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Abstract 35 

The haplosporidian parasite Bonamia exitiosa was detected using PCR in four adult and 36 

six larval brood samples of the European flat oyster Ostrea edulis from the Solent, UK. This 37 

represents the second reported detection of this parasite along the south coast of England. 38 

https://www.editorialmanager.com/jipa/viewRCResults.aspx?pdf=1&docID=907&rev=3&fileID=21861&msid=9ebef376-acd3-4660-b039-d1ba79be35ea
https://www.editorialmanager.com/jipa/viewRCResults.aspx?pdf=1&docID=907&rev=3&fileID=21861&msid=9ebef376-acd3-4660-b039-d1ba79be35ea


Adult oysters were collected and preserved from seabed populations or restoration 39 

broodstock cages between 2015 - 2018.  The larvae within brooding adults sampled during 40 

2017 and 2018 were also preserved. Molecular analysis of all samples was performed in 41 

2019. The DNA of B. exitiosa was confirmed to be present within the gill tissue of one oyster 42 

within the Portsmouth wild fishery seabed population (n = 48), sampled in November 2015; 43 

the congeneric parasite Bonamia ostreae was not detected in this individual. This is the 44 

earliest record of B. exitiosa in the Solent. Concurrent presence of both B. ostreae and B. 45 

exitiosa, determined by DNA presence, was confirmed in the gill and heart tissue of three 46 

mature individuals from broodstock cages sampled in October 2017 (n = 99), two from a 47 

location on the River Hamble and one from the Camber Dock in Portsmouth Harbour. B. 48 

exitiosa was not detected in the November 2018 broodstock populations. A total of six larval 49 

broods were positive for B. exitiosa, with five also positive for B. ostreae. None of the 50 

brooding adults were positive for B. exitiosa suggesting that horizontal transmission from the 51 

surrounding environment to the brooding larvae is occurring. Further sampling of broodstock 52 

populations conducted by the Fish Health Inspectorate at the Centre for Environment, 53 

Fisheries and Aquaculture Science in June 2019 did not detect infection of O. edulis by B. 54 

exitiosa. These findings together suggest that the pathogen has not currently established in the 55 

area.  56 
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1. Introduction62 

As efforts to restore the European flat oyster Ostrea edulis gain momentum across 63 

Europe, disease prevalence and resistance within populations will play a pivotal role in their 64 



success. Of particular concern is the impact of European Commission (EC) notifiable 65 

protozoan parasites within the genus Bonamia (Haplosporidia; Sprague 1979), especially B. 66 

ostreae. The disease bonamiosis, caused by members of the genus of intrahaemocytic 67 

protozoan parasites Bonamia, including Bonamia ostreae, has severely impacted O. edulis 68 

populations. The microcells (2 - 5 µm diameter) of B. ostreae enter into the haemocytes of 69 

the oysters by host-specified phagocytosis (Chagot et al., 1992) and become systemic, 70 

overwhelming and eventually killing the infected individual. The distribution, spread and 71 

mass mortality events caused by B. ostreae, since its introduction to Europe in the 1970s and 72 

‘80s (MacKenzie et al., 1997), are well documented (Figueras, 1991; Cigarria et al., 1995, 73 

Laing et al., 2005; Culloty and Mulcahy, 2007) with its impact as a non-native species 74 

driving disease emergence highlighted by Peeler et al. (2011). 75 

Another member of the genus, B. exitiosa, first detected in the southern hemisphere in 76 

association with the host Ostrea chilensis (Dinamani et al., 1987; Cranfield et al., 1991; Hine 77 

et al., 2001) has subsequently been detected in O. edulis across continental Europe. The first 78 

detection occurred in 2006 (Galician coast, Spain (Abollo et al., 2008)), shortly followed by 79 

another in 2007 (Adriatic Sea, Italy (Narcisi et al., 2010)). The species has subsequently been 80 

detected in France (Mediterranean Sea (Arzul et al., 2010)), the Spanish Mediterranean coast 81 

(Carrasco et al., 2012), Britain (Cornwall (Longshaw et al., 2013)) and Portugal (Algarve 82 

(Batista et al., 2016)). The first UK positive population in which B. exitiosa was detected, 83 

was in the River Fal (Cornwall) (Longshaw et al., 2013), 28 years after the first diagnosis of 84 

B. ostreae in the UK, also in the River Fal (Bucke and Feist, 1985; Hudson and Hill 1991).85 

To date there have been no reported mass mortality events in Europe where B. exitiosa has 86 

been considered the aetiological agent and a small number of infected individuals were 87 

detected within the sampled populations.  88 



Bonamia exitiosa was first described infecting Ostrea chilensis in New Zealand (Hine 89 

et al., 2001), after a mass mortality event devastated an ‘immunologically naïve’ oyster 90 

population between 1986 and 1992 (Doonan et al., 1994; Cranfield et al., 2005). 91 

Retrospective analysis demonstrated that tissue samples infected with B. exitiosa date back to 92 

1964, supporting the assumption that the species is endemic to New Zealand (at least) and 93 

that a relatively stable host/parasite relationship exists (Hine and Jones, 1994; Hine, 1996).  94 

Unlike B. ostreae, where aspects of the life cycle remain unanswered (Culloty and 95 

Mulcahy, 2007), the life cycle of B. exitiosa is relatively well documented and is key to our 96 

understanding of dispersal mechanisms across a wide geographic range (Cranfield et al., 97 

2005; Hill et al., 2014). The intrahaemocytic B. exitiosa spreads through the dispersal of 98 

infective particles released from the gonads, kidneys, gills and gut tissue of the diseased or 99 

dying oyster host (Hine, 1991a, 1991b). Once ingested by oysters in close proximity these 100 

new hosts become infected when the parasite enters the blood via the gut (Hine and Jones, 101 

1994). There is currently no literature available describing the occurrence of vertical 102 

transmission from parent to larval brood, or of horizontal transmission in any of the host 103 

oyster species.   104 

B. exitiosa is currently known to infect wild and aquaculture stocks of multiple oyster105 

species from around the globe including Ostrea chilensis, O. edulis, O. angasi, O. puelchana, 106 

O. stentina, and Saccostrea glomerata, with at least occasional infection of O. lurida,107 

Crassostrea virginica and C. ariakensis noted as well. The parasite has been associated with 108 

mass mortality events for some of these oyster species (Burreson et al., 2004; Corbeil et al., 109 

2006; Hill et al., 2010; Kroeck, 2010; Carnegie et al., 2014; Hill et al., 2014; Engelsma et al., 110 

2014). 111 



We used molecular technology to document the presence of B. exitiosa and B. ostreae 112 

in O. edulis populations in the Solent, UK over multiple years. 113 

114 

2. Material and Methods115 

2.1. Oyster provenance 116 

Oyster samples were collected within the Solent (the stretch of water separating 117 

Southern England from the Isle of Wight) between 2015 - 2018 for on-going monitoring 118 

conducted as part of the Solent Oyster Restoration Project 119 

(www.bluemarinefoundation.com/project/solent/). These samples were stored in 98% ethanol 120 

and were held at 4°C at the Institute of Marine Sciences (University of Portsmouth, 121 

Portsmouth, UK) until retrospective screening was conducted in 2019 for pathogen presence. 122 

In November 2015, oysters were collected from the seabed using a commissioned dredge 123 

fisher in the area managed by the Southern and Sussex Inshore Fisheries and Conservation 124 

Authorities, as described in Helmer et al. (2019). A sub-sample of these from Chichester 125 

Harbour (n = 48) and Portsmouth Harbour (n = 48) (locations H+S and E and T, respectively, 126 

Fig. 1) were sampled immediately and stored for later molecular analysis of pathogen DNA 127 

presence. The remaining oysters sourced from the fishery were translocated into restoration 128 

broodstock cages suspended from existing floating structures in Portsmouth Harbour - BA 129 

(individuals from H+S) and Langstone Harbour - UP (individuals from E and T) in December 130 

2015 (Fig. 1). Additional oysters (BA n = 42, UP n = 16) were sampled from these cages in 131 

July 2016 and stored as above. 132 

Oysters sampled in October 2017 (n = 99) and November 2018 (n = 70) were originally 133 

purchased from the catch of the 2016 dredge fishery in Langstone Harbour (Locations L and 134 

S, Fig. 1). The 2016 seabed oysters were translocated into broodstock cages at two marina 135 

locations in the River Hamble in November 2016 (PH and HP, Fig. 1), and then distributed to 136 



four additional locations across the Solent in March 2017 (SW, BA, UP and SP, Fig. 1, in 137 

addition to PH and HP). Oyster samples were taken and preserved from all marina locations 138 

during October 2017 and November 2018. Oysters collected in 2017 and 2018 were 139 

monitored for the presence of larvae within the pallial cavity and the white, grey or black 140 

“sick” larval stage was also recorded (Fig. 2). Brooding adults, and their larvae, were 141 

sampled and preserved for later molecular analysis. Adult gill and heart tissues were stored 142 

separately from the larval brood; a 250-µl aliquot of each brood was preserved in ethanol. A 143 

total of 35 broods were analysed, 31 from 2017 and 4 from 2018, with 21 of these having 144 

been sampled from brooding adults that were also screened for B. exitiosa.  145 

The Fish Health Inspectorate (FHI) of England and Wales was contacted immediately 146 

upon PCR detection of B. exitiosa. Upon suspicion of presence of this exotic pathogen, the 147 

FHI carried out statutory sampling of O. edulis populations to test for the presence of B. 148 

exitiosa: 129 oysters were sampled from Port Hamble Marina (PH, Fig. 1), along with 150 149 

from the Camber Dock, Portsmouth Harbour (BA Fig. 1) in March 2019, and an additional 26 150 

oysters were sampled from the University of Portsmouth research platform in Langstone 151 

Channel (UP, Fig. 1) in June 2019. Tissue ‘steaks’ were dissected from each oyster and fixed 152 

for histopathology and molecular analyses and were processed for both methods as described 153 

in Longshaw et al. (2013). 154 

155 

2.2. Genomic DNA extraction and PCR amplification 156 

A 5-mm section of gill tissue and the whole heart from each of the adult 2017 brooding, 157 

2017 broodstock and 2018 broodstock samples were removed and stored in 98% ethanol 158 

before maceration with a sterile scalpel or pellet pestle. A 5-mm section of gill tissue was 159 

analysed from the 2015 seabed and 2016 broodstock samples, and was also removed and 160 

stored in 98% ethanol prior to maceration. The larval broods, rinsed with 0.2 µm filtered 161 



seawater and 98% ethanol prior to storage in 98% ethanol, required no mechanical 162 

breakdown for the extraction process. All DNA extractions were performed using DNeasy® 163 

Blood & Tissue kits (QIAGEN™) following the manufacturer’s tissue protocol. 164 

Quantification of DNA was conducted using a NanoDrop® 1000 Spectrophotometer 165 

(NanoDrop®, Thermo Fisher Scientific Inc., Wilmington, USA). 166 

The Ostrea edulis species-specific primer pair Oe fw_1 + Oe rev_4 (5’-ATG-GGA-167 

CGA-TTT-GAT-AGA-GC-3’ and 5’-CCC-AAA-TAA-CGG-GAA-AAG-TGC-TAA-CCA-168 

CCA-GAA-TGA-3’, respectively) (Gercken and Schmidt, 2014) was used to amplify the 169 

cytochrome c oxidase subunit I (COI) gene from O. edulis as a positive control for oyster 170 

species confirmation. Due to the potential for concurrent infection of both B. ostreae and B. 171 

exitiosa and the specificity of OIE recommended primer pairs for B. ostreae over B. exitiosa 172 

(Helmer et al. unpublished results), the species-specific primer pairs BOSTRE-F + BOSTRE-173 

R (5’-TTA-CGT-CCC-TGC-CCT-TTG-TA-3’ and 5’-TCG-CGG-TTG-AAT-TTT-ATC-GT 174 

-3’, respectively) (Ramilo et al., 2013) and BEXIT-F + BEXIT-R (5’-GCG-CGT-TCT-TAG-175 

AAG-CTT-TG-3’and 5’-AAG-ATT-GAT-GTC-GGC-ATG-TCT-3’, respectively)  (Ramilo 176 

et al., 2013) were used to amplify the 18S-ITS1 rRNA gene region present from B. ostreae 177 

and B. exitiosa, respectively. The OIE recommended 18S primer pair BO + BOAS (5’-CAT-178 

TTA-ATT-GGT-CGG-GCC-GC-3’ and 5’-CTG-ATC-GTC-TTC-GAT-CCC-CC-3’, 179 

respectively) (Cochennec et al., 2000) was also used to amplify B. ostreae DNA. Polymerase 180 

chain reaction (PCR) amplifications consisted of 12.5 µl 2 x DreamTaq™ PCR Master Mix 181 

(Thermo Fisher Scientific Inc.) or 12.5 µl 2 x DreamTaq Green PCR Master Mix (Thermo 182 

Fisher Scientific Inc.), 0.2 µM forward and reverse primers (Invitrogen, Thermo Fisher 183 

Scientific Inc.) and 20 - 200 ng genomic DNA made up to a final volume of 25 µl with 184 

molecular biology grade water. A negative control, with molecular biology grade water in 185 

place of template DNA, was run alongside each reaction. No negative controls amplified 186 



during the course of the current study. No positive control was available at the outset. B. 187 

exitiosa-positive PCR products generated using the BEXIT primer pair during earlier 188 

sampling in the current study, later confirmed by sequencing of the 18S-ITS1 gene region, 189 

were used as positive controls in the latter PCR analysis. 190 

PCRs were run in a G-STORM 482 Thermal Cycler (Gene Technologies Ltd., Essex, 191 

England) under the respective conditions described by Cochennec et al. (2000), Ramilo et al. 192 

(2013), Gercken and Schmidt (2014). PCR products were separated on 1% (Oe) or 2% 193 

(BOSTRE, BEXIT and BO + BOAS) 1x TAE (40 mM Tris, 20 mM acetic acid, 1 mM 194 

EDTA) agarose gels stained with 4 ul ethidium bromide. Electrophoresis ran at 100 V for 1 h. 195 

A 1-kb GeneRuler™ DNA ladder (Thermo Fisher Scientific Inc.) or 100-bp DNA ladder 196 

(New England Biolabs® or PCR Biosystems Ltd) and PCR products were visualized by 197 

ultraviolet (UV) transillumination (VWR Gel Documentation Smart Version).  198 

PCR products of all B. exitiosa-positive amplifications using the BEXIT-F + BEXIT-R 199 

primer pair and reference samples and strong bands from Oe fw_1 + Oe rev_4, BOSTRE-F + 200 

BOSTRE-R and BO + BOAS primer pairs were purified using a QIAquick® PCR Purification 201 

Kit (Qiagen) following the manufacturer’s protocol. Amplicons were sequenced by Sanger 202 

sequencing (Source BioScience, Nottingham, England) using the respective primer pairs used 203 

for PCR, and the electropherograms analysed by eye in MEGA X (Pennsylvania State 204 

University, USA). Where possible, contigs were assembled using CAP3 sequence assembly 205 

program (Huang & Madan, 1999). The resulting contig sequences were BLASTn® -searched 206 

against the nr/nt database of the National Center for Biotechnology Information web server. 207 

Sequences were deposited into GenBank (Accession numbers MT184259 - MT184268). 208 

209 

3. Results210 



Of the 96 oysters sampled from the 2015 Seabed populations, one individual (1.04%), 211 

from the Portsmouth fishery area (H+S Fig. 1), was positive for B. exitiosa based on the 212 

amplification of the expected 246 bp using the BEXIT-F + BEXIT-R primer pair. The 213 

sequence of the PCR-amplification product showed 99.59% identity to a B. exitiosa sequence 214 

from Tunisia (JF831718.1). B. ostreae was not detected in this individual using the BOSTRE-215 

F + BOSTRE-R primer pair. B. ostreae DNA was detected in 34.4% and 49% of the oysters 216 

using the BO + BOAS and BOSTRE primer pairs, respectively. 217 

Of the broodstock oysters sampled in 2017, three (3.03%) screened positive for B. 218 

exitiosa DNA. Of those, two were located in the same marina on the River Hamble (PH, Fig. 219 

1) and the other in Portsmouth Harbour (BA, Fig. 1). The sequence of the PCR-amplification220 

products from the River Hamble showed 100% identity to a B. exitiosa sequence from North 221 

Carolina (JF831588.1), whilst the sample from Portsmouth Harbour showed 100% identity to 222 

a B. exitiosa isolate sequence from Australia (JF831683.1). Both oysters from the River 223 

Hamble and the individual from Portsmouth Harbour were also positive for B. ostreae DNA, 224 

with a 208-bp amplicon from the BOSTRE-F + BOSTRE-R primer pair. B. ostreae DNA was 225 

detected in 85.7% and 98% of the oysters using the BO + BOAS and BOSTRE primer pairs, 226 

respectively. No oysters sampled from the 2016 or 2018 broodstock cages tested positive for 227 

B. exitiosa. However, in 2016, 34.5% and 46.6% of oysters tested PCR-positive for B.228 

ostreae using the BO + BOAS and BOSTRE primer pairs, respectively. In 2018, the same 229 

primer pairs resulted in 54.3 % and 81.4 % of oysters also testing PCR-positive for B. 230 

ostreae. 231 

Of the 10 larval broods analysed without the respective adult collected for analysis, 232 

none were PCR-positive for B. exitiosa. A total of 21 brooding adults and their larval broods 233 

from 2017 were analysed; none of the brooding adult oysters tested positive for B. exitiosa 234 

(Fig. 3). The larval brood from one PCR-negative adult oyster in Chichester Harbour tested 235 



positive using PCR and showed 100% identity to a B. exitiosa sequence from North Carolina 236 

(JF831588.1). Another four broods were PCR-positive with the BEXIT primers, but the F and 237 

R sequences did not form a contiguous sequence due to either low sequence quality or lack of 238 

consensus. The latter could be due to multiple parasites occurring within the brood.  Further 239 

work is required to clarify the validity of these results. Of the four broods collected from 240 

Chichester Harbour in 2018, one provided a sequence contig that showed 100% identity to a 241 

B. exitiosa sequence from North Carolina (JF831588.1). The positive results obtained for all242 

adult and larval samples are summarised in Table 1 and the sample groupings from all years 243 

in Table 2. In 2017, 64.5% and 77.4% of the larvae tested PCR-positive for B. ostreae using 244 

the BO + BOAS and BOSTRE primer pairs, respectively. This was also the case for 50% and 245 

75% of larval samples in 2018, using the same respective primer pairs. Sequences with a 246 

similarity to B. exitiosa greater than 98% were submitted to GenBank (Accession numbers 247 

MT184259 - MT184268). 248 

249 

250 

251 

252 

253 

Table 1. Details of samples that tested positive by PCR screening for Bonamia exitiosa with 254 
highest sequence identity from GenBank BLASTn search. Samples with no contiguous 255 

sequence that provide tentative results are grouped with respective borderlines and grey 256 

scaled, F or R denotes the forward or reverse primer sequence used. 257 

Study sample information GenBank search results 

Location in Figure 1 Sample group Sequence 
Top GenBank 

match 
Identity % 

Geographic 

region 
Host species 

GenBank 

accession 



H+S 2015 Seabed Contig B. exitiosa 99.59 Tunisia Ostrea stentina JF831718 

Port Hamble 
2017 
Broodstock Contig B. exitiosa 99.18 North Carolina Ostrea stentina JF831588 

Port Hamble 
2017 
Broodstock Contig B. exitiosa 100.00 North Carolina Ostrea stentina JF831588 

Portsmouth 
2017 
Broodstock Contig B. exitiosa 100.00 Australia 

Saccostrea 
glomerata JF831683 

Chichester 2017 Larvae Contig B. exitiosa 100.00 North Carolina Ostrea stentina JF831588 

Chichester 2018 Larvae Contig B. exitiosa 100.00 North Carolina Ostrea stentina JF831588 

Langstone 2017 Larvae F B. exitiosa 98.59 Argentina Ostrea stentina JF831559 

Langstone 2017 Larvae R B. exitiosa 100.00 Tunisia Ostrea stentina JF831718 

Chichester 2017 Larvae F B. exitiosa 97.77 New Zealand Ostrea chilensis KY680634 

Chichester 2017 Larvae R N/A N/A N/A N/A N/A 

Chichester 2017 Larvae F N/A N/A N/A N/A N/A 

Chichester 2017 Larvae R B. exitiosa 100.00 Australia (NSW) 

Saccostrea 

glomerata JX977122 

Chichester 2017 Larvae F B. exitiosa 93.70 California 

Ostrea 

conchaphila JF831733 

Chichester 2017 Larvae R B. exitiosa 98.40 Tunisia Ostrea stentina JF831718 

258 

259 

260 

261 

262 

Table 2. Summary of sample populations, sample type, number of oysters from each location 263 
and population sampled. Bold numbers in parentheses indicate the number of PCR-positive 264 

Bonamia exitiosa samples from the respective sample set obtained using high quality 265 
consensus sequence reads. Numbers not in bold indicate those samples where identification 266 

requires further analysis.  267 

Number of oysters per location

River 

Itchen 
River Hamble 

Portsmouth 

Harbour 

Langstone 

Harbour 
Chichester Harbour Total



Sampling year
Sample 

type
SW PH HP H+S BA UP E / T SP

2015 Seabed 

populations
Gill 48 (1) 48 96

2016 Broodstock 

cages
Gill 42 16 58

2017 Broodstock 
cages

Gill + 
Heart

17 17 (2) 17 17 (1) 17 14 99

2017 Brooding 
individuals 

(within cages) 

Gill + 

Heart
1 3 3 2 5 8 22

2017 Larvae Larvae 2 4 4 4 8 (1) 9 (1,3) 31

2018 Broodstock 

cages

Gill + 

Heart
10 12 12 12 12 12 70

2018 Larvae Larvae 4 (1) 4

268 

The 305 samples collected by the Fish Health Inspectorate (FHI) of England and Wales 269 

and analysed by the Statutory Diagnostic Team at the Centre for Environment, Fisheries and 270 

Aquaculture Sciences (CEFAS) were all PCR-negative for B. exitiosa using the lineage-271 

specific BEXIT primers. B. exitiosa was not observed in any histology screens of the animals. 272 

273 

274 

275 

276 

4. Discussion277 

The current study describes the second detection of B. exitiosa in O. edulis in the UK, 278 

with concurrent detection of B. ostreae, as previously reported by Abollo et al. (2018), 279 

Ramilo et al. (2014) and Lane et al. (2016). It should be noted that not all the samples in the 280 

present study were analysed by histology or heart smears, therefore only the DNA of B. 281 



exitiosa and B. ostreae was detected for a proportion of the population in this study. Infection 282 

of native oysters by B. exitiosa was not confirmed by microscopic examination or histology 283 

because no diseased oysters were observed; therefore, the possibility the pathogen was 284 

dormant or not viable cannot be ruled out (Burreson, 2008). The detection of B. exitiosa was 285 

ephemeral in nature and limited to a small portion of the populations monitored and no 286 

disease symptoms or mortality was attributed to B. exitiosa. Mortality experienced within the 287 

monitored populations is more likely attributed to a combination of post-spawning mortality 288 

(Helmer, unpublished data), environmental stressors, such as temperature and salinity, and 289 

the high prevalence of B. ostreae observed. As B. ostreae is well established in the area 290 

(Laing et al., 2014) it is unsurprising that such high proportions of the oysters sampled tested 291 

PCR-positive for this pathogen. 292 

Despite the lack of histological analysis to indicate infection intensity by B. exitiosa in 293 

this case, and the lack of DNA detection during statutory disease assessments of oysters 294 

sampled from two proximal sites in 2016, 2018 and 2019, the distribution and potential 295 

impacts of B. exitiosa across Europe requires further investigation. In addition, a detailed 296 

investigation into the phylogeny and origin of the strains for members of the Bonamia genus 297 

in O. edulis populations is strongly recommended, as the complete status across Europe is 298 

currently unknown, even though the presence of B. ostreae is relatively well documented.  299 

The only other characterised Bonamia species is B. perspora (Carnegie et al., 2006). It 300 

is believed that B. perspora is host specialist and currently maintains a well-defined and 301 

restricted geographical range infecting Ostrea stentina in North Carolina (Carnegie et al., 302 

2006; Hill et al., 2014), thus unlikely to be present in O. edulis within Europe. Infections of 303 

B. perspora were not observed in populations of O. stentina in Argentina, Tunisia and New304 

Zealand (Hill et al., 2014) but its presence in O. stentina in areas across Europe remains 305 

untested. Bonamia roughleyi was first described as a distinct species (Cochennec-Laureau et 306 



al., 2003), but Carnegie et al. (2014) questioned its identity, arguing that there is a lack of 307 

genetic distinction between B. exitiosa and B. roughleyi. 308 

To date there have been no reported mass mortalities of O. edulis within Europe where 309 

B. exitiosa has been identified as the aetiological agent; all accounts have reported B. ostreae310 

to be the responsible pathogen. All reported detections of B. exitiosa in O. edulis have been in 311 

a small proportion of the tested populations, with Abollo et al. (2008) reporting the highest 312 

prevalence of 40.2% with 16.5% co-infection with B. ostreae. Batista et al. (2016) reported 313 

positives in 83.3% of samples but the small sample size was small (n = 24). In many cases 314 

co-infection with B. ostreae was reported; we found only one adult and one larval brood 315 

infected with B. exitiosa but not B. ostreae.  316 

The ability of O. edulis to tolerate co-infection with B. exitiosa and B. ostreae may be 317 

due to the similarity of the two pathogen species but also their difference in lethality, with the 318 

18-week 50% lethal dose of B. ostreae in O. edulis (Hervio et al., 1995) being 40% lower319 

than that of B. exitiosa in O. chilensis, the former determined to be ~ 1.1 × 105 infective 320 

particles (Diggles and Hine, 2002). This indication that B. ostreae is far more virulent than B. 321 

exitiosa suggests that any resistance, tolerance or resilience to B. ostreae within European 322 

populations of O. edulis, developed in the 30-40 years since its introduction (1970s - 80s) 323 

(MacKenzie et al., 1997; Culloty and Mulchay, 2007; Lynch et al., 2014), may provide a 324 

level of resistance, tolerance or resilience to B. exitiosa that impedes its rapid proliferation. 325 

Another possibility is that interspecific competition between the two pathogens is occurring, 326 

with B. ostreae excluding or outcompeting B. exitiosa. Such interactions are yet to be 327 

investigated in these species. 328 

The detection of B. exitiosa has implications for management of infected populations as 329 

this pathogen is included, along with B. ostreae, within the list of notifiable species by the 330 



World Organisation for Animal Health (OIE) (http://www.oie.int/animal-health-in-the-331 

world/oie-listed-diseases-2019/, last accessed 26 March 2019) and the EC Council Directive 332 

2006/88/EC (https://eur-333 

lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:328:0014:0056:en:PDF%20, last 334 

accessed 18 May 2019) with this document legally ensuring that the Fish Health Inspectorate 335 

of England and Wales, the responsible entity for fish and shellfish health, regularly monitor 336 

for B. ostreae and B exitiosa.  337 

The increase in geographical distribution of B. exitiosa (Hill et al., 2014) is likely to be 338 

attributed to its dispersal potential. Survival of infective particles in seawater has been shown 339 

to be 50% after 48 h at 18ºC (Diggles and Hine, 2002) and detection of B. exitiosa in O. 340 

edulis larvae (Arzul et al., 2011) suggests that if the pathogen is viable in, or incidentally 341 

attached to the larvae, dispersal or spread could be accelerated. The detection of B. exitiosa in 342 

larval broods of PCR-negative adults indicates the occurrence of horizontal transmission by 343 

release of the pathogens from dead or dying oysters (Hine 1991a, b; Audemard et al., 2014) 344 

or other vector taxa. Evidence of horizontal transmission has been described for B. ostreae in 345 

O. edulis (Arzul et al., 2011; Flannery et al., 2016), with Lynch et al. (2010) also detecting B.346 

ostreae DNA in the pallial fluid. The capacity of O.edulis larvae to feed within the pallial 347 

cavity during the brooding period (Hine and Jones, 1994; Helm et al., 2006) and detection of 348 

B. ostreae in the epithelia surrounding the visceral cavity of infected larvae (Arzul et al.,349 

2011), further highlights the opportunity for transmission of B. exitiosa in this manner. This 350 

mounting evidence of larval infection highlights one of many potential transmission 351 

pathways of Bonamia infection to naïve oyster populations, with larvae having been shown to 352 

travel up to 12 km from the source location (Wilson, 1987).  353 

Restoration efforts, whereby oysters are transported into areas that have been left fallow 354 

for prolonged periods, should continue to include monitoring for both B. ostreae and B. 355 

http://www.oie.int/animal-health-in-the-world/oie-listed-diseases-2019/
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exitiosa. van Banning (1998) showed that B. ostreae can persist in the environment in the 356 

absence of O. edulis and infect newly introduced naïve oysters, with Lynch et al. (2007) 357 

suggesting that this could be due to the potential of multiple macroinvertebrate species to act 358 

as carriers. All eight potential carrier species observed in that study, including Actinia equine, 359 

Carcinus maenas and Ascidiella aspersa, are present and abundant within the Solent and 360 

across much of Europe. The presence of B. ostreae in the 2007 study was not limited to 361 

benthic species - grouped zooplankton species also yielded positive results adding to the 362 

potential for vectoring. For example, the copepod Paracartia grani acts as an intermediate 363 

host for another serious oyster parasite, Marteilia refringens (Audemard et al., 2002). The 364 

ability of B. exitiosa to utilise intermediate hosts is currently unknown and also requires 365 

further research. 366 

Evidence that the Pacific oyster Crassostrea gigas may be a host for both B. ostreae 367 

and B. exitiosa (Lynch et al., 2010; Flack, unpublished results) is of particular concern as the 368 

species’ distribution and abundance across Europe has increased in recent years (Anglès 369 

d’Auriac et al. 2017). This potentially provides “stepping-stones” for disease transfer 370 

between remaining populations of O. edulis that are currently fragmented. Further clarity of 371 

the disease vector role played by C. gigas is required for areas across Europe where it is 372 

present in aquaculture or wild populations. Confirmation of C. gigas as a disease vector may 373 

require the active management and removal of significant populations in order to aid 374 

prevention of disease transmission within flat oyster populations. Alternatively, Pacific 375 

oysters could be paratenic or dead-end hosts acting as sinks for the pathogens, indefinitely or 376 

until prevalence reaches a threshold. Similarly, the role of disease transmission by the 377 

invasive and highly abundant American slipper limpet Crepidula fornicata (Helmer et al., 378 

2019) is unclear and needs to be determined, with the potential of additional supporting 379 

information to justify their removal on a large scale. 380 



Incidents of B. exitiosa infecting O. edulis where B. ostreae is not present have been 381 

observed previously (Batista et al., 2016). The first European detection of B. exitiosa on the 382 

Galician coast in 2006, followed by infections along the French Atlantic coast in 2008 and 383 

then the River Fal in 2010, suggests that a combination of anthropogenic oyster movements, 384 

larval dispersal and infective particle transmission enables the relatively rapid transmission of 385 

B. exitiosa north-eastward. The ability of Bonamia species to parasitize a range of hosts,386 

alongside infective particle dispersal and larval infection, is likely to have contributed to its 387 

dispersal on a global scale, including New Zealand, Australia and Argentina in the southern 388 

hemisphere, and Atlantic coastlines (US and Europe), Pacific coastlines (US) Mediterranean 389 

Sea and English Channel in the northern hemisphere.  390 

It is uncertain if the presence of B. exitiosa poses a threat to progress made with the 391 

selective breeding for resistance to B. ostreae in the European flat oyster (Hervio et al., 1995; 392 

Culloty et al., 2004; Lynch et al., 2014). Mortality events of O. edulis should continue to be 393 

monitored rigorously, as the species is unlikely to fare well with the introduction of this 394 

additional non-native protozoan if it reaches a significant prevalence within a population. The 395 

impact of such an event can be seen from the mass mortalities in Europe induced by the 396 

initial introduction of B. ostreae from the west coast of the USA (Elston et al., 1986; 397 

MacKenzie et al., 1997). It is therefore recommended that monitoring for, and restricted 398 

movement of, oysters infected with B. exitiosa be incorporated into section 4 (Respect 399 

Bonamia-free areas) of the Berlin Oyster Recommendations (Pogoda et al., 2019). These 400 

recommendations were compiled through a collaborative assessment of the current European 401 

restoration efforts with the aim of developing and sharing best restoration practices for the 402 

species, a prime example of information sharing.  403 

For O. edulis restoration efforts to be successful, as they have been for other oyster 404 

restoration projects in disease-stricken sites around the world, (Proestou et al., 2016), 405 



deploying large quantities of oysters in high-density populations will be required to recreate a 406 

fraction of historical population densities. This may incur significant mortality due to disease, 407 

but assuming the stocks used are genetically robust and diverse it also provides an 408 

opportunity for natural resistance to develop over time.  409 

410 

5. Conclusion411 

The low levels of detection of B. exitiosa, along with no increase in detection in high-412 

density oyster populations over subsequent years, suggests the parasite has either failed to 413 

establish in the Solent or may have established at low enzootic levels. However, the current 414 

study highlights the risk of emerging and known pathogens to oyster restoration and 415 

aquaculture in Europe and further emphasises the requirement for continued control of oyster 416 

translocation. Biosecurity controls are the only method currently available to prevent or 417 

postpone the spread of Bonamia parasites, but as can be observed by the continued spread of 418 

pathogens, and as reported here, these control measures are not always successful. Therefore, 419 

it is clear that further research is required fully understand the mechanism of transmission, 420 

the vector species and environmental pathways through which Bonamia pathogens enter 421 

previously disease-free sites in order to successfully manage bonamiosis.  422 
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Fig. 1. The wider Solent (black box), showing the original source locations for the 2015 wild fishery populations (H+S, E, and T), 
2016 broodstock cage populations (BA sourced from H+S, UP sourced from E and T) and 2017/18 broodstock cage populations 
(SW, PH, HP, BA, UP and SP, all sourced from L and S). Red box indicating the location of the River Fal where the first detection of 
Bonamia exitiosa in the UK occurred (Longshaw et al., 2013). Modified from Helmer et al. (2019). Map created using ArcMAp 
software. (http://desktop.arcgis.com/en/arcmap/).
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Fig. 2. (A) Brooding oyster prior to shucking; brooding oysters containing larvae referred to as (B) white ?sick?, (C) grey ?sick? and (D) 
black ?sick? stages of development. Larvae within the pallial cavity in and around the gill and mantle structures, indicated by arrows.

Fig. 3. The direct comparison of the positive or negative amplifications of Bonamia ostreae (BO + BOAS and BOSTRE-F + BOSTRE-R) 
and Bonamia exitiosa (BEXIT-F + BEXIT-R) DNA from individual brooding oysters and their respective larval brood collected during 
the 2017 spawning season. All samples provided positive amplifications for Ostrea edulis using the Oe primer pair.
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