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The next generation of telescopes will usher in an era of precision cosmology, capable of deter-
mining the cosmological model to beyond the percent level. For this to be effective, the theoretical
model must be understood to at least the same level of precision. A range of subtle relativistic
effects remain to be explored theoretically, and offer the potential for probing general relativity in
this new regime. We present the distance-redshift relation to second order in cosmological perturba-
tion theory for a general dark energy model. This relation determines the magnification of sources
at high precision, as well as redshift space distortions in the mildly non-linear regime. We identify
a range of new lensing effects, including: double-integrated and nonlinear integrated Sach-Wolfe
contributions, transverse Doppler effects, lensing from the induced vector mode and gravitational
wave backgrounds, in addition to lensing from the second-order potential. Modifications to Doppler
lensing from redshift-space distortions are identified. Finally, we find a new double-coupling between
the density fluctuations integrated along the line of sight, and gradients in the density fluctuations
coupled to transverse velocities along the line of sight. These can be large and thus offer important
new probes of gravitational lensing and general relativity. This paper accompanies Paper II, where
a comprehensive derivation is given.

Introduction The main probe of cosmological models comes from the relation between the angular diameter or
luminosity distance of a source and its redshift. At its most basic level this relation determines the parameters of the
cosmological model, but when perturbations due to structure are included, a host of new physics effects is revealed.
The most important of these is the magnification of sources from over-densities, which arises as an integrated effect
along our past lightcone. Another important property is the distortion in redshift space due to the radial motion
of sources relative to the Hubble flow, which leads to a ‘Doppler lensing’ phenomenon which has recently been
explored [1–3]. More subtle are the integrated Sachs-Wolfe (ISW) terms due to the evolution of the potential along
the line of sight, and the pure SW effect which arises from the potential difference between source and observer.
All of the known effects on the distance-redshift relation are calculated at linear order in perturbations [4]. Recently,

relativistic linear effects in the density contrast have been considered [5–8], and also in redshift space distortions [9].
However, at second order other general relativistic effects must come into play. As structure evolves, the linear modes
generate nonlinear ones, many of which are not present in Newtonian theory. Important dynamical examples of
these are the induced vector and tensor modes whose spectra peak in power at the equality scale [10, 11]. The full
effect of such modes on the optical properties of the model are not known in detail, though there are partial second-
order results which include the distance-redshift relation Taylor expanded to O(z2) in a pure dust model [12], and in
LCDM [13]. More generally, the lensing shear is given to second-order in [14, 15]. We present here the second-order
distance-redshift relation for a general dark energy model, and identify key new lensing effects, some of which will be
observable with the next generation of cosmological experiments. The derivation is very involved and is given in an
accompanying paper [16].
Another group independently presented the full second-order distance-redshift relation using a very different ap-

proach [17] – see also related work [18–21]. Their approach starts with a general light-cone coordinate system, from
which the relevant relations are found using a suitable coordinate transformation. Our approach solves the Sachs
equations perturbatively in the familiar Poisson (Newtonian) gauge. Our final result is presented in a fully expanded,
ready-to-use and familiar form – as Doppler terms at the source, and as integrals over the Newtonian potential, with
terms grouped into separate physical effects.
Nonlinear optical equations In a general spacetime, the optical properties are governed by the Sachs equations.

Lensing effects comes in several parts. The redshift of a source z is related to the affine parameter λ along a light ray
via [22]

dz

dλ
= −(1 + z)2

[

1

3
Θ + σabn

anb

]

, (1)
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where Θ is the volume expansion rate of cold matter, σab is its shear, and na is the spatial direction of the light ray
which we choose pointing in the direction of observation. Lensing magnification and shear are determined by

d2DA

dλ2
= −

[

1

2
Rabk

akb +ΣabΣ
ab

]

DA ,
dΣ〈ab〉

dλ
= −Σabθ +N〈e

aNf〉
cRabcdk

ckd. (2)

Here, DA is the area or angular diameter distance, ka is a future-pointing null vector with expansion θ and shear
Σab, Nab is the screen space metric, and angle brackets denote the trace-free part in the screen space. We expand
and integrate these equations with the appropriate boundary conditions to second order in perturbation theory to
determine redshift perturbations and lensing magnification to high precision in a perturbed flat FLRW model, without
assumptions on the matter content.
Second order perturbations For a flat background the metric in the Poisson gauge is1

ds2 = a2
[

−(1 + 2Φ + Φ(2))dη2 + 2ωidx
idη + ((1 − 2Φ−Ψ(2))δij + hij) dx

idxj
]

, (3)

where we neglect first-order anisotropic stress and vector and tensor modes. The observer 4-velocity ua is

u0 =
1

a

(

1− Φ−
1

2
Φ(2) +

3

2
Φ2 +

1

2
∇iv∇

iv

)

, ui =
1

a

(

∇
iv +

1

2
∇

iv(2) +
1

2
vi(2)

)

(4)

where v is the first-order velocity potential. The second-order velocity has scalar v(2) and vector v(2)

i contributions.
Perturbative calculation overview The redshift perturbation is given by

(1 + zs) = (1 + z̄)
(

1 + δz + 1
2δ

2z
)

, (5)

where zs denotes the observed position of the source, z̄ is the background redshift and δnz is the n-th order redshift
perturbation evaluated at the background position of the source λs. These are found by perturbatively solving (1) as
a function of the background affine parameter λ. Then, the distance is found from expanding (2)

DA(λs) = a(λs)
[

(λo − λs) + δDA(λs) +
1
2δ

2DA(λs)
]

. (6)

Once the distance perturbations δnDA are found, (5) and (6) form a parametric relationship for DA(zs) – this is the
form suitable for raytracing through specific objects in an N-body simulation, for example. To give DA(zs) explicitly,
we eliminate λs perturbatively in favour of a new affine parameter χs in the background along the null ray, which is
also the co-moving distance to the source calculated for an observed redshift zs using the background relationship

χs =

∫ zs

0

dz

(1 + z)H(z)
, (7)

and H = a′/a is the conformal Hubble rate. We then find

DA(zs) =
χs

1 + zs

{

1 +

[

δDA

χs

+

(

1−
1

Hsχs

)

δz

]

+
1

2

[

δ2DA

χs

+

(

1−
1

Hsχs

)

δ2z (8)

+2

(

δDA

χs

−
1

Hs

dδz

dχ

)(

1−
1

Hsχs

)

δz − 2
δz

Hs

d

dχ

δDA

χ
+

(

H′
s

H2
− 1

)

(δz)2

Hsχs

]}

.

This is the suitable expression for further analysis on spheres of constant redshift.
Redshift The first-order contribution to the redshift is

δz = ∇‖vs −∇‖vo − Φs +Φo − 2

∫ χs

0

dχΦ′ . (9)

Here, χ is the affine parameter in the background along the null ray, and is also the co-moving distance to the source
calculated for an observed redshift zs. The radial derivative along the null ray is ∇‖ = ni∇i = ∂η + d/dχ, where ni

1 In our accompanying ‘derivations’ paper we work on a perturbed Minkowski geometry conformally related to the FLRW one which we

denote with a hat – we do not refer to the Minkowski background here, so remove the hats to avoid clutter. We have defined the redshift

and distance perturbations below with respect to the Minkowski background.
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is the direction to the source in the background, and d/dχ is the derivative down the past lightcone. The redshift
perturbation consists of two boundary terms in the form of a Doppler term and a Sachs-Wolfe (SW) contribution
from the difference in potentials at source and observer, as well as an integrated Sachs-Wolfe (ISW) term. At second
order we have similar contributions:

δ2z = Doppler(2) + SW+Doppler× SW + ISW . (10)

The pure Doppler terms consist of pure second-order contributions, and quadratic first-order terms, which include
the transverse Doppler effect, and a new coupling between source and observer:

Doppler(2) = v(2)

‖s − v(2)

‖o +∇‖v
(2)

s −∇‖v
(2)

o + (∇‖vo −∇‖vs)
2
+∇⊥kvs∇

k
⊥
vs −∇⊥kvo∇

k
⊥
vo (11)

Here, we have defined v(2)

‖ = niv(2)

i as the radial part of the vector mode of the velocity and ∇⊥i = N j
i ∇j as the

covariant derivative on the screen space. The SW terms also contain pure and mixed contributions, which couple the
potential at the source and observer:

SW = −Φ(2)

s +Φ(2)

o + (Φs − Φo) (3Φs +Φo) . (12)

There is a coupling between the Doppler terms at source and observer with the potential:

Doppler× SW = −4
(

Φs∇‖vs − Φo∇‖vo
)

+ 2 (Φs∇‖vo − Φo∇‖vs) . (13)

The ISW effect at second order is much more complicated, and consists of several contributions:

ISW = ISW(2) + ISW× SW+ ISW×Doppler + Integrated ISW (14)

where we have a pure second-order ISW contribution:

ISW(2) = −

∫ χs

0

dχ
(

Φ(2)′ +Ψ(2)′ + ω(2)

‖

′
− h(2)

‖

′
− 8ΦΦ′

)

. (15)

We have defined h‖ = ninjhij as the radial part of the tensor mode. Then we have the first-order ISW effect coupled
with SW and Doppler terms:

ISW× SW = 4 (Φs − Φo)

∫ χs

0

dχΦ′ , (16)

ISW×Doppler = −4 (∇‖vs −∇‖vo)

∫ χs

0

dχΦ′
− 4∇⊥ivs

∫ χs

0

dχ∇
i
⊥Φ . (17)

Finally, we have the double- and tripple-integrated SW terms:

Integrated ISW = +8

∫ χs

0

dχΦ′

∫ χ

0

dχ̃Φ′(χ̃)− 8

∫ χs

0

dχ

∫ χ

0

dχ̃
χ̃

χ
∇

i
⊥Φ

′(χ̃)

∫ χ

0

dχ̃∇⊥iΦ(χ̃) . (18)

These new effects contribute to the nonlinear redshift space distortions.
Distance-redshift relation We define the fractional fluctuation in the area distance at observed redshift zs as

∆(zs) =
DA(zs)− D̄A(zs)

D̄A(zs)
(19)

where the background area distance is D̄A(zs) = χs/(1 + zs). The perturbation ∆ splits into local terms evaluated at
either the source or observer, local times integrated terms, and integrated terms:

∆ = ∆loc +∆loc-int +∆int . (20)

In order to consistently make this split we have systematically replaced all radial derivatives which appear in integrated
terms with partial time and proper null derivatives, and performed integration by parts to eliminate all null derivatives.

local terms: These have Sachs Wolfe and Doppler contributions, with cross-terms between the two:

∆loc = ∆Φ
loc +∆v

loc +∆Φ×v
loc . (21)
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Each of these further splits into terms which are purely local to the observer, or to the source, or coupling between
the two. For the Sachs-Wolfe terms we have

∆Φ
loc,o =

(

1−
1

Hsχs

)

Φo +
1

2

(

1−
1

Hsχs

)

Φ(2)

o −
1

2

(

1−
1

Hsχs

)

ω
‖o −

1

2

(

H′

H2
− 7

)

Φ2
o , (22)

∆Φ
loc,s = −

(

2−
1

Hsχs

)

Φs −
1

2
Ψ(2)

s −
1

2

(

1−
1

Hsχs

)

Φ(2)

s +
1

4

(

1−
2

Hsχs

)

ω‖s −
1

4
h‖s (23)

−
1

2

(

H′

H2
+

2

χsHs

− 7

)

Φ2
s −

(

1−
2

χsHs

)

χsΦsΦ
′
s − χsΦs∇‖Φs ,

∆Φ
loc,o-s =

[

−

(

H′

H2
−

1

χsHs

+ 4

)

Φs +

(

1−
2

χsHs

)

χsΦ
′
s − χs∇‖Φs

]

Φo . (24)

The Doppler terms are

∆v
loc,o =

1

Hsχs

∇‖vo +
1

2Hsχs

∇‖v
(2)

o −
1

2Hsχs

v(2)

‖o
−

(

H′

2H2
− 1

)

∇‖vo∇‖vo +
1

χsHs

∇⊥ivo∇
i
⊥
vo , (25)

∆v
loc,s =

(

1−
1

Hsχs

)

∇‖vs +
1

2

(

1−
1

Hsχs

)

∇‖v
(2)

s +
1

2

(

1−
1

Hsχs

)

v(2)

‖s
+

1

2

(

H′

H2
−

2

χsHs

− 1

)

∇‖vs∇‖vs

+χs

(

1−
1

χsHs

)

∇‖vs
(

∇‖v
′
s −∇

2
‖
vs
)

+

(

1−
1

χsHs

)

∇⊥ivs∇
i
⊥
vs , (26)

∆v
loc,o-s =

[

−

(

H′

H2
−

1

χsHs

)

∇‖vs − χs

(

1−
1

χsHs

)

(

∇‖v
′
s −∇

2
‖vs

)

]

∇‖vo . (27)

These contain a mixture of radial and transverse velocity terms, as well as the redshift space distortion term propor-
tional to

(

∇‖v
′
s −∇2

‖
vs
)

. The mixed terms are

∆Φ×v
loc,o = −

(

H′

H2
+

1

2χsHs

+
11

2

)

Φo∇‖vo , (28)

∆Φ×v
loc,s = −

(

H′

H2
−

1

χsHs

+ 3

)

Φs∇‖vs +

(

H′

H2
− 1

)

Φo∇‖vs + χs

(

1−
2

χsHs

)

Φ′
s∇‖vs (29)

+χs∇‖Φs∇‖vs − χs

(

1−
1

χsHs

)

Φs(∇‖v
′
s −∇

2
‖vs) ,

∆Φ×v
loc,o-s =

[

−χs

(

1−
2

χsHs

)

Φ′
s − χs∇‖Φs +

(

H′

H2
+ 2

)

Φs

]

∇‖vo +

(

1−
1

χsHs

)

χsΦo(∇‖v
′
s −∇

2
‖
vs) . (30)

local-integrated terms: Integrated terms come coupled to the local potential and Doppler terms

∆loc-int = ∆Φ
loc-int +∆v

loc-int, (31)

which in turn have contributions from both observer and source. First the terms coupled to the potential:

∆Φ
loc-int,o = −Φo

[(

1 +
2

χsHs

)

2

χs

∫ χs

0

dχΦ+ 2

(

H′

H2
+

3

χsHs

− 4

)
∫ χs

0

dχΦ′
−

(

2 +
1

χsHs

)
∫ χs

0

dχχ∇2
⊥
Φ (32)

+

(

9 +
2

χsHs

)
∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥Φ+ 4

∫ χs

0

dχ
χ

χs

Φ′ + 4

∫ χs

0

dχ
(χ− χs)

χs

Φ′
− 4

∫ χs

0

dχ
(χ− χs)χ

χs

Φ′′

]

,

∆Φ
loc-int,s = Φs

[(

1−
1

χsHs

)

4

χ

∫ χs

0

dχΦ + 2

(

H′

H2
−

2

χsHs

+ 2

)
∫ χs

0

dχΦ′
−

(

2 +
1

χsHs

)
∫ χs

0

dχχ∇2
⊥
Φ (33)

+2

(

1−
1

χsHs

)
∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥Φ

]

− 2

[(

1−
2

χsHs

)

χ2
sΦ

′
s + χs∇‖Φs

]
∫ χs

0

dχΦ′ .

These contain terms with the potential at observer and source coupled to the usual gravitational lensing potential, as
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well as other integrated terms which appear at first-order. For the Doppler terms we have

∆v
loc-int,o = ∇‖vo

[

2

χs

(

1−
2

χsHs

)
∫ χs

0

dχΦ− 2

∫ χs

0

dχΦ′ +

(

2−
1

χsHs

)
∫ χs

0

dχ
(2χ− 3χs)χ

χs

∇
2
⊥Φ

]

, (34)

∆v
loc-int,s = −∇‖vs

[

2

χs

(

5−
1

χsHs

)
∫ χs

0

dχΦ− 4

(

1−
1

χsHs

)
∫ χs

0

dχΦ′ (35)

−

(

2−
1

χsHs

)
∫ χs

0

dχχ∇2
⊥Φ +

(

3−
2

χsHs

)
∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥Φ

]

+2

(

1−
1

χsHs

)

∇⊥vs

∫ χs

0

dχ∇
i
⊥
Φ− 2

(

1−
1

χsHs

)

[

χs

(

∇‖v
′
s −∇

2
‖
vs
)]

∫ χs

0

dχΦ′ .

The second-last term is a coupling between the transverse velocity and the deflection angle to the source, while the
final term is a coupling between the linear ISW effect and redshift space distortions.

integrated terms: A variety of new effects appear in the form of single, double or triple-integrated terms. We group
these as direct integrated terms – including effects from time delay, first- and second-order ISW terms, and first- and
second-order standard lensing convergence terms – then double and triple integrated terms, which include integrated
couplings of bending angle with convergence and ISW terms (there are no integrated Doppler contributions):

∆int = ∆direct
int +∆multiple

int . (36)

The direct integrated terms are just extensions of the first-order distance redshift modifications to second-order:

∆direct
int =

2

χs

∫ χs

0

dχΦ+
1

2χs

∫ χs

0

dχ (Φ(2) +Ψ(2))−
1

2χs

∫ χs

0

dχ
(χ− χs)

χ
ω

‖
+

3

2χs

∫ χs

0

dχ
(χ− χs)

χ
h

‖
(37)

−2

(

1−
1

Hsχs

)
∫ χs

0

dχΦ′
−

1

2

(

1−
1

Hsχs

)
∫ χs

0

dχ
(

Φ′
(2) +Ψ′

(2)

)

−
1

2

∫ χs

0

dχ

(

1−
1

Hsχs

+
(2χ− χs)

2χs

)

ω′
‖
+

1

2

∫ χs

0

dχ

(

1−
1

Hsχs

−
(2χ− χs)

χs

)

h′
‖

+

∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥Φ+

1

4

∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥(Φ

(2) +Ψ(2))−
1

4

∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥ω‖

−
1

4

∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥
h

‖
.

The first line contains time-delay contributions, the second and third are the ‘pure’ ISW terms from scalars, vectors and
tensors, while the final two lines contain the usual lensing terms, which are integrals over the screen-space Laplacian
of all the radial metric potentials. (These are essentially all extensions of the first-order expression to second-order.)
The multiple integrated non-linear terms are our key new results, and we give them according to whether they involve
the first-order lensing convergence κ, bending angle α or shear γ:

∆multiple
int = ∆Φ−Φ

int +∆Φ−κ
int +∆α−α

int +∆κ−κ
int +∆α−∇κ

int +∆Σ−Σ
int . (38)

Integrals over the potential and its time derivative couple:

∆Φ−Φ
int = −

∫ χs

0

dχ
3χ− 2χs

χs

Φ2 + 4

∫ χs

0

dχ
(2χ− χs)

χs

ΦΦ′ (39)

+2

[

2

χs

(

3−
2

χsHs

)
∫ χs

0

dχΦ+

(

H′

H2
+

1

χsHs

− 2

)
∫ χs

0

dχΦ′

]
∫ χs

0

dχΦ′

+4

∫ χs

0

dχ
(χ− χs)

χχs

Φ′

∫ χ

0

dχ̃Φ(χ̃)− 2

∫ χs

0

dχ
2χ− χs

χ2χs

Φ

∫ χ

0

dχ̃Φ(χ̃) + 4

∫ χs

0

dχΦ′

∫ χ

0

dχ̃Φ′(χ̃) .
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First-order lensing-type contributions (i.e., integrals over ∇2
⊥
Φ) couple to integrals over the potential and ISW terms:

∆Φ−κ
int = −2

∫ χs

0

dχ
1

χ
Φ

∫ χ

0

dχ̃
(χ̃− χ)χ̃

χ
∇

2
⊥
Φ(χ̃)− 2

∫ χs

0

dχ
(χ− χs)

χ2χs

Φ

∫ χ

0

dχ̃ (χ̃− χ)χ̃∇2
⊥
Φ(χ̃) (40)

+

∫ χs

0

dχ
(9χ− 2χs)(χ− χs)

χs

Φ∇2
⊥Φ− 2

∫ χs

0

dχΦ

∫ χ

0

dχ̃
χ̃

χ
∇

2
⊥Φ(χ̃) + 2

∫ χs

0

dχ
(χ− χs)

χs

∇
2
⊥Φ

∫ χ

0

dχ̃Φ(χ̃)

+2

∫ χs

0

dχ
(χ− χs)

χs

Φ′

∫ χ

0

dχ̃ χ̃∇2
⊥
Φ(χ̃) + 2

∫ χs

0

dχ
(χ− χs)

χ
Φ

∫ χ

0

dχ̃
(χ̃− χ)χ̃

χs

∇
2
⊥
Φ(χ̃)

+2

[

−

(

2−
1

χsHs

)
∫ χs

0

dχχ∇2
⊥
Φ+

(

3−
2

χsHs

)
∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥
Φ

]
∫ χs

0

dχΦ′ .

Next, terms related to the bending angle from the potential couple together:

∆α−α
int = −4

∫ χs

0

dχ
(χ− χs)

χs

∇⊥iΦ

∫ χ

0

dχ̃
χ̃

χ
∇

i
⊥
Φ(χ̃)− 4

∫ χs

0

dχ
χ

χs

∇⊥iΦ

∫ χs

0

dχ∇
i
⊥
Φ (41)

−
4

χs

∫ χs

0

dχ

∫ χ

0

dχ̃∇⊥iΦ(χ̃)

∫ χ

0

dχ̃∇
i
⊥
Φ(χ̃) + 6

∫ χs

0

dχ
(χ− χs)χ

χs

∇⊥iΦ∇
i
⊥
Φ

−4

∫ χs

0

dχ
(χ− χs)χ

χs

∇⊥iΦ
′

∫ χ

0

dχ̃∇
i
⊥Φ(χ̃)− 4

(

1−
1

χsHs

)
∫ χs

0

dχ
χ

χs

∇
i
⊥Φ

′

∫ χ

0

dχ̃∇
i
⊥Φ(χ̃) .

Lensing-lensing terms couple:

∆κ−κ
int = −

∫ χs

0

dχ
(χ− χs)

χs

∇
2
⊥
Φ

∫ χ

0

dχ̃ (χ̃− χ)χ̃∇2
⊥
Φ(χ̃) . (42)

Then, a closely related contribution is from bending angle coupled to angular gradients of the lensing contribution:

∆α−∇κ
int = +4

∫ χs

0

dχ
(χ− χs)

χs

∫ χ

0

dχ̃∇⊥iΦ(χ̃)

∫ χ

0

dχ̃
χ̃2

χ
∇

i
⊥
∇

2
⊥
Φ(χ̃) (43)

−2

∫ χs

0

dχ
(χ− χs)

χs

∇⊥iΦ

∫ χ

0

dχ̃
(χ̃− χ)χ̃2

χ
∇

i
⊥∇

2
⊥Φ(χ̃) .

Finally we have the contributions from the shear of the null geodesics in the screen space:

∆Σ−Σ
int = −2

∫ χs

0

dχ
(χ− χs)χ

χs

∫ χ

0

dχ̃∇⊥〈i∇⊥j〉Φ(χ̃)

∫ χ

0

dχ̃∇
〈i
⊥ ∇

j〉
⊥ Φ(χ̃) . (44)

Summary We have presented the distance-redshift relation to second order in general. Our only simplifying
assumptions have been a flat background and equality of the first-order potentials (and zero primordial vectors and
tensors). We have not assumed a matter model, and so our results hold for most dark energy models.
We have identified key new terms which govern gravitational lensing magnification for large over-densities – and

under-densities where it has recently been shown that the linear lensing terms do not capture the full relativistic
signal [2]. In addition we have presented new effects which contribute to redshift space distortions. These are:
Nonlinear Doppler effect and transverse velocities This comes in several forms. The radial parts of the scalar

and vector second-order velocities contribute in the same way as at first order. Then the terms O(v2, vΦ) reveal the
transverse Doppler contribution in the cosmological context:

∆v
transverse =

(

1−
1

Hsχs

)[

∇
i
⊥vs + 2

∫ χs

0

dχ∇
i
⊥Φ

]

∇⊥ivs (45)

While small, these give the potential to measure transverse velocities through redshift space distortions and distance
modifications. The prefactor in parentheses is large for low redshift amplifying the effect. Note that in the full Doppler
contribution there is also a local dipole contribution, giving different lensing signals across the sky from our peculiar
motion.
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Redshift space distortion and lensing coupling to Doppler lensing Linear RSD and first-order gravitational lensing
terms couple non-linearly to SW and ISW terms, but also to Doppler lensing which could be significant. In fact, the
Doppler lensing contribution [1, 3], including the main RSD and lensing corrections becomes (ignoring the second-order
velocity which adds linearly to this)

κv ≈ −

[(

1−
1

χsHs

)

(

1− χs∇
2
‖
vs
)

+

(

2−
1

χsHs

)
∫ χs

0

dχχ∇2
⊥
Φ−

(

3−
2

χsHs

)
∫ χs

0

dχ
(χ− χs)χ

χs

∇
2
⊥
Φ

]

∇‖vs .

(46)
The new RSD contribution will alter and amplify the Doppler lensing at low redshift. The last term is the standard
gravitational lensing term with integral kernel which peaks midway between source and observer, so will alter Doppler
lensing at moderate redhsifts. The other lensing-type term contains a kernel which grows towards the source, meaning
that for distant sources this will amplify the Doppler lensing correction.
Nonlinear density coupling In the integrated contribution from ∆κ−κ

int + ∆α−∇κ
int + ∆Σ−Σ

int we have a product of
the first-order lensing term and gradients of the gravitational potential, which gives the dominant contribution to
second-order lensing. [Roughly speaking, four ∇’s and two Φ’s give terms O(δ2).] In ∆α−∇κ

int we see coupling of
transverse derivatives of the density fluctuations to the transverse velocity integrated along the line of sight. These
offer the potential to measure transverse velocities as these terms can be very significant. The contribution from
∆κ−κ

int is a coupling between all the density fluctuations along the line of sight, and when the density contrast is O(1)
can easily be comparable to the main first-order lensing term. Note that similar terms appear in the integrated shear
term ∆Σ−Σ

int .
We can estimate the magnitude of these terms as follows. We can evaluate terms for a single lens at χlens with

∇2
⊥Φ ≈ 3ΩmH2

0 (1 + z)δ/2, assuming a top-hat profile for δ, of radius R. Then, the first-order lensing convergence
becomes (to leading order in R, assuming z is constant over the scale of the lens)

κ(1)
≈

1

3
Ωmh2χs − χlens

χs

(1 + zlens)

(

χlens

1Gpc

)(

R

1Mpc

)(

δ

1000

)

(47)

which can approach unity for large over-densities. Using (42), we can estimate, for one lens,

∆κ−κ
int ≈

1

9
Ωmh2(1 + zlens)

(

R

1Mpc

)2 (
δ

106

)

κ(1) (48)

which forms part of the full second-order lensing convergence κ(2) (∆α−∇κ
int and ∆Σ−Σ

int will be a similar size). This
is typically quite small per lens, but scales linearly with the number of lenses along a line of sight, so will build
up significantly at high redshift. The two lensing terms in the modifications to the Doppler lensing term are more
significant still:

κv ≈ κ(1)
v

{

1−

[

(χs − 3χlens)χsHs − χs + 2χlens

(χs − χlens) (1− χsHs)

]

κ(1)

}

(49)

where κ
(1)
v = −(1− 1/χsHs)∇‖v. The term multiplying κ(1) is order unity, implying a significant correction to linear

Doppler lensing behind over-densities.
While many of the terms in the distance-redshift expansion are generally small, they offer a rich variety of new

general relativistic effects to be understood. In particular, there are many terms which contribute to an ISW-type
of effect, but now it involves integrals over the scalar, vector and tensor potentials at second-order, as well as the
first-order potential squared, together with its radial and tangential derivatives. Furthermore, we have also identified
several instances of double integrated SW terms in both the redshift and the distance-redshift relation. These may
be important in further refining our understanding of dark energy.
A final important relativistic effect which can be probed with the formalism presented above relates to the inter-

pretation of the background model itself. Measurements of distances of supernovae, for example, are fitted to the
background model via an all-sky average of the distance-redshift relation. This includes the monopole of the second-
order corrections presented here, which may include non-trivial corrections to the background DA(z) relation. The
size of this may be estimated via an ensemble average of the monopole of the DA(z) relation which does not vanish at
second-order. There has been considerable debate as to the size of these corrections – see [23] for a review. A related
lightcone average contribution was estimated in [18, 21, 24] and found to be small, though potentially significant.
This will be considered further in upcoming work [25].
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