be regarded as the problem of fitting 

a Gaussian discriminative model over 1D data; typically, this is done with the expectation 

maximization algorithm for two classes, ὅ for small and ὅ for large distances. The algorithm is 

initialized with two Gaussians of equal variance with means set to the minimum and maximum 

edge length respectively (see Figure 2) so that the EM iteration ñpullsò these means more 

towards these extremes rather than risking settlement in some local minimum closer to a median 
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point. Following convergence, the activation probabilities can be obtained as the joint probability of 

the length of an edge and class ὅ, ὴᴁὶ ίᴁȟὅ : 

ὴ ȟ ὴᴁὶ ίᴁȟὅπ ὴᴁὶ ίᴁȿὅπ“π (9) 

where ὴᴁὶ ίᴁȿὅ ȟὯᶰπȟρ is the likelihood of the edge length given that the edge belongs 

to class ὅ and  “ is the class prior. In detailed steps, the algorithm that computes the edge 

probabilities is as follows (EM steps are omitted): 

Computation of edge activation probabilities ▬Ɫ 

Input: a) Set of distances Ὀ꜡ ὨȡὨ ᴁὶ ίᴁȟ– ὶȟί ᶰ꜡,     

Output : ὴ ȟ ὴᴁὶ ίᴁȟὅ  

1. Initialize the EM algorithm with the following parameters: Two classes ὅ and ὅ with respective 

means  ‘ άὭὲὈ꜡ and ‘ άὥὼὈ꜡ and variances „ „ ‘ ‘ Ⱦς; the class priors 

“ and “ are set to ½. The marginal probability of length is therefore given by, 

ὴᴁὶ ίᴁ
ρ

Ѝς“„
Ὡὼὴ

ᴁὶ ίᴁ ‘

ς„

ᴁ ᴁȿ

“
ρ

Ѝς“„
Ὡὼὴ

ᴁὶ ίᴁ ‘

ς„

ᴁ ᴁȿ

“ 
 

2. Run EM until some convergence criterion is met. 

3. Obtain the edge probability ὴ ȟ ὴᴁὶ ίᴁȟὅ . 

 

Fig. 2. a) Delaunay edges on the second view of Merton1 (Oxford buildings dataset [22]). b) The initial 

mixture (we choose the greatest length as initial variance, „ „ τυωȢςτ for numerical stability and 

the means ‘ σȢυχςφ and ‘  τυωȢςττχ as the smallest and greatest edge length) and the mixture 

after EM training (‘  σφȢυσπχ, ‘  ρςψȢφσχπ and variances „ τπτȢψςπψ ȟ„  φφσυȢυ). 
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2.4 Proposal distribution and acceptance ratio for the GSW algorithm 

Our choice of proposal distribution for the GSW algorithm results in a sampling process which 

can be regarded as a Gibbs sampler using ὴὟȿὢ and ὴὢȿὟ  from (3). In the context of the 

GSW algorithm this is equivalent to the following acceptance probability: 

ὥὛᴼὛ άὭὲ

Б ρ ὴ
ᶰ꜡ ᴾ ם

Б ρ ὴᶰ꜡ ᴾ ם

ήὢ ά ȿὛ ȟִי

ήὢ ά ȿὛȟִי

ὖὢ ȿִי

ὖὢȿִי
ȟρ  (10) 

where Ὓ ὢȟὟ  is the state of the graph at time t, ꜡ὃᴾὄ  is the set of edges between the 

sets of vertices A and B, ם ά  is the subset of vertices to which the label m is assigned, Y is a 

selected connected component in the graph, ὖὢȿִי  is the target distribution as given in (2) 

and, 

ήὢ άȿὛȟִי ὖὢ άȟὢם ȿִי  (11) 

where ὢם  denotes the joint assignment to all data points except the ones belonging to Y. 

Obviously, ὢם ὢם  as a direct consequence of the fact that we only change the labels 

of data points in Y. Hence, the two right-most fractions of the ratio in (10) will cancel out, 

yielding the following simplified expression for the acceptance probability: 

ὥὛᴼὛ άὭὲ

Б ρ ὴ
ᶰ꜡ ᴾ ם

Б ρ ὴᶰ꜡ ᴾ ם

ȟρ  (12) 

3. Clustering based SAMpling for Multiple Model FITting (CSAM MFIT): I ntuition and 

tuning 

Given a set of data points ם, the set of all possible models ɋ is a space of combinations with size 

complexity ὕȿ ȿ ςȿםȿ. CSAMMFIT searches ɋ by starting from a random subset and 

throughout successive inference sweeps, it discards and/or recombines models until it settles at a 

local minimum with respect to a global energy measure.  

Let ִי Ṗ  be the initial set of candidate models. There are many ways to obtain ִי ; 

typical strategies involve the classic RANSAC [21] approach that involves the sampling of 

random points in ם, or slightly more elaborate sampling schemes such as the one used in J-

linkage [16]. Generally, at iteration-t, given a set of candidate models ִי , the algorithm 

constructs the respective factors (see sections 2.1 and 2.2) and executes a GSW inference sweep. 

Following a sufficient number of Markov chain transitions, the assigned labels define the new 

supports of the models in ִי . The algorithm discards the models with no (or very little support), 



 
10 

a step which can be thought of as regularization in terms of number of models and thereafter re-

estimates the parameters of each remaining model from their new supports. Finally, if some of 

the re-estimated model parameters differ from others by a distance less than a threshold, the 

respective supports are fused and they are replaced by a single model in ִי . The process 

repeats until the change in a global energy measure is close to zero, or a maximum number of 

iterations has been reached. 

From the above, at a fairly abstract level, the algorithm can be described as follows: 

Clustering based Sampling for Multiple Model FITting (CSAMMFIT ) 

Input: a) Set of data points ם,  b) Model parameter vector (model type), c) Number of initial models, 

ȿִי ȿ, d) Maximum number of iterations, maxIter.   

Output: Optimal set of models ִי Ṗ  and respective joint assignment  ὢ Ḑὖὢȿִי . 

1. Compute  ִי   by sampling random points in ם.  

2. Generate a graph Ὃ ꜡ȟם  and compute an edge activation probability ὴ for each –ɴ .꜡ 

3. ὸN π. Ὁᴺπ. Ὁ ᴺπ.  ῳὉN Њ. 

4. Repeat until  ὸ άὥὼὍὸὩὶ or ῳὉ π: 
5.  Using the edges of G as a neighborhood system and the label set ִי ᷾έ compute 

singleton and pairwise factors as shown in equations (6) and (8). 

6. Run the generalized Swendsen-Wang algorithm for the joint probability distribution 

defined by the singleton and pairwise factors, using edge activation probabilities ὴ in 

order to sample new graph partitions. 

7. Ὁ ᴺὉ.  

8. Compute Ὁ as a measure proportional to the un-normalized negative log likelihood. 

9. ῳὉ Ὁ Ὁ . 

10. Create a set of models ִי  by selecting the models in ִי  which have non-empty 

support and re-estimate their parameters. 

11. For each model άᶰִי , find the subset  ὓάȟ‐Ṗִי  such that for every model 

ὰɴ ὓ άȟ‐ the parameter vector of  m differs from the parameter vector of l no more 

than Ů. In other words, if we denote the parameter vector of m by —ά , then ᴁ—ά
—ὰᴁ ‐ by a given metric.  

יִ .12 .ɲ 

13. For each class in partition ὓάȟ‐ȟὓά ȟ‐ȟȣȟὓ άȿִיȿȟ‐ ,  generate a single 

model by unifying the supports of the models that belong to the class and adding the 

resulting set to ִי . 

14. ὸN ὸ ρ. 

3.1 Selecting the initial set of candidate models 

The initial set of candidate models can be sampled in many different ways, given the nature of 

the models. For instance, it seems prudent to sample two random points from the dataset in order 

to obtain a line, yet if we sample four points uniformly at random, the resultant homography will 

have a very poor impact on the likelihood. On the other hand, if one chooses to obtain the 

minimal sampling set of a homography by randomly choosing a center point and then adding its 
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three closest neighbors, the resulting model will have a greater likelihood than most 

homographies obtained by fitting the parameters to four random data points. In general, sampling 

strategies may vary depending on the type of model. 

3.2 Obtaining a new set of models 

In theory, the GSW inference maximizes the joint X. Using the label assignments ὢ ᶰִי , the 

supporting sets הά Ṗם for every άᶰִי  are obtained. From the supports, a new set of 

models is obtained as, 

יִ άᶰ ȡ  —ά  ὥὶὫάὭὲ Ὢ—ȟהά  ȟάᶰִי  (13) 

where Ὢ—ȟὛ is an error function expressing goodness of fit of the parameter vector — to the 

point set Ὓ, ɋ is the space of all possible models that can be obtained from ם and —ά  is the 

parameter vector associated with model m. In other words, ִי  is the set of new models obtained 

by re-estimating the models in ִי  that end up having non-empty support following the inference 

sweep. It is evident that the re-estimation of the original models can only improve a global 

likelihood measure, as pointed out in [17]. 

Another factor that must be accounted for during the re-estimation of candidate models, 

is the multiplicity of entries in ִי  that correspond to the same model. We dub these entries 

spurious models. To account for spurious models, a distance metric ᴁȢᴁ in parameter space is 

considered. Such metrics can be geodesics on the manifolds on which the model parameters lie. 

Given a threshold Ů, one can define a simple equivalence relationship using the following classes 

for each άᶰִי : 

ὓάȟ‐ ὰɴ יִ ȡᴁ—ά —ὰᴁ ‐ (14) 

Having obtained the set of classes, ὅ ὓάȟ‐ȟὓάȟ‐ȟȣȟὓ άȿִיȿȟ‐ , which is a 

partition of ִי , the new set of candidate models ִי  is obtained by computing the parameters 

of a single model for each equivalence class, using the combined supports of the models that 

belong to the class: 

יִ ὰᶰ ȡὭɴ ρȟȣȟȿὅȿ ȟ—ὰ ὥὶὫάὭὲ Ὢ —ȟ άה

ᶰ ȟ

 (15) 

3.3 A global energy measure 

Although the un-normalized negative log-likelihood (energy) of each GSW sweep is a valid 

quality measure of convergence, it cannot however be used for comparison between successive 

inferences. This is because each inference sweep concerns a distinct set of factors, corresponding 

to a distinct set of candidate models. To obtain a measure of convergence which is independent 
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of the formulations of the GSW sweeps, one is required to consider a more global view of the 

problem. 

 Formally stated, the distribution of label assignments to a data point r in terms of the 

sample space ɋ and its subsets can be expressed as the following marginal over all possible 

model subsets: 

ὖὢ

ừ
Ử
Ừ

Ử
ứ ὖὢȟִי

יִ ɴע

ȟ  ὢ έ

ρ ὖὢȟִי

יִ ɴע

ȟ  ὢ έ
 (16) 

where ע   is the power set of ɋ. 

In this global model, it is reasonable to assume independence between any two labels  ὢ 

and ὢ , since all possible model subsets are taken into consideration in the marginal distribution 

and therefore, the singletons should be ñstrong enoughò to beat the effects of any interactions in 

the joint: 

ὖὢ ὖὢȟִי

יִ ɴע ᷾ɴם

 (17) 

 Following several manipulations on (17) (see Appendix B for derivations and rationale), 

we conclude that maximizing ὖὢ  depends mainly on the maximization of the joint ὖὢȟִי . 

The latter can be expressed in the following regularized likelihood measure: 

Ὁὢȟִי ὰέὫὖὢȿִי

ɴם

ȿםȿ ὰέὫ

ɴִי

 ȿםȿ

ȿהάȿ
 (18) 

A quick examination of (18) reveals that the energy does not concern outliers as defined for use 

in the GSW sweeps. The likelihood term refers to labels in ִי  only. To cope with this in 

practice, for the case that some point is labeled outlier by inference, then the worst model 

posterior is used in the formula. Evidently, the energy measure of (18) resembles the Bayesian 

information criterion (BIC) [24] in that the first summation is the  negative log-likelihood, while 

the second summation is a regularization term that penalizes the number of models inversely 

proportionally to the respective number of points in the support sets. 

4. Results 

Since PeARL [17] is the closest known method to CSAMMFIT, we used the Oxford buildings 

dataset [22] as a benchmark for loose comparison with it.  
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Typically, neighboring points in two-view geometry support the same projectivity, 

whereas randomly sampled points are unlikely to verify the same model. Hence, a reasonable 

strategy to obtain the initial set of candidate models would be to randomly sample a point and 

thereafter, obtain the 3 closest neighbors in the graph. 

4.1 Projectivities 

 Figure 3 illustrates plane detection using views 1 and 2 of the first Merton College scene 

(Merton 1) in the Oxford buildings dataset [22]. Figures 3a and 3b display the results obtained 

with CSAMMFIT; in order to loosely ñemulateò PeARL without using graph cuts, we obtained 

results (Figure 4) using singleton factors with a very large value for a (i.e., outlier labels have 

very low probability) and the Potts prior of (2).  

  
            a) Results with CSAMMFIT.                                 b) Global energy  

Fig. 3. Multiple plane detection in Merton 1, views 1 and 2 (red circles denote outliers, while letters 

correspond to the various planes recovered in the scene). a) Results using the CSAMMFIT. b) The 

respective global energy per execution step in log scale. 

Typical parameter values were, ‌ ρȢρ, ‍ π, Ὕ υϽρπ and Ὕ π, number of initial 

candidate planes, 40 (4 points used for homography estimation) , the threshold for model fusion 

was 0.01 using the Euclidean distance (Frobenius norm) between normalized homography 

matrices (normalization constant is obtained from the singular value decomposition of the matrix 

[25]), tolerance for the logarithm of the energy measure was 0.004 and maximum number of 

iterations, 15. The GSW algorithm is always employed for inference sweeps of 800 Markov 

chain transitions. The rationale behind this selection relies on the results by Barbu and Zhu[21] 

favoring the GSW algorithm against graph cuts. 
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a) Results using PeARL.                   b) Global energy  

Fig. 4. Multiple plane detection in Merton 1, views 1 and 2; a) Results using the energy formulation of 

PeARL. b) The respective global energy per execution step in log scale.  

 
a) Results using CSAMMFIT.                                  b) Global energy  

Fig. 5. Multiple plane detection in Merton 1, views 2 and 3; a) Results using CSAMMFIT; b) The 

respective global energy per execution step in log scale. 

We executed the algorithm with the PeARL energy based configuration using the same 

parameters that we used with our method. It becomes obvious that PeARL overestimates 

spurious models, although the energy levels achieved are slightly worse than the ones achieved 

by CSAMMFIT. At the end of the process, the results obtained with PeARL contain a great deal 

of spurious models (the few outliers appear as a consequence of using a near-to-but-not-zero 

outlier posterior of 10
-18

). This suggests that CSAMMFIT is more robust to lower fusion 

thresholds than PeARL, owed to the underlying cluster based inference and the use of a context-

aware prior.  

Results for views 2 and 3 of Merton 1 (Figure 5 and 6) again suggest that PeARLôs 

energy formulation performs less effectively in grouping similar models, hence the squared 

errors dominate energy at the expense of the regularization term.  
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a) Results using PeARL.                                 b) Global energy  

Fig. 6. Multiple plane detection in Merton 1, views 2 and 3; a) Results using the energy formulation of 

PeARL; b) The respective global energy per execution step in log scale. 

 Except for energy formulations, the effects of priors in the results were explored. Figures 

7 and 8 depict the results obtained with the CSAMMFIT prior and the PeARL prior respectively  

for views 1 and 2 of Merton 2. As mentioned earlier, the PeARL prior considers the distance 

between two nodes, but only in absolute terms, whereas the proposed prior uses the edge 

activation probability to regulate the pairwise penalty. The temperature was increased to 

Ὕ υϽρπ in order to slightly amplify the effects of prior-imposed grouping in the results. 

 
a) Results using the CSAMMFIT prior.                                 b) Global energy  

Fig. 7. Multiple plane detection in Merton 2, views 1 and 2; a) Results using the CSAMMFIT prior; b) 

The respective global energy per execution step in log scale. 
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a) Results using the PeARL prior.                                  b) Global energy  

Fig. 8. Multiple plane detection in Merton 2, views 1 and 2; a) Results using the PeARL prior; b) The 

respective global energy per execution step in log scale. 

 Please note here that the algorithms will always require initial tuning of a few parameters 

(namely, Ŭ, ɓ, T and the threshold used in model fusion). We note however that CSAMMFIT 

yields good results for a wide variety of settings, while the PeARL energy appears to be very 

sensitive to temperature changes. Moreover, the PeARL prior needs to be ñhand-tunedò every 

time a new pair of images is used; this is most likely due to the fact that coefficients ύȟ reflect 

absolute distances. Model fusion is also a process that CSAMMFIT seems to be more robust than 

PeARL, since it generally produces uniform label assignments just throughout the inference 

process, while fusion occurs rarely. Figures 4 and 6 suggest that spurious models are generally 

resilient to inference in PeARL and therefore, in order to eliminate them, one must increase the 

fusion threshold. Table 1 reports success rates for the Oxford dataset without counting spurious 

models as misses; outliers on the other hand do count. 

 CSAMMFIT PeARL 

 Views 1 and 2 Views 2 and 3 Views 1 and 2 Views 2 and 3 

Merton 1 91.12% 97.39% 88.4% 91.91% 

Merton 2 99.13% 98.98% 91.28% 89.80% 

Wadham 95.22% 87.99% 92.93% 93.29% 

Table. 1. Results for the Oxford buildings dataset. Columns 1 and 2 correspond to the results of the 

proposed method for pairs of views 1, 2 and 2, 3; columns 3 and 4 correspond to the results obtained with 

the PeARL energy formulation (GSW inference used). 

4.2 Multiple motions 

Multiple motions in two views are similarly characterized by bilinear relationships between the 

tracked points. Thus, it is possible to formulate singletons based on some error function that 

evaluates model fitness, typically the Sampson distance [8]. For the sake of completeness, we 

report results obtained from several different pairs of views taken from two sequences in the 

Hopkins 155 dataset [26]. Illustrative results are shown in Figures 9 and 10. 
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            a) Ground truth.                                                 b) Results. 

Fig. 9. Moving car in front of a moving camera (cars1). Results obtained using CSAMMFIT on a pair of 

views in the sequence (frames 1, 12). 

Table 2 reports success rates on two different pairs of frames in sequences cars1 and  

cars2_06 of the Hopkins 155 dataset. 

 CSAMMFIT PeARL 

 Frames 1 and 12 Frames 1 and 7 Frames 1 and 12 Frames 1 and 7 

Cars1 94.38% 89.23% 91.67% 87.69% 

Cars2_06 88.62% 92.68% 91.06% 90.24% 

Table 2. Indicative results for the Hopkins 155 dataset. Comparison between CSAMMFIT and PeARL for 

pairs of frames 1, 12 and 1, 7 of sequences cars1  and cars2_06. 

  
a) Ground truth.                                                 b) Results. 

Fig. 10. A sequence with two moving cars (cars2_06). Results obtained using CSAMMFIT on a pair of 

views in the sequence (frames 1, 12). 

5. Conclusion 








