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Switzerland

E-mail: sriniker@ethz.ch

Abstract

Ensembler is a Python package that enables method prototyping using 1D and

2D model systems, and allows to deepen the understanding of different molecular

dynamics (MD) methods, starting from basic techniques to enhanced sampling and

free-energy approaches. The ease of installing and using the package increases share-

ability, comparability, and reproducibility of scientific code developments. Here, we

describe the implementation and usage of the package and provide an application ex-

ample for free-energy calculation. The code of Ensembler is freely available on GitHub

https://github.com/rinikerlab/Ensembler.

Introduction

New simulation methods are routinely tested on simple model systems. They provide valu-

able insights into the theory, conceptual advantages and limitations of the methods. While

the results of new approaches are published, the implementation details may not always be
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available or difficult to use with different computer infrastructures. As a result, sharing, re-

producing, understanding, and comparing simulation methodologies is often cumbersome.1

To address this issue, we have developed the Ensembler package, an easy-to-use, yet powerful

platform in Python32 that enables fast prototyping of new methods and comparison against

existing techniques using 1D or 2D systems. In contrast, the C/C++3 code of traditional

high-performance molecular dynamics (MD) packages is more efficient but also much more

complex.

Ensembler is designed following the recommendations of Stodden et al.4 for the enhanced

reproducibility of computational methods, which includes making code publicly accessible,

providing documentation, and using open licensing.4 Furthermore, Ensembler uses state-of-

the-art software engineering tools (i.e. git,5 MolSSI cookie-cutter,6 and binder7) to fulfill

these recommendations and enable features like continuous integration and the transparent

versioning of the code.

The methods currently available in Ensembler are:

• Model systems : Harmonic oscillators as well as dihedral-angle, double-well, and Lennard-

Jones potential-energy functions8

• Sampling algorithms : Conjugated gradient9 for energy minimization, Metropolis Monte

Carlo (MC),10 leap-frog integration11 for MD, and Langevin integration12 for stochas-

tic dynamics (SD)

• Enhanced sampling techniques : Umbrella sampling,13 simulated tempering/temperature

replica-exchange simulations,14 local elevation/metadynamics,15,16

• Free-energy methods : Free-energy perturbation (FEP),17 Bennett’s acceptance ratio

(BAR),18 thermodynamic integration (TI),19 enveloping distribution sampling (EDS),20–22

λ-EDS,23 replica-exchange EDS (RE-EDS),24 and conveyor-belt TI25

Simple model systems can also be used for teaching MD concepts to students, as they

allow to intuitively understand fundamental concepts.26 Ensembler is well suited for didactic
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purposes because it is not only easy to use, but supports also a range of visualizations, i.e.

interactive widgets, animations, and plots, which can be embedded in Jupyter notebooks.27

Example Jupyter notebooks27 are provided in the Ensembler GitHub repository.

Implementation

System

+ potential: _potentialCls

+ sampler: _samplerCls

+ condition: _conditionCls

+ simulation(steps: int)

Condition

+ apply(system: System)

Ensemble

+ replicas: Dict[key:System]

+ simulation(steps: int)

1..*

Potential

+ V: sympy.Function

+ dVdpos: sympy.Function

+ ene(position: np.Array)

+ dVdpos(position: np.Array)

Sampler

+ step(system: System )

Analysis Visualization

Figure 1: Unified modeling language (UML) class diagram of the five Ensembler base classes.
Potential class (red) defines the potential-energy functions to be explored and generates the
required derivatives automatically. The implementation of this class is based on the sym-
bolic mathematical language of SymPy.28 Sampler classes (cyan) are used for the sampling of
potential-energy functions. Condition classes (purple) can have different functions, e.g. ap-
plication of periodic boundary conditions,29,30 thermostats, or restraints. System classes (or-
ange) serve as the scaffold for the potential, sampler, and condition classes. In this structure,
all components, parameters, and the results of a simulation are stored. Ensemble class (blue)
is required for advanced simulation techniques, e.g. using multiple walkers that explore the
energy landscapes of the same or different systems as in replica-exchange approaches.14,31,32

Analysis package includes free-energy estimators such as the Zwanzig equation17 or BAR.18

The visualization functions in the visualization package enable an intuitive way of inspecting
the simulation results.

Ensembler is implemented in Python32 and available on GitHub33 (rinikerlab/Ensembler).

The repository is based on the template of the MolSSI cookie-cutter6 and comprises a code

folder, an example folder for tutorials, example models contained in the provided Jupyter
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notebooks,27 an automatic pytest suite,34 and the automatically generated sphinx35 docu-

mentation. The code is continuously integrated via GitHub Actions,36 providing information

about code quality, test correctness, test coverage, and generation of an up-to-date documen-

tation. Ensembler uses only open-source packages like the SciPy library28,37–40 and Jupyter

notebooks.27 In the following, a user and a developer perspective are provided for the code

structure.

User level: A simulation model in Ensembler consists of a potential class, a sampler

class, and a system class wrapping the potential and the sampler (Figure 1), and provides

control over the simulation approach. Additionally, multiple condition classes can be added

that directly influence the simulation (e.g. periodic boundary condition29,30 or thermostat-

ting41). After the construction of the system, the simulation can be started directly with

the simulate function. The resulting trajectory is in the form of a Pandas data frame.39 The

trajectory is thus easily compatible with other packages like NumPy38 or scikit-learn42 and

can be stored in different formats, e.g. as .csv or .hf5 file. The system itself can be stored di-

rectly via the save function using serialization of the object with the Python package pickle.

In most cases, only a few additional lines are needed to go from simple simulation technique

to more advanced one, as shown below.

Developer level: The code of Ensembler is built on five interface-like base classes that

allow extensive use of the inheritance concept and polymorphism3 throughout the package.

These fundamental classes are potential, sampler, condition, system, and ensemble (Figure

1), which can be grouped into three layers. Potential, sampler, and condition classes form

the primary layer, providing different techniques to be used as components in a simulation.

Potential classes provide the potential-energy functions in a symbolic form using SymPy,28

enabling automatic on-the-fly derivation and simplification of the potential-energy function.

Sampler classes are used to explore the potential-energy function (e.g. conjugate gradient,9

Metropolis MC,10 or leap-frog11 integration). A new method can easily be implemented

by inheriting from the sampler class and overwriting a single function called step. Finally,
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condition classes provide additional functionalities such as thermostatting41 and periodic

boundary conditions29,30). New techniques can be implemented by inheriting the base con-

dition class and overwriting the function apply. In the second layer, the first-layer compo-

nents are wrapped into one system class that executes the simulation(s) and manages the

input and output. An optional higher-order layer is available in form of the ensemble class,

which allows the user to perform simulations with replica exchange.14,24,31,32 If additional

parameters are needed in a newly designed class, the constructor of the new child class can

be adapted but must call the parent constructor.

Applications and Examples

The code for the examples shown below can be found in the GitHub repository

https://github.com/rinikerlab/Ensembler/examples.

Code Example

In typical applications of Ensembler, the user selects a potential-energy function from the

available ones, e.g. a potential-energy function with four wells, and initializes it with chosen

parameters. To sample this system with stochastic dynamics (SD),12 the sampling method

is instantiated and passed to the system class. The simulation is performed by calling the

function simulate with the desired number of steps passed as parameter. Subsequently,

the results can be analysed using the built-in visualization functions that are compatible

with the simulation class of Ensembler. As can be seen in Figure 2a, the energy barriers

between the different minima were not crossed during the chosen simulation length. To

overcome the sampling issue, enhanced sampling techniques can be employed,26 e.g. local

elevation15/metadynamics16 (Figure 2b). Thereby, a time-dependent biasing potential is

generated, i.e. a Gaussian biasing potential is added to positions that were already visited

such that they become energetically less favorable. This decreases the likelihood of visiting
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(a) Standard Langevin Simulation
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(b) Langevin Simulation with Local Elevation/Metadynamics
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(c) Example Source Code

Figure 2: Langevin simulation of a four-well potential energy-function: Results when
sampling (1000 steps) with the standard SD integrator (a) or with local eleva-
tion15/metadynamics16 (b). The left panel shows the potential-energy surface (black), the
sampled range (orange), as well as the start point (blue) and end point (red). The middle
panel shows the sampled space as a violin/box plot with the start point (blue) and end point
(red). The right panel shows the shift ∆rt = rt+1 - rt as a function of simulation time t. (c)
Source code to perform the simulations. First, the four-well potential class and the Langevin
sampler class are initiated. Next, they are wrapped by a system class, which executes the
simulation. Note that only one line has to be added to use the enhanced sampling technique
(marked in bold). Visualizations are generated with built-in functions.
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known positions again. The enhanced sampling technique can be applied by adding a single

line of code compared to the previous simulation (Figure 2c).

Application Example: Free-Energy Calculation

Free-energy calculation is an important field in computational chemistry, e.g. to estimate

protein-ligand binding or polymer formation.22,43–45 The calculation of alchemical free-energy

differences, ∆F , with Ensembler is exemplified in the tutorial Jupyter notebook on GitHub

with a mutation of the equilibrium position of a one-dimensional harmonic oscillator. This

mutation corresponds to a change of a covalent bond type at the terminus of a linear molecule.

This system is very simple such that the result can be calculated analytically as reference

(Table 1). In the following, the sampling of the two end states of the model system and the

results with different methods are shortly discussed.

A simple approach is to simulate one end state and estimate ∆F with the Zwanzig

equation.17 The quality of the result depends on the phase-space overlap between the two

end states.46 Alternatively, one can simulate both end states separately and use BAR,18

yielding more converged results.46 If the phase-space overlap between the two end states is

not sufficient, more advanced sampling methods are necessary to obtain converged results.

One possibility is to generate intermediate states as a linear combination of the two end

states A and B with the coupling parameter λ, i.e. H(λ) = (1 − λ)HA + λHB, such that

H(λ = 0) = HA and H(λ = 1) = HB. The intermediate states are positioned at discrete

λ-points between 0 and 1.47,48 ∆F can be estimated using FEP17 or BAR18 as the path over

all intermediates, or with TI19 as the integral along λ.

Another elegant free-energy method is EDS,20,21 where a reference-state Hamiltonian Hr

is sampled, which guarantees phase-space overlap of the reference state with all end states,

HR = − 1

βs
ln(e(−βs(HA−ER

A)) + e(−βs(HB−ER
B)), (1)
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where 1/β = kBT , kB being the Boltzmann constant and T the absolute temperature. HR

can be optimized for sampling using two kinds of parameters: The smoothing parameter

s lowers the energy barriers between the end states, whereas the energy offsets ER ensure

equal weighting of all end states. In our example, both end states are sampled sufficiently

during the EDS simulation with s = 0.3 and the energy offsets ER = [0, 0]. Subsequently,

the Zwanzig equation17 is used to obtain ∆F between the end states.20,21 Recently, a hybrid

form of EDS and λ-coupling was introduced, termed λ-EDS.23 At λ = 0 or 1, HR is equal

to the Hamiltonians of the respective end states, while conventional EDS is recovered with

λ=0.5 (except for an offset).23 λ-EDS allows for a λ-weighting of the exponential terms in

the EDS equation.

All free-energy calculations discussed above were performed with Ensembler for a total

of 10’000 Monte Carlo (MC)10 steps, and each simulation was repeated five times. The

simulation results listed in Table 1 show that larger errors are obtained without intermediate

states due to insufficient phase-space overlap. Using ten λintermediate states together with

TI gave the best result, however, this approach is also the computationally most expensive

one (i.e. ten separate simulations). s EDS and λ-EDS, on the other hand, yielded also

good results, while requiring only one simulation (given a set of suitable reference-state

parameters). We refer to the Jupyter notebook in the Ensembler GitHub repository for

the source code, more detailed information on these methods as well as additional methods

like conveyor-belt TI25 and RE-EDS,24,49 which combine enhanced sampling and free-energy

methods.

Conclusion

In this work, we introduced Ensembler as a tool to support teaching of MD simulations and

free-energy techniques, and to enable rapid prototyping of new methods using 1D or 2D

model systems. The package provides a large set of implemented methods for comparison.
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Table 1: Estimated ∆F for the model system. Sampling was performed with Monte Carlo
(MC)10 for 10’000 steps in each simulation. Each calculation was replicated five times and
the averaged result is shown together with the standard deviation. The duration of the
computations (without visualizations) was estimated directly in the Jupyter notebook and
is given relative to the FEP simulation (absolute duration = 2.0 seconds). The performance
was tested on a Lenovo Thinkpad T420s with an Intel i5-2520 (2.5 GHz) CPU and 8 GB
RAM. The RAM usage for the full Jupyter notebook execution was in total 578 MB.

Method Average ∆F [kBT ] Deviation from Speed (rel. to FEP)
analytical result [kBT ] Simulation Analysis

analytical 1.275 - - -
FEP17 6.579 ± 1.009 5.305 1.0 0.1
BAR18 2.437 ± 0.500 2.437 3.0 2.1
FEP 10-λ-points 1.406 ± 0.431 0.131 14.0 0.7
TI19 10-λ-points 1.242 ± 0.015 0.033 14.0 0.04
EDS20–22 0.958 ± 0.110 0.317 2.4 0.2
λ-EDS23 λ = 0.5 0.987 ± 0.111 0.287 3.1 0.2

The open-source basis, the lean structure, and the simplicity of Python3 form a convenient

and efficient framework. The code examples and application example for free-energy calcula-

tion highlight the ease of using Ensembler. With this, Ensembler can contribute to improving

the shareability, comparability, and reproducibility for method development in our field.
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