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Abstract. We introduce a formal definition of the relation-based fuzzy
granular approximations (RFGA). These approximations may be seen
as a generalization of the fuzzy rough approximations (FRA). The new
definition yields a family of fuzzy sets that extends the family of lower
and upper fuzzy approximations, and inherits their granular properties.
Moreover, a fuzzy relation is used to represent the decision attribute
instead of a fuzzy set, like in the FRA. Besides the formal definition, we
provide a way of calculating the RFGA in specific cases, and we discuss
possible applications of the RFGA in Machine Learning.

Keywords: Fuzzy rough sets - Machine Learning - Granular approxi-
mations.

1 Introduction

Rough sets were introduced by Pawlak [13] to deal with inconsistencies within
information tables where objects are described by a set of attributes. Pawlak’s
approach produces two sets, called lower and upper approximation, which rep-
resent objects being, respectively, necessarily consistent (lower approximation),
and possibly consistent (upper approximation) with knowledge contained in the
information table. The original theory was designed to deal with nominal at-
tributes, and relies on an equivalence relation, expressing indiscernibility be-
tween objects. Pawlak’s original theory was later named the Indiscernibility-
based Rough Set Approach (IRSA).

On the other hand, fuzzy set theory [17] studies the gradual truth of logical
statements, and is used extensively in modeling imprecise and vague information.
The combination of fuzzy sets and IRSA was first proposed by Dubois and Prade
[4], allowing to approximate fuzzy sets using a fuzzy T-equivalence relation. A
similar extension of Dominance-based Rough Set Approach (DRSA) to fuzzy set
theory was proposed by Greco et al. [5].
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Rough sets are very useful from the point of view of granular computing,
as they possess a so-called granular representation; indeed, lower and upper
approximations can be represented as unions of simple sets or granules, induced
from the data [16]. In contrast to crisp sets, the granular properties of fuzzy
rough sets do not stem directly from the proposed definitions. Degang et al.
[3] were the first to show that fuzzy IRSA has indeed a granular representation
which means that fuzzy rough approximations can be represented as a union of
simple fuzzy sets or fuzzy granules.

The granular representation of rough sets and fuzzy rough sets is, in par-
ticular, very useful from the perspective of rule induction. The problem of rule
induction for classification tasks amounts to generating a set of rules which relate
description of objects by subsets of attributes with particular decision classes.
Basic granules, from which rough sets are composed, can be interpreted as hu-
man readable “if..., then...” rules, and can be used to construct a rule-based
inference system as a prediction model. A well-known examples of rule induc-
tion algorithms are the LEM2 algorithm [6] and the MODLEM algorithm [15].
Similarly, the granularity of fuzzy rough sets has also been used for rule induc-
tion. In this case, we obtain a fuzzy inference system, with flexible fuzzy rules
instead of strict crisp rules [9, 18]. The main advantage of fuzzy rules is that they
can model complex shapes of data, and still keep an intuitive interpretation of
these shapes.

Palangeti¢ et al. [12] introduced the concept of granularly representable sets
as an initial step towards the definition of granular approximations. Granular
approximations may be seen as generalizations of rough sets (in both crisp and
fuzzy case), i.e., they are granularly representable sets which are neither lower
nor upper approximations, but lie between these two extreme sets. In this pa-
per, we introduce a formal definition of such granular approximation in the fuzzy
case, called Relation-based Fuzzy Granular Approximation (RFGA). The nov-
elty of the current proposal is that instead of approximating fuzzy sets (like in
the definition of the lower and upper fuzzy rough approximations) we approxi-
mate a fuzzy relation. Such fuzzy relation measures the similarity of objects on
the decision attribute. The motivation to use a fuzzy relation may be found in
Data analysis and Machine Learning. Fuzzy relations are suitable for modeling
different types of data and may be used on many types of Machine Learning
problems (classification, regression ...).

The remainder of this paper is structured as follows. In Section 2, we recall
some useful preliminaries about fuzzy, rough and granularly representable sets.
Section 3 deals with the derivation of the relation-based fuzzy granular repre-
sentation. Section 4 explains how to solve the system of equations that is raised
in the definition of RFGA from Section 3. Sections 5 discusses the use of the
proposed approach in Machine Learning, while Section 6 provides initial experi-
mental results of an application to real data. Section 7 contains our conclusions
and outlines future work.
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2 Preliminaries

2.1 Fuzzy logic connectives

In this subsection, the definitions and terminology are based on [10]. Recall
that a t-norm T : [0,1]> — [0,1] is a binary operator which is commuta-
tive, associative, non-decreasing in both arguments, and for which it holds that
Va € [0,1], T(x,1) = x. Since a t-norm is associative, we may extend it unam-
biguously to a [0,1]" — [0,1] mapping for any n > 2. Some commonly used
t-norms are listed in Table 1.

Name |Definition R-implicator
Minimum | Ty (z,y) = min(z,y) Iy (z,y) = {; oitfhge:rii?s/e
Product Tp(z,y) = zy Irp (2,y) = { % oitfhzrivige
Lukasiewicz| Tr(z,y) = max(0,z+y — 1) Ir, (z,y) =min(l,1 —z +y)
Drastic | Tp(z,y) = mi”ﬁf’ i n:)i}ligwgge: ey = {11/ Oitfhz;’iie
Eﬁﬁziﬁ Tom(z,y) = {mingx,y) ifof};;r?év;el It (2z,y) = {max(ll— z,Yy) oitfh:(reriize

Table 1: Some common ¢-norms and their R-implicators

We call a t-norm Archimedean if

(Y(z,y) € (0,1)*)(3n > 2)(T(x,...,z) <y).
n times

Tp, Ty, and Tp are Archimedean, while Th; and T}, s are not.
A decreasing generator is a continuous decreasing function f : [0,1] —

R" such that f(1) = 0. The following proposition characterizes continuous
Archimedean ¢-norms.

Proposition 1. A mapping T : [0,1]? — [0,1] is a continuous, Archimedean t-
norm if and only if there exists a decreasing generator [ such that for
(z,y) € [0,1]%:

T(z,y) = f~ ' (min(f(z) + f(y), F(0))).

An implicator (or fuzzy implication) I : [0,1]2 — [0,1] is a binary operator
which is non-increasing in the first component, non-decreasing in the second one
and for which it holds that I(1,0) = 0 and 1(0,0) = 1(0,1) = I(1,1) = 1.

The residuation property holds for a t-norm 7" and an implicator I if

T(z,y) <zex<I(y,2).
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It is well-known that the residuation property holds if and only if T is left-
continuous and I is defined as the residual implicator (R-implicator) of T, that
is

IT(ZE,y) = sup{)\ € [07 H : T(JE, )‘) < y}

The right hand side of Table 1 shows the residual implicators of the cor-
responding ¢-norms. Note that all of them, except Ir,, satisfy the residuation
property.

If T is a continuous Archimedean ¢t-norm with a decreasing generator f, then
its R-implicator has the following form:

I(z,y) = f~ (max(f(y) — f(2),0)).

A negator (or fuzzy negation) N : [0,1] — [0,1] is a unary non-increasing
operator for which it holds that N(0) = 1 and N(1) = 0. A negator is involutive if
N(N(z)) =z for all x € [0,1]. The standard negator is defined as Ns(z) = 1—=z.

For an implicator I, we define the negator induced by I as N(z) = I(z,0). If
T is a continuous Archimedean ¢-norm, then the induced negator of I has the
form

N(z) = f71(f(0) = f(x)).

Such negator is involutive if and only if f(0) < oco. The standard negator is
obtained by taking the decreasing generator of the Lukasiewicz t-norm f(z) =
1—xz. A t-norm for which the induced negator of its R-implicator is involutive is
called an IMTL ¢-norm. For an implicator I and its induced negator IV it holds
that

I(w,y) < I(N(y), N()), (1)

where the equality holds if N is involutive.

2.2 Fuzzy sets and fuzzy relations

Given a non-empty set U, a fuzzy set A on U is an ordered pair (U, m4), where
my : U — [0,1] is a membership function that indicates how much an element
from U is contained in A. Instead of m(u), the membership degree is often
written as A(u). If the image of m 4 is {0, 1} then we obtain a crisp or classical set.
For a negator N, the fuzzy complement coA is defined as coA(u) = N(A(u)) for
u € U. If Ais crisp then coA reduces to the standard complement. For « € (0, 1],
the a-level set of fuzzy set A is a crisp set defined as A, = {u € U; A(u) > a}.

A fuzzy relation R on U is a fuzzy set on U x U, i.e., a mapping R: U xU —
[0, 1] which indicates how much two elements from U are related. Some relevant
properties of fuzzy relations include:

— R is reflexive if Yu € U, R(u,u) = 1.

— R is symmetric if Yu,v € U, R(u,v) = R(v,u).

— R is T-transitive w.r.t. t-norm T if Yu,v,w € U it holds that
T(R(u,v), R(v,w)) < R(u,w).



Relation-based fuzzy granular approximation 5

A reflexive, symmetric and T-transitive fuzzy relation is called T-equivalence
relation.

An example of a Ty -equivalence relation is the triangular similarity which
will be used later. For a conditional attribute ¢, it is defined as

‘f(an) — f(U7Q>| 0)

range(q)

R, (u,v) = max (1 - 2)

while the overall relation is then R(u,v) = min, R4(u,v). More details on such
similarity relation are provided in [11].

2.3 Fuzzy rough and granular approximations

This subsection is based on [12]. Let R be a T-equivalence relation. The well
known fuzzy lower and upper approximations are defined as:

apr™™ 1 (4) (u) = min(Z(R(u, v), A@));v € U)

3
apry T (A) (u) = max(T(R(u,v), A(v));v € U). 3)

A fuzzy granule is defined as a parametric fuzzy set
Rg(u) = {(v,T(R(u,v), B);v € U}. (4)

A fuzzy set A is granularly representable (GR) if

A= U{RA(u) (u);u €U},

where the union is defined with max operator. It holds that @Ein’l (A)(u) is

the largest GR set contained in A, while aprp*>" (A)(u) is the smallest GR set
containing A.

3 Definition of RFGA

In this section we provide a formal definition of the relation-based fuzzy gran-
ular approximation (RFGA). Note that from now on we assume that R is a
T-equivalence fuzzy relation for some left-continuous t-norm 7. We start with
some basic propositions and definitions.

Definition 1. Two fuzzy sets A and B are called T-disjoint if
T(A(w), B(u)) =0 for every u € U.
For the fuzzy granules we have the following property:

Proposition 2. Two fuzzy granules Rg,(u) and Rg,(v) are T-disjoint if and
only if
T(B1,B2) < N(R(u,v)). (5)
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Proof. The statement that two granules are T-disjoint is equivalent to:
tnas T(T(R(u, w), Br), T(R(w, ), B2) = 0
< mé%{ T(T(R(ua ’LU), R(w7 ’U))a T(ﬁh 62)) =0

=T (maXT(R(u,w),R(w,v)),T(Bl,ﬂ2)> =0

wel
ST(R(u,v),T(B1,82)) =0
&T(B1, B2) < I(R(u,v),0)
<T(B1, B2) < N(R(u,v)).
Using the property given above, the following holds.

Proposition 3. Let T be an IMTL t-norm and let I be its R-implicator. The
granules from %f;in’l(A) and apr maX’T(coA) are disjoint (analogously, the gran-
——max,T

ules from Mgi“’f(coA) and apry " (A) are disjoint too).
Proof. Using Proposition 2, we have to prove that for all u,v € U it holds that
T (apr'y ™ (A4) (u), 8T ™" (coA)(v)) < N(R(u,v)).

Using the object monotonicity property [11] combined with the residuation prin-
ciple we have the following

R(u,v) < 1T (cod) (o), Ara™T (coA)(u)
ST(R(u,v),aprn™ " (coA) (v)) < aprp™ " (coA)(u)

STIET (o A) () < I(R(u,0), T (coA)(u)
AT (o A)(v) < I(N@PEE™T (cod)(u)), N(R(u, )
sapraT (cod)(v) < I(aprmmI(A)(u),N(R(u,v)))

ST (apr'y ™ (4)(u), TR (coA)(v)) < N(R(u,v)).

The third equivalence holds because of Eq. (1), the fourth equivalence holds
because of the duality property of the fuzzy rough approximations [11], while
the other equivalences are a consequence of the residuation property.

Consider now a binary classification problem, i.e. we distinguish two classes
in U: A and coA. Since A and coA are now both crisp sets, we can simplify the
approximations (3) as:

@;i“’I(A)(u) = min(N(R(u,v));v € coA),
a7 (4) () = max(R(u, v); v € A),

Let w be an element for which the minimum of the first expression above is
reached, i.e., apr™™ T(A)(u) = N(R(u,w)). Since it holds that aprs~*" (coA)(w) =
max (R (w, U) ONS coA) R(w,w) = 1, we have that

T(aprmln L(A)(u), aprp™ T(coA)(w)) = N(R(u, w)).
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In this case, the granules are not only disjoint but we may say that they touch
each other. From the perspective of binary classification, having T-disjoint gran-
ules guarantees that no overlapping rules will be generated during the rule in-
duction procedure. Moreover, when additionally granules touch each other, the
probability that the induced rules will cover the space in a proper way increased.
Consider the extreme case where we have a set of granules for which all param-
eters 8 are equal to 0. All these granules are pairwise T-disjoint, but they do
not cover any space. By having two touching granules, we ensure that the space
between them is maximally covered.

Figures 1 and 2 illustrate different positions of granules, in one and two
dimensions respectively.
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Fig. 1: Granules in one dimension

In Figure 1, objects are represented using one conditional attribute. There
are two objects u; and v that belong to different classes; their granules are fuzzy
sets of triangular shape, and we also depict their 0.5-level sets. The granules are
constructed using triangular similarity (2) and the Lukasiewicz t-norm. In the
upper left figure, the granules overlap (i.e., they are not T-disjoint), in the upper
right figure, they are T-disjoint, while in the lower figure they touch each other.
It is easy to verify that in this case, the 0.5-level sets follow the relation between
granules, i.e., if the granules overlap, then the level sets overlap, if the granules
are T-disjoint, then the level sets are disjoint and if the granules touch each
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other, then the level sets also touch each other (the type of touching depends on
the dimension).

1.0 u; granule 1.0 u; granule

u granule V2 granule 1y granule v granule
0.8 \ ~ ov2 0.8 \ —~ ova
0.6 0.6 _—
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attr_2

Fig. 2: Granules in two dimensions

The use of level sets is necessary to visualize the granules in the case of two
dimensions. In Figure 2, we have four objects from two classes, described by
two conditional attributes; u; and us are from one class and v, and vy are from
the other class. Their granules are represented in the figure using 0.5-level sets,
which are of rectangular shape. Again, we can distinguish granules from different
classes that overlap (upper left), are disjoint (upper right) and touch each other
(lower). In this case, the levels sets of touching granules share an edge. We can
notice that touching granules cover more space between objects than disjoint
ones, which highlights the importance of the touching condition.

Bearing in mind the properties of T-disjointness and touching granules, we
want to construct fuzzy sets other than the lower and upper fuzzy rough approxi-
mations that satisfy these properties. We first investigate the binary classification
case. Denote the new fuzzy set to be constructed by A = {(u, A\,);u € U}. Let
u and v be two objects from U. If they are from different classes, we want their
corresponding granules to be T-disjoint, i.e.,

T(Mus A\y) < N(R(u,v)).

Other than this, we do not impose any condition on the granules at this point.
We now consider the equivalence relation S on U defined as S(u,v) = 1 if u
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and v are from the same decision class, and S(u,v) = 0 otherwise. If v and
v are from a different decision class then I(R(u,v),S(u,v)) = N(R(u,v)) while
I(R(u,v), S(u,v)) = 1 otherwise. Hence, the T-disjointness condition (5) for any
two elements from U may be reformulated as

T(Au, \y) < I(R(u,v),S(u,v)). (6)

In the previous step, we have replaced the decision classes from the binary clas-
sification with relation S. Note that relation .S corresponds to the one mentioned
in the Introduction; it is a replacement for the fuzzy set A from the fuzzy rough
approximations (3). It also explains the “relation-based” part in the name of
RFGA.

The next step is to include the property of touching granules in the construc-
tion of A. Concretely, for any object u € U, we want to have an object w € U
whose granule is touched by that of u. It is not always possible to have that
T(Au, Aw) = I(R(u,w), S(u,w)). In general, if the granule of w is touched by
the granule of u, it means that for fixed A, A, should be the largest possible
value for which (6) holds. More formally:

Ay = sup{B3; T (Aw, 8) < I(R(u,w), S(u,w))}
Sy = Iy, I(R(u, w), S(u, w))).

If we apply the residuation property to (6) we have that
YoeU, M, <I(A,I(R(u,v),S(u,v))).
This further implies
I(Ay, I(R(u,w), S(u,w))) = min I (A, [(R(u,v), S(u,v))),

velU
which leads to the conclusion
Ay = I%IZI}I(AU7I(R(U7U)7S(uvv))) (7)

With (7), we have reached the system of equations that defines A. Feasible
solutions of this system of equations yield granules that satisfy the properties
of being T-disjoint and touching each other. This is the formal definition of the
relation-based fuzzy granular approximation (RFGA).

3.1 Extension beyond binary classification

The definition of RFGA was given for the binary classification problem. The final
expression contains relation S that distinguishes between two classes. However,
relation S can be extended to a general equivalence relation in the case of multi-
class classification problem. Moreover, it can be a fuzzy relation too. In the case
of the regression task, a relation S may be a measure of similarity between values
of the decision attribute. In the case of S being a fuzzy relation, the meaning of
granules and the properties we mentioned above will be different. That meaning
is an open question and it will be a part of our future research. From now on,
we use the notation: M (u,v) = I(R(u,v), S(u,v)).
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4 Calculation

We have developed the system of equations (7) that describes RFGA A. The
question is, how to obtain a feasible solution of that system being useful in
practice.

We have seen that (7) has a solution in the case of binary classification. That
solution can be constructed using lower and upper fuzzy rough approximations.
First, we generalize that result.

Proposition 4. If I is an R-implicator of some left-continuous t-norm, then
(7) has a solution.

Proof. We construct a feasible solution. Let uq, ..., u, be an ordering of objects
from U. We apply the following procedure.

1) Ay, is a random value from [0, 1].
2) For 1 <i<mn, Aul = minj<i I()\u]7M(u“uj>)

The touching property is obvious from the construction. We have to prove the
granularity property. Let w; and up be two objects for which k < 4. Since
Ay, = minj<; I(Ay;, M(us,uy)), it holds that Xy, < I(Ay,, M(ui,ug)). From
the residuation property, this is equivalent to T'(Ay,, Aw,, ) < M (ug, ug).

However, the solution from the previous theorem heavily depends on the
ordering of objects which may lead to quite imbalanced solutions. In the im-
balanced solutions, some fuzzy values from A have extremely high values (close
to 1) while others have extremely low values (close to 0). A balanced solution
has yet to be defined formally, but the main intuition may be seen on Figure 3.
On the left image, we have an example of imbalanced solution where the fuzzy
values from A are calculated using lower approximation for u; and us and upper
approximation for v; and ve. The imbalance comes from the fact that the space
between the objects from different classes is covered mostly by the granules of
v1 and vy. On the right image, we have an example of a more balanced solution
where the space in-between the classes is covered roughly equally by the granules
from different classes. The values of A on the right image are calculated using
the method explained below.

1.0 u; granule 1.0 u; granule

upgranle \: granule
0.8 \ T o2
0.6 |

0.4 ‘ o1

uy granule

0.8
0.6

0.4

V2 granule
~

attr_1
attr_1

U
0.2 uz 0.2 vz
0.0 0.0

-0.21 Vi granule -02 V1 granule

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 -0.2 0.0 0.2 0.4
attr_2 attr_2

Fig. 3: Imbalanced vs. balanced granules
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In general, finding a proper solution of (7) is an open question. One option is
to find values that satisfy (6) and that are an optimal solution of some optimiza-
tion problem. The optimality of such solution guarantees that (7) is satisfied.
In such optimization problem, (6) will be the set of constraints while we have
to choose a proper objective function. We develop such optimization problem
for continuous Archimedean t-norms and their R-implicators. For these fuzzy
connectives, (7) becomes

A = min £~ (max(F(M (u,0)) = F(A,),0))
() = max max(F(M(w,0) = F(\,),0)
& () = max(ma f(M(u,0) = F(\),0),

for some decreasing generator f. We introduce new variables Vu € U, o, = f(\y)
and Yu,v € U, A(u,v) = f(M(u,v)). Since f is a positive function, a,, values
are also positive. Because of that, the last equation becomes

o, = max(max(A(u,v) — ay), 0). (8)
vel
So, in the case of continuous Archimedean t-norms, we have to solve (8). The
set of constraints for our optimization problem that reflects (6) is

ay > Au,v) — ay & oy + ay > A(u, v).

The next step is to select the appropriate objective function, the optimization
of which would lead to a solution of (8). To achieve that, for a fixed v € U, at
least one inequality o, + a, > A(u,v) for v € U has to be an equality. This
can be accomplished by minimizing the values of «,, i.e. minimizing their sum
> wecr u- We now get the following optimization problem:

minimize E Oy,

subject to ay + oy > A(u,v), u,v €U
a, >0, ueU.

This optimization problem can be solved efficiently using linear programming
techniques. The efficiency was also a reason why we chose a linear objective
function. While this way of calculation may produce imbalanced solutions, we
are able to avoid it by introducing a constraint that the largest value «,, is
as smallest as possible. This is done by adding one additional variable a and
reformulating the optimization problem as follows:

maximize Zau + Ca
uelU
subject to @y + @, > Au,v), u,v € U, 9)
Qiqy 2 Oa u € U7
a > Q, u e U,



12 M. Palangeti¢ et al.

where C' is a significantly large constant. Obviously, ¢ = minyecy o, in the
optimal solution. If it would hold that a > min,cy v, then taking a — e for some
€ > 0 would give us a smaller value of the objective, contradicting the optimality.
With the new constraint, we avoid imbalanced solutions by eliminating extremely
large values of ay,, which further leads to the elimination of the extremely small
values of «,, due to the other constraints. We still have to prove that the previous
linear program indeed solves (7). Since the T-disjointness property is satisfied by
the constraints, we have to prove the touching property. We have the following
proposition.

Proposition 5. For every a,, u € U that is a solution of (9) it holds that
ay =0 o0r v el a, +a, = A(u,v).

Proof. Let u € U be an object for which the proposition is not satisfied. Then
for every v € U it holds that o, + a, > A(u,v) and «,, > 0. If we take € =
max(max,ey (A(u, v) — ), 0) then replacing o, with a, — e decreases the value
of the objective. That contradicts the assumption of optimality.

If o, + o, = A(u,v), then A\, = I(\y, M (u,v)). If o, = 0, then A, =1 and
u is touching every other granule, i.e., A, = I'(\,, M (u,v)) for all v € U.

As we may notice, the derivation and proofs of correctness do not depend on
the properties of relation S therefore, we may do the calculation for any (crisp
or fuzzy) relation S.

5 Application of RFGA in Machine Learning and for
making predictions

In the previous sections, we have defined the RFGA and proposed a way to
calculate it. The following step is to investigate its use in Data Analysis and
Machine Learning. We mentioned rule induction before, but for now we will
hold off on presenting rule induction algorithms and will come back to it in our
future work. The other possible use of the RFGA that we will briefly discuss is
the Local Model Adjustment.

5.1 Model mimicking

The RFGA alone is not suitable for the general prediction tasks. The RFGA
does not change the labels on the training set. It calculates set A respecting
the initial decision values but it does not change them. Otherwise, relation S
would not be a constant but a variable. Therefore, it is desirable to combine
the RFGA with some Machine Learning model. The idea here is to apply that
ML model on raw data, relabel the data (change the decision values) based on
the predictions of the model and to apply the RFGA on the relabeled data.
After that, the RFGA should replace the original Machine Learning model as
a predictive model. Making predictions with RFGA is done in the following
way. Assume that we have an unseen object u which decision value we want to



Relation-based fuzzy granular approximation 13

predict. Let d(u) denote a possible decision value of object w and let dpreq(u) be
the actual prediction. Let D be a domain of the decision attribute (if we have a
classification then D is a finite set, while if we deal with a regression then D is a
set of real numbers). The prediction will be the value from domain D for which
the RFGA value on v is maximal, i.e.
dprea(u) = arg Jhax i I(Ao, I(R(u,v), S(u,v))),
where Uyyqin is now the set of training objects. The only value that depends on
d(u) in the expression is S(u,v) since it measures the similarity between u and
v on the decision attribute i.e. the one that we have to predict. If D is finite,
making predictions is easy. For each value in D, we calculate the value of the
expression (the RFGA value), and the prediction will be the value from D for
which the value of the expression the largest possible one. If D is the set of real
numbers, the same methodology is infeasible. In that case, the mapping
d(u) — emin I\, I(R(u,v),S(u,v))),
v train
is a mapping from real numbers to real numbers. Looking for the maximum of
such mapping has to include some iterative methods like the gradient descent.
The combination of those iterative methods with the RFGA is still an open
question.

In short, we replaced an original ML model with the RFGA that is able to
make predictions and with that RFGA we mimic the original ML model. One
possible application of the model mimicking is the Local Model Adjustment
(LMA)

5.2 Local Model Adjustment

After a model is mimicked with the RFGA, we have a model that assigns a
fuzzy value to each training object (A, for u € U). This fuzzy value, from the
perspective of making predictions, may be seen as a measure of an influence of
underlying object in making predictions. If the fuzzy value is larger, then the
influence is larger. That may be seen in the following way. Implicator I is a non-
increasing function in its first argument, which implies that if A\, is increased
then I(\,, M(u,v)) is decreased, which makes it closer to the minimum i.e., it
influences more the prediction. Bearing this in mind, RFGA gives us the ability
to inspect the model locally i.e. to examine the influence of a particular training
object in making predictions. For example, we have an RFGA prediction model
which works fine in majority of cases i.e. the predictions made on unseen objects
coincides with reality (e.g. a model trained to accept or reject loan proposals
indeed accepts those with a good credit rating and rejects those with a bad one)
except when the condition attributes take some small set of values where the
performance is poor. Adjusting the RFGA fuzzy values on objects that are close
to that specific small set of values, we are maybe able to improve the performance
locally while not affecting the remaining parts of the model. This can be also
seen as the model debugging.
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6 Some experiments

In this section, we want to show how good is the RFGA in model mimicking.
Since we are still in the development of methods for regression, the following
results are related to the classification problems. For the following experiments,
Lukasiewicz t-norm is used with the corresponding R-implicator. For the fuzzy
relation R, the triangular similarity (2) is used.

In Table 2 we provide the results of the model mimicking approach using the
approach provided in Sections 5 where the RFGA is calculated using the linear
programming method from Section 4. We have collected datasets, which details
are in the table, and applied model mimicking as described in Subsection 4.1.
The 5-fold cross-validation is applied. The first three columns are the details
of the datasets, the fourth one is the ML model applied on data prior to the
RFGA. The following two are the average balanced accuracies [1] of the ML
model on the train and test data, while the last two columns are the average
balanced accuracies of the RFGA model on the train and test data. In the column
"model” the abbreviations have the following meaning. RF(a, b) stands for the
Random Forest [8] classifier with a decision trees where the maximal depth of
every decision tree is b. SVM(c) stands for the Support Vector Machine [2] with
the Gaussian kernel with parameter c. Prior to the model application on data, a
feature selection procedure based on the Random Forests was applied to reduce
the dimensionality.

name n_col|n_att|n_class|model train|test |[RFGA _train| RFGA _test
ionosphere 351 |32 |2 RF(10, 4)|.931 [.905|.931 .86
mammographic|830 |5 |2 RF(15, 4)].833 |.824].833 822
monk-2 432 16 2 RF(15, 4)(.973 |.974/|.973 .973
wisconsin 683 |9 2 RF(15, 4)|.970 |.962|.970 .964

wdbc 569 (30 |2 RF(15,4) [.975 |.941(.975 .938
dermatology (358 (34 |6 RF(15,4) |.958 |.947|.958 .927
wowel 990 (11 |11 SVM(10) |.998 |.983|.998 .925

iris 150 |4 3 SVM(0.5)].96 [.954|.96 .952

Table 2: RFGA performance in model mimicking

The experiments are implemented in programming language PYTHON with
packages NUMPY [7] for the numeric calculations and SCIKIT-LEARN [14] for
Machine Learning. The seed for the random number generator in NUMPY was
set to 123.

We can see that for the majority of datasets, the RFGA gives a similar perfor-
mance on the test sets as the underlying ML model. There are some exceptions
like the ”ionosphere” and ”"wowel” datasets where the drop in performance on
test sets is around 6%. While such drop is not significant, we are still eager to
improve it. We have noticed that the feature selection prior to the modeling was
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necessary since the drop in performance would be larger without it. We may con-
clude that the RFGA may be sensitive if there are many conditional attributes
which do not contribute to the prediction.

7 Conclusion

We have introduced a formal definition of the relation-based fuzzy granular ap-
proximation (RFGA) in order to generalize the granularity properties of the
fuzzy rough sets in the case when fuzzy relations are used on the decision at-
tribute. After we provided the formal definition, we explain how to calculate it
using linear programming methods. Later on, we discussed possible applications
in the Machine Learning problems and we provided some experimental results
to illustrate how good is the RFGA in mimicking a Machine Learning model.
We list some possibilities for the future research.

— We are still missing a proper interpretation of fuzzy set A from the fuzzy
logic perspective. Despite having nice properties regarding granularity and
adjustability, we want to understand better the real meaning of fuzzy set A.

— How to properly apply the approach on the regression problems? While the
calculation of A is not an issue, the real problem is how to make predictions.

— We had mentioned imbalanced solutions but we did not formally define it.
One of the next step will be to derive a definition of a balanced solution such
that we can measure it and control it in the better way.

— RFGA system of equations has many solutions while the linear program we
proposed returns only one. We want to be able to obtain more solutions and
to combine them to get better performance.

— We were briefly discussing about the Local Model Adjustment but we still
have to apply it in practice. The question here is how set up a benchmark
in order to apply the RFGA for the LMA. We have to collect data which we
understand well and on which we are able to detect that some fitted model
performs well in general but performs poorly on a small isolated region.

— The whole motivation for the granularity arises from its potential application
in rule induction. Since now we have defined RFGA, we are able to construct
and test rule induction algorithms on different datasets. This will be the key
part of our future research.
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