
Journal of Computational and Applied Mathematics 236 (2012) 3696–3703

Contents lists available at SciVerse ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Computing eigenvectors of block tridiagonal matrices based on twisted
block factorizations
Gerhard König a, Michael Moldaschl b, Wilfried N. Gansterer b,∗
a University of Vienna, Department of Computational Biological Chemistry, Austria
b University of Vienna, Research Group Theory and Applications of Algorithms, Austria

a r t i c l e i n f o

Article history:
Received 18 September 2010
Received in revised form 1 July 2011

Keywords:
Block tridiagonal matrix
Eigenvector computation
Twisted factorization
Twisted block factorization
Inverse iteration

a b s t r a c t

New methods for computing eigenvectors of symmetric block tridiagonal matrices based
on twisted block factorizations are explored. The relation of the block where two twisted
factorizations meet to an eigenvector of the block tridiagonal matrix is reviewed. Based
on this, several new algorithmic strategies for computing the eigenvector efficiently are
motivated and designed. The underlying idea is to determine a good starting vector for an
inverse iteration process from the twisted block factorizations such that a good eigenvector
approximation can be computed with a single step of inverse iteration.

An implementation of the new algorithms is presented and experimental data
for runtime behaviour and numerical accuracy based on a wide range of test cases
are summarized. Compared with competing state-of-the-art tridiagonalization-based
methods, the algorithms proposed here show strong reductions in runtime, especially for
very large matrices and/or small bandwidths. The residuals of the computed eigenvectors
are in general comparable with state-of-the-art methods. In some cases, especially for
strongly clustered eigenvalues, a loss in orthogonality of some eigenvectors is observed.
This is not surprising, and future workwill focus on investigating ways for improving these
cases.

© 2011 Elsevier B.V.

1. Introduction

Block tridiagonal and banded matrices arise in many situations, for example, in the solution of differential equations
via finite difference methods or in reduction processes in the context of eigenvalue computations. In the latter case,
block tridiagonal matrices can be the intermediate result of a preprocessing step for computing spectral information of
general dense matrices, resulting, for example, from a block tridiagonalization process [1] or from a bandwidth reduction
process [2,3]. Most existing algorithms for computing spectral information of a band matrix first tridiagonalize the matrix,
since many methods are known for efficiently computing eigenvalues and eigenvectors of a tridiagonal matrix. However,
the tridiagonalization process tends to dominate the computational cost and has important disadvantages in terms of
data locality which make it memory-bound [4]. This motivates our attempt in computing the eigenvectors of a band or
block tridiagonal matrix directly (without tridiagonalization). One approach for doing this is the block tridiagonal divide-
and-conquer (BD and C) method [5,6], which efficiently approximates eigenvalues and eigenvectors of a symmetric block
tridiagonal matrix without tridiagonalizing it. However, the eigenvector accumulation in the divide-and-conquer process
can become the main performance limiting factor of the BD and C method, in particular, in cases where reduced accuracy
approximations (with respect to the highest possible accuracy determined by the problem instance and its condition as well

∗ Corresponding author.
E-mail addresses: gerhard@mdy.univie.ac.at (G. König), a0607892@unet.univie.ac.at (M. Moldaschl), wilfried.gansterer@univie.ac.at (W.N. Gansterer).

0377-0427 © 2011 Elsevier B.V.
doi:10.1016/j.cam.2011.07.010

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://dx.doi.org/10.1016/j.cam.2011.07.010
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:gerhard@mdy.univie.ac.at
mailto:a0607892@unet.univie.ac.at
mailto:wilfried.gansterer@univie.ac.at
http://dx.doi.org/10.1016/j.cam.2011.07.010
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

G. König et al. / Journal of Computational and Applied Mathematics 236 (2012) 3696–3703 3697

as by the given floating-point arithmetic) are not sufficient [6]. This motivates efforts in investigating efficient alternatives
for directly computing eigenvectors of a symmetric block tridiagonal matrix (without reduction to tridiagonal form), given
approximations of the corresponding eigenvalues.

We represent a generic block tridiagonal matrixW (p) as

W (p) :=

B1 C1
A2 B2 C2

. . .
. . .

. . .

Ap−1 Bp−1 Cp−1
Ap Bp

 ∈ Rn×n, (1)

where Bi ∈ Rbi×bi for i = 1, . . . , p. The block sizes bi determine size and shape of the p − 1 subdiagonal blocks
Ai ∈ Rbi×bi−1 (i = 2, . . . , p) and of the p − 1 superdiagonal blocks Ci ∈ Rbi×bi+1 (i = 1, . . . , p − 1). According to this
definition, W (p) is in general unsymmetric, but it has identical lower and upper bandwidths. Note that band structure can
be considered a special case of block tridiagonal structure since any bandmatrix with identical lower and upper bandwidths
has the general form (1) with upper triangular Ai and lower triangular Ci.

In this paper, we consider the task of computing eigenvectors of matrices of the form (1). We focus on symmetric W (p)
where Bi = B⊤

i for i = 1, . . . , p, and Ci = A⊤

i+1 for i = 1, . . . , p − 1. The approach pursued is based on utilizing twisted
block factorizations, blocked generalizations of twisted factorizations of tridiagonal matrices (see, for example, [7]) in order
to represent shiftedW (p) as a product of three matrices (two block tridiagonals with identities along the diagonal and one
block diagonal).

First, we briefly review an algorithm for efficiently computing twisted block factorizations of W (p) which we have
proposed earlier [8]. Based on these factorizations, we present and experimentally evaluate an algorithm for computing an
eigenvector ofW (p), given an approximation of the corresponding eigenvalue. The underlying idea is motivated by central
components of the MRRR algorithm for computing eigenvectors of a symmetric tridiagonal matrix summarized in [9]. It
may not be possible to directly generalize all aspects from the tridiagonal to the block tridiagonal case, but the insights
summarized in this paper illustrate that it is worthwhile to pursue an analogous approach for the block tridiagonal case.

The central questions addressed in this paper are (i) how to select a single twisted block factorization of shifted W (p)
among all possible ones as the basis for an inverse iteration process, (ii) how to determine a good starting vector for this
process, (iii) how the computational efficiency of this approach depends on central problem parameters (such as block
sizes, etc.), and (iv) how competitive it is compared to existing approaches. We analytically motivate and compare several
algorithmic variants and experimentally study their numerical accuracy as well as their computational performance.

1.1. Related work

Most of the relevant existing work focussed on the computation of eigenvectors of tridiagonal matrices. The highly
accurate computation of the eigenvalues of a symmetric definite tridiagonal matrix [10,11] is an important building block
for the development of very efficient methods for the calculation of eigenvectors of such matrices. Parlett and Dhillon [7]
suggested theuse of twisted factorizations of tridiagonalmatrices for determining a good starting vector for inverse iteration.
The underlying idea is that the position of the largest component of the eigenvector sought is associated with the minimal
diagonal element of the twisted factorizations. The proper choice of the starting vector based on twisted factorizations
leads to a stable and rapidly converging inverse iteration process. A single step of inverse iteration can be sufficient without
requiring explicit reorthogonalization of the computed eigenvector [9,11,12,7,13–15].

So far, relatively little is known about how well such strategies generalize to banded or block tridiagonal matrices.
Although Parlett and Dhillon [7] briefly mentioned a blocked extension of the tridiagonal case and also suggested a starting
vector for the resulting inverse iteration process, they neither investigated algorithmic details nor evaluated this approach
quantitatively. More recently, Vömel and Slemons [16] theoretically discussed twisted factorizations of banded or block-
tridiagonal matrices. They gave a proof of the existence of two twisted factorizations of banded matrices by using a double
factorization of the twisted block. They also summarized the connections to the inverse of the matrix and mentioned the
potential use of their twisted factorizations for an inverse iteration process on band matrices—however, again without
specifying or evaluating a concrete algorithm.

Vömel and Slemons focussed on non-blocked twisted factorizations of a band matrix. When pivoting is introduced for
enhancing numerical stability, their approach does in general not preserve block tridiagonal or banded structure due to fill-
in. In order to address both aspects—numerical stability and preservation of block tridiagonal structure—we utilize twisted
block factorizations of W (p) as presented in [8]. Our approach is related to the twisted block factorizations indicated in [7],
but beyond that we integrate localized pivoting within blocks in the factorization process without causing fill-in.

1.2. Contributions

The approach investigated in this paper comprises three algorithmic components: (i) efficient computation of twisted
block factorizations ofW (p), (ii) identification of a good starting vector for iterative computation of the desired eigenvector,

3698 G. König et al. / Journal of Computational and Applied Mathematics 236 (2012) 3696–3703

Fig. 1. Inverse iteration process.

and (iii) an efficient inverse iteration process with this starting vector. We have already discussed the first component
earlier [8]. In this paper, we work on new aspects in the second and the third component.

More specifically, in this paper we investigate the following aspects beyond [8]. We motivate and investigate two new
strategies (minsvd0 and minsvd2) for determining a good starting vector for the inverse iteration process. We discuss how
the inverse iteration process can be performed efficiently for the specific matrix structures arising. We compare previously
mentioned and newly developed starting vector selection strategies in terms of numerical properties and in terms of
computational performance. Last, but not least, so far no experimental data about the applicability and competitiveness of
eigenvector computations for block tridiagonalmatrices based on twisted block factorizations can be found in the literature.
We fully specify, implement and evaluate a complete algorithm for this task. In addition to our theoretical and analytical
investigations we also summarize the results of comprehensive experimental evaluations of different algorithmic variants
based on our implementation. Considering a wide range of test matrices, we clearly illustrate for which problem settings
our new methods are competitive compared to existing standard approaches.
Synopsis. In Section 2, the process of efficiently computing twisted block factorizations of W (p) is briefly reviewed, since
it is one of three main components of the algorithms investigated. The identification of a well suited starting vector for the
eigenvector computation is discussed in Section 3. An efficient inverse iteration process using this starting vector is the topic
of Section 4. Comprehensive experimental performance evaluations based on an efficient implementation of these concepts
are summarized in Section 5. Finally, conclusions and suggestions for future work are given in Section 6.

2. Component I: twisted block factorizations

In analogy to the approach pursued in the MRRR method for tridiagonal matrices [9], the first step of our approach is
based on a factorization of block tridiagonalW (p) into the product

W (p) = PLU (2)

with a permutation matrix P and block tridiagonals L and U . We have presented a method for computing various
decompositions of this form based on twisted block LU factorizations with local pivoting in [8]. We first briefly summarize
this method before we move on to the subsequent components of our approach in the next sections.

The twisted block LU factorizations of W (p) presented in [8] combine forward with backward block elimination steps.
Assuming that all factorizations exist, we use the notation TF(f) (f = 1, 2, . . . , p) for a twisted block factorization with
f − 1 forward p − f backward elimination steps. We denote the diagonal block at position f , where forward and backward
elimination steps meet, as ‘‘twisted block’’. As shown in [8], the resulting factors L and U are both block tridiagonals, but
only p − f nonzero blocks appear above the block diagonal in L and below the main diagonal in U . For example, TF(3) of
W (4) produces

W (4) =

P+

1
P+

2
P3

P−

4

 L+

1
M+

2 L+

2
M+

3 L3 M−

3
L−

4

U+

1 N+

1
U+

2 N+

2
U3
N−

4 U−

4

 . (3)

Superscripts are used to distinguish blocks computed in the forward direction (‘‘+’’) and blocks constructed in the backward
direction (‘‘−’’).

3. Component II: identification of a starting vector

Assuming that we are given an eigenvalue λ of W (p) (or an approximation λ̃ thereof, which will be called ‘‘shift’’ in the
following), the twisted block factorizations ofW (p)− λ̃I can be computed as reviewed in Section 2. Based on these, the next
task is to determine a proper starting vector ṽ(0) for an inverse iteration process (cf. Fig. 1).

So far, we have not specified, which one of the p possible block twisted factorizations to use in the inverse iteration
process. The choice of one of these factorizations also determines the starting vector ṽ(0). In fact, we will utilize the
information provided by all the block twisted factorizations of W (p) − λ̃I for determining a suitable starting vector ṽ(0).
The idea which motivates this procedure is the connection between the twisted factorizations and the inverse of a matrix.

G. König et al. / Journal of Computational and Applied Mathematics 236 (2012) 3696–3703 3699

We review this connection in the following. For a properly chosen starting vector ṽ(0) a few steps of the inverse iteration
process should suffice for determining a good approximation of the eigenvector v.

3.1. Analytical motivation for eigenvector approximation

In the following, we first review basic ideas given in [7]. Based on this, we then formulate various concrete algorithmic
strategies for determining an eigenvector of W (p) − λ̃I in Section 3.2. In order to keep the notation simple, we assume in
the following that all block sizes are equal, i.e., bi = b for all i = 1, 2, . . . , p.

For each possible blocked twisted factorization TF(k), 1 ≤ k ≤ p, define Γk ∈ Rb×b and

Z :=

Z+

Ib
Z−

 ∈ Rn×b

with Z+
∈ R(k−1)b×b, Z−

∈ R(p−k)b×b such that

W (p) − λ̃I

Z = PLU

Z+

I
Z−

 =

 0
Γk
0

. (4)

Intuitively, if ∥Γk∥ is small, Z contains good approximations to eigenvectors corresponding to λ. By omitting the kth block
row in Eq. (4), two independent homogeneous systems remain. Denoting with the arguments i1 : i2, i3 : i4 the respective
submatrices of P, L andU in Eq. (2) which contain block rows i1 to i2 and block columns i3 to i4, and introducing the variables
Pu

:= P(1 : k − 1, 1 : k − 1), Lu := L(1 : k − 1, 1 : k − 1),Uu
:= U(1 : k − 1, 1 : k), P l

:= P(k + 1 : p, k + 1 : p), Ll :=

L(k + 1 : p, k + 1 : p),U l
:= U(k + 1 : p, k : p) for the respective parts of P, L and U , these two homogeneous systems can

be written as

PuLuUu

Z+

I

= 0 (5)

P lLlU l

I
Z−

= 0. (6)

Assuming that the LU factorization exists, the (k−1)b×(k−1)bmatrices Pu and Lu aswell as the (p−k)b×(p−k)bmatrices P l

and Ll must be invertible, leaving uswith two equationswith the systemmatricesUu andU l. The special structures ofUu and
U l allow for computing Z+ using a blockwise backward substitution process and Z− using a blockwise forward substitution
process.

Using Eq. (3), we again illustrate this for the exampleW (4) and TF(3): Eq. (5) translates into
U+

1 N+

1 0
0 U+

2 N+

2

Z1
Z2
I

=

0
0

, (7)

from which Z2 and Z1 can be determined using blockwise backward substitution, and Eq. (6) translates into
N−

4 U−

4

 I
Z4

= 0, (8)

from which Z4 can be determined.
Based on Eq. (1), the omitted kth block row in Eq. (4) yields the following equation

AkZk−1 + Bk + CkZk+1 = Γk.

We can now substitute Zk−1 and Zk+1 computed from Eqs. (5) and (6) (compare Eqs. (7) and (8)) yielding

− Ak

U+

k−1

−1 N+

k−1 + Bk − Ck

U−

k+1

−1 N−

k+1 = Γk. (9)

Recalling from Eq. (3) that PkM+

k = Ak

U+

k−1

−1 and that PkM−

k = Ck

U−

k+1

−1, we obtain

Γk = −PkM+

k N+

k−1 + Bk − PkM−

k N−

k+1. (10)

According to Eq. (3) this means that

Γk = PkLkUk. (11)

3700 G. König et al. / Journal of Computational and Applied Mathematics 236 (2012) 3696–3703

3.2. Strategies for starting vector selection

The relationships reviewed in Section 3.1 motivate various new strategies for determining the starting vector ṽ(0) for the
inverse iteration process based on the twisted block factorizations of W (p) − λ̃I . In this section, we present them, and in
Section 5 they are evaluated numerically.

As outlined in [7], ifΓ ∗ is theΓk with theminimal singular value over all singular values for all possible k and (σ ∗

min, u
∗, v∗)

is the corresponding minimal singular triplet, then according to Eq. (4)W (p) − λ̃I

Zv∗

2

= σ ∗

min. (12)

Consequently, if σ ∗

min is small enough, then Zv∗ is a good approximation to an eigenvector of W (p) corresponding to the
shift λ̃.
Strategies minsvd0, minsvd1, and minsvd2. In these strategies, which are motivated by Eq. (12), the selection of the starting
vector is based on the singular values of the subblocks of all twisted factorizations TF(f) ofW (p)− λ̃I . For strategyminsvd0,
the singular vector u∗ corresponding to the minimal singular value σ ∗

min of all matrices Γ
f
k (k = 1, . . . , p, f = 1, . . . , p,

cf. Eq. (11)) has to be computed. The elements of the starting vector ṽ(0) which are in the rows of Γ ∗ are set to u∗, all
the others to zero. Strategy minsvd1 (which is the only SVD-based strategy mentioned in [8]) is a computationally cheaper
approximation of minsvd0, because it does not require computing any singular vectors: motivated by the localized pivoting
done in each block in the twisted block factorization process, the position of the last row of the blockΓ ∗ defines the position
in ṽ(0) which is set to one, at all others ṽ(0) is set to zero. In both strategies minsvd0 and minsvd1, after determining ṽ(0)
one step of inverse iteration is performed for computing the eigenvector approximation ṽ(1) as summarized in Section 4.
Strategy minsvd2 is directly based on Eq. (12): it determines the matrix Z in Eq. (4) using the blockwise back- and forward
substitution processes sketched in Section 3.1, then computes the right singular vector v∗ of Γ ∗, and finally computes the
eigenvector approximation ṽ(1) := Zv∗.

In summary: for strategy minsvd1 we need to know σ ∗

min and its position, and we need to perform one step of inverse
iteration. For strategy minsvd0, we need to know σ ∗

min, its position and the corresponding singular vector u∗, and we also
need to perform one step of inverse iteration. For strategy minsvd2, we need to know the number of the block row of Γ ∗

and the singular vector v∗ corresponding to σ ∗

min. Then we need to compute the matrix Z and multiply it with v∗.
Strategy minsca. This strategy is a very coarse approximation, but significantly reduces the computational cost compared to
the minsvdx strategies, as it does not require the computation of any SVDs. Based on all twisted factorizationsW (p)− λ̃I =

P f LfU f the positionm of the row of the minimum diagonal entry |U f ∗
mm| over all U f defines the position of the starting vector

ṽ(0) which is set to one. The factorization TF(f ∗)which contains theminimum diagonal element |U f ∗
mm| is used for computing

this eigenvector approximation ṽ(1) as summarized in Section 4.
Strategy random. As a reference strategy, a starting vector with random entries uniformly distributed in [0, 1] has been used.

4. Component III: efficient inverse iteration

In this section, we investigate an inverse iteration process for approximating the eigenvector v of W (p) corresponding
to λ based on the starting vector which has been determined according to one of the strategies discussed in Section 3.

If |λ̃ − λ| is sufficiently smaller than |λ̃ − µ| for all eigenvalues µ ≠ λ and if the starting vector ṽ(0) contains a nonzero
component in the desired eigenvector v, the inverse iteration process depicted in Fig. 1 will produce an approximation ṽ for
the desired eigenvector v.

In general, a random starting vector ṽ(0) is considered appropriate [17]. However, as indicated in [7] and discussed in
detail in Section 3, it is possible to determine a better starting vector by using the twisted factorizations of shifted W (p).
Next, we discuss how to exploit the special block tridiagonal structure of the factors in the twisted block factorizations of
shiftedW (p) for efficiently solving the linear systems arising in Line 3. of Fig. 1.
Solution of a block tridiagonal linear system.

Given a twisted block factorization (2) ofW (p)− λ̃I , three steps are required for solving a linear systemwithW (p)− λ̃I:

a. Apply the inverse of the pivoting matrix P to the right hand side:

LUy(i+1) = P−1ṽ(i) =: c.

b. Solve Ly = c for y via a combined forward and back substitution.
c. Solve Uy(i+1) = y for y(i+1) via combined back and forward substitution.

In the following, the combined substitution processes are derived. Without loss of generality, as in Section 2 we use the
special case p = 4 and TF(3) for illustrating the concept. All vectors involved are partitioned into subvectors of length bi
corresponding to the blocks of the matrix and their indices correspond to the respective row indices of the matrix blocks.

G. König et al. / Journal of Computational and Applied Mathematics 236 (2012) 3696–3703 3701

Combined forward/back substitution on L. In the special case considered, Step b. in the solution process above has the following
form: L+

1
M+

2 L+

2
M+

3 L3 M−

3
L−

4

y1
y2
y3
y4

 =

c1
c2
c3
c4

 .

Since both y2 and y4 have to be known before we can solve for y3, it is necessary to start substituting at both ends, gradually
solving the equations towards the twisted block. Forward substitution is performedon the forward factorization partmarked
with the superscripts ‘‘+’’ by first solving L+

1 y1 = c1 for y1 and then L+

2 y2 = c2 − M+

2 y1 for y2. The next block is already the
twisted block where the forward and backward factorizations meet, thus y4 is required before we can proceed. In a back
substitution step on L, L−

4 y4 = c4 is solved for y4. Note that within the block, this actually involves a forward substitution
process, since L−

4 is lower triangular. Finally, in the block row of the twisted block we can solve L3y3 = c3 − M+

3 y2 − M−

3 y4
for y3.
Combined back/forward substitution on U . An analogous procedure can be applied to the matrix U for computing y(i+1). By
introducing x := y(i+1) in order to simplify notation and by partitioning x appropriately, Step c. in the solution process above
translates into solving the linear systemU+

1 N+

1
U+

2 N+

2
U3
N−

4 U−

4

x1
x2
x3
x4

 =

y1
y2
y3
y4

 .

In contrast to the combined forward/back substitution discussed before, this time the substitution process has to start at the
twisted block k (in our example, block number three) and proceeds towards the first and last block row of U , since xk has to
be known before the equations in block rows k − 1 and k + 1 can be solved. In our example TF(3) of W (4), the combined
back/forward substitution takes the following form. First, we solve U3x3 = y3 for x3 (note that this is a back substitution
process within the block U3). Then, x4 can be computed from the last block equation U−

4 x4 = y4 − N−

4 x3 and x2 from the
second block equation U+

2 x2 = y2 − N+

2 x3. Finally, x1 can be computed from the first block equation U+

1 x1 = y1 − N+

1 x2.

5. Experimental evaluation

In this section, we summarize extensive experimental evaluations of the five different strategies presented in Section 3.2
(minsvd0, minsvd1, minsvd2, minsca, random). The resulting algorithms for computing an eigenvector of W (p) are
compared in terms of runtime performance as well as in terms of the resulting quality of the eigenvector approximation.
For this purpose, we have implemented the methods discussed in this paper in Lapack-style Blas-based Fortran routines. In
all cases, only one step of inverse iteration has been performed.
Test data. Seven different types of symmetric banded test matrices with constant block sizes bi = b for i = 1, . . . , p
were used in the experiments (this corresponds to upper triangular blocks Ai in Eq. (1)). Matrices of Type 0 have random
entries uniformly distributed in [0, 1], Type 1 matrices have eigenvalues clustered around the machine epsilon ±εmach,
Type 2 matrices have eigenvalues clustered around ±1, Type 3 matrices have eigenvalues geometrically distributed in
[−1, −εmach] ∪ [εmach, 1], Type 4 matrices have eigenvalues arithmetically distributed in [−1, −εmach] ∪ [εmach, 1], Type 5
matrices have eigenvalueswhose logarithms are uniformly distributed in [−1, −εmach]∪[εmach, 1], and Type 6matrices have
random eigenvalues which are uniformly distributed in [−1, 1]. Matrix types 1–6 were generated using software written
by Yihua Bai.

5.1. Runtime performance

We evaluated the runtime performance of the different strategies on an Intel i7-860 CPU. Comparisons are provided
with the most competitive state-of-the-art tridiagonalization-based routines from Lapack [18]: The routine dsbevd
reduces W (p) to tridiagonal form, then applies the tridiagonal divide-and-conquer method for computing eigenvalues and
eigenvectors, and finally transforms back the eigenvectors. The routine dsbevr also reducesW (p) to tridiagonal form, then
computes eigenvalues and eigenvectors based on relatively robust representations using the routine dstemr, and finally
transforms back the eigenvectors. The routines dsyevd and dsyevr operate analogously, but they treatW (p) as full matrix,
thus not exploiting the band structure.

In general, the runtime for the different strategies compared depends on the type of the test matrix. An exception is the
strategy minsca, where the runtime is independent of the matrix type. Our experiments showed that the Lapack routines
were fastest for matrices of Type 2. Consequently, our runtime comparisons focus on this matrix type, which is in this sense
the ‘‘most difficult’’ case in terms of runtime performance for our new approaches.

Fig. 2 shows the runtimes for computing all eigenvectors for variousmatrix sizeswith a fixed block size b = 10. The eigen-
values required in the approaches based on twisted block factorizationswere computed using the routine LAPACK/dsbevd

3702 G. König et al. / Journal of Computational and Applied Mathematics 236 (2012) 3696–3703

Fig. 2. Runtime comparison for fixed block size b.

Fig. 3. Runtime comparison for increasing block size b.

in the ‘‘eigenvalues only’’ mode and the sum of the times is shown in Fig. 2 (denoted as ‘‘minxxxx+ dsbevd’’ in the legend).
Fig. 2 clearly illustrates that (i) exploiting the band structure is crucial for goodperformance, (ii) allmethods based on twisted
block factorizations are asymptotically competitive with the state-of-the-art tridiagonalization-basedmethods, and (iii) the
strategy minsca is the clear winner with high speedups especially for large problems, followed by the strategyminsvd1.

Fig. 3 compares the same methods for fixed problem size n = 4000 and varying block sizes b. As expected, the
performance benefits of themethods based on twisted block factorizations diminish for increasing block sizes. Nevertheless,
in particular the strategy minsca and to some extent also the strategy minsvd1 remain very competitive even for larger
bandwidths. For small b, all methods based on twisted block factorizations outperform the classical tridiagonalization-based
approaches.

5.2. Numerical accuracy

Table 1 summarizes experimental data about residuals

Ri :=

W (p) − λ̃iI

ṽi (1)

1
/ ∥W (p)∥1

and about eigenvector orthogonality

Oi :=

Ṽ⊤Ṽ − I

(:, i)

∞

resulting from the five different algorithmic strategies after one step of inverse iteration as percentages of computed
eigenpairs where R ≤ nεmach and O ≤ nεmach, respectively. We can see that all four strategies based on twisted block
factorizations yieldmostly very good residuals and perform clearly better than the random strategy. As expected, producing
orthogonal eigenvectors within a single step of inverse iteration is a very difficult task, in particular when eigenvalues are
strongly clustered as it is the case formany of the testmatrices, particularly strong inmatrix types 1 and 2. Nevertheless, also
in terms of eigenvector orthogonality, the strategies based on twisted block factorizations clearly outperform the random
strategy. We also would like to emphasize that theminsca strategy, which was by far the fastest, is also among the winners
in terms of numerical accuracy in most cases.

G. König et al. / Journal of Computational and Applied Mathematics 236 (2012) 3696–3703 3703

Table 1
Percentage of computed eigenpairs with a relative residual and worst eigenvector orthogonality not exceeding nεmach for the different matrix types
(n = 1700 and b = 17). ‘‘mx’’ stands for the strategy minsvdx, ‘‘ms’’ for the strategy minsca, and ‘‘r’’ for the random strategy. The best values in each
row are highlighted in bold face.

Matrix type Ri ≤ nεmach (%) Oi ≤ nεmach (%)
m0 m1 m2 ms r m0 m1 m2 ms r

0 100.0 100.0 99.9 100.0 88.7 45.4 39.3 7.0 47.7 0.6
1 100.0 100.0 97.7 100.0 99.9 0.2 0.2 0.0 0.1 0.2
2 100.0 100.0 16.8 100.0 1.6 1.6 1.6 0.0 0.1 1.6
3 99.6 99.7 99.8 99.9 98.2 18.3 21.8 29.4 12.6 0.1
4 99.7 99.7 99.9 100.0 95.9 67.9 62.9 72.9 73.9 0.5
5 92.0 92.0 92.1 84.5 90.8 38.1 35.8 50.2 43.4 1.5
6 99.2 99.4 99.6 99.9 72.5 85.3 85.7 91.4 92.6 0.2
Avg 98.6 98.7 86.5 97.8 78.2 36.7 35.3 35.8 38.6 0.7

6. Conclusions and future work

Several new algorithmic variants for computing eigenvectors of symmetric block tridiagonal matrices based on twisted
block factorizations have been analytically motivated, designed, implemented and evaluated experimentally. It has been
shown that for very large problems and/or for small bandwidths, the methods proposed in this paper clearly outperform
state-of-the-art tridiagonalization-based methods in terms of runtime. In terms of numerical accuracy, excellent residuals
can be achieved within a single step of inverse iteration, but especially for test cases with a tightly clustered spectrum
a certain loss of orthogonality in the computed eigenvectors has been observed. The computationally most efficient
approximative strategyminsca is also among the winners in terms of numerical accuracy.

Due to its high performance potential, the twisted block factorization-based approach is an important and promising
building block for alternatives to classical dense tridiagonalization-based eigensolvers. Ways for better handling the cases
where a loss of orthogonality has been observed will be investigated in the future.

Acknowledgements

This work was partly supported by the Austrian Science Fund (FWF) under contract S10608-N13 (NFN SISE). We are
grateful to Y. Bai for her tool for generating the test matrices.

References

[1] Y. Bai, W.N. Gansterer, R.C. Ward, Block tridiagonalization of effectively sparse symmetric matrices, ACM Trans. Math. Software 30 (2004) 326–352.
[2] C.H. Bischof, B. Lang, X. Sun, Parallel tridiagonalization through two-step band reduction, in: Proceedings of the 1994 Scalable High-Performance

Computing Conference, Washington D.C., pp. 23–27.
[3] C.H. Bischof, B. Lang, X. Sun, A framework for symmetric band reduction, ACM Trans. Math. Software 26 (2000) 581–601.
[4] P. Luszczek, H. Ltaief, J. Dongarra, Two-Stage tridiagonal reduction for dense symmetric matrices using tile algorithms on multicore architectures,

Technical Report 244, LAPACKWorking Note, 2011.
[5] W.N. Gansterer, R.C. Ward, R.P. Muller, An extension of the divide-and-conquer method for a class of symmetric block-tridiagonal eigenproblems,

ACM Trans. Math. Software 28 (2002) 45–58.
[6] W.N. Gansterer, R.C. Ward, R.P. Muller, W.A. Goddard III, Computing approximate eigenpairs of symmetric block tridiagonal matrices, SIAM J. Sci.

Comput. 25 (2003) 65–85.
[7] B.N. Parlett, I.S. Dhillon, Fernando’s solution toWilkinson’s problem: an application of double factorization, Linear Algebra Appl. 267 (1997) 247–279.
[8] W.N. Gansterer, G. König, On twisted factorizations of block tridiagonal matrices, in: Proceedings of the 10th International Conference on

Computational Science 2010, Procedia Computer Science 1 (2010) 279–287.
[9] I.S. Dhillon, B.N. Parlett, C. Vömel, The design and implementation of the MRRR algorithm, ACM Trans. Math. Software 32 (2006) 533–560.

[10] J.W. Demmel, W. Kahan, Accurate singular values of bidiagonal matrices, SIAM J. Sci. Stat. Comput. 11 (1990) 873–912.
[11] I.S. Dhillon, B.N. Parlett, Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices, Linear Algebra Appl. 387

(2004) 1–28.
[12] K.V. Fernando, On computing an eigenvector of a tridiagonal matrix. Part I: basic results, SIAM J. Matrix Anal. Appl. 18 (1997) 1013–1034.
[13] B.N. Parlett, For tridiagonals T replace T with LDLt, J. Comput. Appl. Math. 123 (2000) 117–130.
[14] B.N. Parlett, I.S. Dhillon, Relatively robust representations of symmetric tridiagonals, Linear Algebra Appl. 309 (2000) 121–151.
[15] B. Parlett, O. Marques, An implementation of the dqds algorithm (positive case), Linear Algebra Appl. 309 (2000) 217–259.
[16] C. Vömel, J. Slemons, Twisted factorization of a banded matrix, BIT 49 (2009) 433–447.
[17] I.C.F. Ipsen, Computing an eigenvector with inverse iteration, SIAM Rev. 39 (1997) 254–291.
[18] E. Anderson, Z. Bai, C.H. Bischof, S. Blackford, J.W. Demmel, J.J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D.C. Sorensen, Lapack

Users’ Guide, 3rd ed., SIAM Press, Philadelphia, PA, 1999.

	Computing eigenvectors of block tridiagonal matrices based on twisted block factorizations
	Introduction
	Related work
	Contributions

	Component I: twisted block factorizations
	Component II: identification of a starting vector
	Analytical motivation for eigenvector approximation
	Strategies for starting vector selection

	Component III: efficient inverse iteration
	Experimental evaluation
	Runtime performance
	Numerical accuracy

	Conclusions and future work
	Acknowledgements
	References

