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Abstract: This paper proposes a linguistic composition based modelling approach by 

networked fuzzy systems that are known as fuzzy networks. The nodes in these networks are 

modules of fuzzy rule bases and the connections between these modules are the outputs from 

some rule bases that are fed as inputs to other rule bases. The proposed approach represents a 

fuzzy network as an equivalent fuzzy system by linguistic composition of the network nodes. 

In comparison to the known multiple rule base approaches, this networked rule base approach 

reflects adequately the structure of the modelled process in terms of interacting sub-processes 

and leads to more accurate solutions. The approach improves significantly the transparency 

of the associated model while ensuring a high level of accuracy that is comparable to the one 

achieved by established approaches. Another advantage of this fuzzy network approach is 

that it fits well within the existing approaches with single rule base and multiple rule bases. 
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1. Introduction 

Complexity is a versatile feature of existing systems that cannot be described by a single 

definition. In this context, complexity is usually associated with a number of attributes such 

as uncertainty, dimensionality and structure, which make the modelling of systems with these 

attributes more difficult. Therefore, the complexity of a given system can be accounted for by 

identifying the complexity related attributes that are to be found in this system.  



Fuzzy logic has proved itself as a powerful tool for dealing with uncertainty as an attribute 

of systemic complexity. In this context, fuzziness is quite suitable for reflecting non-

probabilistic uncertainty such as imprecision, incompleteness and ambiguity [1-3]. 

More recently, fuzzy logic has also become more effective in dealing with dimensionality 

as a systemic complexity attribute by means of rule base reduction and compression. 

Dimensionality in rule base reduction is associated with the number of rules, which is an 

exponential function of the number of system inputs and the number of linguistic terms per 

input [4-7]. In rule base compression, dimensionally is associated with the amount of on-line 

operations required during fuzzification, inference and defuzzification [8].  

However, as far as structure is concerned, fuzzy logic is still unable to reflect adequately 

any interacting modules within a modelled process. This is due to the black-box nature of 

most fuzzy models that cannot take into account explicitly any interactions among sub-

processes [9-12]. In this respect, the following paragraphs discuss some of the main 

approaches in fuzzy modelling and their ability to deal with structure as a systemic 

complexity attribute. 

The most common type of fuzzy system is the one with a single rule base [13-15]. This 

type of system is referred to here as Standard Fuzzy System (SFS). The latter is characterised 

by a black-box nature whereby the inputs are mapped directly to the outputs without the 

consideration of any internal connections. The operation of SFS is based on a single 

Fuzzification-Inference-Defuzzification (FID) sequence and it is usually quite accurate for 

output modelling as it reflects the simultaneous influence of all inputs on the output. 

However, the efficiency and transparency of SFS deteriorate with the increase of the number 

of rules. Therefore, as the number of rules increases, it not only takes longer to simulate the 

model output but it is also less clear how this output is affected by the model inputs. 



Another type of fuzzy system is the one with multiple rule bases [16-19]. This type of 

system is often described by cascaded rule bases and it is usually referred to as Chained 

Fuzzy System (CFS) or Hierarchical Fuzzy System (HFS). Both CFS and HFS are 

characterised by a white-box nature whereby the inputs are mapped to the outputs by means 

of some internal variables in the form of connections. The operation of CFS and HFS is based 

on multiple FID sequences whereby each connection links the FID sequences for two 

adjacent rule bases. 

CFS has an arbitrary structure in terms of subsystems and the connections among them 

[20-22]. In this case, each subsystem represents an individual rule base whereas each 

interaction is represented by a connection linking a pair of adjacent rule bases. This 

connection is identical with an output from the first rule base and an input to the second rule 

base in the pair. CFS is usually used as a detailed presentation of SFS for the purpose of 

improving transparency by explicitly taking into account all subsystems and the interactions 

among them. Also, efficiency is improved because of the smaller number of inputs to the 

individual rule bases. However, accuracy may be lost due to the accumulation of errors as a 

result of the multiple FID sequences.  

HFS is a special type of CFS that has a specific structure [23-27]. Each subsystem in HFS 

has two inputs and one output. Some connections represent identical mappings, which may 

propagate across parts of the system. HFS is often used as an alternative presentation of SFS 

for the purpose of improving transparency by explicitly taking into account all subsystems 

and the interactions among them. Efficiency is also improved by the reduction of the overall 

number of rules, which is a linear function of the number of inputs to the subsystems and the 

number of linguistic terms per input. However, these improvements are often at the expense 

of accuracy due to the accumulation of errors as a result of the multiple FID sequences.  



A third type of fuzzy system is the one with networked rule bases. This type of fuzzy 

system has been recently introduced as a theoretical concept in [28]. This concept is referred 

there as Networked Fuzzy System (NFS) and it has been further extended in this work by 

more generic descriptions in the form of generalised Boolean matrices. NFS is characterised 

by a white-box nature whereby the inputs are mapped to the outputs by means of connections. 

Subsystems in NFS are represented by nodes and the interactions among subsystems are the 

connections among these nodes.  NFS is a hybrid between SFS and CFS/HFS. On one hand, 

the structure of NFS is similar to the structure of CFS/HFS due to the explicit presentation of 

subsystems and the interactions among them. On the other hand, the operation of NFS 

resembles the operation of SFS as the multiple rule bases are simplified to a linguistically 

equivalent single rule base. This simplification is based on the linguistic composition 

approach that is described further in this work. As a hybrid concept, NFS has the potential of 

providing a trade-off between SFS and CFS/HFS. 

Properties of fuzzy systems such as accuracy, efficiency and transparency are directly 

related to attributes of systemic complexity such as uncertainty, dimensionality and structure. 

In this respect, uncertainty is an obstacle to accuracy as it is harder to build an accurate model 

from uncertain data [29-32]. Furthermore, dimensionality represents an obstacle to efficiency 

because it is more difficult to reduce the amount of computations in a FID sequence for a 

large number of rules [33-36]. Finally, structure is an obstacle to transparency as it is harder 

to understand the behaviour of a black-box model that does not reflect the interactions among 

subsystems [37-40]. 

This paper introduces an advanced theoretical framework for NFS as a novel type of fuzzy 

system. The framework facilitates the validation of NFS as a modelling tool with respect to 

SFS and CFS/HFS. For clarity and simplicity, NFS is referred to as Fuzzy Network (FN) 

further in this paper whereby NFS and FN are equivalent in terms of performance. Besides 



this, the paper addresses several attributes of systemic complexity including uncertainty, 

dimensionality and structure and the associated properties of the above fuzzy systems such as 

accuracy, efficiency and transparency. This research methodology is more balanced than the 

one used in many current studies as they usually focus on only one attribute of systemic 

complexity and the associated property of the fuzzy system used.  

The remaining part of this paper is structured as follows. Section 2 provides some 

theoretical preliminaries for fuzzy networks. Section 3 introduces the linguistic composition 

approach. Section 4 illustrates the application of this approach for a transport demand 

management case study. Section 5 evaluates the performance of the approach in a 

quantitative and comparative context. Section 6 summarises the main advantages of the 

approach and highlights future research directions.   

2. Theoretical Preliminaries 

A fuzzy system with r rules, m inputs x1…xm taking linguistic terms from the input sets 

{A11,…,A1r},…,{Am1,…,Amr} and n outputs y1…yn taking linguistic terms from the output sets 

{B11,…,B1r},…,{Bn1,…,Bnr} can be represented by the following rule base 

Rule 1: If x1 is A11 and … and xm is Am1, then y1 is B11 and … and yn is Bn1           

          ………………………………………………………………………          

Rule r: If x1 is A1r and … and xm is Amr, then y1 is B1r and … and yn is Bnr                             

(1) 

 
A fuzzy network with p.q nodes {N11…Np1},…,{N1q…Npq}, p×q node inputs 

{x11…xp1},…,{x1q…xpq} taking linguistic terms from any admissible input sets, p×q node 

outputs {y11…yp1},…,{y1q…ypq} taking linguistic terms from any admissible output sets, p  

horizontal levels and q vertical layers in the general grid structure for this network can be 

described by Equation (2) 

 

 



                 Layer 1……………Layer q                                                                             

Level 1     N11(x11, y11)………N1q(x1q, y1q) 

……………………………………………                                                     

Level p     Np1(xp1, yp1)………Npq(xpq, ypq)                     

(2) 

 
where the subscripts for the nodes specify their location in the grid structure and the 

subscripts for the associated inputs and outputs are identical with the ones for their nodes. 

Each node in the grid structure from Equation (2) is a separate fuzzy system as the one 

described by Equation (1). The levels in this grid structure represent a spatial hierarchy of the 

nodes in terms of subordination in space and the layers represent a temporal hierarchy in 

terms of consecutiveness in time. For completeness, the fuzzy network described by Equation 

(2) has a node in each cell of the grid structure but in general a grid structure may have empty 

cells.  

The grid structure in Equation (2) does not give any information about the connections 

among the nodes in the fuzzy network. However, such information is contained by the sample 

connection structure in Equation (3) whereby the p× (q-1) node connections 

{z11,12…zp1,p2},…,{z1q-1,1q…zpq-1,pq} take linguistic terms from the admissible sets for the 

associated node outputs and inputs 

          Layer 1……………Layer q-1 
Level 1     z11,12=y11=x12………z1q-1,1q=y1q-1= x1q 

…………………………………………………… 
Level p     zp1,p2=yp1=xp2………zpq-1,pq= ypq-1= xpq 

(3) 

 
where for each connection z the first subscript is identical with the subscript for its origin 

node and the second subscript is identical with the subscript for its destination node. Also, the 

first subscript for a particular connection z is identical with the subscript for the associated 

output y and the second subscript is identical with the subscript for the associated input x. 

Like each node input and output from the general grid structure in Equation (2), each node 

connection from the sample connection structure in Equation (3) can be either of scalar or 



vector type. For simplicity, this interconnection structure describes only connections that are 

of feedforward type and among adjacent nodes in the same level but it can be easily extended 

for connections that are of feedback type or among non-adjacent nodes in different levels.  

As a fuzzy network represents an extension of a fuzzy system, i.e. it can be viewed as a 

system of fuzzy systems or a network whose nodes are fuzzy systems, some of the general 

presentation techniques for fuzzy systems can be used also for fuzzy networks. However, 

other presentation techniques that are specific to fuzzy networks are required for the 

simplification of a fuzzy network to a linguistically equivalent fuzzy system. These 

techniques use compressed information about nodes in fuzzy networks and they are discussed 

further in this work. 

3. Linguistic Composition Approach 

The proposed linguistic composition approach uses generalised Boolean matrices for the 

presentation of individual rule bases in fuzzy networks and operations on these matrices for 

manipulating the rule bases. A generalised Boolean matrix compresses the information from 

a rule base that is represented by a node. In this case, the row and column labels of the 

Boolean matrix are all possible permutations of linguistic terms of the inputs and the outputs 

for this rule base. The elements of the Boolean matrix are either ‘0’s or ‘1’s whereby each ‘1’ 

reflects a present rule. The Boolean matrix presentation of the rule base from Equation (1) is 

given by Equation (4). 

                          B11…Bn1   …   B1r…Bnr 

A11…Am1           1         …         0 

                                             …                            … 

A1r…Amr             0         …         1 

(4) 

 
The proposed approach uses also topological expressions for the overall presentation of 

fuzzy networks and the connections among the individual rule bases. Like grid and 

interconnection structures, topological expressions describe the location of nodes and the 



connections among them. In this case, the subscripts of each node specify its location in the 

network whereby the first subscript gives the level number and the second subscript gives the 

layer number. Besides this, topological expressions specify all inputs, outputs and 

connections for the nodes. The topological expression presentation of the fuzzy network from 

Equations (2)-(3) is given by Equation (5). 

        {[N11] (x11| z11,12=y11=x12) * … * [N1q] (z1q-1,1q=y1q-1= x1q | y1q)} + 

………………………………………………………………… 

+ {[N p1] (xp1| zp1,p2=yp1=xp2) * … * [Npq] (zpq-1,pq= ypq-1= xpq | ypq)} 

(5) 

 
As shown in Equation (5), each node in a topological expression is placed within a pair of 

square brackets ‘[ ] ’. The inputs and the outputs for each node are placed within a pair of 

simple brackets ‘( )’ right after the node. In this case, the inputs are separated from the 

outputs by a vertical slash ‘|’. Nodes in sequence are designated by the symbol ‘* ’ for 

horizontal relative location whereas nodes in parallel are designated by the symbol ‘+ ’ for 

vertical relative location. Curly brackets ‘{ } ’ are used to specify the priority of linguistic 

composition operations in the fuzzy network, i.e. whether nodes with horizontal or vertical 

relative location have to be manipulated first. 

Boolean matrices and topological expressions are very suitable for formal representation 

of fuzzy networks. While Boolean matrices describe fuzzy networks at a lower level of 

abstraction with respect to individual nodes, topological expressions describe these networks 

at a higher level of abstraction with respect to the whole network. In this context, Boolean 

matrices and topological expressions lend themselves easily to manipulation for the purpose 

of simplifying fuzzy networks to linguistically equivalent fuzzy systems using the linguistic 

composition approach. More details on this approach are presented below. 

The linguistic composition approach is based mainly on the most common operations for 

horizontal and vertical merging of nodes in fuzzy networks. These operations are binary in 



that can be applied to a pair of sequential or parallel nodes. Other less common operations 

such as output merging of nodes with common inputs are not considered in this work as they 

are not applicable to the case study. For simplicity, the operations of horizontal and vertical 

merging are illustrated for nodes with scalar inputs, outputs and connections but their 

extension to the vector case is straightforward. The operations make use of Boolean matrices 

at the node level and topological expressions at the network level.  

3.1 Horizontal merging of rule bases 

Horizontal merging can be applied to a pair of sequential nodes, i.e. nodes located in the 

same level of the fuzzy network. This operation merges the operand nodes from the pair into 

a single product node in the context of the linguistic composition approach. The operation 

can be applied when the output from the first operand node is fed forward as an input to the 

second operand node in the form of a connection. In this case, the product node has the same 

input as the one to the first operand node and the same output as the one from the second 

operand node whereas the connection does not appear in the product node.  

The horizontal merging operation is identical with Boolean matrix multiplication. The 

latter is similar to conventional matrix multiplication whereby each arithmetic multiplication 

is replaced by a ‘min’ operation and each arithmetic addition is replaced by a ‘max’ 

operation. In this case, the row labels of the product matrix are the same as the row labels of 

the first operand matrix whereas the column labels of the product matrix are the same as the 

column labels of the second operand matrix. 

Therefore, if the first operand node is the rule base from Equation (1) that is presented by 

the Boolean matrix from Equation (4) and the second operand node is the rule base in 

Equation (6) that is presented by the generalised Boolean matrix in Equation (7) 

 

 



Rule 1: If y1 is B11 and … and yn is Bn1, then v1 is C11 and … and vg is Cg1           

          ………………………………………………………………………          

Rule r: If y1 is B1r and … and yn is Bnr, then v1 is C1r and … and vg is Cgr                             

(6) 

 

                         C11…Cg1   …   C1r…Cgr 

B11…Bn1           1         …        0 

                                             …                            … 

B1r…Bnr             0         …        1 

(7) 

 
the product node is the rule base in Equation (8) that is presented by the generalised Boolean 

matrix in Equation (9) 

Rule 1: If x1 is A11 and … and xm is Am1, then v1 is C11 and … and vg is Cg1           

           ………………………………………………………………………          

Rule r: If x1 is A1r and … and xm is Amr, then v1 is C1r and … and vg is Cgr                             

(8) 

 

                           C11…Cg1   …   C1r…Cgr 

A11…Am1            1         …         0 

                                            …                              … 

A1r…Amr              0         …         1 

(9) 

 
In this case, the fuzzy system described by the rule base in Equation (6) is with r rules, n 

inputs y1…yn taking linguistic terms from the input sets {B11,…,B1r},…,{Bn1,…,Bnr} and g 

outputs v1…vg taking linguistic terms from the output sets {C11,…,C1r},…,{Cg1,…,Cgr}. 

Similarly, the fuzzy system described by the rule base in Equation (8) is with r rules, m inputs 

x1…xm taking linguistic terms from the input sets {A11,…,A1r},…,{Am1,…,Amr} and g outputs 

v1…vg taking linguistic terms from the output sets {C11,…,C1r},…,{Cg1,…,Cgr}.  In general, the 

operand rule bases may have a different number of rules but the number of rules in the 

product rule base is always equal to the number of rules in the first operand rule base. 

The horizontal merging operation above can be described by the block-scheme in Figure 1 

and the topological expression in Equation (10)  



[N11] (x1,…,xm
 | y1,…,yn) * [N 12] (y1,…,yn

 | v1,…,vg) = [N11*12] (x1,…,xm
 | v1,…,vg) (10) 

 
where N11 and N12 are the two operand nodes from the fuzzy network and N11*12 is the product 

node for the fuzzy system. For simplicity, the notations used in Figure 1 are in a vector form 

where the vectors x, y and v are of dimension n, m and g, respectively. 

Vertical merging can be applied to a pair of parallel nodes, i.e. nodes located in the same 

layer of the fuzzy network. This operation merges the operand nodes from the pair into a 

single product node. The operation can be applied when the outputs from the operand nodes 

are not fed as inputs to these nodes.   

3.2 Vertical merging of rule bases 

Vertical merging can be applied to a pair of parallel nodes, i.e. nodes located in the same 

layer of the fuzzy network. This operation merges the operand nodes from the pair into a 

single product node in the context of the linguistic composition approach. The operation can 

be applied when the inputs and the outputs of the two operand nodes are independent, i.e. 

there are no outputs that are connected with any inputs and vice versa. In this case, the inputs 

to the product node represent the union of the inputs to the operand nodes whereas the 

outputs from the product node represent the union of the outputs from the operand nodes. 

The vertical merging operation is identical with Boolean matrix Kroneker product that 

represents an expansion of the first operand matrix along its rows and columns. In particular, 

the product matrix is obtained by expanding each non-zero element from the first operand 

matrix to a block that is the same as the second operand matrix and by expanding each zero 

element from the first operand matrix to a zero block of the same dimension as the second 

operand matrix. In this case, the row labels of the product matrix are all possible 

permutations of row labels of the operand matrices whereas the column labels of the product 

matrix are all permutations of column labels of the operand matrices. 



Therefore, if the first operand node is the rule base from Equation (1) that is presented by 

the Boolean matrix from Equation (4) and the second operand node is the rule base in 

Equation (11) that is presented by the generalised Boolean matrix in Equation (12) 

 

Rule 1: If v1 is C11 and … and vg is Cg1, then w1 is D11 and … and wh is Dh1           

         ………………………………………………………………………          

Rule s: If v1 is C1s and … and vg is Cgs, then w1 is D1s and … and wh is Dhs                             

(11) 

 

                           D11…Dh1   …   D1s…Dhs 

C11…Cg1            1        …         0 

                                             …                            … 

C1s…Cgs              0        …         1 

(12) 

 
the product node is the rule base in Equation (13) that is presented by the generalised Boolean 

matrix in Equation (14) 

Rule 1: If x1 is A11 and … and xm is Am1 and v1 is C11 and … and vg is Cg1, 

then y1 is B11 and … and yn is Bn1 and w1 is D11 and … and wh is Dh1           

………………………………………………………………………          

Rule r. s: If x1 is A1r and … and xm is Amr and v1 is C1s and … and vg is Cgs, 

 then y1 is B1r and … and yn is Bnr and w1 is D1s and … and wh is Dhs                           

(13) 

 

                                      B11…Bn1D11…Dh1   …   B1r..BnrD1s..Dhs 

A11…Am1C11…Cg1                 1               …               0 

                                 …                                               … 

A1r…AmrC1s…Cgs                  0               …               1 

(14) 

 
In this case, the fuzzy system described by the rule base in Equation (11) is with s rules, g 

inputs v1…vg taking linguistic terms from the input sets {C11,…,C1s},…,{Cg1,…,Cgs} and h 

outputs w1…wh taking linguistic terms from the output sets {D11,…,D1s},…,{Dh1,…,Dhs}. 

However, the fuzzy system described by the rule base in Equation (13) is with r.s rules, m+g 

inputs x1…xm, v1…vg taking linguistic terms from the input sets {A11,…,A1r},…,{Am1,…,Amr}, 



{C11,…,C1s},…,{Cg1,…,Cgs} and n+h outputs y1…yg, w1…wh taking linguistic terms from the 

output sets {B11,…,B1r},…,{Bn1,…,Bnr}, {D11,…,D1s},…,{Dh1,…,Dhs}. The number of rules in 

the product rule base is equal to the product of the number of rules in the operand rule bases. 

The vertical merging operation above can be described by the block-scheme in Figure 2 

and the topological expression in Equation (15)  

[N11] (x1,…,xm | y1,…,yn) + [N21] (v1,…,vg
 | w1,…,wh) = 

 [N11+21] (x1,…,xm, v1,…,vg
 | y1,…,yn, w1,…,wh) 

(15) 

 
where N11 and N21 are the two operand nodes from the fuzzy network and N11+21 is the product 

node for the fuzzy system. For simplicity, the notations used in Figure 2 are in a vector form 

where the vectors x, y, v and w are of dimension n, m, g and h, respectively. 

3.3 Associativity of rule base merging  

The horizontal and vertical merging operations on nodes introduced above are quite basic 

in that they can be applied only to fairly simple fuzzy networks with a pair of nodes. 

However, a more complex fuzzy network may be with a large number of sequential and 

parallel nodes that have to be merged horizontally and vertically using the linguistic 

composition approach. This is possible due to the associativity property of the horizontal and 

vertical merging operations. These properties are proved below by theorems for scalar inputs, 

outputs and connections but the extension of the proofs to the vector case is straightforward.  

The proofs presented below are based on binary relational presentation of Boolean 

matrices. A binary relation compresses further the information from a Boolean matrix 

representation of a rule base. In this case, the pairs in the binary relation are the permutations 

of linguistic terms of the inputs and the outputs from the row and column labels for the 

Boolean matrix. Therefore, each pair in the binary relation reflects a rule from the rule base. 

In this case, the Boolean matrices from Equations (4), (7), (9), (12) and (14) can be presented 

by the binary relations in Equations (16)-(20). 



{(A11…Am1, B11…Bn1),   …   ,(A1r…Amr, B1r…Bnr)} (16) 

 

{(B11…Bn1, C11…Cg1),   …   ,(B1r…Bnr, C1r…Cgr)} (17) 

 

 {(A11…Am1, C11…Cg1),   …   ,(A1r…Amr, C1r…Cgr)} (18) 

 

{(C11…Cg1, D11…Dh1),   …   ,(C1s…Cgs, D1s…Dhs)} (19) 

 

{(A11…Am1 C11…Cg1, B11…Bn1 D11…Dh1),   …   ,(A1r…Amr C1s…Cgs, B1r…Bnr D1s…Dhs)} (20) 

 
As binary relations are an alternative to Boolean matrices for representing nodes in fuzzy 

networks, they can also be used for horizontal and vertical merging operations on these 

nodes. In this case, horizontal merging is identical with standard relational composition 

whereas vertical merging is identical with a modified type of Cartesian product that is applied 

separately to the first and second elements from the pairs of the operand relations. These 

details of binary relations are used in Theorems 1-2 further below whose proofs are presented 

in the Appendix. 

When the property of associativity is related to the operation of horizontal merging, the 

latter is applied to three sequential nodes for the purpose of merging them into a single node. 

In particular, this property allows the merging of three operand nodes A, B and C into a 

product node A*B*C to take place as a sequence of two binary merging operations that can be 

applied either from left to right or from right to left, as shown in Figure 3. The property can 

be applied when the output from the first node A is fed forward as an input to the second node 

B in the form of a connection and the output from the second node B is fed forward as an 

input to the third node C in the form of another connection. In this case, the product node 

A*B*C has the same input as the input to the first operand node A and the same output as the 

output from the third operand node C whereas the two connections do not appear in the 

product node. 



Theorem 1: The operation of horizontal merging denoted by the symbol ‘* ’ is associative 

in accordance with Equation (21)  

(A*B)*C = A*(B*C)  (21) 

 
whereby the horizontal merging of any three operand nodes A, B and C from left to right is 

equivalent to their horizontal merging from right to left. 

When the property of associativity is related to the operation of vertical merging, the latter 

is applied to three parallel nodes for the purpose of merging them into a single node. In 

particular, this property allows the merging of three operand nodes A, B and C into a product 

node A+B+C to take place as a sequence of two binary merging operations that can be 

applied either from top to bottom or from bottom to top, as shown in Figure 4. The property 

can be applied when none of the outputs from any of the three nodes A, B and C are fed as 

any of the three inputs to these nodes. In this case, the input set to the product node A+B+C 

is the union of the inputs to the operand nodes A, B and C whereas the output set from the 

product node is the union of the outputs from the operand nodes.  

Theorem 2: The operation of vertical merging denoted by the symbol ‘+ ’ is associative in 

accordance with Equation (22)  

(A+B)+C = A+(B+C)                                                                       (22) 

 
whereby the vertical merging of any three operand nodes A, B and C from top to bottom is 

equivalent to their vertical merging from bottom to top. 

Although Theorems 1-2 prove the associativity property only for fuzzy networks with 

three sequential and parallel nodes, respectively, this property can be trivially extended for 

fuzzy networks with an arbitrary number of nodes. Therefore, this property can be viewed in 

the context of the linguistic composition approach as the glue that makes the building blocks 

for simplification of a fuzzy network to a fuzzy system, i.e. the horizontal and merging 



operations on nodes, stick together. In this case, the generalisation of the associativity 

property for horizontal and vertical merging can be presented by Equations (23)-(24)  

(((…((A*B)*C*)...*X)*Y)*Z) = (A*(B*(C*...*(X*(Y*Z)) …)))  (23) 

(((…((A+B)+C+)...+X)+Y)+Z) = (A+(B+(C+...+(X+(Y+Z))…)))                                                                       (24) 

 
where A, B, C, … , X, Y, Z are operand nodes from a fuzzy network with a single level and 

layer, respectively. 

The associativity property of horizontal and merging operations from Theorems 1-2 

provides the basis for the application of the linguistic composition approach to complex fuzzy 

networks with an arbitrary number of nodes. In particular, the nodes can be merged quite 

flexibly, i.e. from left to right or right to left within the same level and from top to bottom or 

from bottom to top within the same layer. In this case, the resulting single equivalent system 

is the same irrespective of the order of application of the binary merging operations. 

3.4 Application of rule base merging  

The linguistic composition approach can be applied in the context of the three types of 

fuzzy systems discussed earlier – with single rule base, multiple rule bases and networked 

rule bases. This process consists of two stages whereby a multiple rule base system such as 

HFS is first converted into a networked fuzzy system such as FN and then the latter is 

composed into a single rule base system such as SFS. The theoretical validity of the above 

two-stage process is proved by means of topological expressions in Theorem 3 below whose 

proof is presented in the Appendix. 

Theorem 3: A HFS with set of m inputs {x1, x2,…, xm}, a set of m-1 network nodes      

{N11, N12,…, N1,m-1}, a set of m-2 connections {z1, z2,…, zm-2} and a single output y, as  

described by the block-scheme in Figure 5 and the topological expression in Equation (25) 

 [N11] (x1,
 x2 | z1) * [N 12] (z1,

 x3 | z2) * … * [N1,m-1] (zm-2,
 xm | y)      (25) 

 



can be represented as a SFS with the same set of m inputs, a single network node                   

N, no connections and the same single output, as described by the block-schemes in        

Figures 6-7 and the topological expression in Equation (26)  

 [ ∏ p=1
m–1 (N1p +  ∑ q=p+1

m–1 Iqp)] (x1, x2,…, xm | y) (26) 

 
where N = ∏ p=1

m–1 (N1p +  ∑ q=p+1
m–1 Iqp). 

Theorem 3 is applicable only to single-output systems but it can be extended trivially for 

multiple-output systems. In this case, the HFS would have a set of n outputs {y1, y2,…, yn} 

and it could be presented as a set of n independent systems. Therefore, the two-step process 

from the theorem above would be repeated for each independent system and its output.  

3.5 Model performance indicators  

As opposed to most existing approaches where the focus is to improve efficiency by 

representing a SFS as a HFS with rule bases of smaller size, the focus of the linguistic 

composition approach is to maintain accuracy by representing a HFS as a SFS with a single 

FID sequence while improving transparency by means of the modular rule bases that reflect 

the subsystems of the modelled system. This is not the case in most existing approaches 

where the HFS is a mathematical approximation of the SFS that does not reflect the 

subsystems of the modelled system. 

When SFS, HFS and FN are used for modelling, the quality of the associated models can 

be quantified using performance indicators. In particular, three model performance indicators 

are introduced further below. They are called Accuracy Index (AI), Efficiency Index (EI) and 

Transparency Index (TI). These performance indicators represent modifications of 

performance indicators used for fuzzy systems that can also be used for fuzzy networks. 

The first performance indicator AI reflects the accuracy of the model by means of the 

absolute difference between the model and the data, as shown by Equation (27) 



AI =  ∑  i=1
nl   ∑  j=1

qil   ∑  k=1
vji (|yji

k – dji
k| / vji) (27) 

 
The notations in Equation (27) are as follows: nl is the number of nodes in the last layer, 

qil  is the number of outputs from the i-th node in the last layer, vji  is the number of discrete 

values for the j-th output from the i-th node in the last layer, yji
k is the simulated k-th discrete 

value for the j-th output from the i-th node in the last layer and dji
k is the measured k-th 

discrete value for the j-th output from the i-th node in the last layer. Identity nodes are 

included in this indicator alongside any other nodes in the last layer because their outputs also 

have to be compared with the data. As a model is more accurate when the absolute difference 

between the model and the data given by Equation (27) is smaller, a lower AI implies better 

accuracy.  

The second performance indicator EI reflects the efficiency of the model by means of the 

overall number of rules, as shown by Equation (28)  

EI =  ∑  i=1
n (qi

FID ×  ri
FID) (28) 

 
The notations in Equation (28) are as follows: n is the number of non-identity network 

nodes, qi
FID

 is the number of outputs from the i-th non-identity node with an associated FID 

sequence and r i  is the number of rules for the i-th non-identity node with an associated FID 

sequence. Identity nodes are excluded from this indicator because they are virtual nodes for 

converting a HFS into a FN that do not affect the efficiency. As a model is more efficient 

when the overall number of rules given by Equation (28) is smaller, a lower EI implies better 

efficiency. 

The third performance indicator TI reflects the transparency of the model by means of the 

extent of its opaqueness from the inside, as shown by Equation (29) 

TI = (p + q) / (n + m) (29) 

 



The notations in Equation (29) are as follows: p is the overall number of inputs, q is the 

overall number of outputs, n is the number of non-identity nodes and m is the number of non-

identity connections. Identity nodes are excluded from this indicator as they are virtual nodes 

for converting a HFS into a FN that do not affect the transparency. As a model is more 

transparent when the extent of its opaqueness from the inside given by Equation (29) is 

smaller, i.e. the overall number of inputs and outputs is bigger while at the same time the 

number of sub-models and connections is smaller, a lower TI implies better transparency. 

4. Simulation Results  

The linguistic composition approach is applied to two case studies from different 

industries. The first case study is on transport demand management and the second one is on 

retail product management.  

4.1 Transport demand management  

The main goal in this case study is to model preferences of employees to telecommuting. 

The data is based on a survey that has been obtained from several government organisations 

located in the central district of the capital city of Tehran, Iran. 

The inputs taken into account for determining preferences of employees are computer time 

usage, phone/fax time usage, travel time from home to work, travel time from work to home, 

travel cost from home to work, travel cost from work to home and age. The output is the 

number of days on which each employee prefers to telecommute from satellite offices. 

The preferences of employees to telecommuting can be modelled by a SFS, as shown by 

the topological expression in Equation (30) and the block-scheme in Figure 8. The notations 

used are as follows: N is the rule base for the SFS, the inputs x1 and x2 are computer and 

phone/fax time usage, the inputs x3 and x4 are travel times from home to work and work to 

home, the inputs x5 and x6 are travel costs from home to work and work to home, the input x7 

is age and the output y is the preferred number of telecommuting days. 



[N] (x1, x2, x3, x4, x5, x6, x7 | y)             (30) 

 
The preferences of employees to telecommuting can also be modelled by a HFS, as shown 

by the topological expression in Equation (31) and the block-scheme in Figure 9. The 

notations used are as follows: N12, N31, N41, N32 and N13 are rule bases for the HFS, the inputs 

x1, x2, x3, x4, x5, x6, x7 and the output y are the same as the ones for the SFS, whereas the 

connections have the following meanings: z12,13 shows employees involvement with computer 

and phone/fax equipment, z31,32 reflects employees travel time, z41,32 represents employees 

travel cost whereas z32,13 stands for both employees travel time and cost.   

{[N 12] (x1, x2| z12,13) + { {[N 31] (x3, x4| z31,32) +                               (31) 

[N41] (x5, x6| z41,32)} *[N 32] (z31,32 ,  z41,32| z32,13)} } * 

[N13] (z12,13, z32,13, x7 | y) 

 
The preferences of employees to telecommuting can be modelled by a FN as well, as 

shown by the topological expression in Equation (32) and the block-scheme in Figure 10. 

Most notations used are the same as the ones for the HFS. The new notations are the identity 

rule bases I11, I21, I51 and I52  representing the propagation of the identity mapping x1, x2, x7 and 

x7  through the first and second layers of the grid structure. In this context, N12, N31, N41, N32 

and N13 are the network rules bases and they are usually of non-identity type. 

{{{[I 11](x1| x1)+ [I 21 ](x2| x2)} * [N 12] (x1, x2| z12,13)}  +                       (32) 

{ {[N 31] (x3,x4| z31,32) + [N41] (x5, x6| z41,32)}  * 

[N32] (z31,32 , z41,32| z32,13)} + [I 51](x7| x7) *[I 52](x7| x7) } * 

[N13] (z12,13, z32,13,  x7 | y) 

 
Using the proposed linguistic composition approach, the HFS with multiple rule bases can 

be converted first to a FN with networked rule bases. The latter can then be simplified to a 

SFS with a single rule base, as shown by the topological expression in Equation (33). In this 

equation, the composite rule base  [(I 11+ I 21 )* N12 + (N31+N41)* N32 + I51*I 52]* N 13  for the 



SFS is derived along the lines of the topological expression in Equation (26) by means of  the 

associated merging operations for rule bases that are presented by Boolean matrices. 

[((I 11+ I 21 )* N12 + (N31+N41)* N32 + I51*I 52 )* N13] (x1, x2, x3, x4, x5, x6, x7 | y)         (33) 

 
For simplicity, the inputs are presented by three linguistic terms each, as shown in   

Figures 11-17. These terms belong to the set {low, medium, high} and they are represented by 

triangular fuzzy membership functions that cover uniformly the whole variation range for the 

inputs. For consistency, the variation ranges for x1, x2, x3, x4, x5, x6, x7 are normalised between 

0 and 100. 

For consistency with the inputs, the output and the connections are presented by the same 

three linguistic terms {low, medium, high}, as shown in Figures 18-19. As opposed to 

connections whose variation range is normalised between 0 and 100, the variation range for y 

is normalised between 0 and 5, i.e. the number of days on which employees prefer to 

telecommute. 

For further simplicity, the linguistic terms for the inputs, the connections and the output in 

all rule bases presented further are encoded as positive integers, i.e. low=1, medium=2, 

high=3. These rule bases are derived from survey based data and can be used as adequate 

models for determining the telecommuting preferences. 

Due to the large number of rules, the rule base for the SFS is shown partially in Table 1 

where only the first and the last nine rules are presented. This rule base is derived from 

survey based global data about preferences of employees to telecommuting and in accordance 

with Equation (30).  

The five rule bases for the HFS are shown in Tables 2-6. These rule bases are derived 

from survey based local data about preferences of employees to telecommuting and in 

accordance with Equation (31).  



Due to the large number of rules, the rule base for the FN is shown partially in Table 7 

where only the first and the last nine rules are presented. This rule base is derived from 

survey based local data about preferences of employees to telecommuting and in accordance 

with Equation (33).  

The simulation results for the SFS, the HFS and the FN are shown in Figures 20-22 where 

the survey based observation and the model output are presented together. In this case, each 

of the three models is simulated in terms of its output, i.e. the preferred number of 

telecommuting days, for the relevant permutations of the crisp values of the inputs for each of 

the 245 interviewed employees, i.e. computer and phone/fax time usage, travel times from 

home to work and work to home, travel costs from home to work and work to home as well 

as age. The comparative evaluation of the SFS, the HFS and the FN for this case study is 

given in Table 8 and it is discussed further in the text. 

4.2 Retail product management  

The main goal in this case study is to model prices of retail products. The data is based on 

a survey that has been obtained from several retail companies in the central district of the 

capital city of London, UK.  

The inputs taken into account for the determination of the price are the expected selling 

price of the product, the margin, i.e. the relative difference between the price and the cost of 

the product, and the expected sell through, i.e. the relative quantity of the product expected to 

be sold. The output from this process is the maximum cost of the product.   

The product price determination process can be modelled by a SFS, as shown by the 

topological expression in Equation (34) and the block-scheme in Figure 23. The notations 

used are as follows: N is the rule base for the SFS, the first input x1 is the expected selling 

price, the second input x2 is the margin, the third input x3 is the expected sell through and the 

output y is the maximum cost.  



[N] (x1,
 x2,

 x3 | y)       (34) 

 
The product price determination process can also be modelled by a HFS, as shown by the 

topological expression in Equation (35) and the block-scheme in Figure 24. The notations 

used are as follows: N11 is the first rule base for the HFS, N12 is the second rule base for the 

HFS, the inputs x1, x2, x3 and the output y are the same as the ones for the SFS, whereas the 

connection z has the same meaning as the output y for the SFS but it represents the 

provisional maximum cost of the product.  

[N11] (x1,
 x2 | z) * [N 12] (z, x3 | y) (35) 

 
The product price determination process can be modelled by a FN as well, as shown by the 

topological expression in Equation (36) and the block-scheme in Figure 25. Most notations 

used are the same as the ones for the HFS. The only new notation is the identity rule base I21 

representing the propagation of the identity mapping x3 through the first layer of the grid 

structure. In this context, N11 and N12 are the network rules bases and they are usually of non-

identity type.   

{[N 11] (x1,
 x2 | z) + I21 (x3 | x3)} * [N 12] (z, x3 | y) (36) 

 
Using the proposed linguistic composition approach, the HFS with multiple rule bases can 

be converted first to a FN with networked rule bases. The latter can then be simplified to a 

SFS with a single rule base, as shown by the topological expression in Equation (37). In this 

equation, the composite rule base (N11 + I21) * N12 for the SFS is derived in accordance with 

the topological expression in Equation (26) and the associated merging operations for rule 

bases by means of Boolean matrices.  

[(N11 + I21) * N12] (x1,
 x2,

 x3 | y) (37) 

 
The inputs x1, x2, x3 are presented by five linguistic terms each, as shown in Figures 26-28. 

Тhese terms belong to the set {very low, low, average, high, very high} and they are 



represented by triangular fuzzy membership functions that cover uniformly the whole 

variation range for the inputs. For consistency, the variation ranges for x1, x2, x3 are 

normalised between 0 and 100. 

The output y and the connection z are presented by eleven linguistic terms each, as shown 

in Figures 29-30. Тhese terms belong to the set {low5, low4, low3, low2, low1, average, 

high1, high2, high3, high4, high5} and they are also represented by triangular fuzzy 

membership functions that cover uniformly the whole variation range for the output and the 

connection. The variation ranges for y and z are also normalised between 0 and 100. 

The linguistic terms in the rule bases for the SFS, the HFS and the FN are represented by 

positive integers. In this case, the substitutions are in accordance with Equations (38)-(39) 

very low = 1, low = 2, average = 3, high = 4, very high = 5 (38) 

 

low5 = 1, low4 = 2, low3 = 3, low2 = 4, low1 = 5, average = 6,  

high1 = 7, high2 = 8, high3 = 9, high4 = 10, high5 = 11 

(39) 

 
The rule base for the SFS is shown in two parts in Tables 9-10. This rule base is derived 

from data about the product pricing process and in accordance with Equation (34). The 

derivation is done using a clustering approach whereby the rules represent an approximation 

of the input-output data points from the data set for the process. 

The two rule bases for the HFS are shown in Tables 11-12. These rule bases are derived 

from data about the two sub-processes within the product pricing process and in accordance 

with Equation (35). The derivation is done using a clustering approach whereby the rules 

represent an approximation of the input-output data points from the data sets for the sub-

processes. 

The rule base for the FN is shown in two parts in Tables 13-14. This rule base is derived in 

accordance with Equation (37).  



The simulation results for the SFS, the HFS and the FN are shown in Figures 31-33 where 

the data and the model output are presented together. In this case, each of the three models is 

simulated in terms of its output, i.e. the maximum cost of a retail product, for all 125 possible 

permutations of the crisp values 0, 25, 50, 75, 100 of the inputs, i.e. the expected selling price 

of the product, the margin and the expected sell through. The comparative evaluation of the 

SFS, the HFS and the FN for this case study is given in Table 15 and it is discussed further in 

the text. 

5. Performance Evaluation  

The proposed linguistic composition approach is evaluated comparatively in terms of 

accuracy, efficiency and transparency. In particular, a FN that uses the linguistic composition 

approach and a single FID sequence is compared to a SFS that uses a single FID sequence 

and a HFS that uses a multiple FID sequence. The evaluation uses the performance indicators 

from Equations (27)-(29). 

The comparative evaluation of the SFS, the HFS and the FN for the first case study on 

transport demand management is presented in Table 8. The latter shows that in terms of 

accuracy, the FN is slightly inferior to the SFS and the HFS. As far as efficiency is 

concerned, the FN is equivalent to the SFS but inferior to the HFS. And finally, in terms of 

transparency, the FN is superior to the SFS and equivalent to the HFS. 

The comparative evaluation of the SFS, the HFS and the FN for the second case study on 

retail product management is presented in Table 15. The latter shows that in terms of 

accuracy, the FN is slightly inferior to the SFS and slightly superior the HFS. As far as 

efficiency is concerned, the FN is equivalent to the SFS but inferior to the HFS. And finally, 

in terms of transparency, the FN is superior to the SFS and equivalent to the HFS. 

For both case studies, the accuracy of the FN can be improved by increasing the number of 

linguistic terms for the inputs, the connections and the output or adapting the fuzzy 



membership functions for these variables. In this case, the accuracy of the FN can get better 

than the one of the SFS and the HFS. 

For both case studies, the efficiency of the FN is the same as the one of the SFS due to the 

same size of the rule base but it is worse than the one of the HFS due to the larger size of the 

rule base. However, the efficiency of the FN can be improved by rule base reduction or 

compression in which case it can get better than the one of the HFS. 

For both case studies, the transparency of the FN is the same as the one of the HFS due to 

the use of the same modular rule bases but it is better than the one of the SFS which uses a 

single rule base. However, the transparency of the FN can be further improved by increasing 

the number of modular rule bases in which case it can get much better than the one of the 

SFS. 

6. Conclusion 

The proposed linguistic composition approach provides a novel theoretical framework for 

fuzzy systems with networked rule bases called fuzzy networks. These networks compare 

well in terms of accuracy, efficiency and transparency with established fuzzy systems such as 

standard fuzzy systems with a single rule base and hierarchical fuzzy systems with multiple 

rule bases. The approach is suitable for modelling processes characterised by uncertainty, 

dimensionality and structure and can be easily extended to improve performance indicators 

such as accuracy, efficiency and transparency. 

The framework shows a novel application of discrete mathematics and systems theory. It 

uses generalised Boolean matrices and binary relations for representing network nodes as 

well as topological expressions and connectionism concepts for representing whole networks. 

In this framework, a fuzzy network represents an extension of a standard fuzzy system and a 

hierarchical fuzzy system. In particular, a fuzzy network is a compact way of representing a 



hierarchical fuzzy system by means of a standard fuzzy system whereby structure is dealt 

with during the linguistic composition process.  

Apart from being an extension, a fuzzy network acts like a bridge between a standard 

fuzzy system and a hierarchical fuzzy system by means of the linguistic composition process. 

The latter allows a hierarchical fuzzy system first to be converted into a fuzzy network which 

can then be composed into a standard fuzzy system. During this process some performance 

indicators can be improved without deteriorating other indicators. Therefore, this bridging 

capability of fuzzy networks improves the flexibility of fuzzy systems in terms of modelling 

depending on the specific requirements to these models. 

The linguistic composition approach can be used in a wide range of application areas 

where the knowledge or data about the modelled process can be provided in a modular 

fashion, i.e. for each interacting sub-process by means of individual rule bases. Such modular 

processes are quite common in many areas such as decision making, manufacturing, 

communications and transport. In this case, the interacting modules can be decision units, 

manufacturing cells, communication nodes or traffic junctions. To achieve better results, the 

proposed approach can be further extended for learning and optimisation of the structure and 

parameters of fuzzy networks in the context of real-world applications. 

Also, the approach can be easily extended to other types of rule based systems such as the 

ones using deterministic and probabilistic logic. These non-fuzzy rule based systems can be 

represented by deterministic and probabilistic graphical models, respectively. 

Appendix 

Proof of Theorem 1: The proof is based on the use of binary relations for representing the 

operand nodes A, B and C. In this case, the elements of the relational pairs are denoted by the 

letter a in A, the letters a and c in B, and the letter c in C, as shown in Equations (40)-(42). 

For clarity, all pairs in the middle relation B are assumed to be composable with pairs from 



the left relation A and the right relation C. This is why the first and the second element of 

each pair in B are denoted by a and c, respectively, and not by b.  

A = {(a1
1, a2

1),…,(a1
p, a2

p)}                                                                                 (40) 

 

B = {(a2
1, c1

1),…,(a2
1, c1

q),…,(a2
p, c1

1),…,(a2
p, c1

q)} (41) 

 

C = {(c1
1, c2

1),…,(c1
q, c2

q)} (42) 

 
The first and the second element of any relational pair in A and C are denoted by the 

subscripts ‘1’ and ‘2’, respectively. However, the superscripts for the first and the second 

element of any relational pair in A and C are identical as they indicate the corresponding 

number for each pair. In particular, the relation A has p pairs and the relation C has q pairs. 

The subscripts for the first and the second element of any relational pair in B are ‘2’ and ‘1’, 

respectively. This is due to the requirement for left and right composability of B, i.e. the first 

element of each pair in B must be identical with a second element of a pair in A whereas the 

second element of each pair in B must be identical with a first element of a pair in C. In this 

case, the superscripts for the elements of the relational pairs in B do not have to be identical 

and therefore the relation B is assumed to have p×q pairs. 

The horizontal composition of the operand relations A and B gives the temporary relation 

A*B, as shown in Equation (43) 

A*B = {(a1
1, c1

1),…,(a1
1, c1

q),…,(a1
p, c1

1),…,(a1
p, c1

q)} (43) 

 
Further on, the horizontal composition of the temporary relation A*B and the operand 

relation C gives the product relation (A*B)*C, as shown in Equation (44) 

(A*B)*C = {(a1
1, c2

1),…,(a1
1, c2

q),…,(a1
p, c2

1),…,(a1
p, c2

q)} (44) 

 
On the other hand, the horizontal composition of the operand relations B and C gives the 

temporary relation B*C, as shown in Equation (45) 



B*C = {(a2
1, c2

1),…,(a2
1, c2

q),…,(a2
p, c2

1),…,(a2
p, c2

q)} (45) 

 
In this case, the horizontal composition of the operand relation A and the temporary 

relation B*C gives the product relation A*(B*C). As the latter is identical with the product 

relation (A*B)*C from Equation (44), this implies Equation (21) and concludes the proof. 

Proof of Theorem 2: The proof is based on the use of binary relations for representing the 

operand nodes A, B and C. In this case, the elements of the relational pairs are denoted by the 

letter a in A, the letter b in B and the letter c in C, as shown in Equations (46)-(48) 

A = {(a1
1, a2

1),…,(a1
p, a2

p)} (46) 

 

B = {(b1
1, b2

1),…,(b1
q, b2

q)} (47) 

 

C = {(c1
1, c2

1),…,(c1
r, c2

r)} (48) 

 
The first and the second element of any relational pair in A, B and C are denoted by the 

subscripts ‘1’ and ‘2’, respectively. However, the superscripts for the first and the second 

element of any relational pair in A, B and C are identical as they indicate the corresponding 

number for each pair. In particular, the relation A has p pairs, the relation B has q pairs and 

the relation C has r pairs.  

The vertical composition of the operand relations A and B gives the temporary relation 

A+B, as shown in Equation (49) 

A+B = {(a1
1 b1

1, a2
1 b2

1),…,(a1
1 b1

q, a2
1 b2

q),…,(a1
p b1

1, a2
p b2

1),…,(a1
p b1

q, a2
p b2

q )} (49) 

 
Further on, the vertical composition of the temporary relation A+B and the operand 

relation C gives the product relation (A+B)+C, as shown in Equation (50) 

 

(A+B)+C = {(a1
1 b1

q c1
1, a2

1 b2
q c2

1),…,(a1
1 b1

q c1
r, a2

1 b2
q c2

r),…, 

(a1
p b1

1 c1
1, a2

p b2
1 c2

1),…,(a1
p b1

1 c1
r, a2

p b2
1 c2

r),…, 

(50) 



(a1
p b1

q c1
1, a2

p b2
q c2

1),…,(a1
p b1

q c1
r, a2

p b2
q c2

r)} 

 
On the other hand, the vertical composition of the operand relations B and C gives the 

temporary relation B+C, as shown in Equation (51) 

B+C =  {(b1
1 c1

1, b2
1 c2

1),…,(b1
1 c1

r, b2
1 c2

r),…,(b1
q c1

1, b2
q c2

1),…,(b1
q c1

r, b2
q c2

r)} (51) 

 
In this case, the vertical composition of the operand relation A and the temporary relation 

B+C gives the product relation A+(B+C). As the latter is identical with the product relation 

(A+B)+C from Equation (50), this implies Equation (22) and concludes the proof. 

Proof of Theorem 3: The HFS from Equation (25) can first be converted into a FN by 

representing all identity mappings propagating through any layers in the grid structure with 

the set of identity nodes {I 21}, … ,{Im-1,1, Im-1,2,
 …}. This FN can be described by the 

topological expression in Equation (52)  

{[N 11] (x1,
 x2 | z1) + [I 21] (x3

 | x3) + … + [I m-1,1] (xm
 | xm)} *                                

{[N 12] (z1,
 x3 | z2) + … +  [Im-1,2] (xm

 | xm)} *  

…………………… *  

[N1,m-1] (zm-2,
 xm | y) 

(52) 

 
where each network node has two inputs and one output as opposed to each identity node that 

has one input and one output. In this case, the input to each identical node is identical with 

the output from the same node, as shown by the block-scheme in Figure 7. 

The FN can then be composed into a SFS by merging first vertically and then horizontally 

all network and identity nodes into a single network node                                  

N = ∏ p=1
m–1 (N1p +  ∑ q=p+1

m–1 Iqp). In this case, the SFS is like a single node FN with the 

same set of m inputs {x1, x2,…, xm} and the same single output y as the HFS. This SFS can de 

described by the topological expression from Equation (26) that uses prefix notation for the 

horizontal merging operation and a mixture of infix/prefix notation for the vertical merging 

operation. This concludes the proof. 
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Figure 5: Hierarchical fuzzy system 
 
 
 

 

 
 
Figure 6: Standard fuzzy system 
 

 
 

 
 
 
Figure 7: Fuzzy network 
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Figure 17: Standard fuzzy system for case study 
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Figure 18: Hierarchical fuzzy system for case study 
 
 
Figure 19: Fuzzy network for case study 
 
 
 
Figure 20: Simulation results for standard fuzzy system   
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Figure 21: Simulation results for hierarchical fuzzy system  
 
 
 
Figure 22: Simulation results for fuzzy network   
 
 
Table 1: First part of rule base for standard fuzzy system  
 
Figure 10: Fuzzy network for case study 1 
 



 

 
Figure 11: Linguistic terms for first input in case study 1  
 
 

 
Figure 12: Linguistic terms for second input in case study 1  
 

 
Figure 13: Linguistic terms for third input in case study 1 
 



 

 
Figure 14: Linguistic terms for fourth input in case study 1   
 
 

 
Figure 15: Linguistic terms for fifth input in case study 1  
 
 
 
 
 
 
 
 
Figure 13: Linguistic terms for sixth input  
 
 
 
 
 
 
Figure 16: Linguistic terms for sixth input in case study 1  
 



 

 
Figure 17: Linguistic terms for seventh input in case study 1 
 

 
Figure 18: Linguistic terms for output in case study 1  
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Figure 19: Linguistic terms for connections in case study 1 



 
 
Figure 20: Simulation results for standard fuzzy system in case study 1 
 

 
 
Figure 21: Simulation results for hierarchical fuzzy system in case study 1 
 

 
 
Figure 22: Simulation results for fuzzy network in case study 1 
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Figure 23: Standard fuzzy system for case study 2 
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Figure 24: Hierarchical fuzzy system for case study 2 
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Figure 25: Fuzzy network for case study 2 
 
 

 
 
Figure 26: Linguistic terms for first input in case study 2  
 



 
 
Figure 27: Linguistic terms for second input in case study 2   
 
 

 
 
Figure 28: Linguistic terms for third input in case study 2  

 
 

 
 
Figure 29: Linguistic terms for output in case study 2  
 
 

 
 
Figure 30: Linguistic terms for connection in case study 2  
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Figure 31: Simulation results for standard fuzzy system in case study 2   
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Figure 32: Simulation results for hierarchical fuzzy system in case study 2  
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Figure 33: Simulation results for fuzzy network in case study 2   
 
 
 
 



 
Table 1: Partial rule base for standard fuzzy system in case study 1  
 

Rule x1 x2 x3 x4 x5 x6 x7 y 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 2 1 

3 1 1 1 1 1 1 3 2 

4 1 1 1 1 1 2 1 1 

5 1 1 1 1 1 2 2 1 

6 1 1 1 1 1 2 3 2 

7 1 1 1 1 1 3 1 2 

8 1 1 1 1 1 3 2 2 

9 1 1 1 1 1 3 3 3 

         2179 3 3 3 3 3 1 1 2 

2180 3 3 3 3 3 1 2 3 

2181 3 3 3 3 3 1 3 3 

2182 3 3 3 3 3 2 1 2 

2183 3 3 3 3 3 2 2 3 

2184 3 3 3 3 3 2 3 3 

2185 3 3 3 3 3 3 1 2 

2186 3 3 3 3 3 3 2 3 

2187 3 3 3 3 3 3 3 3 

 
 
Table 2: First rule base for hierarchical fuzzy system in case study 1 
 

Rules x1 x2 Z12,13 

1 1 1 1 

2 1 2 1 

3 1 3 2 

4 2 1 1 

5 2 2 2 

6 2 3 3 

7 3 1 2 

8 3 2 3 

9 3 3 3 

 
 
 
 
 
 
 
 
 



 
Table 3: Second rule base for hierarchical fuzzy system in case study 1 
 

Rules x3 x4 Z31,32 

10 1 1 1 

11 1 2 1 

12 1 3 2 

13 2 1 1 

14 2 2 2 

15 2 3 3 

16 3 1 2 

17 3 2 3 

18 3 3 3 

 
 
Table 4: Third rule base for hierarchical fuzzy system in case study 1 
 

Rules x5 x6 Z41,32 

19 1 1 1 

20 1 2 2 

21 1 3 2 

22 2 1 2 

23 2 2 2 

24 2 3 3 

25 3 1 2 

26 3 2 3 

27 3 3 3 

 
 
Table 5: Fourth rule base for hierarchical fuzzy system in case study 1 
 

Rules Z31,32 Z41,32 Z32,13 

28 1 1 1 

29 1 2 2 

30 1 3 3 

31 2 1 2 

32 2 2 2 

33 2 3 3 

34 3 1 3 

35 3 2 3 

36 3 3 3 

 
 
 
 
 



 
Table 6: Fifth rule base for hierarchical fuzzy system in case study 1  
 

Rules Z12,13 Z32,13 x7 y 

37 1 1 1 1 

38 1 1 2 1 

39 1 1 3 2 

40 1 2 1 1 

41 1 2 2 1 

42 1 2 3 2 

43 1 3 1 2 

44 1 3 2 2 

45 1 3 3 3 

46 2 1 1 1 

47 2 1 2 1 

48 2 1 3 2 

49 2 2 1 1 

50 2 2 2 2 

51 2 2 3 2 

52 2 3 1 2 

53 2 3 2 2 

54 2 3 3 3 

55 3 1 1 1 

56 3 1 2 1 

57 3 1 3 2 

58 3 2 1 1 

59 3 2 2 2 

60 3 2 3 3 

61 3 3 1 2 

62 3 3 2 3 

63 3 3 3 3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 7: Partial rule base for fuzzy network in case study 1 
 

Rule x1 x2 x3 x4 x5 x6 x7 y 

1 1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 2 1 

3 1 1 1 1 1 1 3 2 

4 1 1 1 1 1 2 1 1 

5 1 1 1 1 1 2 2 1 

6 1 1 1 1 1 2 3 2 

7 1 1 1 1 1 3 1 1 

8 1 1 1 1 1 3 2 1 

9 1 1 1 1 1 3 3 2 

         2179 3 3 3 3 3 1 1 2 

2180 3 3 3 3 3 1 2 3 

2181 3 3 3 3 3 1 3 3 

2182 3 3 3 3 3 2 1 2 

2183 3 3 3 3 3 2 2 3 

2184 3 3 3 3 3 2 3 3 

2185 3 3 3 3 3 3 1 2 

2186 3 3 3 3 3 3 2 3 

2187 3 3 3 3 3 3 3 3 

 
 
Table 8: Comparative evaluation of three fuzzy models for case study 1 

 
Performance 

Indicator 
Standard Fuzzy 

System 
Hierarchical 
Fuzzy System Fuzzy Network 

Accuracy 1.13 1.15 1.16 

Efficiency 2187 63 2187 

Transparency 8 0.72 0.72 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 9: First part of rule base for standard fuzzy system in case study 2 
 
Rule x1 x2 x3 y Rule x1 x2 x3 y Rule x1 x2 x3 y 
1 1 1 1 1 26 2 1 1 1 51 3 1 1 1 
2 1 1 2 1 27 2 1 2 2 52 3 1 2 4 
3 1 1 3 1 28 2 1 3 4 53 3 1 3 6 
4 1 1 4 1 29 2 1 4 5 54 3 1 4 9 
5 1 1 5 1 30 2 1 5 6 55 3 1 5 11 
6 1 2 1 1 31 2 2 1 1 56 3 2 1 1 
7 1 2 2 1 32 2 2 2 2 57 3 2 2 3 
8 1 2 3 1 33 2 2 3 3 58 3 2 3 5 
9 1 2 4 1 34 2 2 4 4 59 3 2 4 7 
10 1 2 5 1 35 2 2 5 5 50 3 2 5 9 
11 1 3 1 1 36 2 3 1 1 61 3 3 1 1 
12 1 3 2 1 37 2 3 2 2 62 3 3 2 2 
13 1 3 3 1 38 2 3 3 2 63 3 3 3 4 
14 1 3 4 1 39 2 3 4 3 64 3 3 4 5 
15 1 3 5 1 40 2 3 5 4 65 3 3 5 6 
16 1 4 1 1 41 2 4 1 1 66 3 4 1 1 
17 1 4 2 1 42 2 4 2 1 67 3 4 2 2 
18 1 4 3 1 43 2 4 3 2 68 3 4 3 2 
19 1 4 4 1 44 2 4 4 2 69 3 4 4 3 
20 1 4 5 1 45 2 4 5 2 70 3 4 5 4 
21 1 5 1 1 46 2 5 1 1 71 3 5 1 1 
22 1 5 2 1 47 2 5 2 1 72 3 5 2 1 
23 1 5 3 1 48 2 5 3 1 73 3 5 3 1 
24 1 5 4 1 49 2 5 4 1 74 3 5 4 1 
25 1 5 5 1 50 2 5 5 1 75 3 5 5 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 10: Second part of rule base for standard fuzzy system in case study 2  
 
Rule x1 x2 x3 y Rule x1 x2 x3 y 
76 4 1 1 1 101 5 1 1 1 
77 4 1 2 5 102 5 1 2 6 
78 4 1 3 9 103 5 1 3 11 
79 4 1 4 11 104 5 1 4 11 
80 4 1 5 11 105 5 1 5 11 
81 4 2 1 1 106 5 2 1 1 
82 4 2 2 4 107 5 2 2 5 
83 4 2 3 7 108 5 2 3 9 
84 4 2 4 9 109 5 2 4 11 
85 4 2 5 11 110 5 2 5 11 
86 4 3 1 1 111 5 3 1 1 
97 4 3 2 3 112 5 3 2 4 
88 4 3 3 5 113 5 3 3 6 
89 4 3 4 7 114 5 3 4 9 
90 4 3 5 9 115 5 3 5 11 
91 4 4 1 1 116 5 4 1 1 
92 4 4 2 2 117 5 4 2 2 
93 4 4 3 3 118 5 4 3 4 
94 4 4 4 4 119 5 4 4 5 
95 4 4 5 5 120 5 4 5 6 
96 4 5 1 1 121 5 5 1 1 
97 4 5 2 1 122 5 5 2 1 
98 4 5 3 1 123 5 5 3 1 
99 4 5 4 1 124 5 5 4 1 
100 4 5 5 1 125 5 5 5 1 
 
 
Table 11: First rule base for hierarchical fuzzy system in case study 2  
 
Rule x1 x2 z1 Rule x1 x2 z1 Rule x1 x2 z1 
1 1 1 1 11 3 1 6 21 5 1 11 
2 1 2 1 12 3 2 5 22 5 2 9 
3 1 3 1 13 3 3 4 23 5 3 6 
4 1 4 1 14 3 4 2 24 5 4 4 
5 1 5 1 15 3 5 1 25 5 5 1 
6 2 1 4 16 4 1 9 - - - - 
7 2 2 3 17 4 2 7 - - - - 
8 2 3 2 18 4 3 5 - - - - 
9 2 4 2 19 4 4 3 - - - - 
10 2 5 1 20 4 5 1 - - - - 
 
 
 
 
 



 
Table 12: Second rule base for hierarchical fuzzy system in case study 2  
 
Rule z1 x3 y Rule z1 x3 y Rule z1 x3 y 
1 1 1 1 21 5 1 1 41 9 1 1 
2 1 2 1 22 5 2 3 42 9 2 5 
3 1 3 1 23 5 3 5 43 9 3 9 
4 1 4 1 24 5 4 7 44 9 4 11 
5 1 5 1 25 5 5 9 45 9 5 11 
6 2 1 1 26 6 1 1 46 10 1 1 
7 2 2 2 27 6 2 4 47 10 2 6 
8 2 3 2 28 6 3 6 48 10 3 10 
9 2 4 3 29 6 4 9 49 10 4 11 
10 2 5 3 30 6 5 11 50 10 5 11 
11 3 1 1 31 7 1 1 51 11 1 1 
12 3 2 2 32 7 2 4 52 11 2 6 
13 3 3 3 33 7 3 7 53 11 3 11 
14 3 4 4 34 7 4 10 54 11 4 11 
15 3 5 5 35 7 5 11 55 11 5 11 
16 4 1 1 36 8 1 1 - - - - 
17 4 2 3 37 8 2 5 - - - - 
18 4 3 4 38 8 3 8 - - - - 
19 4 4 6 39 8 4 11 - - - - 
20 4 5 7 40 8 5 11 - - - - 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 13: First part of rule base for fuzzy network in case study 2 
 
Rule x1 x2 x3 y Rule x1 x2 x3 y Rule x1 x2 x3 y 
1 1 1 1 1 26 2 1 1 1 51 3 1 1 1 
2 1 1 2 1 27 2 1 2 3 52 3 1 2 4 
3 1 1 3 1 28 2 1 3 4 53 3 1 3 6 
4 1 1 4 1 29 2 1 4 6 54 3 1 4 9 
5 1 1 5 1 30 2 1 5 7 55 3 1 5 11 
6 1 2 1 1 31 2 2 1 1 56 3 2 1 1 
7 1 2 2 1 32 2 2 2 2 57 3 2 2 3 
8 1 2 3 1 33 2 2 3 3 58 3 2 3 5 
9 1 2 4 1 34 2 2 4 4 59 3 2 4 7 
10 1 2 5 1 35 2 2 5 5 50 3 2 5 9 
11 1 3 1 1 36 2 3 1 1 61 3 3 1 1 
12 1 3 2 1 37 2 3 2 2 62 3 3 2 3 
13 1 3 3 1 38 2 3 3 2 63 3 3 3 4 
14 1 3 4 1 39 2 3 4 3 64 3 3 4 6 
15 1 3 5 1 40 2 3 5 3 65 3 3 5 7 
16 1 4 1 1 41 2 4 1 1 66 3 4 1 1 
17 1 4 2 1 42 2 4 2 2 67 3 4 2 2 
18 1 4 3 1 43 2 4 3 2 68 3 4 3 2 
19 1 4 4 1 44 2 4 4 3 69 3 4 4 3 
20 1 4 5 1 45 2 4 5 3 70 3 4 5 3 
21 1 5 1 1 46 2 5 1 1 71 3 5 1 1 
22 1 5 2 1 47 2 5 2 1 72 3 5 2 1 
23 1 5 3 1 48 2 5 3 1 73 3 5 3 1 
24 1 5 4 1 49 2 5 4 1 74 3 5 4 1 
25 1 5 5 1 50 2 5 5 1 75 3 5 5 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Table 14: Second part of rule base for fuzzy network in case study 2  
 
Rule x1 x2 x3 y Rule x1 x2 x3 y 
76 4 1 1 1 101 5 1 1 1 
77 4 1 2 5 102 5 1 2 6 
78 4 1 3 9 103 5 1 3 11 
79 4 1 4 11 104 5 1 4 11 
80 4 1 5 11 105 5 1 5 11 
81 4 2 1 1 106 5 2 1 1 
82 4 2 2 4 107 5 2 2 5 
83 4 2 3 7 108 5 2 3 9 
84 4 2 4 10 109 5 2 4 11 
85 4 2 5 11 110 5 2 5 11 
86 4 3 1 1 111 5 3 1 1 
97 4 3 2 3 112 5 3 2 4 
88 4 3 3 5 113 5 3 3 6 
89 4 3 4 7 114 5 3 4 9 
90 4 3 5 9 115 5 3 5 11 
91 4 4 1 1 116 5 4 1 1 
92 4 4 2 2 117 5 4 2 3 
93 4 4 3 3 118 5 4 3 4 
94 4 4 4 4 119 5 4 4 6 
95 4 4 5 5 120 5 4 5 7 
96 4 5 1 1 121 5 5 1 1 
97 4 5 2 1 122 5 5 2 1 
98 4 5 3 1 123 5 5 3 1 
99 4 5 4 1 124 5 5 4 1 
100 4 5 5 1 125 5 5 5 1 
 
 
Table 15: Comparative evaluation of three fuzzy models for case study 2 

 
Performance 
indicator  

Standard 
fuzzy system 

Hierarchical 
fuzzy system 

Fuzzy 
network 

Accuracy 2.86 5.57 3.64 
Efficiency 125 80 125 
Transparency 4 1.33 1.33 

 
 

 

 

 


