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Abstract 

We present the results of new tephrostratigraphical and environmental impact studies of the 

40-38 ka varved sediment section of Lago Grande di Monticchio (southern Italy). The 

sediments in this time zone are correlated with the Heinrich H4-stadial that occurred between 

Greenland Interstadials GI-9 and GI-8, and include the widespread Campanian Ignimbrite (CI, 

39.3 ka) as a thick tephra layer in the middle of the H4 stadial. The CI in the Monticchio 

record is overlain by the Schiava tephra from Vesuvius, c. 1240 varve-years younger than the 

CI, and preceded by four tephras from small-scale eruptions of the Phlegrean Fields and by an 

Ischia-derived tephra. The four Phlegrean Field-derived tephras were deposited 600 varve-

years or fewer prior to the deposition of the CI and show very similar major, minor, and trace 

element glass compositions compared to those of the CI. This similarity in composition and 

age may lead to erroneous tephra identification and therefore potentially compromise the 

accurate linking and synchronisation of palaeoenvironmental records in the central 

Mediterranean area. Microfacies analyses and µ-XRF core scanning were used to characterise 
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primary and secondary depositional features of all seven tephra layers and to evaluate 

environmental and ecological responses after tephra deposition. Higher concentrations of 

tephra-derived material (mainly glass shards and pumices) in primary and reworked layers 

were detected by elevated K-counts in µ-XRF elemental core scans. Reworked tephra derives 

mainly from in-washing from the littoral zone and the catchment and occurs within five to 30 

years, and up to 1240 varve years, after the deposition of thinner (1-5 mm) and thicker (5-230 

mm) tephra fallout deposits, respectively. An obvious response of diatom population growth 

directly after the primary tephra deposition was observed for the thicker tephra layers (> 1 

mm) during the first 1 to 8 years after deposition of the primary deposit indicating that the 

additional input of potential nutrients (glass shards) affected the ecological lake system. 

Keywords: tephrochronology, Lago Grande di Monticchio, Campanian Ignimbrite, µ-XRF 

scanning, environmental impacts, reworked tephra 

1. Introduction

The Mediterranean region is of special interest in terms of tephrostratigraphical study because 

of the long history of explosive volcanic activity (e.g., Keller et al., 1978; Narcisi and Vezzoli, 

1999; Druitt et al., 1999; Peccerillo, 2005). During the Late Quaternary, the Roman 

Comagmatic Province with the Campanian volcanoes in southern Italy were influenced by 

very frequent and explosive volcanism creating numerous widespread tephras which are often 

preserved as primary fall deposits in terrestrial and marine sediments (e.g., Keller et al., 1978; 

Paterne et al., 1986, 1988; Narcisi, 1996; Narcisi and Vezzoli, 1999; Siani et al., 2004; Wulf 

et al., 2004, 2012; Munno and Petrosino, 2007). Over the last decade, numerous cryptotephra 

studies have added to the existing 300 ka distal tephrostratigraphy of the Italian volcanism  

(e.g., Lowe et al., 2007; Wulf et al., 2008; Bourne et al., 2010; Sulpizio et al., 2010). A key 

tephrostratigraphical record is the annually laminated lacustrine sediment repository of Lago 

Grande di Monticchio in southern Italy. This maar lake is located within 100 to 140 km and 

downwind of the Campanian volcanoes (Fig. 1), thus documenting the majority of explosive 

events from the Campanian volcanoes for the last 133 ka (Narcisi, 1996; Wulf et al., 2004, 

2008, 2012). A total of 345 primary tephra layers have been deposited in context with high-

resolution palaeoenvironmental information (e.g., Allen et al., 1999; Brauer et al., 2000, 2007) 

in the Monticchio sequence and are additionally well dated by the varve-supported 

sedimentation rate chronology of Monticchio sediments. So far, more than 30 tephra layers 

were precisely correlated with dated volcanic events and therefore provide important marker 
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layers for independently dating and correlating the Monticchio record with other terrestrial 

and marine palaeoclimate records in the Mediterranean (Wulf et al., 2004, 2008, 2012). One 

of these marker layers is the tephra labelled as TM-18 in the Monticchio record, a correlative 

of the basal fall unit of the Campanian Ignimbrite (CI), which erupted from the Campi Flegrei 

Caldera 39.28 ± 0.11 ka BP (
40

Ar/
39

Ar; De Vivo et al., 2001). The CI eruption was one of the

most powerful known in the Mediterranean region for the last 200,000 years (Barberi et al., 

1978), and distal deposits – correlated with the marine Y-5 tephra – are distributed mainly 

towards the east as far as Russia (e.g., Keller et al., 1978; Thunell et al., 1979; Paterne et al., 

1988; Vezzoli, 1991; Pyle et al., 2006; Giaccio et al., 2008). The eruption of the CI occurred 

during marine isotope stage (MIS) 3, ca. 1600 yrs after the Laschamp geomagnetic excursion 

(41 ka; Nowaczyk et al., 2012) and between Greenland Interstadials (GIS) 9 and 8. The 

volumetrically large CI eruption was considered to have strongly affected the climatic system 

in the unstable climatic phase of the last glacial period that may even have triggered the 

strong cold period related to the marine H4 interval (40-39 cal kyr BP) and, as a result, human 

cultural changes and migration activities in this region (Fedele et al., 2002, 2008; Giaccio et 

al., 2008). This hypothesis, however, has been recently disproved by Lowe et al. (2012) who 

used the CI tephra to show that the onset of the H4 cold period predates the CI eruption. 

Therewith, the CI tephra forms an important stratigraphic marker in eastern Mediterranean 

palaeoclimatic and –environmental records that requires an unambiguous identification. These 

requirements are given in the Monticchio sequence, in which the CI is preceded and 

succeeded by a total of six other tephra layers of Campanian origin within a 2000 year period. 

One goal of our study is to clearly distinguish these six tephra deposits from the CI on the 

basis of their glass chemistry and mineral/lithic contents and to define distinct sources of them. 

A second goal is the investigation and interpretation of environmental impacts of the 

deposition of tephras of different thickness within the lake system and its catchment by 

applying high-resolution microfacies and µ-XRF elemental scanning techniques of tephra-

hosting varved sediments. This information is crucial to help to detect and distinguish 

between primary and secondary (re-worked) tephra deposits and contribute to a better 

understanding of environmental and geomorphic responses following the deposition of 

tephras of differing thicknesses in the local catchment. 

2. Regional setting

Lago Grande di Monticchio in Basilicata, southern Italy (40°56´N, 16°35´E), is the larger of 

two adjoining crater lakes that formed during the final stage of activities at 132 ± 12 ka 
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(Laurenzi et al., 1993; Brocchini et al., 1994), on the western slopes of the Monte Vúlture 

volcanic complex (Fig. 1). The lake surface of Lago Grande di Monticchio is situated at an 

altitude of 656 m a.s.l. and encompasses an area of ca. 0.4 km
2
. The basin features a

maximum depth of 36 m and a shallow water area with an average depth of 8.7 m in the 

southeast of the basin (Zolitschka and Negendank, 1996). The lake has a restricted 

hydrological catchment of 2.370.000 m
2
 with a maximum elevation of 956 m a.s.l.

(Zolitschka and Negendank, 1996). The trophic state of the present lake is eutrophic to 

hypertrophic promoting the preservation of annual laminations of its sedimentary deposits. 

Situated approximately120 km east of Naples and in a favourable downwind position 

to high-explosive Campanian volcanoes, Lago Grande di Monticchio displays a unique trap 

for fallout tephras (e.g., Narcisi, 1996; Wulf et al., 2004, 2008, 2012). The Campanian 

volcanoes encompass several volcanic centres such as the Phlegrean Fields, the Somma-

Vesuvius, as well as the islands of Ischia and Prócida-Vivara. Nearly all those centres are still 

active whereas the volcanic activity of the island of Prócida-Vivara ceded 14 cal ka ago with 

the deposition of the Torre Gaveta Tuff (Alessio et al., 1976). The Campanian volcanoes are 

petrologically classified as K-alkaline. The erupted products of the Phlegrean Fields and 

Procida-Vivara vary from a latitic to trachytic and alkali-trachytic to peralkaline phonolitic 

composition (e.g., D'Antonio et al., 1999; Pappalardo et al., 1999), whereas pyroclastics of 

Somma-Vesuvius are trachy-phonolitic to foiditic in composition (e.g., Santacroce et al., 

2008). Eruptives from Ischia are mainly characterised by trachytes and alkali-trachytes of 

quite homogenous composition (Poli et al., 1989; Brown et al., 2008).  During the time period 

of interest (ca. 40-38kyr) all four volcanic centres were explosively active and thus provide 

potential correlatives for tephras recorded in the Monticchio sediments. 

3. Material and methods

3.1 Sample preparation 

Seven macroscopically visible and primary tephra layers were analysed between 24.2 m and 

27.4 m composite depth in the sediment record of Lago Grande di Monticchio (Fig. 2). These 

tephras are labelled according to Wulf et al. (2004, 2006) as TM-17-2, TM-18, TM-18-1a, 

TM-18-1b, TM-18-1c, TM-18-1d, and TM-18-2. Compositional studies including mineral-, 

lithic-, and glass assemblages, maximum grain-sizes and thicknesses of tephras (Table 1) as 

well as microfacies analyses of varved host sediments were carried out on large-scale thin 

sections (120 x 35 mm) from resin impregnated sediment slabs of cores LGM-B, -D, -L, -J 

and –M (Fig. 1; more core details are provided in Brauer et al., 2000, 2007; Wulf et al., 2004). 
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For geochemical analyses of tephras, polished thin sections (48 x 28 mm) of tephra bearing 

sediment slabs were produced („in-situ-slides‟).  

3.2 Glass geochemical analyses 

At least 10 single glass shards of all seven tephras on the „in-situ-slides‟ were analysed for 

their major and minor element composition using a CAMECA SX-100 probe with a 15 kV 

voltage, 20 nA probe current, a 15-20 µm beam diameter, and peak counting time of 20 s 

except for Na at 10 s. For the instrumental calibration, natural minerals and the glass reference 

standard “Lipari obsidian” was used (Hunt and Hill, 1996; Kühn et al., 2011). Prior to the 

EPMA measurements, glass shards were inspected under polarised light as well as by SE and 

BSE images in order to avoid hitting microcrystals that may cause accidental heterogeneity in 

glass compositions (e.g., Shane et al., 2008; Lowe, 2011). Single grain EPMA data of both the 

tephras and the glass reference standard are listed in Supplementary File 1. Mean values from 

EPMA are provided in Table 2 (non-normalised). All oxide values reported in the text and in 

Fig. 5 are normalised (water-free) data. 

Tephras TM-18-1a, -b, -c and -d were additionally analysed for their trace elemental 

composition. Trace element analyses on individual glass shards were carried out using a 

Thermo Scientific iCAP Q ICM-MS coupled to a Photo Machines analyte 193 nm eximer 

laser ablation system with a Helix two volume cell at Trinity College Dublin. The fluence was 

3.31 Jcm
-1

,
 
and we used a 24 μm spot, a repetition rate of 5 Hz, and a count time of 40

seconds (200 pulses). Concentrations were calibrated using NIST612 with 
29

Si as the internal

standard. Data reduction was performed manually using Microsoft Excel following the 

method of Tomlinson et al. (2010). Analyses of MPI-DING glass StHs6/80-G typically gives 

accuracies of <5%. Reproducibility of StHs6/80-G analyses is <5 RSD% for all trace 

elements except Er, Th and U which are <10% RSD and close to detection limit. Relative 

standard errors are typically 1-5% for most elements and <7% for Sr, Ba, Eu. Full errors 

(standard deviations and standard errors for individual sample analyses) are given in 

Supplementary File 1. Trace element data of samples TM-18-1a, -b, -c and -d were compared 

with published data from tephra TM-18 (Tomlinson et al., 2012). 

3.3 The µ-XRF elemental scanning and microfacies analysis 

To identify primary and reworked tephra material and to detect potential environmental 

changes after tephra deposition, a combination of µ-XRF elemental scanning and microfacies 

analyses on the 3.2 m long sequence of tephra-hosting sediments was applied. 
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The µ-XRF core scanning was carried out on cleaned, smooth surfaces of five sediment cores 

LGM-O9-u (60-92 cm), LGM-O10-o (0-100 cm), LGM-O10-u (0-97 cm), LGM-M12-o 

(54.5-97 cm), and LGM-M12-u (0-23 cm). Except for tephras TM-18-1b and TM-18-2, all 

tephras studied occur in these cores. µ-XRF measurements were carried out on an ITRAX 

core scanner (COX Analytical Systems, Sweden) operated with a molybdenum (Mo) tube, an 

accelerating voltage of 30 kV, and a beam current of 30 mA. The step size of measurements 

was 200 µm and the exposure time 20 s per measurement. In order to detect relative changes 

in the elemental composition of sediments and tephra deposits, major and minor elements 

with significant variations (such as Si, K, Ca, Ti and Mn) were chosen for interpretation (Fig. 

2; Supplementary File 2).  

The µ-XRF core scanning was supported by microfacies analysis that encompassed the 

microscopic description and classification in “lithozones” of the tephra-hosting sediments 

using overlapping large-scale thin sections of the B/D-, L-, J- and M- core. Microscopic 

description was carried out using a Zeiss-Axioplan- and a Zeiss-Axiophot microscope with a 

50-400-times magnification. For detection of sedimentological changes the focus of 

microfacies analysis was set on the tephra layers and immediately under- and overlying 

sediments. 

3.4 Chronology 

Tephra ages were obtained from the varve supported sedimentation rate-derived chronology 

of the Monticchio sequence, which was initially established by Zolitschka and Negendank 

(1996) and Brandt et al. (1999) and updated by Brauer et al. (2007). Annual laminations in the 

section of interest are very well preserved. Tephra TM-18 (CI) was additionally dated by 

40
Ar/

39
Ar analysis of sanidine at 37 ± 3 ka and 35 ± 1 ka (Watts et al., 1996; Wulf et al., 

2004). The varve and radioisotopic ages of TM-18 appear approximately 2500 years too 

young in comparison to the well-accepted 
40

Ar/
39

Ar age of 39.28 ± 0.11 ka of proximal CI

deposits (De Vivo et al., 2001), indicating an underestimation of varve counts of 

approximately 6 % in the preceding and/or succeeding poorly varved sections (Wulf et al., 

2012). However, varve ages of the remaining tephras in the Monticchio sequence can still be 

used for differential dating by calculating the time of deposition relative to the eruption of the 

Campanian Ignimbrite (Table 1). 

4. Results and Discussion

4.1 Sediment composition 
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The sediments in the studied sections are predominately annually laminated, and varves are 

comprised of different contents of autochthonous (i.e., calcite precipitates, siderite, pyrite, 

vivianite, diatoms) and allochthonous components (i.e., epiclastic material of older Mt. 

Vulture volcanics, terrestrial plant remains from the catchment, benthic diatoms). 

Biochemical calcite precipitation occurs in early summer, when pH values and temperatures 

of the lake water increase (Zolitschka, 1990) (Figs. 3C, D). Siderite often also forms layers 

immediately after the precipitation of calcite (late summer-autumn), whereas early diagenetic 

pyrite is irregularly scattered throughout the interval of interest. Vivianite is rare and occurs 

exclusively in the lower part of the sediment section (Fig. 4C). The latter components indicate 

an anoxic environment with a high availability of Fe
2+

 ions as well as carbonate (siderite),

sulphate (pyrite), and phosphate (vivianite) concentrations (Zolitschka, 1990; Matthes, 1999). 

Diatoms are abundant and occur as spring and autumn layers in the sediments. Predominately 

planktonic species were found, i.e. mainly Stephanodiscus spp., Cyclotella spp., and 

subordinately Fragilaria spp. and Crysophyceae cysts in the upper sediment section (Fig. 3D, 

4C). Allochthonous material is mainly found within detrital layers (turbidites and slump 

deposits) transported from the catchment and the littoral zone into the lake basin from 

erosional processes. Tephra material is also an allochthonous component, which is either 

directly deposited by fallout from an eruption cloud or re-deposited in turbidites and slumps 

because of catchment erosion. 

4.1.1 Lithology 

Based on detailed microfacies analyses the sediments in the section of interest can be divided 

into four lithologies,  L1 to L4: 

 L1 is characterised by homogenous organo-clastic sediments with a mixture of primary

planktonic diatoms and to a lesser extend minerals and plant remains.

 L2 consists of laminated sediments with a very high amount of planktonic diatoms

(Cyclotella spp., Stephanodiscus spp.). The lamination is made up of alternating sub-layers

of autochthonous calcite, siderite, and diatoms (here defined as “Type A varves”). Calcite

layers do not occur on a regularly basis with the result that some sections are solely

dominated by alternating siderite and planktonic diatom layers. Some sections are even

reduced in diatoms and enriched in detrital layers. In such intervals siderite and calcite are

absent. A common feature of L2 is the infrequent occurrence of vivianite (Fig. 4C).
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 L3 is characterised by turbidites, which are suspension flows with a coarser grained base,

mostly consisting of epiclastic components, and a gradually decrease in grain size towards

the top (dense clay layer).

 L4 is characterised by laminated sediments. The main difference from L2 is the abundance

of diatom species of Fragilaria spp. together with Crysophyceae. Laminations encompass 

autochthonous calcite layers, underlain by diatom layers made up of Fragiliaria spp., and an 

organo-clastic layer (here defined as “Type B varves”) (Figs. 3C, D). The definitive 

properties of the sediments enclosing the tephra layers can be seen in Table 3.  

The four lithologies alternate within the sediments under study (Fig. 2). The topmost part 

above tephra TM-17-2 is characterised by well-laminated sediments of L4, whereas sediments 

between tephras TM-17-2 and TM-18 (CI) are dominated by homogeneous L1 deposits, L3 

turbidites and minor well-laminated L2 sections. L2 varves below TM-18, in turn, are well 

preserved and sporadically alternate with homogeneous L1 sediments and minor L3 turbidites 

above and below tephra TM-18-1c, respectively (Fig. 2). All tephras investigated are enclosed 

in a sediment matrix that is characterized by exceptional varve preservation.  

4.1.2 µ-XRF elemental profiles 

µ-XRF element data are characterised by relatively low variations of the elements silicon (Si), 

titanium (Ti), calcium (Ca), potassium (K), and manganese (Mn) with some exceptional peaks 

attributed to special layers (Fig. 2, Supplementary File 2). Ti-peaks, for example, can be 

attributed to Fe-Ti oxides (e.g., titanomagnetite) in epiclastic material (volcanoclastic deposits 

derived from the catchment) in turbidites, which most likely was washed from the catchment 

into the lake and are often found in L2 and L3 above tephra TM-18. Mn peaks occur in L2 

and are found in the sediment sections underneath TM-18-1c and TM-18-1d. Ca peaks are 

related to authochthonous calcite layers and also occur within tephra TM-17-2, where detrital 

carbonates form a major component. Except for TM-18-1b and TM-18-2 not represented in 

the cores analysed, all other tephra layers reveal elevated K counts in comparison with those 

of the enclosing sediments. Some tephras are partially enriched in other elements such as Mn 

(TM-18-1c, TM-18-1-d), Ca (TM-17-2, TM-18-1d), and Si (TM-17-2, TM-18-1a, TM-18-1c, 

TM-18-1d). Reworked tephra layers identified by thin section microscopy can also be traced 

by distinct K peaks (Fig. 2, Supplementary File 2), though quantities are smaller in these 

layers compared with the amounts in the primary tephra deposit, because the signals primarily 

from the glass shards are diluted with other sediment components.  
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4.2 Composition and origin of tephras 

The results of compositional and geochemical analyses (normalised data) of the seven distinct 

tephra layers in the Monticchio record,  from youngest to oldest, are presented in detail 

(Tables 1 and 2). Tephra ages are given as calendar ages with a mean 5% counting error 

(Wulf et al., 2012). Overall, geochemical glass data of all tephras reveal a similar K-alkaline 

composition indicating a provenance from Campanian volcanoes in Southern Italy. 

4.2.1 Tephra TM-17-2 is a 2-cm thick, brown layer at 24.30 m composite depth (Figs. 3A, B) 

and is dated at 35,530 ± 1780 varve yrs BP. The mineral assemblage comprises phenocrysts 

of sanidine, clinopyroxene, biotite, plagioclase, amphibole, and Fe-Ti oxides. In the lithic 

assemblage, detrital carbonates are dominant (Fig. 3B), whereas volcanic rock fragments are 

rare. Volcanic glass shards are brown or colourless, often platy or cuspate shaped and rich in 

apatite and clinopyroxene microcrystals. Probably because of the high amount of 

microcrystals, glass shards show a heterogeneous trachytic glass composition with the highest 

and most variable concentrations in SiO2 (62.3-67.5 wt%), CaO (2.0-3.9 wt%), and alkali 

ratios (K2O/Na2O) of 1.8-2.8 (Table 2). The glass major and minor element compositions, the 

mineral assemblage, the lithic content of volcanic rock fragments and distinctive detrital 

carbonates, and the age point to an origin of tephra TM-17-2 from the Schiava eruption of 

Somma-Vesuvius. This eruption reflects most likely the oldest activity at Somma-Vesuvius 

(Di Vito et al., 2008) occurring between the eruption of the Campanian Ignimbrite (Phlegrean 

Fields, 39.3 ka; De Vivo et al., 2001) and the Pomici di Base eruption (Somma-Vesuvius, ca. 

22 cal ka BP; Santacroce et al., 2008). Di Vito et al. (2008) described the “Schiava Pumices” 

that in medial-distal locations northeast of Vesuvius  are deposited on a thin palaeosol at the 

top of the Campanian Ignimbrite (Di Vito et al., 2008). They are characterised by white 

alternating ash and lapilli beds with highly vesicular pumice (Di Vito et al., 2008) showing a 

similar trachytic composition as tephra TM-17-2 with increased SiO2 concentrations 

accompanied by low alkali and low FeO2, TiO2, Al2O3, and MgO values (Fig. 5, Table 2). The 

Schiava pumices are furthermore correlated with the marine tephra C-9 in Tyrrhenian Sea 

core KET 8004 and KET 8011, where it is dated by oxygen isotopes at ca. 36 ka (Paterne et 

al., 1988; Paterne and Guichard, 1993). 

4.2.2 Tephra TM-18 has been previously correlated with the Campanian Ignimbrite (CI) from 

the Phlegrean Fields (Narcisi, 1996; Wulf et al., 2004) and is dated in the Monticchio record 



10 

at 36,770 ± 1840 varve yrs BP (Wulf et al., 2012). The thicknesses of TM-18 show large 

variations between cores: 17.2 cm (core LGM-B/D), 20.5 cm (core LGM-L), 26.5 cm (core 

LGM-M), and up to 35.5 cm (core LGM-O). TM-18 is best preserved in core LGM-J where it 

occurs as a 23-cm thick greyish-beige layer that can be divided into a basal coarse grained 

pumice fall layer and an overlying co-ignimbritic fallout layer of equal thickness (Fig. 6A). 

Those have been assigned to the proximal CI fall and flow (lower, intermediate, and upper), 

respectively (Tomlinson et al., 2012) (Fig. 2). The basal pumice fall layer is further divided 

into two main units: a 12.5 cm thick lower pumice fall layer and a 4.1 cm thick upper pumice 

fall layer (Fig. 2). These units and sub-units are directly comparable with the proximal 

stratigraphy of the CI fall unit after Rosi et al. (1999), and therefore we use the same code 

names in our description. The lower pumice fall layer  in Monticchio, corresponding to the 

Lower Fall Unit “LFU” after Rosi et al. (1999), is light grey to grey in colour and consists of 

coarse grained, inversely and ungraded pumice deposits. In general, micro-pumices are 

whitish to light grey and are highly to extremely vesicular, showing round and tubular 

vesicles (Figs. 6B1, B2). They are accompanied by cuspate shaped, colourless and brown 

glass shards. The lithic assemblage is mainly made up of volcanic rock fragments, whereas 

the mineral assemblage comprises clinopyroxene, plagioclase and sanidine phenocrystals. The 

lower pumice fall layer is further divided in three sub-layers V1 to V3 based on additional 

components to the basic composition described above. In the lowermost sub-layer V1, Fe-Ti 

oxides additionally occur, whereas in the middle sub-layer V2 biotite is found for the first 

time. The uppermost sub-layer V3 is characterised by pumices with black iron microcrysts 

and maximum grain sizes of 8 mm, and is accompanied by amphiboles in the mineral 

assemblage. The upper pumice fall layer in Monticchio, corresponding to the Upper Fall Unit 

“UFU” after Rosi et al. (1999), is greyish-beige in colour, ungraded and comprises pumice 

clasts with an increased amount of lithics and loose minerals as well as bi-coloured glass 

shards (Fig. 6B3). The composition of the lithic and mineral assemblage of UFU is similar to 

that of the LFU. UFU is further sub-divided in four sub-layers: In the lowermost sub-layer 

V4, a high amount of biotite and an increased amount of glass shard are found. Besides 

volcanic rock fragments, sedimentary rock fragments are found in the succeeding sub-layer 

V5. Sub-layer V6 is coarser grained, with a high amount of lithics and pumice clasts whereas 

the uppermost sub-layer V7 contains a crystal-rich ash layer comprised of accumulated brown 

glass shards with subordinated lithics and an increased amount of loose crystals. The coarse 

basal fallout deposits (LFU, UFU) in Monticchio are directly overlain by a finer grained co-

ignimbrite layer mainly comprised of cuspate shaped, colourless and brown glass shards. This 
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fall layer can be related to the second phase of the CI eruption characterised by a caldera 

collapse and the eruption of three pyroclastic density currents (e.g., Ort et al., 2003), which 

Tomlinson et al. (2012) refer to as lower, intermediate, and upper ignimbritic flow units, 

respectively. 

Geochemical analyses of pumices and glass shards throughout the entire TM-18 deposit 

reveal a rather homogenous phonolitic-trachytic composition with concentrations in SiO2 of 

61.1-62.9 wt%, CaO of 1.6–2.0 wt%, and alkali ratios of 0.9 to 1.4 (Fig. 5, Table 2). Only one 

single glass shard shows a K-trachytic composition with a lower SiO2 value (60.1 wt%), 

higher CaO concentration (2.31 wt%), and an alkali ratio of 1.8 (Table 2). According to 

Tomlinson et al. (2012), the main glass population of TM-18 is typical for that of both 

proximal fall units LFU and UFU and the lower and intermediate ignimbritic flow units of the 

CI, whereas the minor glass phase is representative for the upper ignimbritic flow unit. These 

geochemical variations are also reflected in the trace element composition of TM-18 

(Tomlinson et al., 2012). The main glass population from the fall units and the lower and 

intermediate flows is compositionally intermediate to evolved with Zr/Sr ratios of 15-35, 

whereas the juvenile phase from the upper flow is less evolved with Zr/Sr ratio of 0.3 

(Tomlinson et al., 2012). The fall and flow units of TM-18 can be best distinguished on the 

basis of some HFSE incompatible elements such as Th, U, Zr and Nb, which are typically 

higher in the fall and lower/intermediate flow units (Th, 41-53 ppm; U, 15-19 ppm; Zr, 549-

667 ppm; Nb, 99-120 ppm; U/Nb ratios of 0.14-0.16; Zr/Nb ratios of 5.0-5.6) than in the 

upper flow unit (Th, 15 ppm; U, 5 ppm; Zr, 185 ppm; Nb, 31 ppm; U/Nb ratio of 0.16; Zr/Nb 

ratio of 6.0) (Tomlinson et al., 2012) (Fig. 8). 

4.2.3 Tephra TM-18-1a is a 3.2-cm thick inverse-graded, greyish-beige, vitric tephra located 

in a composite depth of 26.59 m, ca. 11 cm below the CI deposit (Fig. 7A). It is dated by the 

Monticchio chronology at 36,840 ± 1840 varve yrs BP, and therewith deposited 

approximately 70 varve yrs before the TM-18/CI tephra. The loose mineral assemblage 

consists of sanidine, subordinated plagioclase, clinopyroxene, and biotite, whereas lithics 

comprise volcanic rock fragments. The fine-grained glass matrix is mainly made up of 

cuspate colourless glass shards, whereas brown glass shards are subordinate and rich in 

apatite microcrystal inclusions (Fig. 7B). Pumice fragments and glass shards are highly 

vesicular and show a homogenous phonolitic-trachytic composition that is very similar to that 

of TM-18 (61.1-62.2 wt% SiO2; 1.7-2.0 wt% CaO; alkali ratios of 1.2-1.3) (Fig. 5, Table 2). 

Trace element contents of TM-18-1a glasses weakly match the TM-18 fall and 
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lower/intermediate flow units in terms of slightly higher concentrations in Nb (106-133 ppm) 

and Zr (601-937 ppm) and lower values in Th (15-40 ppm) and U (5-10 ppm) resulting in 

higher U/Nb (0.15-0.19) and Zr/Nb (5.3-7.2) ratios (Fig. 8). The composition of TM-18-1a 

suggests a similar origin as the CI from the Phlegrean Fields. 

4.2.4 Tephra TM-18-1b is a fine-grained, 6-mm thick vitric tephra located in 26.66 m 

composite depth (Fig 7A). It was  deposited at 36,940 ± 1850 varve yrs BP, approximately 

170 varve yrs prior to the deposition of TM-18/CI tephra. It shows weak normal grading and 

encompasses phenocrysts of sanidine, biotite, plagioclase, and minor clinopyroxene. Lithics 

are equally spread in the tephra and consist of volcanic rock fragments. Juvenile clasts 

comprise white and brown glass shards, whereas brown glass shards are more frequent and 

rich in apatite microcrystals (Fig. 7C). TM-18-1b shows a homogenous phonolitic-trachytic 

glass composition with concentrations in SiO2 at 60.7-61.7 wt%, CaO at 1.7-1.9 wt%, and 

alkali ratios of 1.2-1.4 (Table 2). Both the major and trace element glass compositional data of 

TM-18-1b overlap with those of TM-18 except that it has slightly higher concentrations of 

incompatible elements  (e.g. Zr, 537-738 ppm) (Figs. 5, 8). The glass composition of TM-18-

1b implies a possible source from the Phlegrean Fields. 

4.2.5 Tephra TM-18-1c is a 5-mm thick, inverse graded, white-beige, vitric ash in 26.75 m 

composite depth (Fig. 9A). TM-18-1c is dated at 37,060 ± 1850 varve yrs BP and is 

approximately 290 varve yrs older than the TM-18/CI tephra. It mainly comprises highly 

vesicular, colourless glass shards with tubular vesicles (Fig. 9B). Crystals are rare and include 

sanidine, plagioclase, and minor clinopyroxene phenocrystals. Volcanic rock fragments are 

subordinate and occur scattered in the tephra layer. In addition, secondary pyrite occurs at the 

base of TM-18-1c. Glass major element data display a homogenous phonolitic-trachytic 

composition with contents in SiO2 of 61.3-61.8 wt%, CaO of 1.7-1.8 wt% and alkali ratios of 

~1.2 resembling that of the succeeding tephras from the Phlegrean Fields (Fig. 5, Table 2). 

Trace element data are the least distinctive overlapping with TM-18-1a and TM-18-1b at low 

trace element contents (e.g., Zr, 600-983 ppm; U, 18-23 ppm), but differing from the CI with 

slightly higher values in Th (47-84 ppm) and Nb (110-150 ppm) (Fig. 8). 

4.2.6. Tephra TM-18-1d occurs in a sediment depth of 27.04 m, dates at 37,360 ± 1870 varve 

yr BP and thus is 590 varve yrs older than TM-18/CI. It is a 1-cm thick, grey to brownish 

tephra layer with a normal gradation and a bimodal glass composition (Figs. 9C, D). Pumice 
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fragments and glass shards are bubble-wall or cuspate shaped, low to highly vesicular and 

show inclusions of apatite microcrystals to some extent. The mineral assemblage comprises 

sanidine, clinopyroxene, subordinately plagioclase, and biotite. The lithic assemblage includes 

fragments of volcanic rocks. Glass shards are also phonolitic-trachytic but bimodal in 

composition with alkali ratios of 1.1 (majority of data) and 2.1 (one data point) and slightly 

decreased SiO2 concentrations of 59.7-61.2 wt% compared to those of glass from TM-18, 

TM-18-1a, TM-18-1b, and TM-18-1c (Table 2, Fig. 5). The trace element composition of 

TM-18-1d forms a distinct field at the highest incompatible element contents (Th, 53-89 ppm; 

U, 21-33 ppm; Nb, 131-198 ppm; Zr, 681-1072 ppm) (Fig. 8). Based on its glass composition 

we propose an origin of this tephra from the Phlegrean Fields. 

At this point, a detailed correlation of tephras TM-18-1a, TM-18-1b, TM-18-1c, and TM-18-

1d with dated explosive proximal events is rather difficult because of the similarity of the 

major and trace element composition of glasses of these tephras and the lack of single grain 

EPMA glass data of proximal tephra deposits for comparison. Furthermore, these tephras 

(TM-18-1a to -d) are deposited within a time interval of ca 600 varve yrs prior to the TM-

18/Campanian Ignimbrite eruption requiring clear chronostratigraphic constraints and high-

resolution dating techniques that are not yet available for proximal deposits. However, some 

potential correlatives are provided from the proximal Torregaveta (TG) and Trefola (TL) 

sections in the west and north of the CI caldera, respectively (Pappalardo et al., 1999). In the 

Trefola section, the Campanian Ignimbrite is underlain by 11 pyroclastic units, of which the 

youngest one TLm has been 
40

Ar/
39

Ar dated at 45.6 ± 0.7 ka (Pappalardo et al., 1999). The

TG section documents a sequence of 12 pyroclastic fall and flow deposits separated by 

palaeosols underneath the CI deposits, each palaeosoil representing a hiatus. The uppermost 

three units from top to base, TGm (flow), TGl, and TGk (fallout), are related to activity in the 

Phlegrean Fields and are underlain by Ischia tephra layer TGj (Pappalardo et al., 1999). The 

three tephras from the Phlegrean Fields all closely match the major and trace element 

chemical compositions of glasses from both the CI and tephras TM-18-1a to TM-18-1d (Figs. 

5, 8). A study from the medial-distal terrestrial sites on the Sorrentina Peninsula 

(SMP1/SMP2) and near Cervino (CE1), located approximately 30 km southeast and northeast 

of the Campanian Ignimbrite caldera, respectively, reveals three trachyphonolitic fallout 

deposits between the CI and the Santa Lucia tephra (ca. 51 ka; Sulpizio et al., 2003; Di Vito et 

al., 2008). The lowermost of these pyroclastic deposits, CE1-d, does not fully match the major 

element glass composition of the Monticchio tephras, but approximates that of one single 
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glass shard of tephra TM-18-1d (Fig. 5). The stratigraphically younger medial-distal 

pyroclastic unit, SMP1-a, has been tentatively linked to Ischia eruptives (Di Vito et al., 2008) 

and is correlated with marine distal tephras C-14 (41.8 ka; Paterne et al., 1988; Sulpizio et al., 

2003) and PRAD1752 (Bourne et al., 2010) from the Tyrrhenian (core KET80-04) and 

Adriatic Seas (core PRAD1-2). Bourne et al. (2010) suggested a rough correlation of 

PRAD1752 with one of the Monticchio TM-18-1 layers. Damaschke et al. (2013), in turn, 

suggested a more specific allocation and assigned cryptotephra PT0915-8 (ca 44 ka) in Lake 

Prespa (Balkans) to both SMP1-a and Monticchio tephra layer TM-18-1d. The major element 

glass composition of SMP1-a (Sulpizio et al., 2010) indeed shows the best chemical match 

with the main glass population of TM-18-1d, while the Prespa and PRAD tephras also overlap 

with the other TM-18-1 tephras (Fig. 5). The comparison of trace element data of SMP1-a 

(bulk data) with the Monticchio tephras (single grain data), however, does not provide any 

clear correlation (Fig. 8B). The uppermost medial-distal tephra SMP1-c, directly underlying 

the CI deposit, has been correlated with the marine tephra C-13b (Paterne et al., 1988; 

Sulpizio et al., 2003). SMP1-c does not match any of the Monticchio tephras, but 

approximates the glass chemistry of one single shard of TM-18-1d (Fig. 5). In conclusion, the 

proposed correlations suggested here are tentative and require further testing via additional 

EPMA-WDS and single grain trace element data. 

4.2.7 Tephra TM-18-2 is a 1-mm thick, normally graded, white vitric ash (Figs. 4A, B) that is 

found in a composite sediment depth of 27.22 m and dates at 37,580 ± 1880 varve yrs BP. It 

predominately comprises pumice clasts, which are whitish to grey and highly to extremely 

vesicular with round vesicles (Fig. 4B). Glass shards are bubble-wall and cuspate shaped and 

exhibit inclusions of apatite needles to some extent. The phenocryst content is made up of 

sanidine and plagioclase, whereas biotite and clinopyroxene are rare. Lithics are scattered 

volcanic rock fragments which to some extend reveal adherent glass. The glass chemical data 

reflect a homogenous trachytic composition characterized by increased SiO2 values (63.6- 

64.7 wt%), low CaO values (~ 1.4 wt%) and alkali ratios (1.1-1.4) (Fig. 5, Table 2). The glass 

composition of TM-18-2 slightly differs from that of the TM-18-1 tephras, indicating an 

origin from the Island of Ischia rather than from the Phlegrean Fields. The 44-33 ka period 

saw the deposition of a series of pyroclastic products, collectively termed the Citara 

Formation (Poli et al., 1987), one of which may be a potential correlative for TM-18-2 (Fig. 

5). The Citara Formation is tentatively linked to Ischia layer TGj from the proximal/medial-

distal Torregaveta site (Pappalardo et al., 1999), but the marine C-14 tephra dated at 41.8 ka 
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BP in Tyrrhenian and Adriatic Sea cores (Paterne et al., 1988) so far provides the best 

geochemical match (Fig. 5). 

4.3 Environmental and ecological responses of tephra deposition 

We focus on the reworking processes of individual tephra deposits, from oldest to youngest, 

in the Monticchio record. Based on a combination of µ-XRF scanning and thin section 

microscopy different amounts of reworked tephra material and changes in the sedimentation 

rates were detected directly after the deposition of primary tephra fallout deposits. A detailed 

overview of µ-XRF elemental data of reworked sections is provided in Supplementary File 2.  

4.3.1 Tephra TM-18-2 

Tephra TM-18-2 is enclosed within weakly laminated L2 sediments consisting of alternating 

layers of planktonic diatoms (summer layers of Stephanodiscus and Cyclotella) and organo-

clastic reworked material (winter layers made up of epiphytic diatoms and organic matter 

from the littoral zone and the shore) (Fig. 4A, C). Planktonic diatom layers are dark grey in 

colour and range from 70 to 100 µm in thickness below the tephra deposit, whereas the 

reworked layers are lighter in colour, thinner (20 to 50 µm), and sometimes include scattered 

blue vivianite crystals in addition to pyrite and fine calcite crystals (Fig. 4C). Sediments 

above tephra TM-18-2 are well varved showing a similar structure but increased thicknesses 

of ca. 100 µm for each the summer and winter sub-layer. Reworked tephra material (glass 

shards) is accumulated in the detrital winter layer especially in the first year after tephra 

deposition whereas in the following five years only scattered reworked glass shards occur.  

4.3.2 Tephra TM-18-1d 

Tephra TM-18-1d is underlain by well varved L2 sediments characterised by alternating 

planktonic diatom (ca. 100-µm thick summer layers) and detrital and reworked layers (ca. 50-

µm thin winter layers made up of benthic diatoms, plant remains, epiclastic material). 

Following the deposition of tephra TM-18-1d, four distinct reworked tephra layers with a total 

thickness of 1 cm occur (Fig. 9C; Supplementary File 2e). The first reworked tephra layer is 

characterised by fine-grained glassy material and complemented by extremely fine-grained 

clayey material at the top (normally graded). The second reworked layer shows a fine-grained 

glassy matrix of glass shards (bimodal), subordinate lithics and minerals with interspersed 

planktonic diatoms whereas the third layer is comprised of coarser grained minerals, lithics, 

and glass shards as well as benthic diatoms and plant remains. The fourth reworked layer 
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mainly comprises colourless and brown glass shards scattered in planktonic and subordinate 

epiphytic diatom species. The first and second reworked layers are attributed to intra-lake 

reworking, while the third and fourth reworked layers most likely represent run-off from the 

catchment. The reworked tephra layers are overlain by a section of laminated sediments (62 

varve years) that are characterised by alternating layers of planktonic diatoms (summer layer) 

and detrital/reworked layers (winter layer) that contain gradually decreasing amounts of 

reworked tephra material. Higher concentrations of reworked glass shards and an increase in 

thickness of planktonic diatom and detrital layers is found in the varves up to ten years after 

the primary tephra deposition. Forty-eight varve years after TM-18-1d was deposited, higher 

concentrations of reworked tephra material occur in a distinct coarse-grained turbidite and in 

the detrital layers of the following two years. 

4.3.3 Tephra TM-18-1c 

The L2 sediments underlying TM-18-1c show a weak lamination with alternating layers of 

planktonic diatoms (thickness 100 µm) and thin detrital and reworked layers (50 µm) made up 

of abundant plant material from the catchment and benthic diatoms from the littoral zone, 

respectively (Fig. 9A). In addition, calcite, siderite, vivianite, and pyrite occur scattered in 

these layers. The overlaying sediments show an indistinct lamination with the same 

alternating sequence and composition as the underlying sediments, excluding vivianite. In the 

second and third years after tephra deposition, thickness of both planktonic diatom layers 

(thickness 200 µm) and detrital/reworked layers (100 µm) increased. Reworked glass shards 

of TM-18-1c is found up to 30 years after the primary deposited tephra TM-18-1c and occur 

scattered in detrital and reworked layers as well as in the bases of three turbidites occurring 

1.5 cm, 2.6 cm, and 3.8 cm above the tephra (Fig. 9A; Supplementary File 2d).  

4.3.4 Tephra TM-18-1b 

Tephra TM-18-1b is encapsulated in homogenous L1 matrix sediments consisting of 

planktonic diatoms, siderite, pyrite, plant remains, and interspersed benthic diatoms (Fig. 7A). 

The boundaries of this tephra with respect to the surrounding sediments are not as sharp as for 

the other primary tephra layers. Reworked tephra material is detected beneath and above the 

primary tephra layer. The section underneath the tephra is characterised by the occurrence of 

pumices and glass shards lenses that penetrate into the sediments up to 5 mm, suggesting 

bioturbation processes. In the overlaying sediments scattered reworked tephra material (glass 

shards) occurs up to 2 cm above the ash layer showing a gradually decrease of glass shard 
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concentration. An increase of the planktonic diatom population after the primary tephra 

deposition was not observed. 

4.3.5 Tephra TM-18-1a 

Tephra TM-18-1a is encased within L1 and L2 sediments which are faintly varved to massive 

(Fig. 7A). The sediment is mainly composed of planktonic diatoms (Cyclotella spp., 

Stephanodiscus spp.) and subordinate loose epiclastic material. Plant remains occur in very 

high amounts accompanied by siderite especially immediately underneath the tephra layer. In 

general, siderite and pyrite occur uniformly in the sediment. In the sediments underneath the 

tephra, lenses and filled burrows of pumice appear, indicating bioturbation processes. Tephra 

layer TM-18-1a is directly overlain by three reworked tephra layers with a total thickness of 

2.5 cm (Fig. 7A; Supplementary File 2c). The first reworked layer is 5 mm thick and 

comprises a mixture of fine-grained (<100 µm), reworked tephra material (glass shards, 

pumices, lithic fragments, and loose mineral grains) and planktonic diatoms. Its formation can 

be most likely ascribed to intra-lake reworking processes. The second reworked layer is 3 mm 

thick and is dark, greenish to black in colour. It mainly consists of coarser grained (ca. 200 

µm) epiclastic material from the lake catchment encompassing a high amount of lithics and 

minerals (green clinopyroxene, biotite, amphibole, sanidine, plagioclase) at the base and 

subordinate pumice fragments, benthic diatoms and plant remains in the upper part of the 

layer. This reworked layer most likely resulted from catchment erosion and re-depositional 

processes from the littoral zone. The third reworked tephra layer is 1.7 cm thick and shows a 

fine-grained glassy matrix interspersed with a very high amount of planktonic diatoms and a 

lower amount of benthic diatoms, plant remains, siderite and epiclastic minerals. It is 

noticeable that the glassy matrix is vertically crossed by burrows (bioturbation). Inside the 

burrows scattered reworked tephra material occurs. After the deposition of the distinct 

reworked tephra layers a gradually decrease of glass shards is determined in the varved 

sediments and only scattered glass shards are found ca 5 cm up to the next tephra layer TM-18 

(Supplementary File 2c).  

4.3.6 Tephra TM-18 

The Campanian Ignimbrite is underlain by faintly laminated L2 sediments which are split by 

thick siderite layers with a maximum thickness of 0.5 mm (Figs. 6A,  7A). The siderite layers 

alternate with mixed layers of planktonic and benthic diatoms, whereas the sediment directly 

underlying the tephra shows a more massive appearance with very weak lamination. This 
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section mainly comprises planktonic and benthic diatoms with scattered minerals and plant 

remains. In addition, pyrite is homogenously distributed, whereas siderite is very sparse. The 

sediments overlying the tephra layer are weakly laminated (L2 and L3 type sediments) and 

are characterised by reworked tephra material and planktonic diatoms layers. Reworked  glass 

shards have been found up to 186 cm above the primary deposited tephra. The reworked CI 

deposits can be subdivided into three sections (Fig. 6; Supplementary Files 2a, b, and c). The 

first section immediately above the primary CI tephra is 1.7 cm thick and comprises eight 

varve years. Varves are made up of alternating reworked tephra layers (mixtures of glass 

shards, lithics, loose crystals, and a high amount of planktonic diatoms) and planktonic 

diatom layers. Within this section, the third year after tephra deposition shows a particular 

increase in diatom abundance and a change in size of planktonic species, which is followed by 

distinct planktonic diatoms layers (average thickness of 150 µm) in the eighth varve after the 

tephra fall. Because of the high amount of glass shards in this section, K-values obtained by 

µ-XRF core scanning are indistinguishable from those obtained on the primary CI deposit. 

Re-deposition of tephra material in the first section can be most likely attributed to intra-lake 

reworking processes. The second section of reworked tephra is 1.5 cm thick and is 

characterised by a weak lamination of alternating layers of mixed coarser-grained organic 

material and tephra (pumices, bimodal glass shards, minerals, lithics) and distinct planktonic 

diatoms layers. Here, reworked tephra layers are more distinct from the sediment matrix 

forming individual K-peaks via the µ-XRF scans. The presence of epiphytic diatoms and 

terrestrial plant remains within the reworked tephra layers point to erosional in-washing 

processes from the shore/catchment. The third section of reworked tephra material is 

characterised by an array of turbidites. In total, 15 normal graded turbidites with reworked 

TM-18 tephra material (glass shards and pumices) at the base and overlying finer-grained 

epiclastic material from the catchment (i.e., altered pumices, minerals and lithics of older Mt. 

Vulture pyroclastic deposits) occur. The amount of tephra derived glass shards decreases 

towards the top of this section, but scattered reworked TM-18-derived glass shards are present 

in the sediments right up to the next primary tephra (TM-17-2), i.e. spanning over a period of 

1240 varve years. 

4.3.7 Tephra TM-17-2 

The sediments encapsulating TM-17-2 are well laminated (L4 sediments) and the varves are 

characterised by an alternation of autochthonous calcite and organogenic sub-layers (Figs. 3A, 

C, D). The section underlying the tephra can be sub-divided into two sub-sections showing a 
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fine laminated section and a thicker laminated section which is located immediately beneath 

the tephra (Fig. 3A). The fine laminated section shows varves with an average thickness of 

0.8 mm. They comprise a thin layer of diatoms with elongated planktonic Fragilaria spp. 

which are typical for mesotrophic- to oligotrophic water bodies, and other planktonic species, 

followed by a layer of calcite and a layer of organoclastic material (Fig. 3D). Siderite is rare, 

whereas pyrite is commonly dispersed in the clastic material. However, the thicker laminated 

section is characterised by varves with an average thickness of 2.1 mm. They are composed of 

a thin diatom layer followed by a calcite layer and a layer primarily made up of siderite. The 

increase in siderite starts six varves before tephra TM-17-2 was deposited and is accompanied 

by an increase of clastic material. Especially in the two varves preceding the tephra fall, 

coarse-grained loose minerals of epiclastic material derived from the catchment are present. 

Here, pyrite also occurs within calcite layers. The sediments overlying the tephra are 

laminated but show “disturbed” sections especially in the first four years after tephra 

deposition (Fig. 3A). These disturbed sections are characterised by a mixture of loose calcite 

crystals in addition to planktonic diatoms (Stephanodiscus, Cyclotella), Chrysophyceae, and 

reworked tephra in the form of glass shards with microcrystal inclusions and phenocrysts 

indicating intra-lake reworking processes. Scattered glass shards of TM-17-2 are found up to 

10 years after the primary tephra deposit, which is also confirmed by slightly elevated K-

counts of sediments (Supplementary File 2a). Thicker planktonic diatom layers of 

Stephanodiscus and Cyclotella occur in the second and third year after the primary tephra 

layer. The reworked section again is followed by a finer laminated section similar to that of 

the underlying sediment section with Chrysophyceae interspersed in the Fragilaria layer. 

5 Syntheses 

5.1 Detection of tephras, their reworking and environmental impact of tephra deposition 

Reworked tephra material (mainly volcanic glass shards) is commonly found in the sediments 

overlying the primary tephra layers. The detection of this tephra material is possible by 

combined microscopic thin section studies and µ-XRF elemental scanning. The sensitivity of 

the latter strongly depends on the concentration of glass shards and the composition of host 

sediments (e.g., Kylander et al., 2011; Damaschke et al., 2013; Wulf et al., 2013). Tephra 

material of phonolitic-trachytic composition is clearly traceable by increased counts in 

potassium (Fig. 2, Table 3). Tephra layers TM-18-1c and TM-18-1d even show increased 

counts in manganese providing a useful signal for detecting their reworking. TM-17-2 which 

is intercalated in a rather calcareous sediment matrix compared with that of the other six 
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tephras is additionally characterised by increased counts in silica (Fig. 2, Table 3). Reworked 

tephra material shows also increased K counts, but the intensity of K counts strongly depends 

on the concentration of glass shards in the primary tephra layer.  

The processes for reworking of tephra material are a combination of intra-lake 

processes, especially movement from the littoral zone, and external processes that include 

detrital influx/runoff from the catchment. Intra-basin reworking processes are reflected by a 

mix of tephra-derived glass shards and planktonic or epiphytic diatoms, or both, and the lack 

of detrital catchment-derived material. These processes occur immediately after the ash fall 

and last up to 8 years (e.g., TM-18/CI) after the primary tephra deposition. The products of 

runoff processes from the catchment are superimposed on the materials reworked by intra-

lake processes. The influx of reworked tephra-derived glass shards from the catchment is 

mainly seen in the detrital winter layers starting directly after the ash fall and can last at least 

1240 years following the primary tephra deposition (e.g., TM-18/CI). The highest 

concentrations of reworked glass shards occur during the first four years following deposition 

and exponentially decrease during the following years (Table 3). The duration of this influx 

and the amount of reworked tephra-derived material strongly depends on the thickness 

(volume) of the primary tephra deposit (Table 3). The duration for tephra re-deposition varies 

from six years for the thinnest tephra, TM-18-2 (1 mm), up to several decades for the TM-18-

1 tephras (5-32 mm), and even >1240 years for the thickest TM-18/CI deposit (230 mm). For 

the youngest and relative thick TM-17-2/Schiava tephra (20 mm), scattered reworked material 

can be observed only up to 10 years after primary deposition indicating less erosion in the 

catchment probably as a consequence of a more stable vegetation cover during this time 

interval at Monticchio. 

The lake ecosystem itself showed a direct response to tephra deposition visible by significant 

increases in the thickness of planktonic diatom layers for up to the ten years after the primary 

fallout of tephras TM-17-2, TM-18/CI, TM-18-1a, TM-18-1c, and TM-18-1d (Table 3). The 

thinnest tephra TM-18-2, as well as TM-18-1b (not visible because of homogenous and 

bioturbated sediments), did not show an obvious change to the diatom population. Elevated 

diatom productivity after major ash falls is consistent with other findings, for example in 

central-northern Europe and Northern America. Birks and Lotter (1994) and De Klerck et al. 

(2008), for example, described an increase of the diatom productivity after the deposition of 

the Laacher See Tephra (Eifel Volcanic Field) in Late Allerød sediments of distal lakes. A 

similar diatom response was observed after the deposition of relative thick tephras (>1 cm) in 

lakes in British Columbia (Hickmann and Reasoner, 1994) and Mexico (Telford et al., 2004). 
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The increase in diatoms is interpreted as a consequence of an additional input of silica from 

the rapid dissolution of volcanic glass shards, which is a major nutrient source for building 

diatom frustules (Hickmann and Reasoner, 1994; De Klerck et al., 2008). An increase in 

diatom production is visible for a time period of 5 to 20 years after the deposition of the 

Laacher See Tephra (Birks and Lotter, 1994) and encompasses a period of several hundred 

years in the Canadian lakes (Hickmann and Reasoner, 1994). A study from New Zealand at 

Lake Poukawa, numbers of diatoms per unit dry weight increased, but the proportion of 

epiphytic species decreased immediately after tephra-fall into the lake (Harper et al., 1986). 

The tephra layers possibly preserved more diatom frustules, or increased diatom growth by 

supplying silica, phosphorus, and sulphur nutrients directly, or organic matter from vegetation 

damage in the surrounding catchment. 

5.2 The Campanian Ignimbrite and its role as a chronostratigraphic marker in the 

Mediterranean area 

The Campanian Ignimbrite is one of the most widespread tephra deposits in the 

Mediterranean and therefore ideal for linking terrestrial and marine archives in this region. 

However, as inferred from the Monticchio tephra sequence, the CI eruption was preceded by 

at least four smaller-scale explosive eruptions (“CI-like” tephras TM-18-1) that derived most 

likely from the same volcanic source (Phlegrean Fields). These eruptions occurred within a 

time period of ca. 600 varve years prior to the CI, and TM-18-1 tephras are geochemically 

difficult to distinguish from the CI and from one other without high-precision trace element 

glass data. Thus, to avoid miscorrelation, a careful inspection of tephras is required prior to 

using the CI for the synchronisation of last glacial palaeoenvironmental records. The CI in the 

Monticchio sequence (TM-18) is a very thick, coarse grained fall- and co-ignimbrite deposit 

that has been unambiguously identified on the basis of its lithological composition in the 

proximal-medial area. Because of the magnitude of the CI eruption, occurrences of the CI at 

further distal and ultra-distal sites within the main easterly dispersal axis (see overview in 

Pyle et al., 2006) are supposed to correlate with both the CI fallout and tephra TM-18 in the 

Monticchio record. However, correlations can be difficult in medial-distal sites in the central 

Mediterranean area. Here, the less widely dispersed “CI-like” tephras can occur in addition to 

the CI in high-resolution terrestrial and marine records (i.e., Adriatic Sea; Bourne et al., 2010), 

or form a mixed layer in lower-resolution deep-sea records of the Ionian and Tyrrhenian Seas 

(i.e., tephra C-13; Paterne et al., 1986, 1988). In these cases, synchronisation of records 
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requires the identification of other geochemically distinct tephras such as the Schiava tephra 

from Vesuvius. 

The tephra links between the Monticchio record and distal to ultra-distal sites in the 

eastern Mediterranean area is less problematic (Fig. 10a). Tephra layers investigated in this 

study deposited during the stadial between Greenland Interstadials GI-9 and GI-8 (tephras 

TM-18 to TM-18-2), which has been associated with the Heinrich H4-event (Svensson et al., 

2008), and at the onset of GI-8 (tephra TM-17-2) (Fig. 2, Fig. 10a). The transition from stadial 

to interstadial conditions at Monticchio is well documented by the distinct lithological 

changes in the sediments. Stadial sediments are characterised by a higher detrital influx 

(turbidites), a lack of calcite precipitates, lower diatom concentrations and generally poorer 

varve preservation than that associated with interstadial conditions. These features together 

are interpreted as caused by cooler temperatures, lower bioproductivity, oxygen-rich lake 

bottom conditions (allowing bioturbation to occur) and reduced vegetation cover in the 

catchment. The interstadial sediments, however, reveal a lower detrital input and larger 

amounts of diatoms and autochthonous calcite layers, pointing to a general higher 

bioproductivity and probably warmer climatic conditions correlating with GI-8. In addition, 

varves are well preserved in this interval indicating anoxic lake bottom conditions prevailed 

and hence bioturbation was minimised (Fig. 10b). These sedimentological changes are 

accompanied by a change in pollen, for example a decrease of steppe pollen that is dated in 

Monticchio at 35,607 ± 1780 varve years BP and might correlate to GI-8 (Fig. 10a). This 

varve age, however, may require a correction since the CI in Monticchio is 2506 years too 

young (36,774 varve years) compared with its well accepted 
40

Ar/
39

Ar age (39,280 ± 110 yrs

BP; De Vivo et al., 2001). Accordingly, the corrected age of GI-8 onset in Monticchio would 

lay at c. 38,110 varve years BP. The onset of interstadial conditions in Monticchio is dated at 

1167 years after the CI eruption and 76 years prior to the Schiava eruption, and 2613 years 

younger than the onset of GI-8 in Greenland (38,220 ± 725 yrs b2k; Svensson et al., 2008). 

This discrepancy is most likely due to the above mentioned underestimation of the 

Monticchio varve-based chronology for this interval. Because of the absence of a common 

marker in the Greenland ice core and Monticchio records it is not possible to investigate 

potential leads and lags between these regions for this transition, so far. 

Comparisons with other high-resolution archives in the eastern Mediterranean area, such as 

the peat sequence of Tenaghi Philippon (Greece) and the Black Sea sediment sequence M72-

5-24-GC3, rely on the CI as synchronisation marker (Fig. 10). Proxy data of both sequences 

recorded stadials and interstadials during MIS 3 similar to those of the Monticchio record. For 
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the Black Sea sediments, which are dated by a combination of radiocarbon dating and tuning 

to the NGRIP oxygen isotope record, these climatic variations are best demonstrated by the 

calcium record interpreted as temperature proxy (Nowaczyk et al., 2012). Here, the onset of 

interstadial conditions correlated to GI-8 is dated 1110 years after the deposition of the CI 

which is in agreement with the timing in Monticchio (1167 varve years). In the Tenaghi 

Philippon record a strong decline of steppe pollen (Müller et al., 2011) is independently 

radiocarbon dated to occur 1400 years after the CI. Here, it appears that the apparent 230-year 

difference in the duration of the interval from the CI eruption to the onset of interstadial 

conditions in Monticchio and Tenaghi Philippon is more likely due to dating differences 

between the Tenaghi radiocarbon ages and the Monticchio differential varve counts.  

In all three Mediterranean records, Monticchio, Tenaghi Philippon and Black Sea the 

CI is occurs clearly 700-800 years after the onset of a millennial-scale cold stadial correlated 

to H4 at c. 40,100 cal years BP (Fig. 10). This finding is consistent with other terrestrial high 

resolution palaeo-records where the CI has been described (e.g., Margari et al., 2009; Lowe et 

al., 2012). This stratigraphic juxtaposition clearly rules out that the CI eruption  has triggered 

or accelerated this Northern-hemispheric climatic cooling as suggested by Fedele et al. (2002, 

2008). At Lago Grande di Monticchio, the fallout of thick deposits of the CI tephra distinctly 

influenced the erosional and depositional system of the lake and its catchment for several 

centuries to millennia. 

6. Conclusions

Analyses of seven tephras in the time interval of 40-38 ka BP in the sediment record of Lago 

Grande di Monticchio revealed several implications for future palaeoclimate and 

palaeoenvironmental research. 

 The varved Monticchio sediment sequence is a unique recorder of distal tephra deposition,

providing clear stratigraphic order and precise dating of tephra events especially for

closely timed eruptions that are difficult to decipher in proximal records.

 The deposition of distal fallout tephras in the lake sediments of Lago Grande di

Monticchio particularly during cold stadial conditions had an environmental impact,

mainly recorded as increased reworking processes of tephra materials (mainly glass

shards). Reworking of tephra material from the catchment occurs over several years for

thin tephras (<1 mm thickness) and over decades and >1240 years for the thicker tephra

deposits (>5 mm).



24 

 Microfacies analyses have demonstrated that the sediments of Monticchio are

characterised not only by the deposition of numerous primary tephra fall deposits but also

that this material is incorporated in the annual deposition cycle particularly after ash falls

as it occurs as a major component in the detrital winter layers. This fact complicates the

search for additional cryptotephras of other eruptions within the Lago Grande di

Monticchio sequence.

 Significant increases in the thickness of planktonic diatom layers are visible up to ten

years after the deposition of thicker (>1 mm), primary tephra layers, while diatom

populations show no obvious response after the deposition of thinner tephras in the

Monticchio record.

 The Campanian Ignimbrite eruption was preceded by at least four tephra-generating

eruptions of the Phlegrean Fields occurring within a time period of approximately 600

years. These four tephras and the CI show a similar major and minor element glass

composition, but are clearly distinguishable by their trace elemental glass compositions.

Synchronisation of last glacial palaeoenvironmental records thus requires a careful

inspection prior to use Campanian tephras.

 Despite apparent differences in varve-based ages from the Monticchio record compared to

the Black Sea or Tenaghi Philippon records, differential dating in intervals with tephra

marker layers like the CI and the Schiava pumices allows to determine the length of the

H4 stadial, which is c. 2000 years in Monticchio. In particular, the Schiava pumices dated

at 35,530 varve years BP (corresponding to a corrected age of 38,040 years BP) provides

an excellent marker tephra layer for the GI-9/GI-8 time interval because of their distinct

geochemistry and their close position to the GI-8/H4 transition.

 Using the 
40

Ar/
39

Ar age of the CI as a temporal anchor point, the onsets of the H4-stadial

and GI-8 interstadial are dated at 40,100 and 38,110 cal years BP in the Monticchio record.
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Table captions 

Table 1: Ages, compositions, and sources of seven tephras in Monticchio sediments aged 40-

38 ka. Abbreviations: m = minerals; j = juvenile clasts (glass shards, pumice fragments). Ages 

of tephras are provided by the varve chronology of Monticchio sediments after Brauer et al. 

(2007). 
1
A mean counting error of 5% has been estimated for the Monticchio varve-based

chronology (Wulf et al., 2012). *Corrected ages were calculated by incremental dating (varve 

counts in between tephras) using the 
40

Ar/
39

Ar age of 39.28 ± 0.11 ka BP of the CI (De Vivo

et al., 2001) as a fixed age. For references see text. 

Table 2: Mean values and standard deviations (given in parentheses) of the non-normalised 

major element glass composition of the tephra layers analysed by EPMA-WDS in the Lago 

Grande di Monticchio. Single analyses are provided in Supplementary File 1. N = number of 

analysed glass shards. Total corr. = totals corrected for oxid values of Cl and F. * Data from 

Wulf et al. (2004).  
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Table 3: Characteristics of tephra layers investigated in this study (thicknesses and µ-XRF 

elemental signals), and sedimentological and ecological response times and processes after 

primary tephra deposition. * Enclosing tephra sediments (see text). 

Figure captions 

Figure 1: Location of Lago Grande di Monticchio, Italian volcanic centres and sites 

mentioned in the text of tephra correlatives. 

Figure 2: Lithology, magnetic susceptibility (data from Brandt et al., 1999), µ-XRF elemental 

composition (K, Si, Ca, Mn and Ti), and positions of tephra layers in the sediment section 40-

38 ka from Lago Grande di Monticchio. 

Figure 3: (A) Large-scale thin section image (polarised light) of tephra TM-17-2 (Schiava 

tephra) and enclosing varved sediments. (B) Microscopic images of tephra components under 

polarised (left) and transmitted light (right). Vg = volcanic glass, cpx = clinopyroxene, kf = 

potassium feldspar (sanidine), dc = detrital carbonate, io = Fe-Ti oxide. (C) Polarised light 

image of several L4 varves. (D) Transmitted light image of the structure of a typical L4 varve. 

Figure 4: Photograph of core LGM-J11-o, 83-92 cm (A) and transmitted light image (B) 

showing the Ischia tephra TM-18-2 within varved L2 sediments. (C) Structure and 

composition of several L2 varves. 

Figure 5: Biplots for discriminating and comparing Monticchio tephras TM-17-2 to TM-18-2 

to proximal and distal potential correlative on the basis of major element glass compositional 

(water-free) data. (A) Total-alkali-silica diagram SiO2 versus K2O+Na2O after (Le Bas et al., 

1986). (B) SiO2 concentration versus alkali ratio K2O/Na2O. (C) FeO versus CaO (wt%). Data 

for comparison are from: (1) EPMA glass data (Damaschke et al., 2013); (2) EPMA glass data 

(Tomlinson et al., 2012); (3) EPMA glass data (Sulpizio et al., 2010); (4) EPMA glass data 

(Bourne et al., 2010); (5) XRF bulk pumice data (Vezzoli, 1988); (6) ICP-AES bulk glass data 

and SEM-EDS single grain data (Di Vito et al., 2008); (7) ICP-AES bulk glass data (Di Renzo 

et al., 2007); (8) mean of SEM-EDS glass data (Paterne et al., 1988); (9) ICP-AES bulk glass 

data (Pappalardo et al., 1999). 
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Figure 6: (A) Photograph of core LGM-J10-u at depth 28.5-74.5 cm showing the sub-layers 

of tephra TM-18 (Campanian Ignimbrite, CI) as explained in the text and enclosing 

sediments. (B) Microscopic images of tephra components from (1) the base of TM-18, (2) the 

middle of unit LFU (lower fall unit), and (3) the top of unit UFU (upper fall unit). 

Figure 7: (A) Photograph of core LGM-J10-u at depth 71-94 cm showing the position of 

tephras TM-18-1a and TM-18-1b within laminated sediments below the CI/TM-18 tephra. (B) 

Brown glass shard enriched in apatite microcrystals in tephra TM-18-1a. (C) Microscopic 

image (transmitted light) of brown and colourless glass shards of tephra TM-18-1b.  

Figure 8: Biplots of trace element single glass compositions for (A) discriminating 

Monticchio tephras TM-18 (CI), TM-18-1a, TM-18-1b, TM-18-1c, and TM-18-1d and (B) 

comparing those tephras with ICP-AES bulk glass data from proximal and medial-distal 

tephra deposits. Data from: (1) single grain data (Tomlinson et al., 2012); (2) ICP-MS bulk 

glass data (Di Vito et al., 2008); (3) ICP-MS bulk glass data (Pappalardo et al., 1999). 

Figure 9: (A) Core photograph of LGM-M12-o at 58-71 cm showing the position of tephra 

TM-18-1c and a microscopic transmitted light image of tephra components. (B) Photograph 

of core LGM-M12-u at depth 0-21.5 cm with tephra TM-18-1d at the top and microscopic 

image of glass shards. 

Figure 10: A) Comparison of proxy records from the eastern Mediterranean area for the time 

interval 25-50 cal ka BP and tephra synchronisation. Note that the pollen records from Lago 

Grande di Monticchio and Tenaghi Philippon are plotted against their own time scales. The 

varve-based age chronology of the Monticchio record (published by Brauer et al., 2007) (left 

scale) has been additionally corrected for this study by +2506 varve years (right scale) by 

tuning to the 
40

Ar/
39

Ar age of 39.28 ± 0.11 of the Campanian Ignimbrite (CI) (De Vivo et al.,

2001). Orange bars below the CI in the Monticchio record indicate the positions of tephras 

TM-18-1 a-d and TM-18-2. The age model of the Tenaghi Philippon pollen record is based on 

radiocarbon dates. Black Sea cores M72-5-24-GC3 are both independently dated by 
14

C and

the Ca-record tuned to Greenland ice core NGRIP. Grey bars indicate the position of the 

Heinrich H4-event. GI = Greenland Interstadial. B) Scan of the sediment block of section 

LGM-M10-u at depth 69-79 cm (upper photograph) and transmitted light microscopic image 
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(lower photograph) showing the transition from homogeneous H4-stadial sediments to well-

laminated GI-8 sediments in the Monticchio record. 

Supplementary Files 

Supplementary File 1: Electron microprobe data (not normalised) of individual glass shards 

of Monticchio tephras and the Lipari reference glass standard. 

Supplementary File 2: Images and µ-XRF elemental data of analysed cores showing the 

position of primary and reworked tephra layers. 



Table 1 

Tephra Age (varve 

yrs BP) and 

5% counting 

error
1
 

Interpolated 

varve age 

(yrs BP)* 

Maximum 

grain sizes 

dmax. (µm) 

Source volcano Correlatives 

TM-17-2 35,530 ± 1780 38,040 250 (j), 600 (m)           Vesuvius Schiava Pumices, C-9 

TM-18 36,770 ± 1840 39,280 ± 110 (V7): 600 (j) 

(V6): 1000 (j) 

(V5): 1100 (j) 

(V4): 800 (j) 

(V3): 8000 (j) 

(V2): 2800 (j) 

(V1): 1800 (j) 

Phlegrean Fields Campanian Ignimbrite, 

C-13 

TM-18-1a 36,840 ± 1840 39,350 450 (j), 150 (m) Phlegrean Fields C-13?, PT0915-8?, 

PRAD1752? 

TM-18-1b 36,950 ± 1850 39,460 150 (j+m) Phlegrean Fields PT0915-8? 

PRAD1752? 

TM-18-1c 37,060 ± 1850 39,570 600 (j), 50 (m) Phlegrean Fields PT0915-8? 

PRAD1752? 

TM-18-1d 37,360 ± 1870 39,870 300 (j+m)   Phlegrean Fields SMP1-a, PT0915-8?, 

PRAD1752? 

TM-18-2 37,590 ± 1880 40,100 250 (j), 230 (m) Ischia Citara Formation, C-14 



Table 2 

Sample TM-17-2 TM-18* TM-18-1a TM-18-1b TM-18-1c TM-18-1d TM-18-2 

No. Anal. N = 9 N = 42 N = 1 N = 10 N = 7 N = 6 N = 13 N = 1 N = 11 

SiO2 62.77 
(1.03) 

61.15 
(0.94) 

59.30 60.20 
(0.82) 

59.35 
(0.56) 

59.72 
(0.74) 

59.66 
(0.76) 

58.59 63.24 
(0.46) 

TiO2 0.38 
(0.10) 

0.42 
(0.02) 

0.43 0.40 
(0.03) 

0.44 
(0.02) 

0.42 
(0.02) 

0.44 
(0.02) 

0.49 0.48 
(0.02) 

Al2O3 17.16 
(0.82) 

18.95 
(0.38) 

18.87 18.70 
(0.26) 

18.53 
(0.20) 

18.51 
(0.28) 

18.86 
(0.23) 

18.50 18.31 
(0.17) 

FeO 2.19 
(0.37) 

2.91 
(0.10) 

3.16 2.66 
(0.26) 

2.90 
(0.24) 

2.82 
(0.04) 

2.95 
(0.09) 

3.70 2.42 
(0.10) 

MnO 0.13 
(0.04) 

0.24 
(0.02) 

0.17 0.22 
(0.03) 

0.23 
(0.02) 

0.24 
(0.02) 

0.26 
(0.01) 

0.15 0.18 
(0.03) 

MgO 0.25 
(0.08) 

0.35 
(0.02) 

0.51 0.31 
(0.03) 

0.36 
(0.06) 

0.34 
(0.01) 

0.32 
(0.01) 

1.00 0.33 
(0.04) 

CaO 2.49 
(0.53) 

1.72 
(0.08) 

2.28 1.76 
(0.10) 

1.70 
(0.10) 

1.70 
(0.03) 

1.68 
(0.04) 

3.04 1.40 
(0.08) 

Na2O 3.34 
(0.20) 

5.60 
(0.70) 

4.83 5.80 
(0.16) 

5.82 
(0.31) 

5.79 
(0.20) 

6.34 
(0.19) 

3.93 5.41 
(0.38) 

K2O 7.59 
(0.89) 

6.78 
(0.31) 

8.63 7.14 
(0.23) 

7.19 
(0.24) 

6.91 
(0.14) 

6.89 
(0.12) 

8.27 6.54 
(0.32) 

P2O5 0.03 
(0.02) 

0.05 
(0.02) 

0.09 0.04 
(0.02) 

0.05 
(0.03) 

0.05 
(0.03) 

0.04 
(0.02) 

0.17 0.04 
(0.02) 

Cl 0.47 
(0.08) 

0.77 
(0.05) 

0.60 0.70 
(0.07) 

0.72 
(0.04) 

0.71 
(0.02) 

0.82 
(0.02) 

0.39 0.56 
(0.07) 

F 0.00 
(0.00) 

0.20 
(0.16) 

0.00 0.00 
(0.00) 

0.00 
(0.00) 

0.00 
(0.00) 

0.04 
(0.03) 

0.00 0.00 
(0.00) 

K2O/Na2O 2.29 
(0.33) 

1.21 
(0.44) 

1.79 1.23 
(0.04) 

1.24 
(0.08) 

1.19 
(0.02) 

1.09 
(0.02) 

2.10 1.22 
(0.10) 

Total corr. 96.69 
(0.94) 

98.87 
(1.41) 

98.73 97.76      
(1.19) 

97.13 
(1.27) 

97.04 
(1.33) 

98.08 
(1.29) 

98.14 98.79 
(1.11) 



Table 3 

Primary 

tephra 

layer 

Thickness 

(mm) 

Sediment 

type* 

Reworked tephra 

material after primary 

tephra deposition 

Increased diatom 

population after 

tephra deposition 

Increased µ-XRF 

signal of primary 

tephra 

TM-17-2 20 L4 1-4 yrs intra-basin, 

up to >10yrs catchment 

1
st
 –3

rd
 yr K, Si, Ca 

TM-18 230 L2/L3 1-8 yrs intra-basin, 

up to  >1240 yrs 

catchment 

1
st
  (3

rd
) – 8

th
 yr K 

TM-18-1a 32 L1/L2 1 yr intra-basin, 

up to >70 yrs catchment 

1
st  
– 3

rd
 yr K 

TM-18-1b 6 L1 Scattered and 

bioturbated up to 2 cm 

above tephra 

Not visible n.a. 

TM-18-1c 5 L2 1-3 yrs intra-basin, 

up to 30 yrs catchment 

2
nd

  – 3
rd

 yr K, Mn 

TM-18-1d 10 L2 1-2 yrs intra-basin, 

up to 62 yrs catchment 

1
st
 – 10

th
 yr K, Mn 

TM-18-2 1 L2 up to 6 yrs catchment - n.a. 
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