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Abstract: In the area of traffic sign detection (TSD) methods, deep learning has been implemented
and achieves outstanding performance. The detection of a traffic sign, as it has a dual function in
monitoring and directing the driver, is a big concern for driver support systems. A core feature
of autonomous vehicle systems is the identification of the traffic sign. This article focuses on the
prohibitive sign. The objective is to detect in real-time and reduce processing time considerably.
In this study, we implement the spatial pyramid pooling (SPP) principle to boost Yolo V3’s backbone
network for the extraction of functionality. Our work uses SPP for more comprehensive learning
of multiscale object features. Then, perform a comparative investigation of Yolo V3 and Yolo V3
SPP across various scales to recognize the prohibitory sign. Comparisons with Yolo V3 SPP models
reveal that their mean average precision (mAP) is higher than Yolo V3. Furthermore, the test accuracy
findings indicate that the Yolo V3 SPP model performs better than Yolo V3 for different sizes.

Keywords: TSD; object detection; TSR; Yolo V3; SPP; scale analysis

1. Introduction

Traffic sign recognition (TSR) technologies are an essential feature of numerous real-world
implementations, including Automated Driver Assistance Systems (ADAS) [1,2], autonomous driving,
traffic control, driver welfare, and maintenance of the road network. Many researchers are currently
working on this problem with popular computer vision algorithms [3]. The emergence of recent
improvements in deep learning [4] has contributed to the significant advance for target detection [5–7]
and identification tasks [8–10]. Moreover, most studies centered on creating profound convolutional
neural networks (CNN) to increase precision [11,12].

The reason that traffic signs are created to be different and recognizable, using basic types and
standardized colors accordingly to their country-specific existence, suggests a limiting issue in their
identification and recognition. A method that generalizes efficient identification is difficult to find [1].
Nonetheless, it is still a challenge to develop a stable real-time TSR. During test time, latency is critical
for decision-making depending on the atmosphere and real-life factors, such as partial occlusion,
multiple views, illuminations, and temperature. Every TSR needs to address these problems well.
This research will concentrate on the prohibitive identification and understanding of signs in Taiwan.
The inspiration is the absence of a traffic sign detection database or analysis system in Taiwan. The most
excellent advanced algorithms for object detection like SSD [13,14], Faster R-CNN [15,16], R-FCN [17],
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and Yolo [18,19] already used convolutional neural network (CNN) that can be used in handheld
devices and consumer goods. Yolo has been a successful CNN rival in real-time object detection [20].
Research [21,22] reveals that high-speed detection efficiency has been closely tracked to identify smaller
objects. Yolo’s latest update, Yolo V3 [23] and Yolo V4 [24], have exhibited important development
in that ability. Yolo V3 is selected as one of the main objectives in real-time recognition as the object
identification system. This paper aims to eliminate the network fixed-size restriction, obtain the best
features in max-pooling layers, and enhance Yolo V3 performance and the layer is established by the
SPP layer [25–28].

This paper’s major contributions are: (1) Follow the principle of SPP to strengthen the original
structure of Yolo V3 for building features extraction and determining maximum information flow
between layers in the system; (2) Use spatial pyramids to organize and aggregate local features at various
levels in the same layer for more detailed training of multiple scale object functions; (3) A comparative
study of Yolo V3 and Yolo V3 SPP on various scales for the identification of prohibited signs in Taiwan
are carried out; (4) The result suggests that the detection time would be quicker if a big number of
scales is used. Therefore, the precision declines relative to the original Yolo V3 scale. Similarly, in Yolo
V3 SPP, the accuracy declines to take on various sizes.

The following parts of this paper describe the proposed model. The related work of traffic
sign identification systems explains in the Section 2. The approach methodology briefly discusses in
Section 3. Furthermore, Section 4 includes a summary, the preparation, and system test outcomes.
In Section 5, assumptions are established, and further study is introduced.

2. Materials and Methods

2.1. Traffic Sign Recognition with You Only Look Once (Yolo) V3

Based on [29], this research work combines Adaboost, and Yolo V2 approaches for traffic sign
studies. The system uses real traffic signs collected in the center of Kaohsiung, a large city in southern
Taiwan. Additional research on traffic signs, particularly in Taiwan, is presented in [30]. This work
tracks traffic signs from video recordings using its proposed program for obtaining the traffic signs
image. CNN validates the precision of the generated dataset.

In [31], focus on Taiwan’s stop sign detection and recognition. They conduct some experiments
with a different setting and analyze the importance of anchor calculation using k-means and original Yolo
V3 for Taiwan stop sign detection and recognition. Their experiment proved that anchor recalculation
based on our dataset is very important.

Dewi et al. [28] investigates the state-of-the-art of various object detection systems including Yolo
V3, Resnet 50, Densenet, and Tiny Yolo V3 combined with spatial pyramid pooling (SPP). Their research
adopts the concept of SPP to improve the backbone network of Yolo V3, Resnet 50, Densenet, and Tiny
YoloV3. Hence, their experiment findings show that Yolo V3 SPP strikes the best total BFLOPS (65.69),
and mAP (98.88%). The highest average accuracy is Yolo V3 SPP at 99%, followed by Densenet SPP at
87%, Resnet 50 SPP at 70%, and Tiny Yolo V3 SPP at 50%. Hence, SPP can improve the performance of
all models in the experiment.

Other research studied various weights presented by the darknet framework, including the
best weight, the final weight, and the last weight [31]. They conduct and analyze the comparative
experiment of Yolo V3 and Yolo V3 SPP with different weights. Experimental results show that the
mean average precision (mAP) of Yolo V3 SPP is better than other models.

Based on the previous research work we found that nobody focused on the significant of scale
parameter of Yolo in the configuration file. In our research will concentrate more on the importance of
scale parameters in the Yolo V3 and Yolo V3 SPP configuration file.

Yolo V3 was introduced the first time by Redmon et al. [32,33] in 2016. A single neural network
interprets the entire picture. Yolo V3 separated the image into grid cells and provides boundary
boxes and possibilities for each grid cell [34]. Yolo V3 makes a prediction using multiscale fusion.
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The 416 × 416 input image size is integrated with three scales using up-sample and FPN fusion [35].
The three scales obtained are 13 × 13, 26 × 26, and 52 × 52, respectively [36].

Yolo V3 consists of 53 layers with deep characteristics and was built on Darknet-53. Yolo V3 has
demonstrated better than ResNet-101, ResNet-152, or Darknet-19 [33]. Figure 1 exhibits the construction
of Darknet-53. The input image is divided by the Yolo V3 algorithm into S×S grids. If the central point
of the ground reality of the object decreases within the required grid, the grid can define the target.
Each grid outputs B bounding prediction boxes, including bounding box location data that consist of
coordinates of the middle point (x, y), width (w), height (h), and confidence prediction.
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The Yolo loss function of the boundary box consists of four sections [37], and the formula could
be seen on Equation (1) [38–40].

Loss = Coord_Err + BBox_Err + Category_Err + Con f _Err (1)

Further, Coord_Err is the loss of predicted central coordinate, and BBox_Err is the loss of width
and height of the prediction bounding box. Next, Category_Err is the loss of the predicted category,
and Con f_Err is the loss of the predicted confidence. The process of measurement is shown in
Equations (2)–(5).

Coord_Err = λcoord

s2∑
i=0

B∑
j=0

Iobj
i j

[
(xi − x̂i)

2 + (yi − ŷi)
2
]

(2)
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BBox_Err = λcoord

s2∑
i=0

B∑
j=0

Iobj
i j

(√wi −
√

ŵi
)2
+

(√
hi −

√
ĥi

)2 (3)

Category_Err =
s2∑

i=0

Iobj
i j

∑
cεclass

(pi(c), p̂i(c))
2 (4)

Con f _Err =
s2∑

i=0

B∑
j=0

Iobj
i j (ci − ĉi)

2 + λnoobj

s2∑
i=0

B∑
j=0

Iobj
i j (ci − ĉi)

2 (5)

Moreover, (xi,yi) is the position of the prediction bounding box. (x̂i,ŷi) is the actual position
obtained from the training data. wi and hi are the width and height of the predicted bounding box,
respectively. λcoord is to control the prediction position loss of the prediction box. λnoobj is to control
the no target loss in a single grid. ci is the confidence score. ĉi i is the intersection part of the predicted
bounding box and the actual box.

Further, Yolo V3 employs the sigmoid function as a tool for predicting the activation function.
The sigmoid function solves the problem efficiently, while the equal target has two labels [39,41,42].

2.2. Spatial Pyramid Pooling (SPP) Network

Spatial Pyramid Pooling (SPP) [25,26] is one of computer vision’s most popular approaches.
Spatial Pyramid Pooling (SPM) is commonly referred to as SPP and Bag-of-Words (BOW) model
development [43]. SPP [24] belongs to an essential feature of leading and competitive classification
schemes [44–46] and detection [47] before the current rise of CNN.

Some advantages of SPP are given in [27]. First, the SPP provides a fixed output despite input
dimensions, whereas sliding window is not possible in preceding systems [48]. Second, SPP applies
multi-level room cabinets and the pooling of sliding windows requires just one window. Since input
dimensions are versatile, SPP can incorporate functionality obtained at variable dimensions. Figure 2
indicates a network configuration for an SPP network. This work placed the SPP block in the
configuration file of Yolo V3. In the SPP layer, the final convolutional feature maps’ outcome is
classified into spatial bins in proportional sizes. The number of bins is fixed despite the dimensions of
the image.
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2.3. Yolo V3 SPP Architecture

This segment outlines the proposed technique for detecting and identifying road signs from Taiwan
using Yolo V3 with SPP. Figure 3 describes the Yolo V3 SPP architecture. Object detection using Yolo V3
SPP proceeds as follows. The initial stage separates the image input into S×S grids. Each grid generates
K bounders according to the calculation of the anchor boxes. The framework then implements the

CNN for extracting all object characteristics from the picture and forecast the b =
[
bx, by, bw, bh, bc

]T

and the class = [class1, class2, . . . ., classc]
T. Afterward, it compares the maximum confidence IoUtruth

pred

of the K bounding boxes with the threshold IoUthres. If IoUtruth
pred > IoUthres, meaning that the bounding
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box contains the object. Otherwise, the bounding box does not contain the object. Next, the system then
selects the category with the highest predicted probability as the object category. Finally, for performing
a maximum local exploration, for suppressing redundant boxes, output, and displaying the results of
object detection, this experiment employs Non-Maximum Suppression (NMS).

In the research, Yolo V3 SPP uses convolutional layer sampling to achieve the max-pool layers’
best possible functionality. Yolo V3 SPP employs three scales of the max pool for all images using [route].
Various layers -2, -4 and -1, -3, -5, -6 in conv5 were used in each [route]. Moreover, conv5 is the final layer
of convolution and 256 is the conv5 layer filter number. These created feature maps, called fixed-length
representations, are then collected (see Figure 2). This experiment compares the performance of Yolo
V3 and Yolo V3 SPP at different scales. SoftMax classification layers and boundary box regression
are initialized in the Gaussian zero-mean distributions with standard deviations of 0.01 and 0.001.
The global learning rate is 0.001, momentum is 0.9, and the parameter decay is 0.0005. The learning
rate parameter determines how vigorously the latest batch of data can be used for learning.
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The work arranges six models, Yolo V3 1, Yolo V3 2, Yolo V3 3, Yolo V3 SPP 1, Yolo V3 SPP 2, Yolo
V3 SPP 3. This work uses different scales of (0.1, 0.1), (0.2, 0.2), and (0.3, 0.3) for each Yolo V3 and Yolo
V3 SPP. An n-classes object detector should run the training for at most limited 2000 × n batches. In the
experiment, four classes have 8000 iterations for maximum batches. It means that the training will be
processed until 8000 iterations. For example, the scale = 0.1, 0.1 and the current iteration number are
10,000 (0.001) batches so the system can calculate the current learning rate = learning rate × scales [0] ×
scales [1] = 0.001 × 0.1 × 0.1 = 0.00001.

2.4. Prohibitory Sign and Object Detection

The Yolo V3 system is used to detect and identify for prohibitory signs in Taiwan in one step.
The system starts by making a boundary box for each sign with the BBox label tool for training [49].
The method of labeling is done with four type marks. More than one bounding box can host an
image. In this stage, one class detector model is used, where a symbol is a single model of training.
Object coordinates in the form (x1, y1, x2, y2) are the bounding box marking tool’s output value.
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This output is not in the form of the Yolo object coordinates format. Yolo’s input value is the central point
and the width and height of the object (x, y, w, h). Therefore, the system must transform the bounding box
coordinate into the input model for Yolo. The conversion process is shown in Equations (6)–(9).

dw = 1/w , x =
(x1 + x2)

2
× dw , dh = 1/h (6)

y =
(y1 + y2)

2
× dh (7)

w = (x2 − x1) × dw (8)

h = (y2 − y1) × dh (9)

Further, w is the image width, dw is the absolute image width, h is the image height, and dh is the
total image height. Float values of the image width and height (dw, dh) can also be similar to 0.0 to 1.0.

3. Results

3.1. Dataset

In this work, we collected and processed traffic sign images manually from CarMax dashboard
camera footage while driving on a sunny day and at night around Taichung City. The camera
images, from which the traffic sign images are extracted, have a resolution of 1920 × 1080 pixels.
We also used the Oppo F5 mobile phone camera to collect the traffic sign images with a resolution
of 1080 × 2160 pixels. The traffic sign images are cropped and annotated before use for training.
Furthermore, the concentration is on the prohibition sign, including 235 no entry images, 250 no
stopping images, 185-speed limit images, and 230 no parking images. The data collection is separated
into 70 percent for training and 30 percent for testing [28]. Further, 900 images are shown in Table 1.
in this work.

Table 1. Taiwan Prohibitory Signs.

ID Name Sign

P1 No entry
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class mark are four points of the position coordinate system. Then, before training, the system will 
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Data augmentation is a significant element of the advancement of deep learning models. While 
the data augmentation has been shown to enhance the classification of images significantly, object 
identification has not been extensively studied [50]. Additionally, data augmentation is a famous 
method widely employed to improve the training process of CNN. The system is applied pre-
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transform a label to a Yolo format label. This work applied another method, the Yolo Annotation 
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a maximum rotation of 20 degrees for each image. Next, the zoom range was 10 percent and 0.2 for 
width shift and height shift range. Further, the traffic signs are identified by using a bounding box 
labeling tool [49] for providing a coordinate position to the object. The outcomes of the tools and the 
class mark are four points of the position coordinate system. Then, before training, the system will 
transform a label to a Yolo format label. This work applied another method, the Yolo Annotation 
framework in Python programming language [51], to convert the values to a format that can be read 
by the Yolo V3 training algorithm. The research experiment is carried out on a computer-based on 

3.2. Training Results

Data augmentation is a significant element of the advancement of deep learning models.
While the data augmentation has been shown to enhance the classification of images significantly,
object identification has not been extensively studied [50]. Additionally, data augmentation is a
famous method widely employed to improve the training process of CNN. The system is applied
pre-processing steps, including data augmentation in the training stage. Therefore, during data
augmentation, the system performs several operations, such as rotation with a probability of 0.5 and
a maximum rotation of 20 degrees for each image. Next, the zoom range was 10 percent and 0.2 for
width shift and height shift range. Further, the traffic signs are identified by using a bounding box
labeling tool [49] for providing a coordinate position to the object. The outcomes of the tools and the
class mark are four points of the position coordinate system. Then, before training, the system will
transform a label to a Yolo format label. This work applied another method, the Yolo Annotation
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framework in Python programming language [51], to convert the values to a format that can be read
by the Yolo V3 training algorithm. The research experiment is carried out on a computer-based on the
Python environment, which applies a Nvidia RTX2080Ti GPU (11GB memory) and an i7 CPU with
16 GB DDR2 memory.

Figure 4 represents the training process’s reliability using Yolo V3 1 (a) and Yolo V3 SPP 1 (b).
The work uses 8000 iterations, policy = steps, and steps = 6400, 7200. Since the start has zero knowledge,
the learning rate must be high at the beginning of the training phase. However, with the volume of
data available in the neural network, the weights tend to adjust less vigorously. The learning rate must
be lowered over time. Furthermore, this reduction in learning rates in the configuration file is made by
stating first that the learning rate decreases step by step. Moreover, the learning rate begins at 0.001
and stays constant for 6400 iterations. It multiplies through percentages to get the latest standard of
learning. Figure 4 shows that Yolo V3 SPP 1 is more stable than Yolo V3 1 through the training process.
The detailed outcomes of the training performance are demonstrated in Table 2.

Table 2. Training loss value, mAP, and AP performance for all classes.

Model Loss
Value ID AP

(%) TP FP Precision Recall F1-score IoU
(%)

mAP@0.50
(%)

Yolo V3 1 0.0141

P1 97.5 77 0

0.99 0.99 0.99 82.19 98.73
P2 98.8 83 0
P3 99.9 62 1
P4 98.74 76 2

Yolo V3 2 0.015

P1 97.5 78 0

0.98 0.99 0.98 83.09 98.84
P2 100 83 0
P3 99.85 61 3
P4 98.01 75 3

Yolo V3 3 0.0129

P1 97.5 77 0

0.98 0.97 0.97 84.68 98.49
P2 98.8 83 0
P3 99.92 59 0
P4 97.75 72 5

Average 0.014 0.98 0.98 0.98 83.32 98.68

Yolo V3
SPP 1

0.0125

P1 97.5 78 0

0.99 0.99 0.99 90.09 98.88
P2 98.8 83 0
P3 99.9 62 1
P4 98.94 79 3

Yolo V3
SPP 2

0.0144

P1 97.43 78 0

0.99 0.99 0.99 89.4 99.12
P2 100 83 0
P3 100 62 1
P4 99.05 76 2

Yolo V3
SPP 3

0.0133

P1 97.5 78 0

0.99 0.99 0.99 88.54 98.93
P2 100 83 0
P3 100 62 0
P4 98.23 76 2

Average 0.0134 0.99 0.99 0.99 89.34 98.97
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Table 2 displays the loss value of training, mAP, and AP results for all classes after 8000 cycles of
training. The average training validity failure is about 0.013 for both levels. Therefore, the training
model has extremely reliably identified objects. After 7200 iterations, the training model converges
and stays consistent for the rest of the training. The validation loss for Yolo V3 1 is 0.0141, Yolo V3 2 is
0.015, Yolo V3 3 is 0.0129, Yolo V3 SPP 1 is 0.0125, for Yolo V3 SPP 2, 0.0144, and Yolo V3 SPP 3, 0.0133.
The mean average accuracy (mAP) is averaged over the p(o) accuracy by Equation (10) [52,53].

mAP =

∫ 1

0
p(0)do (10)

Furthermore, p(o) is the precision of the Taiwan prohibitory sign detection. Precision and Recall
are illustrated by Equations (12) and (13), [40,54]:

Precision (P) =
True Positive (TP)

True Positive (TP) + False Positive (FP)
(11)

Recall (R) =
True Positive (TP)

True Positive (TP) + False Negative (FN)
(12)

Moreover, TP represents True positives. FP is a positive sample of the misclassified. FN stands for
a negative sample of the misclassified. The value of IoU is the relationship between the result of the
detection, the reality of the ground truth, and its relation [55]. IoU measures the projection ratio and
shown in Equation (13) [1,56,57].

IoU =
Areapred ∩ Areagt

Areapred ∪ Areagt
(13)

In Table 2, Yolo V3 SPP (98.88%, 99.12%, 98.93%) obtains a maximum mAP better than that of
Yolo V3 (98.73%, 98.84%, 98.49%). Furthermore, Yolo V3 loaded 107 layers during the mAP calculation
with BFLOPS rates of 65,312, and Yolo V3 SPP loaded 114 layers with BFLOPS rates of 65,69. SPP can
enhance the overall BFLOFS 0.378, making Yolo V3 SPP more stable and precise.

4. Discussion

4.1. Testing Accuracy

Table 3 demonstrates the test accuracy for the prohibition signs in Taiwan. In comparison, Class
P2 displays the highest mean precision accuracy, around 96.29%, supported by Class P1 at 92.45%,
Class P4 at 91.69%, and Class P3 at 90.70%. Yolo V3 SPP 3 obtained the highest accuracy, around
95.53%, of any of the models tested, followed by Yolo V3 SPP 1 at 93.59%. Furthermore, Class P2 has
the highest number of training images among other classes, amounting to 250, so the accuracy result
for this class is the highest.

4.2. Testing Results

In this section, the experiments use random twenty prohibitive sign images of varying sizes
and environments for model checking. The accuracy and time measurements of the experiments are
presented in Table 4.

Generally, Yolo V3 SPP demonstrates higher precision than Yolo V3. The most leading average
accuracy is Yolo V3 SPP 1 at 99.1%, followed by Yolo V3 SPP 3 at 93.33%. The trend is that the accuracy
of Yolo V3 SPP grows along with the detection time. This indicates that Yolo V3 SPP needs more time
to detect the sign. For example, for Yolo V3 SPP 1, the average time of detection is 0.458 s, and Yolo V3
1 needs 0.448 s. Further, a different scale affects the learning rate and detection time.
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Table 3. Testing accuracy for all classes.

Model Scale
Accuracy

P1 P2 P3 P4 Average

Yolo V3 1 0.1, 0.1 0.934 0.914 0.900 0.935 0.921
Yolo V3 2 0.2, 0.2 0.888 0.968 0.897 0.882 0.909
Yolo V3 3 0.3, 0.3 0.924 0.987 0.911 0.913 0.934

Yolo V3 SPP 1 0.1, 0.1 0.949 0.943 0.909 0.941 0.935
Yolo V3 SPP 2 0.2, 0.2 0.878 0.976 0.904 0.886 0.911
Yolo V3 SPP 3 0.3, 0.3 0.971 0.987 0.918 0.942 0.955

Average 0.924 0.962 0.907 0.916

Table 4. The testing performance of the experiments.

No
Yolo V3 1 Yolo V3 2 Yolo V3 3 Yolo V3

SPP 1
Yolo V3
SPP 2

Yolo V3
SPP 3

Acc
(%)

Time
(s)

Acc
(%)

Time
(s)

Acc
(%)

Time
(s)

Acc
(%)

Time
(s)

Acc
(%)

Time
(s)

Acc
(%)

Time
(s)

1 0.971 0.446 0.992 0.443 0.961 0.452 0.993 0.456 0.979 0.458 0.998 0.452
2 0.825 0.456 0.965 0.441 0.695 0.458 0.992 0.453 0.960 0.452 0.948 0.458
3 0.997 0.450 0.999 0.433 0.994 0.442 1.000 0.457 0.992 0.443 1.000 0.498
4 0.996 0.464 0.990 0.449 0.980 0.446 0.999 0.457 0.934 0.480 1.000 0.454
5 0.932 0.438 0.990 0.446 0.955 0.441 0.980 0.462 0.970 0.455 0.984 0.462
6 0.967 0.456 0.926 0.449 0.900 0.439 0.973 0.447 0.889 0.448 0.903 0.454
7 0.903 0.455 0.881 0.448 0.910 0.443 0.973 0.457 0.943 0.450 0.972 0.462
8 0.845 0.449 0.880 0.461 0.599 0.456 0.994 0.451 0.932 0.454 0.991 0.462
9 0.949 0.446 0.986 0.463 0.822 0.440 0.992 0.465 0.978 0.458 0.999 0.461

10 0.869 0.442 0.967 0.441 0.867 0.455 0.991 0.452 0.960 0.445 0.999 0.463
11 0.990 0.452 0.960 0.445 0.960 0.457 0.989 0.456 0.909 0.459 0.992 0.444
12 0.965 0.451 0.638 0.470 0.885 0.461 0.998 0.470 0.987 0.456 0.987 0.447
13 1.000 0.449 1.000 0.448 1.000 0.455 1.000 0.463 0.999 0.450 0.999 0.452
14 0.884 0.433 0.871 0.446 0.573 0.449 0.988 0.472 0.933 0.461 0.933 0.447
15 0.907 0.444 0.980 0.438 0.787 0.455 0.983 0.468 0.908 0.477 0.908 0.445
16 0.907 0.441 0.901 0.438 0.981 0.436 0.994 0.439 0.748 0.444 0.748 0.451
17 0.991 0.439 0.992 0.433 0.534 0.438 0.997 0.446 0.989 0.441 0.989 0.442
18 0.953 0.456 0.867 0.450 0.905 0.451 0.998 0.457 0.952 0.476 0.952 0.461
19 0.891 0.446 0.554 0.437 0.814 0.440 0.994 0.463 0.594 0.459 0.594 0.453
20 0.898 0.456 0.806 0.451 0.857 0.414 0.987 0.464 0.751 0.452 0.751 0.436

Average 0.932 0.448 0.907 0.447 0.849 0.446 0.991 0.458 0.915 0.456 0.933 0.455

The average detection time for Yolo V3 SPP 1 using scale = 0.1, 0.1 is 0.0458, falling 0.002 in Yolo
V3 SPP 2 (scale = 0.2, 0.2) to 0.0456, while for Yolo V3 SPP 3 (scale = 0.3,0.3) detection time is 0.0455 s.
These results indicate that if the system uses a large number for scale, the detection time will be faster.
Hence, the accuracy decreases compare to the original scale in Yolo V3. Similar to this, the accuracy
decreases in Yolo V3 SPP adopting a different scale. The experiment results thus show that Yolo V3 SPP
is more robust than Yolo V3. In this work, we use three different scales and provided a deep analysis
for Yolo V3 and Yolo V3 SPP. Based on this experiment result, we can summarize as follows. (1) If the
system wants the highest accuracy, we can use the original scale = 0.1, 0.1. (2) The system will use
scale = 0.3, 0.3 if we want to increase the detection time more quickly.

The previous research [28,31,52] only focus on using the basic configuration of Yolo V3. They use
the best weight provided from darknet with the scale = 0.1, 0.1. They optimize for accuracy but not
for detection time. SPP contains more layers than the original method, which is why SPP takes more
time for processing time. In our research, we provide a way to reduce detection time by increasing the
scale parameter in the Yolo V3 and Yolo SPP configuration files. Our research proves that by using
a scale = 0.3, 0.3 the detection time is faster than using a scale = 0.1, 0.1.
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Sub-sampling and max-pooling have significant benefits. Convolution subsampling can be
stronger reversed in subsequent sampling layers. Max pooling works slightly for deleting certain
maximum frequency noise from the target image by choosing only maximum values from adjacent
areas. By merging them, SPP seems to utilize both benefits to improve Yolo V3’s backbone network.

Furthermore, Figure 5a–c gives the test results for the Yolo V3 model with an average accuracy of
around 95.92% and a detection time of 0.4415 s. Moreover, Figure 5d–f shows the test results for Yolo
V3 SPP using the similar image. The average accuracy is 97.27%, and the detection time is 0.4548 s.
The system can identify the prohibitory sign class P3 well. In Figure 6a–c, Yolo V3 failed to detect all
class P1 signs in the image, detecting only a single sign. However, Yolo V3 SPP 1 can detect three signs
well in Figure 6d, and Yolo V3 SPP 2 can detect two signs in Figure 6e,f.
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system characteristics. The experimental findings indicate that SPP will increase the performance
of Taiwan’s prohibitory signals identification and recognition. Furthermore, the accuracy decreases
compare to the original scale in Yolo V3. However, the accuracy increases in Yolo V3 SPP adopting
different scales. Moreover, comparison mAP of all models revealing Yolo V3 SPP outperforms Yolo V3.
Nevertheless, mAP findings reveal that the Yolo V3 SPP model performs better over various scales
than Yolo V3. Further, the scale will affect the learning rate and detection time. If we use a significant
number for scale, the detection time will decrease, however, the accuracy will fall. We can conclude
from the experiment result: (1) the system can be applied the original scale = 0.1, 0.1 if we want the best
precision. (2) If we’re going to increase the detection time more quickly, scale = 0.3. 0.3 can be used.

In future studies, we will enlarge the dataset focus from Taiwan prohibitory signs to all Taiwan
traffic signs with the different condition including occlusion, multiple view, illumination, color variation,
multiple weather conditions including heavy rain and snow. Further, future studies can extend the
data set over the generative adversarial network (GAN) to create a synthetic image and obtain better
results. Furthermore, we will test different scales and learning rates in the Yolo V3 SPP configuration
file and the newest Yolo V4.
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