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Articular cartilage is a highly specialised connective 8sie of diarthrodial joints which
provides a smooth, lubricated surface for joint articulatin and plays a crucial role in the
transmission of loads.In vivocartilage is subjected to mechanical stimuli that are essdial

for cartilage development and the maintenance of a chondrogtic phenotype. Cartilage
damage caused by traumatic injuries, ageing, or degradatévzdiseases leads to impaired
loading resistance and progressive degeneration of both tharticular cartilage and the
underlying subchondral bone. Since the tissue has limitededf-repairing capacity due
its avascular nature, restoration of its mechanical propées is still a major challenge.
Tissue engineering techniques have the potential to heal tsochondral defects using
a combination of stem cells, growth factors, and biomateries that could produce a

biomechanically functional tissue, representative of nate hyaline cartilage. However,
current clinical approaches fail to repair full-thicknesdefects that include the underlying
subchondral bone. Moreover, when testedn vivo, current tissue-engineered grafts show
limited capacity to regenerate the damaged tissue due to popintegration with host
cartilage and the failure to retain structural integrity &r insertion, resulting in reduced
mechanical function. The aim of this review is to examine theptimal characteristics of
osteochondral scaffolds. Additionally, an overview on théatest biomaterials potentially
able to replicate the natural mechanical environment of dadular cartilage and their role
in maintaining mechanical cues to drive chondrogenesis Wibe detailed, as well as the
overall mechanical performance of grafts engineered usindifferent technologies.

Keywords: osteochondral defects, tissue engineering, bioma terials, articular cartilage, mechanobiology, stem
cells, mechanical testing

OSTEOCHONDRAL DEFECTS

Osteochondral defects are areas of damage that involve thetharticular cartilage and the
underlying subchondral bone and can be caused by ageinggs#isgsuch as osteoarthritis and
osteochondritis dissecans) or trauma. Osteoarthritis JO#\a degenerative joint disease that
a ects over 250 million people worldwideH(nter et al., 201 Prevalence of the disease is
increasing due to an ageing population and, in the US alone, 7llomibeople over the age of
65 are at risk of developing OA by the year 2080i{tia et al., 20)30A, originally thought to
be a disease primarily a ecting articular cartilage, is nowsidared to a ect all tissues in the
diarthrodial joint, including subchondral bone, ligamentmenisci, joint capsule, and synovial
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membrane {orres et al., 2006; Hunter et al., 2009; Lo et al., 200%¢ole in the initiation and progression of osteochondral desec
Krasnokutsky et al., 20).JAs well as changes to the chondrocytesand associated conditions, a deeper understanding of agetil
and the cartilage matrix, osteoarthritis is characteridegl bone mechanics is essential for developing better diagnaslis a
structural changes such as joint space narrowing, osteophyteeatment methods.
formation and subchondral sclerosis that cause pain andtjoin This review will focus on the biomaterials able to replicate
immobilisation. Subtle changes to subchondral bone can bie natural mechanical environment of articular cartilaged
observed early, though the precise chronology of how thesbe e ect of mechanical cues resulting from the use of
changes aect the OA process remains to be uncovered arttiese scaolds in directing and enhancing chondrogenesis.
the role of the subchondral bone in initiating and advancinglmportantly, osteochondral implants must be able to withgtan
disease progression is now receiving greater attention (the mechanical environmentin the joint, which is responsifar
et al., 2018 The crosstalk between subchondral bone andhese mechanical cues and that they are tested during thigali
articular cartilage is complex and can induce biomechanicalevelopment with this environment in mind.
and biochemical changes in the overlying cartilaglel €t al.,
2020. The more obvious e ect of changes to subchondral bone
can be seen in conditions such as osteonecrosis, ostemsisler T HE MECHANICAL ENVIRONMENT OF
and Osteochondritis Dissecans (OCD). In osteonecrosis, alNATURAL CARTILAGE
osteosclerosis imbalances in the bone remodelling proceses
changes in bone turnover, mineralization, and subchondraRrticular cartilage can be subdivided into four distinct zm the
bone volume, reducing overall bone density. This alters theuper cial zone, the middle zone, the deep zone and the cadti
biomechanical environment of the osteochondral unitandses zone Figure 1A). Each zone exhibits a particular arrangement
strain changes in the overlying cartilage during loadingttinay = and organisation of chondrocytes and ECM proteins, mainly
lead to pathological changes. OCD is a pathologic conditiomollagen type Il (Col IlI) and proteoglycans, determining the
that a ects subchondral bone formation resulting in subcldoal  tensile strength, exibility and load-bearing ability oailage
bone fragments that disrupt the overlying articular surface(Baumann et al., 20)9Since articular cartilage is a non-uniform
The exact causes of OCD are still unknown, yet repetitivetructure, it presents challenges when trying to determinairs
microtrauma, abnormal endochondral ossi cation, and géme patterns and relative sti ness. This is due to variation in the
factors are thoughtto play arole in its developmegtimm etal., orientation of collagen bres, proteoglycan distributionnga
2019. Primarily, repetitive overloading or trauma is thought molecular/ion content throughout the depth of native caatke,
to disrupt the blood supply resulting in osteonecrosis. This inwhich is a function of the anatomical location within the foj
turn, may induce microcracks in the subchondral bone plateand the type of loading applied.
and underlying bone, resulting in fragmentation of bone and The super cial zone represents the 10-20% of articular
cartilage, causing in ammation, and joint pain. Another exple  cartilage and contains attened chondrocytes. In the supél
is where cartilage loss adjacent to subchondral bone marromone, thin collagen bres (mainly collagen type Il and IX) are
lesions is common and is probably associated with changéin ttightly packed and aligned parallel to the articular surface t
modulation of this crosstalkH{unter et al., 2000 protect deeper layers from shear streSsthia Fox et al., 2009;
Articular cartilage is a viscoelastic tissue that provides &orrea and Lietman, 20).7Moreover, the parallel arrangement
smooth and lubricated surface for joint movement, whichoals of collagen provides tensile sti ness and strength providihg t
plays a key role in the absorption and dissipation of loads to théssue with high mechanical stability. This thin layer aatsa
underlying subchondral bone. Healthy articular cartilagean barrier regulating not only the di usion transport of nutrida
avascular, a-neural and a-lymphatic tissue, composed mainly and oxygen to the underlying cartilage structures but alse th
a proteoglycan rich extracellular matrix (ECM), type Il cobag ingress and egress of large biomoleculesd(y et al., 2008
and chondrocytes. Mechanical properties of articular cagéla Lubricin, which is responsible for reducing surface frictjo
largely depend on ECM composition and organisation, howevers produced by chondrocytes only in this zon€dqfrea and
mechanical stimulation is essential for cartilage develepim Lietman, 201y. The middle zone represents 40-60% of the
as well as maintaining cartilage homeostasisr(chez-Adams articular cartilage and is characterised by sparsely digteith
et al.,, 2014; Prein et al., 2016\evertheless, it has been rounded chondrocytes and a proteoglycan rich ECM (consistin
demonstrated that excessive loading, either as single avatg  mainly of aggrecan){isher et al., 20)9Within the middle zone,
or repetitive stresses, induces the expression of degradatigollagen type Il has thicker bres and is obliquely distributed
enzymes such as metallopeptidase with a thrombospondin typeThe deep zone is characterised by the highest proteoglycan
motif 5 (ADAMTS5) and matrix metalloproteinase-13 (MMP13), content and the lowest water concentration. Collagen baes
a ecting matrix composition and hence playing a pivotal rolethick and run perpendicular to the articular surfacBgumann
in pathogenesisNakagawa et al., 2012; Buckwalter et al., 201t al., 201 Chondrocytes are parallel to the collagen bres
Houard et al., 2013; Chang et al., 2D1Both OA (particularly and arranged in columns. Due to the high content of negayivel
post-traumatic osteoarthritis: PTOA) and OCD are assodate charged proteoglycans, the deep zone is responsible for pngvid
with high-impact sports and abnormal loading/ joint injury, the greatest compressive resistance to articular cartilaged(t
and therefore tend to a ect highly stressed joints such as thend Blain, 2018 The deep zone is reported to have the highest
knee and elbow. Since mechanical loading plays such a vitsti ness, along with the super cial zone, corresponding to
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FIGURE 1 | Zonal architecture of articular cartilage and viscoelastbehaviour following compression.(A) Articular cartilage can be subdivided into 4 distinct zones
The super cial zone, the middle zone, the deep zone and the zom of calci ed cartilage. Collagen bre orientation in the extcellular matrix (ECM) and distribution of
chondrocytes varies within each zone(B) The ECM consists of a liquid phase (the interstitial uid) and solid phase composed of a type Il collagen network
interwoven with proteoglycans (predominantly aggrecan) he negative charge on the keratin sulphate and chondroitisulphate glycosaminoglycans (GAGSs) attracts
positive ions that creates an osmotic pressure and retains ater in the collagen network. When a compressive load is apjgld uid ows out of the ECM in a
time-dependent manner and similarly, when the load is remad, uid is drawn back into the matrix restoring its original kape.

locations where the collagen bre density is greatest, wher plate starts at the tidemark separating calci ed and non-cadc

the middle zone is characteristically soft&rchinagl et al., 1997; cartilage. It is a supportive structure that consists of cafti e
Bellucci and Seedhom, 200XArticular cartilage sti ness has cartilage and underlying subchondral bone that allows thiéds
been reported to range from 0.1 to 6.2 MPa, with variabilitiesup of hydrostatic pressureHvang et al., 2008 Damage to
among studies that depend on sample type and testing settirtge integrity of the subchondral bone a ects the generatidn o
(Boschetti et al., 2004; Robinson et al., 2016; Patel et 4B, 20hydrostatic pressures and the repair of osteochondral defects
Zheng et al., 2019; Guimaraes et al., J0¥thin the middle  often fails to recognise the importance of the subchondral
and the deep zone, each chondrocyte is surrounded by a Zene plate. In its natural environment, cartilage is subjext
4mm thick collagen type VI rich pericellular matrix (PCM), a variety of dierent types of mechanical forces, including
which forms the chondron. The PCM seems to play a functionatension, compression, shear stress, and torsion. Physialog
role in initiating signal transduction within the cartil@gduring load on articular cartilage ranges from 5 to 8 MPa during
load-bearing (eddy et al., 2008 A study by McLeod et al. walking and can reach up to 18 MPa when undergoing other
(2013)showed depth-dependent mechanical inhomogeneity oéctivities such as rising from a chaiClements et al., 2001

the elastic moduli of the ECM throughout the cartilage zgnesDue to the impermeable nature of the calci ed cartilage and th
yet zonal uniformity of the PCM elastic moduli in comparison. low hydraulic permeability of the subchondral bone plate, the
Cartilage sti ness has also shown to decrease with incrgasimesistance to uid ow within the cartilage results in the bdrup
severity of OA Kleemann et al., 2005 The calcied zone of hydrostatic pressuresivang et al., 2008 Articular cartilage

is characterised by hypertrophic chondrocytes and has a high resistant to these loads due, in part, to its viscoelasti@biour
content of collagen type X (Col X). It anchors the collagerresulting from the inter-relationship between the proteagin
brils from the deep zone to the subchondral bone providing aggregates of the ECM (often referred to as the solid phase),
optimal integration and as it is infrequently penetrated bgdd  and the interstitial uid or liquid phase. The negatively cgad
vessels it prevents vascularization of the articular @ayél The carboxyl and sulphate groups of the proteoglycans attracts
zone of calci ed cartilage also acts as a transitional zamé a positive ions and creates an osmotic pressure, restrained by
is important for reducing stress concentrations at the dage- the tensile properties of the type Il collagen network, which
bone interface Boushell et al., 20).7 The subchondral bone provides the cartilage with its compressive sti neggeshian
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etal., 200 When a constant force is applied, the interstitial uid area might signi cantly a ect the quality of the synthesiseG
pressure increases, forcing uid out of the porous ECM in a time (Bevill et al., 2009; Briant et al., 2015
dependent manner, creating frictional drag until equilibmu Although there is a genetic predisposition to the development
is reached. This frictional drag is inversely proportionalite  of OA, loading plays a contributory role. Physiological lwed
permeability Mak, 1989 and gives the cartilage its viscoelasticis important for maintaining joint homeostasisFigure 2),
creep and stress-relaxation characteristics during cosgioa  whilst abnormal loading caused by obesity, immobilisatjomt
(Mow et al., 1980; Halonen et al., 201¥hen strain is kept instability, overuse, or trauma can cause cartilage degiaml
constant, stress on the tissue increases until it reachesala peand are the main risk factors linked to the development of
which, due to redistribution of uid within the cartilageglaxes OA (Arden and Nevitt, 2006 Overloading of the joint, either
over time until equilibrium is reached. Similarly, when theas a single impact load or cyclic loading causes increased
load is removed, uid ows back into the matrix allowing the catabolism, chondrocyte necrosis and apoptosis and damage to
cartilage to return to its original state, hence giving tiestie its  the collagen network in a dose-dependent manrienén et al.,
mechanical properties and ability to withstand compressiaeléo  2001; Clements et al., 2004; Hosseini et al., R(M@st studies
(Figure 1B). Structural and biochemical variations relating toreport a critical threshold with chondrocyte apoptosis, GAG
degenerative changes following injury or pathological dbods  loss and increased production of in ammatory cytokines adov
such as OA, alters the uid ow dynamics throughout the tigsu this threshold load Clements et al., 2001; D'Lima et al., 201
and can further a ect load-bearing and compressive capability Kerin et al. (1998)ndicated that loads above 10 MPa can result
Cartilage was originally described as a biphasic material by apoptosis. In comparison, using bovine explartsening
Mow et al. (1980)composed of the liquid and solid phases ast al. (2000)showed that chondrocyte apoptosis can occur at
previously described. However, the model was adapted into 45 MPa as an earlier response to injury which is later followed
triphasic material by_ai et al. (1991}o include the mechano- by degradation of the collagen network at 7-12 MPaening
electrochemical behaviour of monovalent ions and later thest al., 200p On the other hand reduced mobility, which is
model accounted for the polyvalent ions in the interstitialid  associated with low loading conditions results in upregolat
as forces acting as part of a separate liquid or ion ph&se ( of MMPS, softening and a reduction in proteoglycan content
et al., 1998 Although the triphasic model is a more recent and cartilage thinning Jurvelin et al., 1986; Vanwanseele et al.,
theory that encompasses a structurally more accurate gitigeri 2002; Leong et al., 20)LImpaired joint loading signi cantly
of the composition of articular cartilage, the biphasic modela ects articular cartilage ECM composition and as consequence
highlights the importance of osmotic and hydrostatic pregsur cartilage becomes thinner with reduced ability to absorb
within the cartilage and how the tissue resists both compvess loads and shocks resulting in excessive load transmission t
and tensile forcesAteshian et al., 2004 It should be noted the underlying subchondral bone. Abnormal mechanical load
that any successful osteochondral implant has to accomneodatan induce bone marrow oedema and subchondral sclerosis
these forces. (Beckwée et al., 2015; Eriksen, 2015; Donell, 2019
Articular cartilage is not only sensitive to the type of force
applied and the magnitude of load but also to the duration,
. . . direction, and frequency of loadingtomeili et al., 201p Parraga
The Effect of Physiological Loading, Quiroga et al. (20178howed that higher strain rates cause more
Overuse, and Disuse on Articular Cartilage damage to the collagen network, while lower strain rates &€aus
The high and complex range of physiological loads appliedhore damage to the non- brillar matrix components and that
to cartilage are critical for maintaining healthy joint fation.  overall cartilage damage is both load and rate dependent. A
Mechanical loading, in the form of moderate exercise, is onstudy bySadeghi et al. (2015howed increases in crack length
of the most important factors for maintaining a homeostaticand surface damage with increasing loading frequency above
environment and balancing the anabolic and catabolic respon normal level of 1 Hz. There may also be variation in the materia
of chondrocytes for ECM synthesis and degradation. Numsrouproperties of the articular cartilage, in that weight-beagrareas
studies have shown reduction in pro-in ammatory cytokinéls-(  may be more functionally prepared for loading compared to non-
1B, IL-6 TNFa), in ammatory mediators (COX-2, PGEand weight-bearing areas, and that non-weight-bearing areay m
NO) (Chowdhury et al., 2001; Fu et al., 20&nhd reduction in  be more susceptible to damage and brillation when subject to
matrix-degrading enzymes (MMPs and ADAMTSS) in response¢he same tribological stresseégddore and Burris, 201% These
to dynamic compressionSun et al., 2092In vitro studies also factors highlight variability and therefore di culty for atandard
con rm anti-in ammatory e ects of loading, with an increase osteochondral graft material to be able to replicate nataréilage
in both gene expression, synthesis of type Il collagen, aggrecin di erent regions and locations within the same joint, let
production (Buschmann et al., 1999; Waldman et al., 2006alone variability between di erent joints and that under drent
Iseki et al., 2009 and stimulation of chondrocyte growth, loading conditions.
di erentiation, and proliferation. It is also important to netthat
chondrocytes from di erent regions of cartilage constiely Variations in Strain and Stiffness
express mRNA for cartilage structural proteins in dierent In native osteochondral tissue under normal loading coiudis,
baseline levels and respond di erently to mechanical loadingcartilage can experience strains of 2-9% and can reach up
suggesting that isolating chondrocytes from a non-loadripga to 20-30% during vigorous activity, whereas the underlying
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FIGURE 2 | Schematic representation of the effect of physiological, werloading, and reduced loading on articular cartilage. Bfsiological loading is essential for
maintaining cartilage homeostasis regulating ECM synthésand chondrocytes proliferation. Overloading, caused byrauma, obesity and joint instability, reduces
collagen, and aggrecan content inducing chondrocytes apoposis. Reduced loading increase matrix degradation leadgto cartilage thinning and softening.

bone experiences strains efl% Sanchez-Adams et al., 2014;the maturation of the tissue engineered construct. However,
Steinmetz et al., 20).5In addition, calci ed cartilage is 100 mechanical stimulation has successfully proven to enhahee t
times sti er than hyaline cartilage and 10 times less sti tha properties of tissue engineered osteochondral grafts whidh wi
underlying subchondral bone and this transitional zone play be discussed in more detail in this review. It is important to
crucial role in the transmission of loads between theseoregyi note thatin vivo the complex interplay of other supportive
(Mente and Lewis, 1994; Madi et al., 2D20 tissues such as the menisci, tendons and ligameitsoQen
Strain distribution patterns vary depending on the type ofet al., 201% which may also be compromised by trauma
loading, with more uniform strains during dynamic loadiniggn  and OA.
static loading conditions and tension-compression non-éirigy
also causes variations in tensile stinessu@ng et al., 2005, CURRENT CLINICAL THERAPIES
Komelli et al., 201p Since cartilage is anisotropic material, the
tensile moduli varies depending on the direction of testimgla Due to its avascular nature, the lack of abundant nutriemtd a
shows increased sti ness parallel to the local split-line patte low cell density, cartilage has limited regenerative capgtb
which also varies throughout the cartilage deptie(npson etal., Monaco et al., 2018; Medvedeva et al., 30The treatment
1973. Variations have also been reported between anatomicahodality for repairing osteochondral injuries is dependemt o
locations within the joint, and di erences in tensile modulbave  the depth and area of the defect. Several clinical treatmests a
been observed between high and low weight-bearing regionavailable to treat osteochondral defects such as micriifrac
For example\Wong and Sah (201Ghowed regional variations (marrow stimulation), and the use of osteochondral autograft
in tibial and femoral cartilage, with more axial strain prese and allografts [lukavarapu and Dorcemus, 2013; Freitag et al.,
in tibial cartilage during joint articulation. Several slies have 2017; Mathis et al., 20).8Microfracture is a surgical technique
also reported that in tibial and femoral knee condyle, highesed to treat chondral defects, it involves perforating the
strains are present on the medial side compared to the laterglbchondral bone with tiny holes allowing bone marrow
compartment which provides an explanation for di erences inmesenchymal stem cells and biomolecules to in ltrate theedef
mechanical stiness and is related to contact biomechanics gErggelet and Vavken, 20jL6However, this often promotes
these sitesl(u et al., 2010; Cotofana et al., 2011; Coleman et athe formation of mechanically inferior brocartilage witlittle
2013; Halonen et al., 20114 evidence of type Il collagen depositidR€dondo et al., 20).8or
Asymmetric strain patterns of natural cartilage createthe treatment of larger osteochondral defects, where subdital
numerous challenges for tissue engineers when analysibgne damage is seen tissue grafts of both cartilage and bone
strain distribution throughout the cartilage and for replitay  may be used. Osteochondral autograft transfer and mosaitypla
this mechanical environmentn vitro in order to enhance have been used to treat full-thickness defects up to 4.cm
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During this procedure, chondral defects are replaced with plugd ISSUE ENGINEERING APPROACHES
of the patient's own healthy articular cartilage and bone @
harvested from non-weight-bearing areas and transferogaté- ~ The most common tissue engineering approach involves the
drilled holes at the defect sit®pwland et al., 20)9The outcome  Use of a biocompatible sca old, cells (e.g., stem cells) and/or
depends on age, sex and size of the lesion. In the case of lajggombination of bioactive molecules such as growth factors
lesions, up to 8-9 ck multiple plugs can be used but with and cytokines. Autologous chondrocyte implantation (ACS) i
a risk of signi cant donor site morbidity Richter et al., 2016; @ procedure for the regeneration of cartilage introduced by
Kato et al., 2018 Unlike autograft, allografts use full-thickness Brittberg et al. (1994) where autologous chondrocytes are
cartilage that can be harvested from locations that cotealdth ~ isolated from a non-load-bearing site of the cartilage, exiegh
the defects to be lled allowing more precise matching of tzes in vitro for 4-6 weeks and subsequently injected under a
and contour of the articular surface\§ésenmacher et al., 2016; periosteal ap that is sutured onto the cartilage positioneeov
Haber et al., 2079 Even though allografts can be performed aghe defect Konst et al., 2012 Although this technique has
a sing|e Staged procedure and have shown good survival rd@@en used for two decades with successful Surgical outgcomes
in short to medium term (5-10 years), long term follow-up hasthe main issue is that two operations are required, one to
shown considerable reoperation (30.2%) and high failuresrateobtain the cells, using arthroscopy and the other usually an
(18.2%) over timeRamiliari et al., 2018 Moreover, allografts are Open procedure to implant the cell$/(nas et al., 2014; Mistry
limited by the lack of tissue supply, low cell viability due tafty et al., 2017; Zikria et al., 20)l9Matrix-induced autologous
storage and possible immunorejectiorefg et al., 2017; Mathis chondrocytes implantation (MACI) was originally developed to
etal., 201B improve the biological performance of autologous chondrogyte
Among the current clinical therapies, multi-layered ceid cells and simplify surgical proceduresr(driolo et al., 202))
scaolds have been considered and are currently under preAs Wwith ACI, chondrocytes are isolated from a non-load-
clinical and clinical evaluation. TruFit CB (Smith and Nepl)e bearing area and culturedh vitro, however, this approach
is a synthetic plug designed to be used with microfracturé@ims to deliver autologous chondrocytes in a biopolymer
in order to improve the mechanical stability of the defect.membrane. MACF is also the name of a commercially
Initial studies showed positive results with the regeneratf — available membrane of porcine collagen type I/lll (Genzyme,
Carti]age in a goat mode]y however, clinical studies regkal United StateS). Several types of membranes and sca olds have
that 70% of patients required reoperation and the plug failedeen developed for MACI procedures such as NovdtaR
speci cally in restoring the subchondral bon&V{liams and (TETEC Tissue Engineering Technologies AG, Germany)
Gamradt, 2008; Joshi et al., 201The bone-layer of TruFit & collagen-chondroitin-sulphate based membrane, C&Res
CB is made of PGA and calcium phosphate, two material§artilage Regeneration System (Arthro-Kinetics, Germany) a
that degrade quickly post-implantation and mechanical fa&lu collagen type | matrix and Cartipatch (Tissue Bank of France,
has resulted in the plug being withdrawn from the marketFrance) a monolayer agarose-alginate hydrogélefa et al.,
(Fraser et al., 2016; Tseng et al., J0R0AmMbrosi et al. (2019) 2019. However, MACI failed to prevent brocartilaginous
investigated the clinical and radiological e cacy of Maiagem, healing and the integration of the scaold into host hyaline
a try-layered collagen-based sca old, in restoring osteockal cartilage is still unsatisfactory due to the intrinsic fe@s of
knee defects. Despite the promising satisfactory and reliabfully dierentiated chondrocytes with their poor capability of
results at mid-term follow-up, this systematic review rdeda tissue remodelling. Moreover, MACI still requires a two-step
that, in terms of clinical improvement at follow-up, MaioRegensurgery, cartilage biopsy and cell cultivation, thus inciregas
is not superior to conservative treatment or other cartilagehe total cost Behrens et al., 2006; Zikria et al., 2J)1%0
techniques. Therefore, there is still an unmet need for amnoptt ~ further improve ACI outcomes and obtain a more reliable tissu
biomaterial system that favours simultaneous bone andlaget  repair, third generation of ACI has been developed, in which
regeneration. Although current clinical approaches can pedu autologous chondrocytes are cultured in 3D to form spherical
pain and improve the quality of a patients life, none of them hagfggregates with a self-synthesised extracellular matrixerSiis
routinely achieved complete healing of the osteochondsabte ~ Of human autologous matrix-associated chondrocytes (Spfero
Non-biological man-made materials can be used to partialljs an advanced tissue medicinal product with European
replace the joint (e.g., unicompartmental knee replacement) d¥liedicines Agency (EMA) market approval for the treatment
when the whole joint is severely aected it is likely that aof osteochondral defects up to 10 cnii¢meyer et al., 2030
total joint replacement (TJR) will be required as an end-stagElowever, due to dierences in cartilage phenotype isolating
intervention. In the elderly TIR is a successful end stagértrent ~ chondrocytes from a non-load-bearing area might signi dgn
for OA however, younger patients have a signi cantly higherd ect the quality of the synthesised ECMB¢vill et al., 2009;
risk of undergoing revision due to implant limited lifespans(2 Briantetal., 201p
years), periprosthetic joint infection or aseptic mechaniadlire So far there appears to be little dierence in outcomes
(Meehan et al., 2014; Stambough et al., 2014; Bayliss etial;, 2f these cell therapies and tissue engineering approaches
Evans et al., 20)9To overcome these limitations, in the last When compared with osteochondral autograft transfer system
two decades, research has focused on tissue engineering (TBOsaicplasty or microfracture surgery. Further, when hatee

as a possible solution for osteochondral regeneration apeire in Vitro, chondrocytes undergo dedi erentiation exhibiting a
of cartilage. attened, broblast-like morphology. In these conditions ely
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produce a higher amount of collagen type | and collagen typgeneral biocompatibility and safety approvals granted byouesri
X inducing the formation of brocartilage. An advantage of agencies; however, high production costs and poor mechanical
growing spheroids of chondrocytes isolated from biopsiekas t properties of pure collagen sca olds are still major limitations
the cartilage phenotype is better maintained than when cell§Table 1) (Dong and Lv, 2016; Ghodbane and Dunn, 2016
are grown on at tissue culture plastic. However, all of thesdn comparison, Gelatin is derived by thermal denaturation
approaches fail to fully repair the lesion in severe osteochadnd of collagen and can be manufactured at a much lower cost
defects, where both subchondral bone and articular cgieilare and in larger quantities Grover et al., 2002 Gelatin shows
damaged Davies and Kuiper, 20)9A signi cant proportion of  low antigenicity, it possesses integrin-binding sites, ént
research is focusing on the use of stem cells for cartilagaimre completely resorbablén vivo. However, at body temperature
since a large number of cells can be obtained from di erengelatin hydrogels are not stable, limiting their possible ase
sources such as bone marrow, peripheral blood, adipose tiss@e,biomaterial. Van Den Bulcke et al. (2000yst described
dental pulp, placenta, and the umbilical cordozzi et al., gelatin methacrylate (GelMA), a chemically modied form
2016. However, selectively promoting stem cell di erentiation of gelatin that can be stabilised through photo-crosslimkin
into appropriate cell lineagem situ is still challenging. An allowing the formation of a hydrogel that is stable at body
expanding eld of research has demonstrated that mechanicaémperature. The modulus of GelMA-based biomaterial can be
cues from the environment could drive tissue formation andcontrolled by varying the degree of substitution and macesm
maturation, suggesting that combining sca olds with meclwah  concentration Gadeghi et al., 20),7for example,Gan et al.
properties that can drive stem cell di erentiation could proeid (2019)has modi ed GelMA hydrogels by intercalating oligomers
solution for osteochondral defects where both bone andlegee  of dopamine methacrylate obtaining exible hydrogels with
formation is required. compressive modulus of 2.5 MPa and shape-recovery ability.
GelMA has also been used in combination with hyaluronic acid

OSTEOCHONDRAL GRAFTS MATERIALS (HA), which forms the backbone of aggrecan and thereforegplay

a critical role in maintaining the viscoelastic and mecttahi
THAT CAN BE USED TO REPLICATE THE properties of cartilageHemmati-Sadeghi et al., 2018HA acts
NATURAL MECHANICAL ENVIRONMENT also as a biochemical cue enhancing chondrogenic di eréintia

of MSCs, promoting chondrocyte proliferation and preventing
The development of an osteochondral implant that replicates thehondrocyte de-di erentiation by activating CD 4&fen et al.,
structure of articular cartilage and subchondral bone réma 2018; Li et al., 2018a; Yamagata et al., pOTBe use of
challenging for tissue engineers. Material selection ggysotal HA in TE aects matrix deposition by cells, thus enhancing
role in the development of osteochondral grafts as it potéiytia the dynamic and equilibrium moduli duringn vitro culture
contributes to the mechanical properties of the sca olthifr, (Levett et al., 2094 Recently silk broin (SF) has also been

2017; Bonani et al., 208 investigated in the context of osteochondral TE due to its
. biocompatibility, low immunogenicity, slow degradationtea
Natural Materials and remarkable mechanical propertiégi et al., 201). Silk has

Natural materials such as collagen, chitosan, hyaluronid, ac a high tensile strength (around 300-740 MPa) and depending
silk, and alginate have been extensively used in TE for theon the source and production method, it is possible to obtain
biocompatibility, degradability and bioactivityJéuken et al., elastic moduli ranging from 1 MPa to 17 GPa, making it a
2016; Lietal., 2018bNatural materials are often used in the form favourable biomaterial not only for cartilage repair but afeo

of hydrogels with a highly hydrated viscoelastic matrixjable  subchondral boneKoh et al., 2015; Peng et al., 2D195 J. J.
swelling behaviour and mechanical properties depending on thet al. (2015)developed a bi-layered sca olds for osteochondral
type and degree of crosslinking étoira et al., 2019; Mantha regeneration using silk broin for the cartilage layer andié-

et al.,, 201p Moreover, natural materials provide multiple coated strontium-hardystonite-gahnite ceramic sca old fhe
binding sites for cell-ECM interaction. Multiple sca olds for bone layer. The silk layer exhibited highly elastic behavio
osteochondral TE in the clinical market are mainly composedhowing 91% strain at failure, indicating that the silk sdd o

of collagen type | (NOVOCART3D, MACI®, CaRe8, could stretch to approximately twice its original length befo
NeoCart?, Maioregerf') (Kon et al., 2009; Crawford et al., 2012;breakage, which is desirable for the cartilage phase. When
Petri et al., 2013; Saris et al., 2014; Zak et al.,)2@allagen tested under compression the biphasic sca old approximated
can be extracted from various tissues and sources, for exampihe biomechanical behaviour of osteochondral tissue, asuitdc
studies have reported that puried collagen can be isolatednaintain structural integrity under large compressive stes
from vertebrate (generally rat, bovine, porcine and sheep), sk while retaining the ability for shape recovery when hydrated
tendon, cartilage and bone as well as from marine invertelsra addition the sti bone phase could withstand large compressive
(jelly sh, sponges, octopus, squid, cuttle sh, star stjgrzideh stresses with minimal deformation.

et al., 2014; Langasco et al., 20Even though collagen type ~ Among natural polysaccharides, both alginate and chitosan
I does not represent the main component of articular cartilagehave potential for cartilage repaiX( et al., 2008; Yao et al.,
several studies have demonstrated its pro-chondrogenicte ec2016; Ewa-Choy et al., 2017; Henrionnet et al., 2017; Merlin
(Calabrese et al., 2017a,b; Xia et al., pOR8eference of type Rajesh Lal et al., 2017; Ruvinov et al., 2018; Huang et af).201
I collagen in TE is largely attributed to its availabilityts i Alginate is a biodegradable and biocompatible materialivéer
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TABLE 1 | Summary of advantages, disadvantages, and mechanical pragrties of naturally-derived materials.

Natural
materials

Advantages

Disadvantages

Mechanical properties

Reference S

Collagen type |

Gelatin

GelMA

Hyaluronic acid
(HA)

Silk broin

Alginate

Chitosan

Low immunogenicity
Degradedin vivoby MMPs

Manufactured at a lower cost and in large
quantities

Low antigenicity

Resorbable

Stabilised form of gelatin
Photocrosslinkable

Varying the degree of substitution is
possible to vary mechanical properties

Enache MSCs chondrogenic differentiation
Maintaining viscoelastic and mechanical
properties in native cartilage

Can be physically and chemically modi ed

Biocompatibility

Low immunogenicity

Slow degradation rate

Remarkable mechanical properties
Biodegradable Biocompatible
Re-differentiate chondrocytes after
monolayer culture Support chondrogenic
phenotype

Tunable mechanical properties
Biocompatibility Biodegradability
Antibacterial properties

High production cost
Low mechanical properties

Not stable at body
temperature

UV crosslinking may have a
negative effects on
encapsulated cells

Rapid degradation and poor
mechanical properties

Brittleness and swelling
behaviour limits its
applications in tissue
engineering

Lack of adhesion ligands

Display poor mechanical
properties

Permeability 0.044-0.072
mm4/Ns

Compressive modulus
3.5-3.7 kPa
Compressive modulus
0.75-6 kPa

Compressive modulus 2—30
kPa

Elastic modulus of modi ed
HA 1-70 kPa

High tensile strength 300-700
MPa and elastic modulus
ranging from 1MPa to 17GPa

Elastic modulus
0.15-0.55MPa

0.13-0.199 MPa

Ghodbane and Dunn, 2016

Chen S. et al., 2016

Sadeghi et al., 2017
Klotz et al., 2016

Chen C. H. et al., 2016; Li

et al., 2018a; Yamagata et al.,
2018

Lee et al., 2018

Trombino et al., 2019

Koh et al., 2015;
Chen et al., 2018; Peng et al.,
2019

Kaklamani et al., 2014

Thomas et al., 2017

from seaweed that is composed afD-mannuronic acid and 2013; Faikrua et al., 2013; Sheehy et al., 2015; Huang et al.,
b-I-glucuronic acid. Studies have shown that it can suppor2019; Scalzone et al., 2018 owever, since chitosan display
chondrogenic phenotype promoting a rounded morphology ofpoor mechanical properties, crosslinking or combination with
isolated chondrocytes and the synthesis of type Il collageh a other materials is required to optimise the elastic modulus fo
proteoglycansHiomicz et al., 2003; Caron et al., 2012; Angelozzosteochondral TENluzzarelli et al., 2015; De Mori et al., 2019;
et al., 2017; Aurich et al., 20L&hondrogenic di erentiation of Kusmono and Abdurrahim, 2019; Scalzone et al., 0lffomas
stem cells isolated from bone marrow, adipose tissues, Whart et al. (2017juned the sti ness of chitosan-hydrogels by blending
Jelly, and dental pulp has been promoted by growing cells withimcreasing concentrations of hyaluronic acid dialdehydws a
alginate gelsHuang et al., 2015; Reppel et al., 2015; Ewa-Chdaphe degree of crosslinking to obtain hydrogels with a Yosing'
et al., 2017; Mata et al., 2017; Baba et al., ROABhough  modulus of 0.13 MPa and 0.199 MPa. However, a reinforced
much lower than the compressive modulus of native cartilagehitosan-based sca old failed to regenerate bone and egsih
the mechanical properties of alginate sca olds can be modi eds/ivosuggesting that the crosslinking treatment may have a ected
to give values of 0.15-0.55 MPa using divalentionsXM@g&C, its overall degradationfo et al., 2019). Therefore, a careful
and SFC) (Kaklamani et al., 20)4However, the main limitation balance between the mechanical properties and degradatien ra
of alginate-based materials is the lack of adhesion ligahas should be considered when designing osteochondral sca olds
are essential for cell-attachment and to overcome thisadtive  using this material.
components such as collagen may be incorporat&dr( et al.,
2011; Lee and Mooney, 2012; Ganesh et al.,)2013 Synthetic Materials

Another natural polymer employed is chitosan, derived fromSynthetic materials are attractive substitutes for loadsing
partial deacetylation of chitin, used in TE for its biocommélity,  tissues, since the mechanical properties can be tailored by
in vivo degradation and antibacterial propertieSieung et al., altering the molecular weight and/or via the use of di erent
2015; Varun et al., 2017; Huang et al., 20Chitosan hydrogels processing methods Grigore, 201). Synthetic polymers,
have been shown to support the proliferation of chondrocytesncluding poly(ethylene glycol) (PEG), polylactide (PLA) atsd i
and MSCsn vitro and to improve the deposition of cartilaginous derivatives poly(L-lactide) (PLLA) and poly(lactic-co-glyicol
ECM bothin vitro andin vivo (Gri on et al., 2006; Elder et al., acid) (PLGA), polyglycolic acid (PGA), potytaprolactone)
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TABLE 2 | Summary of advantages, disadvantages, and mechanical pragrties of synthetic materials.

Synthetic  Advantages Disadvantages Mechanical properties Reference s
materials
PEG High solubility in water Hydrophilicity Lack of speci ¢ binding motifs Equilibrium modulus 0.01-2.46 MPa Nguyen et al., 2012
Biocompatibility for cell attachment Hydraulic permeability 10-13-10-16 Zhu, 2010
Inertness m2/Pa
Non-immunogenicity Tensile modulus 0.02-3.5 MPa
PGA Biocompatible Loses its mechanical integrity ~ Tensile modulus 7 GPa Woodard and Grunlan, 2018
Bioresorbable between 2—4 weeksin vivo Gorth and Webster, 2011
PLA PLA is more hydrophobic compared to Lack of speci c binding motifs ~ Tensile modulus 3 GPa Narayanan et al., 2016
PGA, leading to a slower hydrolysis rate. for cell attachment Tensile strength 50-70 MPa Samavedi et al., 2013
PLGA Modulation of Young's modulus and Lack of speci ¢ binding motifs Compression storage modulus Baker et al., 2009
degradation rate, Sustained mechanical for cell attachment 3.2-4.6 MPa Gentile et al., 2014
integrity after implantation
PVA Biodegradable Biocompatible Lack of speci c binding motifs ~ Tensile strength 1-17 MPa Lin etal., 2017
Adjustable mechanical properties for cell attachment Elastic modulus 0.0012-0.85 MPa  Teixeira et al., 2019
Low friction coef cients (m) 0.02-0.05 Sanchez-Téllez et al., 2017
PCL Adjustable mechanical strength Lack of speci c binding motifs ~ Compressive modulus 6.63-56.46  Olubamiji et al., 2016
Possibility to produce hydrogel, porous  for cell attachment MPa
scaffold, electrospun nano bers Tensile Modulus 6.03-46.04 MPa

(PCL) and poly(vinyl alcohol) (PVA), are used to form hydrégge PLGA can be synthesised using a di erent ratio of PGA and
porous scaolds and nano brous sca olds S@nchez-Téllez PLA that allows modulation of both Young's modulus and the
et al.,, 2017; Yang et al., 2017; Castilho et al., 2018; Dadi, et @legradation rate which can be, from a few weeks up to months,
2018; Kudva et al., 2018; Critchley et al., 20ZThe main resulting in sustained mechanical integrity after implaiga
disadvantage of these materials is the lack of specic bipdin(Félix Lanao et al., 2013; Samavedi et al., 2013; Gentile, et al
motifs for cell attachment, but this can be improved through2014. PVA is a biodegradable and biocompatible polymer,
functionalization or by combining with more bioactive mags. from which hydrogels can be prepared at di erent polymer
PEG hydrogels have been used in TE due to their high solybilitconcentrations to obtain tensile strengths in the cartilagege
in water, hydrophilicity, biocompatibility, inertness, amtbn-  of 1-17 MPa as well as an elastic modulus up to 0.85 MPa
immunogenicity Table 2. They have also shown to maintain (Karimi and Navidbakhsh, 2014; Lin et al., 2017; Teixeird.et a
cell viability and promote chondrogenic ECM synthedisyant 2019. PVA hydrogels exhibit limited swelling when tested at
and Anseth, 2002 By varying the molecular weight and the osmotic pressures similar to that of articular cartilagejclihis
concentration of PEG precursorisguyen et al. (2012btained  desirable for soft tissue engineering to preserve the Irsiize
hydrogels with equilibrium modulus (0.01-2.46 MPa), hydiau and shape and to prevent interfacial debondiftp(oway et al.,
permeability [ranging from 102 to 10 ® (m%Pa s)] and 2011; Oliveira et al., 20).9A non-biodegradable PVA based
tensile modulus (0.02-3.5 MPa) similar to articular cagéla hydrogel (Cartiv& ) exerts biphasic behaviour similar to normal
Steinmetz et al. (2018)so developed a multi-layer PEG hydrogelarticular cartilage under compression and it is currentlyden
resembling the zonal organisation of the osteochondraluts clinical trial for rst metatarsophalangeal joint hemiartbplasty
Although the compressive modulus did not match that of the(Brandao et al., 2030
native cartilage and bone when subject to mechanical lggdin PCL is an FDA approved biodegradable aliphatic linear
the strain distribution pattern was similar to osteochonldra polyester and it is one of the most investigated polymers for
tissue with higher strain in the cartilage-like layer. Whe®% tissue engineering applications due to its adjustable mechéni
apparent strains were applied to the hydrogel the local strainstrength. PCL can be used to produce porous scaolds as
in the cartilage-like layer and in the bone-like layer webeahd well as electrospun nano bersZ[ju et al., 2014; Panadero
2% respectively. et al., 201)p Visser et al. (2015ncorporated PCL micro bers
PGA exerts high tensile modulus (7 GPa) but due to itdnto GelMA obtaining reinforced hydrogels with mechanical
relatively hydrophilic nature and instability in aqueoudwt@n  properties similar to articular cartilageCastilho et al. (2019)
loses its mechanical integrity between two and four wedeks also used PCL to successfully develop a bi-layered constraict
vivo (Gunatillake and Adhikari, 2003; Gorth and Webster, 2011mimics the zonal structure as well as the functional properties
Woodard and Grunlan, 20)8 PLA exists in several isoforms of native cartilage. This construct incorporated a thin supéal
and the presence of one extra methyl group makes it moreangential layer, mimicking the collagen organisation imet
hydrophobic compared to PGA, leading to a slower hydrolysisuper cial layer of the cartilage, that improved the load-tieg
rate. PLA possesses a high tensile modulus (3 GPa) and direngiroperties of the micro- bre reinforced hydrogel with a peak
(50-70 MPa) Gorth and Webster, 2011; Samavedi et al., 013modulus of 473 kPa under uncon ned compression as well as
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FIGURE 3 | Schematic representation of the mechanical cues affectingtem cell differentiation down the chondrogenic lineage. Cs are mechanosensitive in
response to ECM stiffness, dynamic loading, and hydrostatipressures which activates various signalling pathways reessary to drive differentiation down the
chondrocytic lineage.

exhibiting relaxation rates similar to those for native tdage (ALP), which will eventually lead to cartilage mineralizatio
(Castilho et al., 20)9Controlling the mechanical properties of There is increasing evidence that environmental (such as lo
sca olds for osteochondral TE is essential, not only to maint oxygen tension) and mechanical cues control stem cell fate.
structural integrity and withstand high mechanical loagim In particular (as described inFigure 3, MSCs are highly
vivo, but also to provide environmental mechanical cues tanechanosensitive and respond to both passive stimuli such as
selectively guide stem cell di erentiation into the appropeéat sti ness, and dynamic stimulation such as mechanical logdin
osteochondral phenotypes. and hydrostatic pressure that signals through integrins el
adhesion (FA) protein complex, transducing physical signdts in
biochemical signals.

MECHANICAL CUES AFFECTING STEM

CELL DIFFERENTIATION Regulation of MSCs Differentiation by ECM

MSC commitment to the chondrocytic lineage is governed byStiffness
TGFb and WNT/R-catenin signalling Wsami et al., 2006 In vivo each tissue is characterised by a speci ¢ sti ness, which
In particular, the activation of TGB/SMAD2/3 pathways is regulates tissue development and homeostasis by a ecting cell
essential for the intracellular phosphorylation of Smad2 andnigration, proliferation, morphology, cell phenotype and ECM
Smad3, which then translocate to the nucleus to activate angrotein production Ehrbar et al., 2011; Handorf et al., 2015;
stabilise the transcription factor Sex determining regio(SRY) Hwang et al., 2015; Du et al., 2016; Sun et al., 2017; Xia, et al.
Box 9 (SOX09), that is the master regulator of chondrogenesig017; Abbas et al., 2019; Chu et al., 2019; d'Angelo et ab; 20
(Furumatsu et al., 2009; Coricor and Serra, 2016; Pfeif&aidova and Vorobjev, 20R0Engler et al. (2006priginally
et al., 201R SOX9, along with SOX5 and SOX6 expressiomxplored the e ect of stiness on MSCs using polyacrylamide
is required during embryonic development as well as in posthydrogels mimicking the native elasticity of brain, musciel a
natal maintenance of articular cartilage regulating expi@sof  osteoid. This work demonstrated that sti ness not only a ects
ECM molecules, such as collagen (mainly types II, IX, XI) andMSC morphology showing that the expression of the neurogenic
proteoglycans (aggrecan, decorin). marker 3 tubulin 3 was enhanced on soft substrates and Runx2
To di erentiate MSCs into chondrocytes the use of growthon sti substrates. Interestingly, this work showed thabgth
factors, such as TGB; is usually required. However, its use in factors tend to be less selective compared to matrix sti nass i
the clinic is limited as it leads to the expression of hypertrigph driving lineage speci cation. MSCs pre-conditioned on a matri
markers such as Col X, MMP13 and alkaline phosphataseith a speci c sti ness for 3 weeks cannot be reprogrammed,
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TABLE 3 | Summary of the effect of mechanical cues on MSCs differentien.

EFFECT OF MECHANICAL CUES ON MSCs

Substrate  Soft substrates (1-30 kPa) Intermediate substrate (0.1-5MPa )  Stiff substrates (5-300 MPa) References

stiffness
MSCs on soft substrates exhibit a Mechanically competent Highly organised cytoskeleton Engler et al., 2006; Park et al.,
rounded chondrocyte-like morphology Stiffness in the range of native cartilage Spindle-shape morphology 2011; Wang et al., 2016;
Higher expression levels of MSCs found to express high level of Olivares-Navarrete et al., 2017
chondrogenic markers SOX9 and Col Il on substrates stiffness

Unable to withstand mechanical loads of 0.8MPa and 4.7MPa
Dynamic  0.15-1.5% compressive strain 1Hz ~ 10% compressive strain 1Hz fr  om  10% compressive strain 1 Hz after 1

loading day O week of pre-culture
Dynamic loading, delayed Compression from day 0 has negative Dynamic culture increase synthesis of Thorpe et al., 2010; Zhang et al.,
osteogenesis. effects on MSC chondrogenesis GAG aggrecan, Col Il and increase 2015; Sawatjui et al., 2018; Aziz
Mineral deposits was diffuse in the expression SOX9 et al., 2019; Cao et al., 2019
unloaded condition Upregulation of
while under dynamic loading was phosphorylated-SMAD2/3
concentrated and spatially restricted to MSCs under static culture MSCs
the central region exhibited higher of hypertrophic
markers
Hydrostatic Low HP stimulation Physiological HP stimulation in the High HP
pressure  100-300 kPa cartilage layer 25 MPa
1-10 MPa
IHP upregulate osteogenic markers HP applied continuously it negatively  Inhibited aggrecan and Col Il Correia et al., 2012; Li et al.,
Increase expression of Runx2, ALP andaffects SOX9, Coll Il and aggrecan genePro-osteoarthritic effects 2016; Montagne et al., 2017;
osteopontin expression Stavenschi et al., 2018;
IHP positively affects SOX9 and Col Il Stavenschi and Hoey, 2019

expression even without external
growth factors and enhances
cartilaginous matrix deposition

suggesting that modulation of ECM modulus could be a powerfuéxogenous stimuli by cytokines or other factors associated
tool to drive stem cell dierentiation. When cultured on with cartilage di erentiation, the expression of SOX9, Col Il
sti substrates, MSCs develop a highly organised cytoskelet aggrecan and cartilage oligomeric matrix protein (COMP) in
showing a spindle-shape morphologyaple 3. Conversely, MSCs showed an increasing trend with decreasing sti ness Thi
MSCs on soft substrates exhibit a rounded chondrocyte-likevork showed that mimicking the native elasticity of camgia
morphology and express higher levels of chondrogenic markerenhances chondrogenic phenotype without exogenous stimuli.
Park et al. (2011¢ompared collagen type Il and GAG synthesisNevertheless, it is also important to consider that osteochaind
on a soft collagen hydrogel, on plastic coated with a thindayetissue exhibits di erent sti ness among the di erent layers)ca

of collagen and on polyacrylamide hydrogels with dierentan implant displaying a layering or gradient approach with
sti nesses (1 and 15 kPa). They showed an increase in expnessigarying sti ness, might be more e ective in reproducing the
of chondrogenic markers both on the soft collagen hydrogel a native architecture of the tissue as well as selectively ptiogno

on the 1 kPa substrate. The e ect of substrate sti ness togeth€eCM synthesis.

with biochemical cues was investigated \iang et al. (2016)

They showed that HA enhanced MSC chondrogenesis, evidenc®ole of Dynamic Loading in MSCs

by upregulated of aggrecan and Col Il expression and this e eduring ambulation mechanical load plays an important role
was more distinct when cells were grown in soft hydrogel$n maintenance and degeneration of articular cartilage tireg

(3 kPa), while this e ect was reversed in the sti hydrogelgene expression of Col I, aggrecan, and degenerative eszyme
(90 kPa). It is important to note that cartilage sti ness varie (MMPs). Interestingly dynamic stimulation also a ects MSC
between 0.1 and 6.2 MPa, and soft hydrogels will fail to maintaidi erentiation and the quality of ECM synthesised. A study from
their structural integrity after implantation\{/ang et al., 2016; Thorpe et al. (2008yevealed a negative e ect of long term
Zheng et al., 2019; Guimaraes et al., J0R0ivares-Navarrete dynamic compression on MSCs cultured in agarose hydrogels.
et al. (2017 compared both cytoskeletal organisation and gené his study reported that uncon ned compression at 10% strain
expression of MSCs and auricular chondrocytes grown on methyind 0.5 Hz for 1 h/day signi cantly reduced GAG production
acrylate/methyl methacrylate (MA/MMA) polymer surfaces withand Col Il synthesis compared to static culture. Interediing
elastic moduli ranging from 0.8 to 310 MPa mimicking thethe application of dynamic compression from day O inhibits
sti ness of articular cartilage and cortical bone. MSCs appgarechondrogenesis even in the presence of T3HThorpe et al.,

to be elongated on the less sti surfaces with a higher nundfer 201(). In contrast, the inhibition of chondrogenesis in response
adhesion plaques on the 4.7 MPa substrate. After 7 days withotd dynamic compression was not observed if the MSCs were
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rst allowed to undergo chondrogenesis. Consistent witlege  high HP (25 MPa up to 24 h) on the ATDCS5 cell line markedly
results, Sawatjui et al. (2018%tudied the e ect of dynamic aecting the expression of matrix remodelling related genes,
compression of both MSCs and chondrocytes derived fronapoptosis-related genes and strongly inhibited aggrecan and
osteoarthritic joints seeded on silk broin sca old, pre-¢uted  Col Il, suggesting that excessive loads induce pro-osted@écth
for 1 week, and subsequently subjected to compression withects (Montagne et al., 20)7Interestingly the use of low HP,
10% dynamic strain at 1Hz, 1 h/day for 2 weeks. This studjn the range of 100-300 kPa, has been demonstrated to direct
showed that dynamic compression signi cantly enhanced thé/ISCs di erentiation into the osteogenic lineage upregulating t
synthesis of Col Il and aggrecan along with an increasexpression of Runx2, ALP and osteoponti@tfvenschi et al.,
of compressive modulusCao et al. (2019)seeded rabbit 2018; Stavenschi and Hoey, 2D1B8lot only the magnitude
derived MSCs into collagen sca olds under 10% compressivef load, but also the length of the stimulation a ects matrix
sinusoidal strain at 1Hz frequency, for 2 h/day for 21 daysdeposition. In fact, it has been shown that when the load is
Starting from the second week of culture, the morphologyapplied continuously, it negatively a ects SOX9, Col Il and
of MSCs in the dynamic culture group exhibited a roundedaggrecan gene expressi@o(reia et al., 2012; Liet al., 2016
chondrocyte-like morphology, whereas cells remained spindle One of the major limitations of cartilage tissue enginegrin
shaped in static culture. Dynamic culture also promoted GAGs the formation of brocartilage, which has inferior meafhiaal
synthesis as well as aggrecan, Col Il and SOX9 expressiproperties compared to articular cartilage. HP appears to a ect
compared to the static cultur&@hang et al. (2015Jemonstrated hypertrophic genes, increasing Col |, Col X and MMP8&wa
that delayed dynamic compression positively aected MSCt al., 2009, 2015; Li et al., 201€onversely, other studies
chondrogenesis through phosphorylated-SMAD2/3 enhancingevealed decreasing levels of Col | and Col X under IHP
matrix deposition and suppressing hypertrophy. Further MSCgVinardell et al., 2012; Saha et al., 2017; Rieder et al.)).2018
under free swelling condition exhibited higher expressibBBRK  Freeman et al. (201 demonstrated that HP without any external
(involved in chondrocyte hypertrophy) along with upregulatio growth factors resulted in enhanced chondrogenesis alaitig w
of MMP13, Runx2, and Col X. In addition(ardner et al. reduction in hypertrophic markers. Additionally, when MSCs
(2017) demonstrated that multiaxial loads on MSC led towere stimulated with HP alone and subsequently induced
endogenous production and secretion of T@BE-as well as to undergo osteogenic dierentiation without any external
the activation of the secreted latent T®E: Taken together mechanical stimulation, the production of hypertrophic marke
these data suggest that dynamic load positively a ects MS®@as reduced compared to those exposed to chondrogenic growth
chondrogenesis, however, MSCs should rst be di erentiatedactors alone. These studies suggested that the application of
before applying loads. Consequently vitro dierentiation  intermittent hydrostatic pressure could potentially lead tdabée
of stem cells prior to implantation could be critical for di erentiation of MSCs into the chondrogenic lineage without
osteochondral tissue engineering. the use of growth factors. However, it is important to notettha
the intensity and the frequency of HP applied dier among

. studies, suggesting that standardisation is required ttaiab
Hydrostatic Pressure and MSCs consistent results.
Differentiation
Cartilage ECM is characterised by a high water content and
low permeability, and as a consequence when a load is appliddESTING OSTEOCHONDRAL GRAFT
the resistance of uid ow generates hydrostatic pressur®€fH MATERIALS
In vivo HP varies between 2 and 10 MPa with peaks of 18
MPa during intense activities such as jumping or runniriggder  The success of osteochondral grafts depends on the restorati
and Athanasiou, 2009; Correia et al., 2)18everal studies of surfaces representative of native articular cartilage to
have demonstrated that the application of HP on MSCs mighprovide smooth joint movement during joint articulation.
have a pro-chondrogenic e ecf\ngele et al. (2003gxamined Implanted grafts also need to be structurally stable to wéthdt
the e ects of cyclic hydrostatic pressure on MSCs aggregatghysiological loading conditions of up to 4-5 times body virtig
showing a signi cant increase in GAG and collagen content atluring walking (Morrison, 1970; Bellucci and Seedhom, 2001
days 14 and 28 compared to the unloaded control. Furthermoreyith peak stresses in the knee ranging from 2 to 10 MPa and
Miyanishi et al. (2006astudied MSCs in pellet culture exposedat a loading frequency of approximately 1 HBrénd, 2005;
to intermittent hydrostatic pressure (IHP) and demonstridite Sadeghi et al., 20).50steochondral defects cause high contact
an increase in expression of SOX9, Col Il, and aggrecastresses at the rim, that vary depending on the size of thectlefe
with or without the addition of TGFb3. In a second study causing uneven strain distributionB(own et al., 1991; Kock
the authors also demonstrated that the magnitude of loadingt al., 2008 These abnormal contact stresses and strains at
modulated chondrogenic gene expression and cartilage ratrthe defect perimeter cause damage and chondrocyte death that
protein deposition in MSCs pellets in the presence of Ti§3F- could impair integration and healing of the graft, leading to
suggesting that the magnitude of the load could enhance MS@sduced functionality of the joint, or cartilage damad&L(ima
chondrogenesis(iyanishi et al., 2006 In fact, physiological et al., 2001; Wu et al., 2002However, contact stresses can
levels of HP (5MPa) signi cantly enhance cartilaginous matr be restored to pre-operative levels, resembling intact legsi
deposition Correia et al., 2012; Li et al., 2Q1&onversely, depending on appropriate tting, alignment, length and surface
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of the graft O'Lima et al., 2001; Koh et al., 2004; Kock et al.quanti cation of sulfated glycosaminoglycans for evalaatof
2006, 2008 One of the major issues is that post-implantationchondrogenesis)Keong and Halim, 2009; Li W. et al., 2015
osteochondral implants will be subject to continual cyatiads, However, mechanical evaluation of osteochondral sca olds
encompassing a range of shear and tensile forces which will a eare essential to ensure graft stability in the initial period
the biological response of the graft and test the integratigth  following implantation Bowland et al., 2035 As reviewed
the surrounding native cartilage. However, speci c testimoels by Patel et al. (2019) compression testing is the most
to demonstrate the performance of these grafts have not yebmmon test performed both on cartilage and tissue engirteere

been de ned. construct. Compression test can be performed using uncon ned
o and conned compression and indentationFigure 4). For
Standardisation uncon ned compression testing, the sample is placed between

Osteochondral grafts are classed by the International®tath two impermeable steel plates allowing the Young's modulus
Organisation (ISO) as implantable medical devices that a® be measured directly from the linear portion of the stress-
de ned in ISO 13485, 2016, are implanted into the humanstrain curve produced Korhonen et al., 2002; Grin et al.,
body via surgical intervention and are intended to remain in2019. For con ned compression the sample is either tested
place after the procedure. ISO 14630:2012 speci es the generiging a porous indenter or placed in a porous chamber
requirements for non-active surgical implants, whereas ISQith an impermeable indenter to ensure uid ow. Con ned
21536:2007 is the level 3 standard referring more spegy callcompression allows the measurement of both the aggregate
to knee joint replacement implants. These standards includgodulus (determined when uid ow stops) of the specimen as
performance, design, materials, evaluation and steiitisat well as the permeability3oschetti et al., 200ANhile uncon ned
and the tests needed to demonstrate compliance with thesghd con ned compression require the cartilage sample or the
regulations. More speci ¢ standards relating to tissue eagied  sca old to be tested within a chamber, indentation allows the
cartilage constructs include the quantication of sulfdte testto be performed on awhole osteochondral specini&mi
glycosaminoglycans (SGAG) (ISO 13019: 2018), and the& al, 2016; Tozzi et al., 2020Compression tests can be
evaluation of tissue morphology including collagen bre performed by applying a strain at a constant rate (ramp), by
orientation and anisotropyin vivo (ISO/TR 16379:2014) have applying a strain to a target level and holding the strain comista
also been de ned. Despite these biological and clinicae@n  (stress-relaxation) or applying a cyclic strain (dynamig}iiolten
there are no specic requirements for mechanical testinget al., 2011; Vikingsson et al., 2015; Coluccino et al., ;2016
and there is uncertainty as to whether articular cartilage<undanati et al., 2076 Compression tests can be also load-
implants are classied as partial joint replacement implantscontrolled, applying a rapid load that is then kept constant,
and should therefore be subject to mechanical charact@isa measuring sample strain over tim@yen, 2014; Patel etal., 2019
(Marchiori etal., 201p Both the FDA and International Cartilage Repair Society (ICRS)

In contrast, the FDA provides more specic mechanicalrecommend both static and dynamic compression tests to asses
testing criteria for the use of tissue engineered cartilagéhe mechanical behaviour of the osteochondral graft. Howeve
constructs, which highlights inconsistencies with regaod specic guidelines on how to perform each test have not
global standardisation. The FDA guidance document foleen agreed, which leads to inconsistent or non-physioldgical
products intended to repair or replace knee cartilage includeglevant data. Cartilage and osteochondral grafts shoutdsied
speci cations forin vivo animal studies (that will be discussed under the same conditions, as the strain rate in uences tress-
later in this review) and various vitro mechanical tests. It states strain curves, implying that the higher the strain rate thgter
that “mechanical testing should address the following: thiétg  the modulus will be. As reviewed b3atel et al. (2019%8% of
of the implant to withstand expecteid vivo static and dynamic  the studies that analysed cartilage repair constructs undapra
loading (i.e., compression, shear, and tension); analysis @fechanical testing, were tested to more than 20% strainemor
xation method (i.e., strength of integration between theoduct  than double the compressive strain that articular cartilages
and surrounding native tissue); and propensity to generateested to. Considering that the physiological average stisin
wear debris.” It is also recommended that static mechanical0% the data produced using higher strain might not be rediabl
behaviour such as the maximum recoverable compressivestra{Chan et al., 2016
the aggregate modulus (HA), the shear modulus (G), and In addition to the standard mechanical tests previously
permeability k) as well as the dynamic complex shear modulusnentioned, implants need to be tested after peridasvivo
are included. Degradable sca olds should also include ass&rst  (for dynamic and static loading) and under loading condit
of failure properties over time and some examples of con netf compression, tension, and shear. Analysis of xation withi
or uncon ned compression and indentation are suggested fothe defect is also required (e.g., mechanical push-out tests
analysing the mechanical properties of implants. assess integration) and assessment of the bioreactivignyf

. . ) device-generated wear debris.

In vitro Compressive Testing (Con ned,
Uncon ned and Indentation) In vivo Animal Models
The most frequentin vitro test are usually biological assaysin vivo animal models are crucial preliminary studies to
to evaluate the biocompatibility (ISO 1099), cytotoxicitp@ assess the safety and e cacy of newly developed cartilage TE
10993-5), gene expression and matrix deposition (ISO 130iplants. However, currently there are no exact guidelines
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FIGURE 4 | Standard mechanical tests for assessing osteochondral gifés. Con ned compression tests using either an impermeable bamber and porous indenter;
or porous chamber with an impermeable indenter, are usefubf de ning the aggregate modulus. Uncon ned compression tess and indentation tests can determine
the elastic modulus (Young's modulus).

for the comparison of animal models, assessment of defeffom diseases such as OA and OCD which makes them useful
size/location and description of appropriate mechanical tests for assessing cartilage regeneration in pathologic camuti
the assessment of implantable devices such as osteochondi@hu et al., 201)) Large animal models (goat, sheep, pig and
grafts to repair and regenerate articular cartilage. The FDAorse) more closely re ect intended clinical use for assgssin
recommends using combined animal studies with appropriatéoxicity, integrity and in ammatory responses for both srhal
mechanical testing to assess biological response, ddyabiliand larger defects in load bearing environments. Sincelag#i
(using large animal models) and toxicology.(S. Food Drug thickness in equine sti e joints (1.5-2.0 mm) is the most g&m
Administration, 201). In addition, dose response (of bioactiveto human cartilage thickness (2.2-2.5mm) the horse is the
sca olds), lesion size and location, appropriate endpoints, andlosest approximation for creating both partial and full thigss
continual arthroscopic/MRI evaluation should also be takerdefects for preclinical cartilage repair studiesig¢bie et al., 2006;
into consideration (J. S. Food Drug Administration, 20)1  Mcllwraith et al., 201). Nevertheless, in most animal models
Nevertheless, despite these recommendations there areadycl the loading, thickness and geometry of the joint surfaceeiy v
de ned protocols, test criteria, or test parameters for metgbal  di erent to that of humans.
testing. It is also acknowledged that there is no optimal aiim . .
model for cartilage repair, which may also lead to variapilit M€chanical Push-Out Tests for Assessing
between studies. Integration

Small animal models (mouse, rat and rabbit) are mainly usetlechanical push-out tests are useful pre-clinical studies to
for “proof of concept” studies as a translational step betweesvaluate the maximum forces needed for graft failure and
in vitro tests and larger animal/human studies. Rabbit modelfor assessing integrative repair with host cartilage overeti
have spontaneous intrinsic healing capabilities of carildgfects (Theodoropoulos et al., 20).1A biopsy punch is normally
that must be taken into consideration, therefore, they Uisua used to create a cylindrical defect lled with the TE sca old o
require additional validation in other animal modelSifapiro osteochondral graft to be tested. After a culture and/oatreent
et al., 1998 Other variables to consider when choosing theperiod to allow a certain amount of integration with the host
most appropriate animal model are thickness of cartilage antssue, the inner core is pushed out of the outer ring using a
joint suitability, skeletal/ cartilage maturity, defecgtpe, size mechanical push-out rod. The calculated amount of force eeed
and location of the defect, availability and post-operatiagec for displacement (or failure of the graft) allows an assessmen
(Hurtig et al., 201). Canine models, like humans, often su er integrative strength at the interface to be assessed. Atstialy
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by Bowland et al. (202(Q9erformed a series of push-in and push- peeling in cartilage TE constructs, which are not seen in native
out tests to assess the mechanical stability of bovine andrpor cartilage controls\(Vhitney et al., 2017 Therefore, assessing the
osteochondral grafts. Interestingly, the results showed the tribology of osteochondral grafts is essential to ensurejade
harvesting method (using a trephine drill or chisel) showex n integration and longevity. To measure the frictional coéeat,
signi cant di erences in graft stability Bowland et al., 2090 three di erent con gurations of tribometer can be used: pin-
However, preparation of the recipient site, the depth of inggrti on-disc, pin-on-plate, or rolling-ball-on-disc. In the rst tos
and dilation had more of an e ect, showing that grafts with efju settings a pin is glued to the sample and a disc or a plate are in
lengths to the site of insertion were more stable, and thiatidin ~ motion, while for the rolling-ball-on-disc the disc and thmll

of grafts reduces the stability particularly in more skdlgta can be moved independently. In each con guration a normal
immature tissue Bowland et al., 2090 This research also force is applied and a sensor measures the frictional foree, th
highlights the importance of the underlying subchondral leon frictional coe cient can be derived by dividing the frictiwal

and the interrelationship between these tissues on regeioer force for the normal force applied. Di erent types of lubricant
and durability of focal defects consistent with other sesli can be used (i.e., PBS or foetal bovine serum) which combined

(Chanetal., 2092 with the di erent testing con gurations often lead to variéb

] ] ) o results, highlighting the need of standardisation procedhartest
Whole Joint Simulation Models to Mimic both cartilage samples and osteochondral TE constructs. Other
Joint Articulation mechanical tests such as frictional shear stress testingssess

In contrast, in vitro whole joint simulations can be used to the tribology, pressure distribution and the response to dagnag
assess the tribological performance of osteochondral gyraftof osteochondral grafts and TE constructs in whole joint mede
taking into consideration the interactions and biomechzali under a complex range of sliding and torsional motiofgg|ter
properties of the joint as a whole under physiological loadinget al., 2013; Bobrowitsch et al., 2).14

conditions. These types of test are relevant for comparing the

e cacy of osteochondral grafts to other surgical intervimts

such as scaolds and cell-based approachgsw(and et al., CONCLUSIONS

20180h. Bowland et al. (2018a)sed an adapted method from

Liu et al. (2015using a whole joint simulator with six degrees of Despite tremendous advances in the eld of tissue engineerin
freedom and ve controlled axes of motion to mechanicallgtte an optimal biomaterial system for osteochondral defects that
grafts. The axial load was force controlled, tibial rotatid.6— is able to direct stem cell dierentiation into chondrocytes
1.6)and exion/extension (0-21) were displacement controlled for the cartilage and osteoblast for bone without the use of
at a frequency of 1Hz. Anterior-posterior displacement wagxogenous stimuli is elusive. Material selection is egalefolr
constrained using springs that generated rolling and stidin creating a graft able to withstand the multiple forces that
motions of the femur against the tibia, and mimicked ligarhen cartilage is subject to. Synthetic materials not only previgh
function. The medial-lateral axis was fully constrained andensile stress and compressive modulus, but they are easily
abduction/adduction was under passive motion. The mairmodied, facilitating the creation of layered sca olds whids
nding of this study was that allograft plugs tted ush with a requirement for osteochondral grafts. However, the latk o
the defect site to restore the articular surface caused thegllular binding sites require them to be combined with naiur
least wear and damage on the opposing joint surface afténaterials, which are highly biocompatible and can provide
applying a complex range of motions. Similarljiebelung biochemical cues for stem cell dierentiation. The natural
et al. (2017)combined a whole-knee joint loading device architecture of cartilage and the impermeable subchondiatepl
with MRI imaging to non-invasively assess the structural an@nhances the development of hydrostatic stress in the agetil
functional responses of human articular osteochondral tgraf which promotes and maintains the chondrocytic phenotype,
in defect sites duringn situ compressive loading. Whole joint however few osteochondral implant designs replicate this sub
simulation models highlight the importance of restoring the chondral barrier.

congruence of articular surfaces during an experimentairget ~ Although suitable mechanical properties are essential for
that mimics more closely the physiological environment dffo  ensuring graft stabilityn vivo, the optimal range of sti nesses
articulation. However, the use of cadaveric tissue withutgill  is yet to be determined. Con icting results have been reparte
serum replicating the joint's synovial uid is a useful apprbac as to whether high stiness could enhance chondrogenic
but it fails to replicate large numbers of walking cycles dugli erentiation of MSCs or upregulate hypertrophic markers.
to limitations regarding the continual sterility and vidiby of ~ The use of dynamic stimulation, such as hydrostatic pressure

the tissue. or dynamic loading, could promote a stable di erentiation of
MSCs into chondrocytes and enhance matrix deposition, thus

Shear Stress to Assess Tribology preventing the use of TGB-which lead to the formation of

Chondrocytes in the super cial layer produce lubricin that hypertrophic cartilage.

maintains low coe cients of friction of joints. Maintainig a low Mechanical testing of TE construcis vitro are essential to

frictional interface is essential to prevent mechanicalrmaea  ensure graft stabilityn vivo, however, the lack of standardised
erosion of the articular surface. The application of fricidehear procedures questions the reliability of the published data in
stress has been shown to cause damage such as cracking prakiding an understanding of the long term endurance and
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suitability of osteochondral grafts. In addition, only a a&in

revised the manuscript. All authors contributed to the adiand

fraction of studies on cartilage constructs tests all of thepproved the submitted version.
mechanical properties requested from the FDA or the ICRS
and this might, in part, explain why many sca olds fail when EUNDING

testedn vivo.
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