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Abstract: This paper proposes a linguistic composition baseatlelling approach by
networked fuzzy systems that are known as fuzzyaoréss. The nodes in these networks are
modules of fuzzy rule bases and the connectionsdaet these modules are the outputs from
some rule bases that are fed as inputs to otheibages. The proposed approach represents a
fuzzy network as an equivalent fuzzy system bydistic composition of the network nodes.
In comparison to the known multiple rule base apphes, this networked rule base approach
reflects adequately the structure of the modelledgss in terms of interacting sub-processes
and leads to more accurate solutions. The apprmagfoves significantly the transparency
of the associated model while ensuring a high le¥@ccuracy that is comparable to the one
achieved by established approaches. Another adyarththis fuzzy network approach is
that it fits well within the existing approacheghvsingle rule base and multiple rule bases.
Keywords. fuzzy models, decision analysis, large-scale systamansport management,
retail management, linguistic models.
1. Introduction

Complexity is a versatile feature of existing sys$éethat cannot be described by a single
definition. In this context, complexity is usualgsociated with a number of attributes such
as uncertainty, dimensionality and structure, whreke the modelling of systems with these
attributes more difficult. Therefore, the complgxaf a given system can be accounted for by

identifying the complexity related attributes tlaa¢ to be found in this system.



Fuzzy logic has proved itself as a powerful tosldealing with uncertainty as an attribute
of systemic complexity. In this context, fuzzineiss quite suitable for reflecting non-
probabilistic uncertainty such as imprecision, mpbeteness and ambiguity [1-3].

More recently, fuzzy logic has also become moreatiffe in dealing with dimensionality
as a systemic complexity attribute by means of tdese reduction and compression.
Dimensionality in rule base reduction is associatgtth the number of rules, which is an
exponential function of the number of system inpard the number of linguistic terms per
input [4-7]. In rule base compression, dimensignallassociated with the amount of on-line
operations required during fuzzification, infereraeel defuzzification [8].

However, as far as structure is concerned, fuzgicls still unable to reflect adequately
any interacting modules within a modelled procddss is due to the black-box nature of
most fuzzy models that cannot take into accounti@itp any interactions among sub-
processes [9-12]. In this respect, the followingageaphs discuss some of the main
approaches in fuzzy modelling and their ability deal with structure as a systemic
complexity attribute.

The most common type of fuzzy system is the oné wisingle rule base [13-15]. This
type of system is referred to here as StandardyFRygtem (SFS). The latter is characterised
by a black-box nature whereby the inputs are magpezttly to the outputs without the
consideration of any internal connections. The ajp@en of SFS is based on a single
Fuzzification-Inference-Defuzzification (FID) seque and it is usually quite accurate for
output modelling as it reflects the simultaneouBuence of all inputs on the output.
However, the efficiency and transparency of SF®riwtate with the increase of the number
of rules. Therefore, as the number of rules in@sas not only takes longer to simulate the

model output but it is also less clear how thigatits affected by the model inputs.



Another type of fuzzy system is the one with muétipule bases [16-19]. This type of
system is often described by cascaded rule basgst asm usually referred to as Chained
Fuzzy System (CFS) or Hierarchical Fuzzy System SHFBoth CFS and HFS are
characterised by a white-box nature whereby thatshnpre mapped to the outputs by means
of some internal variables in the form of connewdiolrhe operation of CFS and HFS is based
on multiple FID sequences whereby each conneciioks [the FID sequences for two
adjacent rule bases.

CFS has an arbitrary structure in terms of subsystand the connections among them
[20-22]. In this case, each subsystem representéndimidual rule base whereas each
interaction is represented by a connection linkengpair of adjacent rule bases. This
connection is identical with an output from thesfirule base and an input to the second rule
base in the pair. CFS is usually used as a detpilesentation of SFS for the purpose of
improving transparency by explicitly taking intocacint all subsystems and the interactions
among them. Also, efficiency is improved becausehef smaller number of inputs to the
individual rule bases. However, accuracy may bedog to the accumulation of errors as a
result of the multiple FID sequences.

HFS is a special type of CFS that has a specificstre [23-27]. Each subsystem in HFS
has two inputs and one output. Some connectiorresept identical mappings, which may
propagate across parts of the system. HFS is afied as an alternative presentation of SFS
for the purpose of improving transparency by extidaking into account all subsystems
and the interactions among them. Efficiency is atsproved by the reduction of the overall
number of rules, which is a linear function of tihhember of inputs to the subsystems and the
number of linguistic terms per input. However, th@sprovements are often at the expense

of accuracy due to the accumulation of errors i@salt of the multiple FID sequences.



A third type of fuzzy system is the one with netiext rule bases. This type of fuzzy
system has been recently introduced as a thedretinaept in [28]. This concept is referred
there as Networked Fuzzy System (NFS) and it has lherther extended in this work by
more generic descriptions in the form of generdliBeolean matrices. NFS is characterised
by a white-box nature whereby the inputs are mappdide outputs by means of connections.
Subsystems in NFS are represented by nodes andtéhactions among subsystems are the
connections among these nodes. NFS is a hybndeket SFS and CFS/HFS. On one hand,
the structure of NFS is similar to the structureC6S/HFS due to the explicit presentation of
subsystems and the interactions among them. Orottier hand, the operation of NFS
resembles the operation of SFS as the multiple bakes are simplified to a linguistically
equivalent single rule base. This simplification hased on the linguistic composition
approach that is described further in this work.aAsybrid concept, NFS has the potential of
providing a trade-off between SFS and CFS/HFS.

Properties of fuzzy systems such as accuracy,i@ifty and transparency are directly
related to attributes of systemic complexity sushuacertainty, dimensionality and structure.
In this respect, uncertainty is an obstacle to mguas it is harder to build an accurate model
from uncertain data [29-32]. Furthermore, dimenality represents an obstacle to efficiency
because it is more difficult to reduce the amountamputations in a FID sequence for a
large number of rules [33-36]. Finally, structusean obstacle to transparency as it is harder
to understand the behaviour of a black-box modsl dioes not reflect the interactions among
subsystems [37-40].

This paper introduces an advanced theoretical fnariefor NFS as a novel type of fuzzy
system. The framework facilitates the validationN$fS as a modelling tool with respect to
SFS and CFS/HFS. For clarity and simplicity, NFSaterred to as Fuzzy Network (FN)

further in this paper whereby NFS and FN are edentan terms of performance. Besides



this, the paper addresses several attributes aérays complexity including uncertainty,
dimensionality and structure and the associategepties of the above fuzzy systems such as
accuracy, efficiency and transparency. This researethodology is more balanced than the
one used in many current studies as they usuatlysfamn only one attribute of systemic
complexity and the associated property of the fusmtem used.

The remaining part of this paper is structured @lows. Section 2 provides some
theoretical preliminaries for fuzzy networks. Sent3 introduces the linguistic composition
approach. Section 4 illustrates the applicationtro§ approach for a transport demand
management case study. Section 5 evaluates therperice of the approach in a
guantitative and comparative context. Section 6 rsanses the main advantages of the
approach and highlights future research directions.

2. Theoretical Preliminaries

A fuzzy system withr rules,m inputsx;...x%, taking linguistic terms from the input sets

{A11,...Ahr o {Ans -, And @ndn outputsy;...\, taking linguistic terms from the output sets

{B11,....B},....{Bn1,...,By} can be represented by the following rule base

Rule 1: If x is Az and ... and xis Aqy, then y is By and ... and yis By Q)

Rule r: If x is Ay and ... and %is Aq, then y is By and ... and yis By,

A fuzzy network with p.g nodes {Nii...No},....{Niq...Noig}, pP*q node inputs
{X11...%1},... {X1q...%q} taking linguistic terms from any admissible inpméts, pxq node
outputs{yii...Yp1},....{Y1q.--Yoq} taking linguistic terms from any admissible outets,p
horizontal levels and vertical layers in the general grid structure flois network can be

described by Equation (2)



Layerl............... Layer q (2)
Level 1 N]_(X]_]_, yll) ......... Nq(X]_q, y]_q)

where the subscripts for the nodes specify thewation in the grid structure and the
subscripts for the associated inputs and outpetglantical with the ones for their nodes.

Each node in the grid structure from Equation &aiseparate fuzzy system as the one
described by Equation (1). The levels in this gtidicture represent a spatial hierarchy of the
nodes in terms of subordination in space and thersarepresent a temporal hierarchy in
terms of consecutiveness in time. For completeribeduzzy network described by Equation
(2) has a node in each cell of the grid structurteitogeneral a grid structure may have empty
cells.

The grid structure in Equation (2) does not givg arformation about the connections
among the nodes in the fuzzy network. However, sniciimation is contained by the sample
connection structure in Equation (3) whereby the<(g-1) node connections
{zi1.12. . %192 {Zg-1.19--%g1,p¢ take linguistic terms from the admissible sets foe

associated node outputs and inputs

Layer1...............Layer g-1 3)
Level 1 7 17y11=X1o......... 19-1,17Y 19-= X1q
Level p Kl,p::y;n:sz ......... gq-l,pc: ypq-1: qu

where for each connectianthe first subscript is identical with the substiipr its origin
node and the second subscript is identical wittsthmscript for its destination node. Also, the
first subscript for a particular connectians identical with the subscript for the associated
outputy and the second subscript is identical with thesstipt for the associated inpt

Like each node input and output from the general gfructure in Equation (2), each node

connection from the sample connection structur&aguation (3) can be either of scalar or



vector type. For simplicity, this interconnectianusture describes only connections that are
of feedforward type and among adjacent nodes isdinge level but it can be easily extended
for connections that are of feedback type or ammmgadjacent nodes in different levels.

As a fuzzy network represents an extension of ayf/stem, i.e. it can be viewed as a
system of fuzzy systems or a network whose nodesuazy systems, some of the general
presentation techniques for fuzzy systems can bd atso for fuzzy networks. However,
other presentation techniques that are specifiduzzy networks are required for the
simplification of a fuzzy network to a linguistital equivalent fuzzy system. These
techniques use compressed information about nodezzy networks and they are discussed
further in this work.

3. Linguistic Composition Approach

The proposed linguistic composition approach usesegplised Boolean matrices for the
presentation of individual rule bases in fuzzy retkg and operations on these matrices for
manipulating the rule bases. A generalised Booteatrix compresses the information from
a rule base that is represented by a node. Inctse, the row and column labels of the
Boolean matrix are all possible permutations afuiistic terms of the inputs and the outputs
for this rule base. The elements of the Boolearrirate either ‘0’s or ‘1's whereby each ‘1’
reflects a present rule. The Boolean matrix pregemt of the rule base from Equation (1) is

given by Equation (4).

Ar1...An1 1 0
A]_r...Anr O e 1

The proposed approach uses also topological expnssfor the overall presentation of
fuzzy networks and the connections among the iddai rule bases. Like grid and

interconnection structures, topological expressidascribe the location of nodes and the



connections among them. In this case, the subsasiptach node specify its location in the
network whereby the first subscript gives the lewainber and the second subscript gives the
layer number. Besides this, topological expressi@pecify all inputs, outputs and
connections for the nodes. The topological expoesgresentation of the fuzzy network from
Equations (2)-(3) is given by Equation (5).

{IN11] (X11] Z11,177Y117X12) * ... * [N1g] (Z1g-1,17Y10-7= X1q | Y19)} + (5)

+{[N pa] (Xp1l Zo1,p7=Yp1=Xp2) * ... * [Npql (Zpg-1,05 Ypa-1= Xpq | Ypa)}

As shown in Equation (5), each node in a topoldggaression is placed within a pair of
square bracketd ]1'. The inputs and the outputs for each node areeplavithin a pair of
simple brackets(*)’ right after the node. In this case, the inputs aeparated from the
outputs by a vertical slasly. Nodes in sequence are designated by the symbdiot
horizontal relative location whereas nodes in parare designated by the symbel ‘for
vertical relative location. Curly brackets}’ are used to specify the priority of linguistic
composition operations in the fuzzy network, i.dether nodes with horizontal or vertical
relative location have to be manipulated first.

Boolean matrices and topological expressions arg s@table for formal representation
of fuzzy networks. While Boolean matrices describezy networks at a lower level of
abstraction with respect to individual nodes, togatal expressions describe these networks
at a higher level of abstraction with respect te whole network. In this context, Boolean
matrices and topological expressions lend themsedasily to manipulation for the purpose
of simplifying fuzzy networks to linguistically etqualent fuzzy systems using the linguistic
composition approach. More details on this appr@aehpresented below.

The linguistic composition approach is based maamythe most common operations for

horizontal and vertical merging of nodes in fuzatworks. These operations are binary in



that can be applied to a pair of sequential orlfgnaodes. Other less common operations
such as output merging of nodes with common inptgsnot considered in this work as they

are not applicable to the case study. For simplitite operations of horizontal and vertical

merging are illustrated for nodes with scalar ispubutputs and connections but their

extension to the vector case is straightforwarag @perations make use of Boolean matrices
at the node level and topological expressionseah#twork level.

3.1 Horizontal merging of rule bases

Horizontal merging can be applied to a pair of geadal nodes, i.e. nodes located in the
same level of the fuzzy network. This operation gesrthe operand nodes from the pair into
a single product node in the context of the lingaisomposition approach. The operation
can be applied when the output from the first opeénaode is fed forward as an input to the
second operand node in the form of a connectiothitncase, the product node has the same
input as the one to the first operand node andsémee output as the one from the second
operand node whereas the connection does not ajppiar product node.

The horizontal merging operation is identical wBloolean matrix multiplication. The
latter is similar to conventional matrix multiplican whereby each arithmetic multiplication
is replaced by amin’ operation and each arithmetic addition is replhd®yy a max
operation. In this case, the row labels of the pobdnatrix are the same as the row labels of
the first operand matrix whereas the column labélhe product matrix are the same as the
column labels of the second operand matrix.

Therefore, if the first operand node is the rulsedbtom Equation (1) that is presented by
the Boolean matrix from Equation (4) and the secopdrand node is the rule base in

Equation (6) that is presented by the generalissalédan matrix in Equation (7)



Rule 1: If y is Bisand ... and yis By, then vy is Gp and ... and yis Gy (6)

Ruler: If v is By and ... and yis By, then v is G and ... and yis Gy

G.Ci ... Gr..Cy 0
B11...Bu1 1 0
Bll‘---B’]l‘ 0 1

the product node is the rule base in Equationh@) is presented by the generalised Boolean
matrix in Equation (9)

Rule 1: If x is Ai; and ... and xis Any, then v is G and ... and yis Gy (8)

Rule r: If x is Ay and ... and xis Anr, then v is G and ... and yis Gy

ﬁ...Q;l e QI‘-"Q]I' (9)
Ai1...An 1 0
Arr...Anr 0 1

In this case, the fuzzy system described by the bake in Equation (6) is withrules,n
inputs y1...\, taking linguistic terms from the input s€®;;,...,Bi},...,{Bn1,...,By} andg
outputs vi...\y taking linguistic terms from the output sef€i4,...,Gi},....{Cy1,....CGyr}-
Similarly, the fuzzy system described by the ridsédin Equation (8) is withrules,m inputs
X1...%n taking linguistic terms from the input sd&;4,...,A},....{Amy-...,An} andg outputs
vi...\y taking linguistic terms from the output s¢®i1,...,G},...,{Cg1,...,G}. In general, the
operand rule bases may have a different humbeulet rout the number of rules in the
product rule base is always equal to the numbeules in the first operand rule base.

The horizontal merging operation above can be destiby the block-scheme in Figure 1

and the topological expression in Equation (10)



[N1g (X1,-. %] Yoo 00) * [N12 (V.00 ]V, .\) = [N11xag] (Xa,... %] Vi,..., ) (10)

whereN;; andNi; are the two operand nodes from the fuzzy netwodkNa-12is the product
node for the fuzzy system. For simplicity, the tiotas used in Figure 1 are in a vector form
where the vectors, y andv are of dimensiom, m andg, respectively.

Vertical merging can be applied to a pair of pataflodes, i.e. nodes located in the same
layer of the fuzzy network. This operation merges bperand nodes from the pair into a
single product node. The operation can be applieenvthe outputs from the operand nodes
are not fed as inputs to these nodes.

3.2 Vertical merging of rule bases

Vertical merging can be applied to a pair of patahlodes, i.e. nodes located in the same
layer of the fuzzy network. This operation merges bperand nodes from the pair into a
single product node in the context of the linggistbmposition approach. The operation can
be applied when the inputs and the outputs of wee dperand nodes are independent, i.e.
there are no outputs that are connected with gmytsnand vice versa. In this case, the inputs
to the product node represent the union of thetspo the operand nodes whereas the
outputs from the product node represent the uniadheooutputs from the operand nodes.

The vertical merging operation is identical withdBman matrix Kroneker product that
represents an expansion of the first operand maloixg its rows and columns. In particular,
the product matrix is obtained by expanding eachrzero element from the first operand
matrix to a block that is the same as the secomrdamp matrix and by expanding each zero
element from the first operand matrix to a zeracklof the same dimension as the second
operand matrix. In this case, the row labels of fireduct matrix are all possible
permutations of row labels of the operand matrnghsreas the column labels of the product

matrix are all permutations of column labels of tiperand matrices.



Therefore, if the first operand node is the rulsebftom Equation (1) that is presented by
the Boolean matrix from Equation (4) and the secopdrand node is the rule base in

Equation (11) that is presented by the generals®rean matrix in Equation (12)

Rule 1: If v is Gi1 and ... and yis Gy, then w is Dyg and ... and wis Dy (11)

Rule s: If vis Gisand ... and yis Gys, then w is Disand ... and wis Dis

D..Du ... Di..Dus (12)
Cu...Cy 1 .. 0
ClS"'QJS O 1

the product node is the rule base in Equation {fi&)is presented by the generalised Boolean
matrix in Equation (14)

Rule 1: If x is Az and ... and xis Anpand v is Gip and ... and yis Gy, (13)
theny is Bj; and ... and yis B,y and w is Dy; and ... and wis Dy

Rulers: If x is Ay and ... and xis Anrand v is Gsand ... and yis Gy,
then y is Byr and ... and yis B,y andw; is Dysand ... and wis Dy

1B..B\iD11...Dh1 ... Bir..ByD1s.Dns (14)
Ad...AnCis...Cyr 1 0

A]_r...Aan]_s...Q]s O e 1

In this case, the fuzzy system described by thelvake in Equation (11) is wisirules,g
inputs v1...\y taking linguistic terms from the input seiS1s,...,Gg,....{Cq1,....Gg andh
outputs wy...w, taking linguistic terms from the output s€i31,...,Dig,...,{Dn1,...,Dhg-
However, the fuzzy system described by the rule lm&quation (13) is with.s rules,m+g

INPULS Xy...%n, Vi...\y taking linguistic terms from the input s€i1,...,Aut,....{Ams ..., Antd,



{Ci1,....G4.. . {Co1,...,.Gg @andn+h outputsys...yy, Wi...W, taking linguistic terms from the
output setgBis,...,.B},....{Bns,....Bv}, {D11,...,.Dighy ... ,{Dh1,...,Dhgt. The number of rules in
the product rule base is equal to the product@ilmber of rules in the operand rule bases.

The vertical merging operation above can be desdrliyy the block-scheme in Figure 2
and the topological expression in Equation (15)

[N11] (X1, %] Yo, o00) + [N21] (Va,....\ | Wa,... W) = (15)
[N11+21] (X]_,...,Xn,V]_,...,\él y]_,...,y],W]_,...,V\ﬁ)

whereN;; andNy; are the two operand nodes from the fuzzy netwodd\an.; is the product
node for the fuzzy system. For simplicity, the tiotas used in Figure 2 are in a vector form
where the vectors, y, v andw are of dimensiom, m, g andh, respectively.
3.3 Associativity of rule base merging

The horizontal and vertical merging operations odes introduced above are quite basic
in that they can be applied only to fairly simplezZy networks with a pair of nodes.
However, a more complex fuzzy network may be witkarge number of sequential and
parallel nodes that have to be merged horizontalg vertically using the linguistic
composition approach. This is possible due to #s®aativity property of the horizontal and
vertical merging operations. These properties avgqu below by theorems for scalar inputs,
outputs and connections but the extension of thefprto the vector case is straightforward.

The proofs presented below are based on binaryiaeth presentation of Boolean
matrices. A binary relation compresses further iffermation from a Boolean matrix
representation of a rule base. In this case, thie pathe binary relation are the permutations
of linguistic terms of the inputs and the outputsnf the row and column labels for the
Boolean matrix. Therefore, each pair in the binatgtion reflects a rule from the rule base.
In this case, the Boolean matrices from Equatidis(7), (9), (12) and (14) can be presented

by the binary relations in Equations (16)-(20).



{(A11...An, Bi1...Bug), .. S(Ar-- A, Buire Bi)} (16)

{B11...Bw, Ci1...Gr), ... J(Bro By Cor . Gy} (17)
{(Ar1...Ans, Cra.. . Gaa)y oo S(Ar A Core . Gy} (18)
{(C11...Cyt, D11...Dn), .. (Gs-Cys Dis..Dud} (19)

{(A11...An1C11...Cyy, Bra...B1D11...Dng), .. (Ar...AnrCis...Gys, Bar...Byr D1s...Dhg}  (20)

As binary relations are an alternative to Booleatrioes for representing nodes in fuzzy
networks, they can also be used for horizontal emdical merging operations on these
nodes. In this case, horizontal merging is idehtiwdh standard relational composition
whereas vertical merging is identical with a maatiftype of Cartesian product that is applied
separately to the first and second elements froenptirs of the operand relations. These
details of binary relations are used in Theorenasfdrther below whose proofs are presented
in the Appendix.

When the property of associativity is related te tperation of horizontal merging, the
latter is applied to three sequential nodes forpingose of merging them into a single node.
In particular, this property allows the merging tbfee operand nodes, B and C into a
product nodeA*B*C to take place as a sequence of two binary memgpegations that can be
applied either from left to right or from right teft, as shown in Figure 3. The property can
be applied when the output from the first néddis fed forward as an input to the second node
B in the form of a connection and the output frora #econd nod8 is fed forward as an
input to the third nod€ in the form of another connection. In this case, product node
A*B*C has the same input as the input to the first operendeA and the same output as the
output from the third operand node whereas the two connections do not appear in the

product node.



Theorem 1. The operation of horizontal merging denoted bysymabol *’ is associative

in accordance with Equation (21)
(A*B)*C = A*(B*C) (22)

whereby the horizontal merging of any three openaodesA, B andC from left to right is
equivalent to their horizontal merging from rigatleft.

When the property of associativity is related te dperation of vertical merging, the latter
is applied to three parallel nodes for the purposenerging them into a single node. In
particular, this property allows the merging ofethroperand nodes B andC into a product
node A+B+C to take place as a sequence of two binary mergperations that can be
applied either from top to bottom or from bottomtép, as shown in Figure 4. The property
can be applied when none of the outputs from anyhefthree nodes, B andC are fed as
any of the three inputs to these nodes. In thie,dh® input set to the product notieB+C
is the union of the inputs to the operand no#leB andC whereas the output set from the
product node is the union of the outputs from therand nodes.

Theorem 2. The operation of vertical merging denoted by tyralsol ‘+’ is associative in

accordance with Equation (22)
(A+B)+C = A+(B+C) (22)

whereby the vertical merging of any three operaodesA, B andC from top to bottom is
equivalent to their vertical merging from bottomtop.

Although Theorems 1-2 prove the associativity progpenly for fuzzy networks with
three sequential and parallel nodes, respectiviily,property can be trivially extended for
fuzzy networks with an arbitrary number of nodeserefore, this property can be viewed in
the context of the linguistic composition approashthe glue that makes the building blocks

for simplification of a fuzzy network to a fuzzy stgm, i.e. the horizontal and merging



operations on nodes, stick together. In this c#se, generalisation of the associativity

property for horizontal and vertical merging canpbbesented by Equations (23)-(24)

(((...((A*B)*C*)...*X)*Y)*Z) = (A*(B*(C*...*(X*(Y*2)) ...))) (23)
(((...((A+B)+C+)...+X)+Y)+2Z) = (A+(B+(C+...+(X+(Y+2))...))) (24)
whereA, B, C, ... , X, Y, &re operand nodes from a fuzzy network with alsitgyel and

layer, respectively.

The associativity property of horizontal and meggiaperations from Theorems 1-2
provides the basis for the application of the lisja composition approach to complex fuzzy
networks with an arbitrary number of nodes. In ipafar, the nodes can be merged quite
flexibly, i.e. from left to right or right to lefivithin the same level and from top to bottom or
from bottom to top within the same layer. In thése, the resulting single equivalent system
is the same irrespective of the order of applicatibthe binary merging operations.

3.4 Application of rule base merging

The linguistic composition approach can be appirethe context of the three types of
fuzzy systems discussed earlier — with single hase, multiple rule bases and networked
rule bases. This process consists of two stageselwa multiple rule base system such as
HFS is first converted into a networked fuzzy sgsteuch as FN and then the latter is
composed into a single rule base system such as3feStheoretical validity of the above
two-stage process is proved by means of topologixptessions in Theorem 3 below whose
proof is presented in the Appendix.

Theorem 3. A HFS with set ofm inputs{X;, %,..., %}, a set ofm-1 network nodes
{N11, Ni2,..., N.m-3, @ set ofm-2 connections{z;, z,..., z.2 and a single outpuy, as

described by the block-scheme in Figure 5 anddpelbgical expression in Equation (25)

[N1g] (X1, %2| 1) * [N12] (z1, %3] 22) * ... * [N1m-] (Zm-2: Xm| Y) (25)



can be represented as a SFS with the same set wiputs, a single network node
N, no connections and the same single output, asrided by the block-schemes in

Figures 6-7 and the topological expression in EqugR6)
[T] o=t (Nap+ D gmpra™ )] (X1, s, %l Y) (26)

whereN = [ p=1"" (Nip+ D q=prs™ lap)-

Theorem 3 is applicable only to single-output systédout it can be extended trivially for
multiple-output systems. In this case, the HFS wdwdve a set ofi outputs{yi, V..., ¥}
and it could be presented as a seh aidependent systems. Therefore, the two-step psoce
from the theorem above would be repeated for aadpendent system and its output.

3.5 Modéd performanceindicators

As opposed to most existing approaches where tbesfes to improve efficiency by
representing a SFS as a HFS with rule bases oflanste, the focus of the linguistic
composition approach is to maintain accuracy byesgnting a HFS as a SFS with a single
FID sequence while improving transparency by mexdrtee modular rule bases that reflect
the subsystems of the modelled system. This istmotcase in most existing approaches
where the HFS is a mathematical approximation & 8FS that does not reflect the
subsystems of the modelled system.

When SFS, HFS and FN are used for modelling, ttaditguof the associated models can
be quantified using performance indicators. Inipakar, three model performance indicators
are introduced further below. They are called Aacyrindex (Al), Efficiency Index (EI) and
Transparency Index (TI). These performance indisatoepresent modifications of
performance indicators used for fuzzy systemsdhatalso be used for fuzzy networks.

The first performance indicator Al reflects the a@xcy of the model by means of the

absolute difference between the model and the datshown by Equation (27)



A= g™ > @ ® > e (i = dif 7 vii) (27)

The notations in Equation (27) are as followkis the number of nodes in the last layer,
gil is the number of outputs from tir¢h node in the last layevji is the number of discrete
values for thg-th output from the-th node in the last Iayey,-,-"is the simulated-th discrete
value for thej-th output from the-th node in the last layer ard;i" iIs the measureé-th
discrete value for th¢th output from the-th node in the last layer. ldentity nodes are
included in this indicator alongside any other routethe last layer because their outputs also
have to be compared with the data. As a model i®raccurate when the absolute difference
between the model and the data given by Equatidphig2smaller, a lower Al implies better
accuracy.

The second performance indicator El reflects tHieiehcy of the model by means of the

overall number of rules, as shown by Equation (28)
El = z " (tiID % riFID) (28)

The notations in Equation (28) are as followmss the number of non-identity network
nodes,g " is the number of outputs from theh non-identity node with an associated FID
sequence ang is the number of rules for theh non-identity node with an associated FID
sequence. ldentity nodes are excluded from thigator because they are virtual nodes for
converting a HFS into a FN that do not affect tieciency. As a model is more efficient
when the overall number of rules given by Equa{@8) is smaller, a lower El implies better
efficiency.

The third performance indicator TI reflects thengparency of the model by means of the

extent of its opaqueness from the inside, as shpniBquation (29)

TI=(+aq)/(n+m) (29)



The notations in Equation (29) are as followss the overall number of inputg,is the
overall number of outputsiis the number of non-identity nodes ands the number of non-
identity connections. ldentity nodes are excludedifthis indicator as they are virtual nodes
for converting a HFS into a FN that do not affdo¢ transparency. As a model is more
transparent when the extent of its opaqueness fheminside given by Equation (29) is
smaller, i.e. the overall number of inputs and atgps bigger while at the same time the
number of sub-models and connections is smallesvar Tl implies better transparency.

4. Simulation Results

The linguistic composition approach is applied teotcase studies from different
industries. The first case study is on transpomaled management and the second one is on
retail product management.

4.1 Transport demand management

The main goal in this case study is to model pezfees of employees to telecommuting.
The data is based on a survey that has been othtaora several government organisations
located in the central district of the capital @fyTehran, Iran.

The inputs taken into account for determining pesiees of employees are computer time
usage, phone/fax time usage, travel time from htmmeork, travel time from work to home,
travel cost from home to work, travel cost from wdéo home and age. The outpstthe
number of days on which each employee preferdécdaenmute from satellite offices.

The preferences of employees to telecommuting eamddelled by a SFS, as shown by
the topological expression in Equation (30) andiiloek-scheme in Figure 8. The notations
used are as follows\ is the rule base for the SFS, the inpxtsand x, are computer and
phone/fax time usage, the inpusandx, are travel times from home to work and work to
home, the inputgs andxs are travel costs from home to work and work to hotine inputx;

is age and the outpuytis the preferred number of telecommuting days.



[N] (X1, X2, X3, Xa, X5, X6, X7 | Y) (30)

The preferences of employees to telecommuting Isankee modelled by a HFS, as shown
by the topological expression in Equation (31) dhd block-scheme in Figure 9. The
notations used are as follows;,, N31, N41, Ns2 andNyzare rule bases for the HFS, the inputs
X1, X2, X3, Xa, X5, X, X7 @and the outpuy are the same as the ones for the SFS, whereas the
connections have the following meanings;i1zshows employees involvement with computer
and phone/fax equipmerts; 3, reflects employees travel time,, 3, represents employees

travel cost whereas, 13stands for both employees travel time and cost.

{IN 12] (X1, Xo| Z12,29 + {{[N31] (X5, Xa| Z31,3) + (31)
[Nag] (X5, Xe| Z41,39} *[N 32 (Z31,32, Z1,3d 232,19} } *
[N1g] (Z12,13 23213 X7 | Y)

The preferences of employees to telecommuting eambdelled by a FN as well, as
shown by the topological expression in Equation) @2d the block-scheme in Figure 10.
Most notations used are the same as the onesddifls. The new notations are the identity
rule bases1, 121 Is; andls, representing the propagation of the identity magginx,, x; and
X7 through the first and second layers of the gnidcstire. In this context\;2, Na1, Na1, Ns2

andNjzare the network rules bases and they are usuatigroidentity type.

{1 1] (Xl x)+ [1201(x2] %2)} * [N 12] (X1, %o 12,19} + (32)
{{IN 31] (X3.X4] Z31,39 + [Nag] (X5, Xe| Z21,39} *
[Na2] (z31,32, Z41,3d 32,139} + [ 5] (X7] X7) *[1 52) (X7| X7) } *
[N1g (z12.13 Z32,13 X7 | Y)
Using the proposed linguistic composition approdled,HFS with multiple rule bases can
be converted first to a FN with networked rule Isaskhe latter can then be simplified to a

SFS with a single rule base, as shown by the tgpmdbexpression in Equation (33). In this

equation, the composite rule bafgi1+ 121 )* N1z + (N31+N41)* N3z + I5:%157* N 13 for the



SFS is derived along the lines of the topologicgiression in Equation (26) by means of the
associated merging operations for rule bases thgirasented by Boolean matrices.

[((T11%+ 122 )* N1z + (N31+Na1)* N3z + 151%1 52 )* Nag] (X1, X2, X3, Xa, X5, X6, X7 | Y) (33)

For simplicity, the inputs are presented by thrimgdistic terms each, as shown in
Figures 11-17. These terms belong to thgleet, medium, highiand they are represented by
triangular fuzzy membership functions that coveifarmly the whole variation range for the
inputs. For consistency, the variation rangesfpry, Xs, X4, Xs, Xs, X7 are normalised between
0 and 100.

For consistency with the inputs, the output andcirenectionsare presented by the same
three linguistic termglow, medium, high} as shown in Figures 18-19. As opposed to
connections whose variation range is normalisedidxt O and 100, the variation rangeyor
is normalised between 0 and 5, i.e. the numberayls don which employees prefer to
telecommute.

For further simplicity, the linguistic terms forehnputs, the connections and the output in
all rule bases presented further are encoded asivpomtegers, i.elow=1, medium=2
high=3. These rule bases are derived from survey bastedat@ can be used as adequate
models for determining the telecommuting preference

Due to the large number of rules, the rule basdherSFS is shown partially in Table 1
where only the first and the last nine rules aresented. This rule base is derived from
survey based global data about preferences of grgdato telecommuting and in accordance
with Equation (30).

The five rule bases for the HFS are shown in TaBl€s These rule bases are derived
from survey based local data about preferencesngdlayees to telecommuting and in

accordance with Equation (31).



Due to the large number of rules, the rule basdHlerFN is shown partially in Table 7
where only the first and the last nine rules aresented. This rule base is derived from
survey based local data about preferences of empdoto telecommuting and in accordance
with Equation (33).

The simulation results for the SFS, the HFS and-there shown in Figures 20-22 where
the survey based observation and the model outpuypbrasented together. In this case, each
of the three models is simulated in terms of itdpaty i.e. the preferred number of
telecommuting days, for the relevant permutatidrtt® crisp values of the inputs for each of
the 245 interviewed employees, i.e. computer amtheHax time usage, travel times from
home to work and work to home, travel costs froormbdo work and work to home as well
as age. The comparative evaluation of the SFSH#f® and the FN for this case study is
given in Table 8 and it is discussed further intdd.

4.2 Retail product management

The main goal in this case study is to model prafe®tail products. The data is based on
a survey that has been obtained from several redailpanies in the central district of the
capital city of London, UK.

The inputs taken into account for the determinatbmhe price are the expected selling
price of the product, the margin, i.e. the relativéerence between the price and the cost of
the product, and the expected sell through, ierdhative quantity of the product expected to
be sold. The output from this process is the maringost of the product.

The product price determination process can be headéy a SFS, as shown by the
topological expression in Equation (34) and theckischeme in Figure 23. The notations
used are as follows\ is the rule base for the SFS, the first inpuits the expected selling
price, the second inputis the margin, the third inpug is the expected sell through and the

outputyis the maximum cost.



[N] (X1, X2, X3 y) (34)

The product price determination process can alsmddelled by a HFS, as shown by the
topological expression in Equation (35) and thecklscheme in Figure 24. The notations
used are as follow$\,; is the first rule base for the HFN;, is the second rule base for the
HFS, the inputsy, %, X and the outpuy are the same as the ones for the SFS, whereas the
connectionz has the same meaning as the outpubr the SFS but it represents the

provisional maximum cost of the product.

[N1g] (X1, %2 2) * [N12] (z %3] ) (35)

The product price determination process can be Headley a FN as well, as shown by the
topological expression in Equation (36) and theckischeme in Figure 25. Most notations
used are the same as the ones for the HFS. Thenewnlyotation is the identity rule balse
representing the propagation of the identity magpithrough the first layer of the grid
structure. In this contexly;; andNj; are the network rules bases and they are usuatiprof

identity type.

{IN11] (X1, %2]| 2) + 121 (x3| Xa)} * [N12] (2 Xa]| y) (36)

Using the proposed linguistic composition approdlea,HFS with multiple rule bases can
be converted first to a FN with networked rule Isaséhe latter can then be simplified to a
SFS with a single rule base, as shown by the tgombexpression in Equation (37). In this
equation, the composite rule badg; + 1,;) * N1, for the SFS is derived in accordance with
the topological expression in Equation (26) and desociated merging operations for rule

bases by means of Boolean matrices.

[(N1z + 121) * N1g] (X1, %2, X3 Y) (37)

The inputsxy, %, X3 are presented by five linguistic terms each, asvaha Figures 26-28.

These terms belong to the detery low, low, average, high, very higlgnd they are



represented by triangular fuzzy membership funstidinat cover uniformly the whole
variation range for the inputs. For consistencye thariation ranges fok;, %, X are
normalised between 0 and 100.

The outputy and the connectionare presented by eleven linguistic terms eackhas/n
in Figures 29-30These terms belong to the w5, low4, low3, low2, lowl, average,
highl, high2, high3, high4, highSand they are also represented by triangular fuzzy
membership functions that cover uniformly the whedgiation range for the output and the
connection. The variation ranges foandz are also normalised between 0 and 100.

The linguistic terms in the rule bases for the SR8,HFS and the FN are represented by

positive integers. In this case, the substitutiamsin accordance with Equations (38)-(39)

very low = 1, low = 2, average = 3, high = 4, vemgh =5 (38)

low5 =1, low4 = 2, low3 = 3, low2 = 4, lowl = S5yarage = 6, (39)
highl =7, high2 = 8, high3 = 9, high4 = 10, hight11

The rule base for the SFS is shown in two parfEables 9-10. This rule base is derived
from data about the product pricing process an@doordance with Equation (34). The
derivation is done using a clustering approach elmethe rules represent an approximation
of the input-output data points from the data setlie process.

The two rule bases for the HFS are shown in Table42. These rule bases are derived
from data about the two sub-processes within tleelymt pricing process and in accordance
with Equation (35). The derivation is done usinglastering approach whereby the rules
represent an approximation of the input-output gedents from the data sets for the sub-
processes.

The rule base for the FN is shown in two partsabl&s 13-14. This rule base is derived in

accordance with Equation (37).



The simulation results for the SFS, the HFS and-there shown in Figures 31-33 where
the data and the model output are presented tagdththis case, each of the three models is
simulated in terms of its output, i.e. the maximewst of a retail product, for all 125 possible
permutations of the crisp values 0, 25, 50, 75, dfGbe inputs, i.e. the expected selling price
of the product, the margin and the expected sedluilfh. The comparative evaluation of the
SFS, the HFS and the FN for this case study isngivd able 15 and it is discussed further in
the text.

5. Perfor mance Evaluation

The proposed linguistic composition approach isliatad comparatively in terms of
accuracy, efficiency and transparency. In partigidaEN that uses the linguistic composition
approach and a single FID sequence is comparedStéSathat uses a single FID sequence
and a HFS that uses a multiple FID sequence. Taki@won uses the performance indicators
from Equations (27)-(29).

The comparative evaluation of the SFS, the HFSthadFN for the first case study on
transport demand management is presented in Tablde latter shows that in terms of
accuracy, the FN is slightly inferior to the SFSdate HFS. As far as efficiency is
concerned, the FN is equivalent to the SFS butiorféo the HFS. And finally, in terms of
transparency, the FN is superior to the SFS ant/algat to the HFS.

The comparative evaluation of the SFS, the HFSthaed=N for the second case study on
retail product management is presented in Table T latter shows that in terms of
accuracy, the FN is slightly inferior to the SFSdaslightly superior the HFS. As far as
efficiency is concerned, the FN is equivalent t® 8FS but inferior to the HFS. And finally,
in terms of transparency, the FN is superior to3R& and equivalent to the HFS.

For both case studies, the accuracy of the FN eamproved by increasing the number of

linguistic terms for the inputs, the connectiond ahe output or adapting the fuzzy



membership functions for these variables. In tlise¢ the accuracy of the FN can get better
than the one of the SFS and the HFS.

For both case studies, the efficiency of the Fhhéssame as the one of the SFS due to the
same size of the rule base but it is worse thamtieeof the HFS due to the larger size of the
rule base. However, the efficiency of the FN canirbproved by rule base reduction or
compression in which case it can get better tharotte of the HFS.

For both case studies, the transparency of thesRNei same as the one of the HFS due to
the use of the same modular rule bases but ittierbtaan the one of the SFS which uses a
single rule base. However, the transparency oftiean be further improved by increasing
the number of modular rule bases in which casant get much better than the one of the
SFS.

6. Conclusion

The proposed linguistic composition approach presid novel theoretical framework for
fuzzy systems with networked rule bases called yffurztworks. These networks compare
well in terms of accuracy, efficiency and transpasewith established fuzzy systems such as
standard fuzzy systems with a single rule basehagr@rchical fuzzy systems with multiple
rule bases. The approach is suitable for modellireresses characterised by uncertainty,
dimensionality and structure and can be easilyreldd to improve performance indicators
such as accuracy, efficiency and transparency.

The framework shows a novel application of discrashematics and systems theory. It
uses generalised Boolean matrices and binary oekatior representing network nodes as
well as topological expressions and connectionisntepts for representing whole networks.
In this framework, a fuzzy network represents atreesion of a standard fuzzy system and a

hierarchical fuzzy system. In particular, a fuzatwork is a compact way of representing a



hierarchical fuzzy system by means of a standazdyfisystem whereby structure is dealt
with during the linguistic composition process.

Apart from being an extension, a fuzzy network diéts a bridge between a standard
fuzzy system and a hierarchical fuzzy system bynsed the linguistic composition process.
The latter allows a hierarchical fuzzy system ficsbe converted into a fuzzy network which
can then be composed into a standard fuzzy syd€demmng this process some performance
indicators can be improved without deterioratingeotindicators. Therefore, this bridging
capability of fuzzy networks improves the flexibyliof fuzzy systems in terms of modelling
depending on the specific requirements to thesestaod

The linguistic composition approach can be use@ wide range of application areas
where the knowledge or data about the modelledgsocan be provided in a modular
fashion, i.e. for each interacting sub-process kbgms of individual rule bases. Such modular
processes are quite common in many areas such asiode making, manufacturing,
communications and transport. In this case, therasting modules can be decision units,
manufacturing cells, communication nodes or trgfilections. To achieve better results, the
proposed approach can be further extended forifegaamd optimisation of the structure and
parameters of fuzzy networks in the context of-reatld applications.

Also, the approach can be easily extended to o¥ipess of rule based systems such as the
ones using deterministic and probabilistic logibe$e non-fuzzy rule based systems can be
represented by deterministic and probabilistic Qiegd models, respectively.

Appendix

Proof of Theorem 1. The proof is based on the use of binary relatfonsepresenting the
operand node4, B andC. In this case, the elements of the relationalspaie denoted by the
lettera in A, the lettersa andc in B, and the lettec in C, as shown in Equations (40)-(42).

For clarity, all pairs in the middle relatidh are assumed to be composable with pairs from



the left relationA and the right relatiol€. This is why the first and the second element of

each pair irB are denoted bg andc, respectively, and not by

A={@a" &),...@" &’} (40)
B ={(a}, ch),....(&" &?),....(@" ct),....3@", e} (41)
C ={(c?, &),....(a% N} (42)

The first and the second element of any relatigpgat in A and C are denoted by the
subscripts 1" and ‘2, respectively. However, the superscripts for tist and the second
element of any relational pair ih and C are identical as they indicate the corresponding
number for each pair. In particular, the relatdmasp pairs and the relatio@ hasq pairs.
The subscripts for the first and the second elerokahy relational pair iB are 2’ and ‘1,
respectively. This is due to the requirement féraad right composability dB, i.e. the first
element of each pair iB must be identical with a second element of a ipa&k whereas the
second element of each pairBrmust be identical with a first element of a paiC. In this
case, the superscripts for the elements of théiaeéd pairs inB do not have to be identical
and therefore the relatiddis assumed to hayexq pairs.

The horizontal composition of the operand relatidrendB gives the temporary relation

A*B, as shown in Equation (43)
A*B = {(at, ¢h),....(a% af),....@"% cb),....@" N} (43)

Further on, the horizontal composition of the tenapp relationA*B and the operand

relationC gives the product relatigqA*B)*C, as shown in Equation (44)
(A*B)*C = {(a lla Czl)! s !(alla C2q)’ T ’(alpa C2l)! s !(alpa Czq)} (44)

On the other hand, the horizontal composition ef dberand relationB andC gives the

temporary relatio®*C, as shown in Equation (45)



B*C = {(a.}, &.Y),...,(a", &),....(&" &Y),...,3", &N} (45)

In this case, the horizontal composition of therapd relationA and the temporary
relation B*C gives the product relatioA*(B*C). As the latter is identical with the product
relation(A*B)*C from Equation (44), this implies Equation (21) ahcludes the proof.

Proof of Theorem 2: The proof is based on the use of binary relatfonsepresenting the
operand nodeA, B andC. In this case, the elements of the relationalspaie denoted by the

letterain A, the letteib in B and the lettec in C, as shown in Equations (46)-(48)

A={a’ &),...@" &)} (46)
B ={(b:}, B"),...,(0% B} (47)
C ={c", &Y,....(d', &)} (48)

The first and the second element of any relatigaal in A, B andC are denoted by the
subscripts 1" and ‘2, respectively. However, the superscripts for tist and the second
element of any relational pair &4 B andC are identical as they indicate the corresponding
number for each pair. In particular, the relat®asp pairs, the relatio® hasq pairs and
the relationC hasr pairs.

The vertical composition of the operand relatignand B gives the temporary relation

A+B, as shown in Equation (49)

A+B = {(ar" by, &'by),...,@ b, &' byf),...,@ by, afby), .. (@ by, &P hrT)}  (49)

Further on, the vertical composition of the temppreelation A+B and the operand

relationC gives the product relatigld+B)+C, as shown in Equation (50)

(A+B)+C = {(a:'b%¢’, &' bAc.Y),....(a bic, &' c),..., (50)
(alp bll Cll, a’ bzl Czl), .- ,(alp bll ¢, &’ bzl Czr), vy



(@’ bcit, aPbycyY),....(@Pbdcy, &Py cy)}

On the other hand, the vertical composition of ¢iperand relation® and C gives the

temporary relatio+C, as shown in Equation (51)

B+C = {(b.'ct, b'ch),....(a' e, b'c),...,(b%ct, BicY),....(b%", b))}  (51)

In this case, the vertical composition of the opdreelationA and the temporary relation
B+C gives the product relatioA+(B+C). As the latter is identical with the product redat
(A+B)+C from Equation (50), this implies Equation (22) amhcludes the proof.

Proof of Theorem 3. The HFS from Equation (25) can first be convertédgd a FN by
representing all identity mappings propagating tigio any layers in the grid structure with
the set of identity nodefl»i}, ... {lm-11 Im12 ...}. This FN can be described by the
topological expression in Equation (52)

{IN11] (X1, %2| z2) + [121] (X3]| Xa) + ... + [Im-1,d (Xm | Xm)} * (52)

{IN1g (2 %] 2) + ... + [Imad (Xm| X} *

[N1m-q1 (ZnzXm|Y)

where each network node has two inputs and onaibagpopposed to each identity node that
has one input and one output. In this case, thet itgpeach identical node is identical with
the output from the same node, as shown by th&islolseme in Figure 7.

The FN can then be composed into a SFS by mergstgértically and then horizontally

all network and identity nodes into a single networ node
N=[] p="" (Np+ D g=pr" "lqp)- In this case, the SFS is like a single node 4 tie
same set ofm inputs{xy, X,..., %} and the same single outpuas the HFS. This SFS can de
described by the topological expression from Equa(R6) that uses prefix notation for the

horizontal merging operation and a mixture of ifgrefix notation for the vertical merging

operation. This concludes the proof.
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Figure 10: Fuzzy network for case study 1
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Figure 12: Linguistic terms for second input in case study 1
T I . [ T T T T T T -
I1cw Medium H_lgh
= 0.8 ' |
= -
2 T~ )
g 0.6 ~_ _ i
@ ~— -
£ >
é 0.4 //_,/' ~_ -
o 7 —
8 02t -
0 -
| 1 [ | | | | | |
0 10 20 30 40 50 60 70 80 o0 100

TrTime H-W

Figure 13: Linguistic terms for third input in case study 1
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Figure 14: Linguistic terms for fourth input in case study 1
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Figure 15: Linguistic terms for fifth input in case study 1

80

90

100

Degree of membership

" Medium '

High

1 1 1 [ [ 1

|
10 20 30 40 50 60 70
TrCost W-H

Figure 16: Linguistic terms for sixth input in case study 1
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Figure 17: Linguistic terms for seventh input in case study 1
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Figure 18: Linguistic terms for output in case study 1
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Figure 19: Linguistic terms for connections in case study 1
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Table 2: First rule base for hierarchical fuzzy systemasestudy 1

212,13

x2

x1

Rules




Table 3: Second rule base for hierarchical fuzzy systegase study 1
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Table 4: Third rule base for hierarchical fuzzy systemase study 1
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Table5: Fourth rule base for hierarchical fuzzy systermase study 1
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Table 7: Partial rule base for fuzzy network in case stiidy
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Table 8: Comparative evaluation of three fuzzy models fecstudy 1

Perfo_rmance Standard Fuzzy | Hierarchical Fuzzy Network
Indicator System Fuzzy System
Accuracy 1.13 1.15 1.16
Efficiency 2187 63 2187
Transparency 8 0.72 0.72




Table 9: First part of rule base for standard fuzzy sysiecase study 2
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Table 10: Second part of rule base for standard fuzzy systerase study 2

Rule|x3s [ X |X |V Rule|x; |[% |[X |V

76 4 1 1 1 101| 5 1 1 1
77 4 1 2 5 102| 5 1 2 6
78 4 1 3 9 103| 5 1 3 11
79 4 1 | 4 11| 104| 5 1] 4 1]
80 |4 1 5 11| 105| 5 1 5 11
81 4 2 1 1 106| 5 2 1 1
82 4 2 2 4 107| 5 2 2 5
83 4 2 3 7 108| 5 2 3 9
84 |4 2 | 4 9 109| 5 2 4 11
85 4 2 5 11| 110] 5 2 5 1]
86 4 3 1 1 111, 5 3 1 1
97 4 |3 2 3 112| 5 3 2| 4
88 4 |3 3 5 113| 5 3 3 6
89 4 |3 |4 7 114| 5 3 41 9
90 |4 |3 5 9 115| 5 3 5 11
91 4 | 4 1 1 116 5| 4 1 1
92 4 4 2 2 1171 5 4 2 2
93 4 |14 |3 3 118 5| 4| 3| 4
94 |4 |4 |4 | 4 119 5| 4| 4| 5
9%5 |4 |4 |5 5 120 5| 4 5 6
96 4 |5 1 1 121| 5 5 1 1
97 4 5 2 1 122| 5 5 2 1
98 4 |5 3 1 123| 5 5| 3 1
99 4 |5 |4 1 124| 5 5| 4 1
100 |4 | 5 5 1 125| 5 5 5 1

Table 11: First rule base for hierarchical fuzzy systemasestudy 2

Rule|xt | % |z |Rule|xs [ |z |Rule{xx |% |z
1 1 1 1 11 3 1 6 21 5 1 11
2 1 2 1 12 3 2 5 22 5 2 9
3 1 3 1 13 3 3 4 23 5 3 6
4 1 4 1 14 3 4 2 24 5 4 4
5 1 5 1 15 3 5 1 25 5 5 1
6 2 1 4 16 4 1 9 - - - -
7 2 2 3 17 4 2 7 - - - -
8 2 3 2 18 4 3 5 - - - -
9 2 4 2 19 4 4 3 - - - -
10 2 5 1 20 4 5 1 - - - -




Table 12: Second rule base for hierarchical fuzzy systecase study 2

Rule|zz |x |y Rule|zz |x |y Rule|z |X |y

1 1 1 1 21 5 1 1 41 9 1 1
2 1 2 1 22 | 5 2 3 421 9 2 5
3 1 3 1 23 | 5 3 5 43| 9 3 9
4 1 |4 1 24 | 5 | 4 7 441 9| 4 11
5 1 5 1 25 | 5 5 9 45| 9 5 11
6 2 1 1 26 6 1 1 46 10 1 1
7 2 2 2 27 | 6 2 4| 47| 10 2 6
8 2 3 2 28 | 6 3 6 48| 10 3 10
9 2 |4 |3 29 | 6 | 4 9 49| 10 4 11
10 | 2 5 3 30 | 6 5 11 50| 10 5 11
11 3 1 1 31 7 1 1 51 11 1 1
12 | 3 2 2 32 | 7 2 4 52| 11 2 6
13 | 3 3 3 33 | 7 3 7 53| 11 3 11
14 |3 |4 | 4 34 | 7 4 100 54| 11 4 11
15 3 5 5 35 7 5 11, 55 11 5 11
16 | 4 1 1 36 | 8 1 1 - - - -

17 | 4 2 3 37 | 8 2 5 - - - -

18 |4 |3 | 4 38 | 8 3 8 - - - -

19 |4 |4 | 6 39 | 8| 4 11 - - - -

20 4 5 7 40 8 5 11 - - - -




Table 13: First part of rule base for fuzzy network in catedy 2
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Table 14: Second part of rule base for fuzzy network in cdady 2

Rule|x1 | |X |y Rule|x1 |X |[X |y
76 4 1 1 1 101 5 1 1 1
77 | 4 1 2 5 102| 5 1 2 6
78 | 4 1 3 9 103| 5 1 3 11
79 | 4 1 | 4 11| 104| 5 1] 4 11
80 |4 1 5 11| 105| 5 1 5 11
81 4 2 1 1 106| 5 2 1 1
82 | 4 2 2 4 107| 5 2 2 5
83 | 4 2 3 7 108| 5 2 3 9
84 | 4 2 | 4 10| 109| 5 2 4 11
85 4 2 5 11| 110| 5 2 5 11
86 4 3 1 1 111 5 3 1 1
97 |4 | 3 2 3 112| 5 3 2 4
88 |4 |3 3 5 113| 5 3 3 6
89 |4 |3 |4 7 114| 5 3| 4 9
90 |4 |3 5 9 115| 5 3 5 11
91 |4 | 4 1 1 116| 5| 4 1 1
92 4 4 2 2 117| 5 4 2 3
93 |4 |4 |3 3 118) 5| 4| 3| 4
94 |4 |4 |4 | 4 119| 5| 4| 4 6
9%5 |4 |4 |5 5 1200 5| 4| 5 7
9% |4 |5 1 1 121| 5 5 1 1
97 4 5 2 1 122 5 5 2 1
98 |4 |5 3 1 123| 5 5 3 1
9 |4 |5 |4 1 124| 5 5| 4 1
100 | 4 | 5 5 1 125/ 5 5 5 1

Table 15: Comparative evaluation of three fuzzy models awsecstudy 2

Performance | Standard Hierarchical | Fuzzy
indicator fuzzy system | fuzzy system | network
Accuracy 2.86 5.57 3.64
Efficiency 125 80 125
Transparency| 4 1.33 1.33




