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The inclusion of aligned-spin effects in gravitational-wave search pipelines for neutron-star–black-
hole binary coalescence has been shown to increase the astrophysical reach with respect to search
methods where spins are neglected completely, under astrophysically reasonable assumptions about
black-hole spins. However, theoretical considerations and population synthesis models suggest that
many of these binaries may have a significant misalignment between the black-hole spin and the orbital
angular momentum, which could lead to precession of the orbital plane during the inspiral and a
consequent loss in detection efficiency if precession is ignored. This work explores the effect of spin
misalignment on a search pipeline that completely neglects spin effects and on a recently developed
pipeline that only includes aligned-spin effects. Using synthetic but realistic data, which could
reasonably represent the first scientific runs of advanced-LIGO detectors, the relative sensitivities of
both pipelines are shown for different assumptions about black-hole spin magnitude and alignment with
the orbital angular momentum. Despite the inclusion of aligned-spin effects, the loss in signal-to-noise
ratio due to precession can be as large as 40%, but this has a limited impact on the overall detection rate:
even if precession is a predominant feature of neutron-star–black-hole binaries, an aligned-spin search
pipeline can still detect at least half of the signals compared to an idealized generic precessing search
pipeline.
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I. INTRODUCTION

Astrophysical black holes (BHs) can be simply described
by their mass and spin angular momentum. A large number
of BH properties can be derived from knowing just these
two values. Searching for faint gravitational wave (GW)
signals from BHs in coalescing binary systems using
ground-based interferometers such as advanced LIGO
[1], advanced Virgo [2] and KAGRA [3] requires a bank
of potential inspiral signals (templates) over a range of
possible parameter values. Such template banks have
traditionally been built ranging over possible BH masses,
but in most cases assuming the absence of spin (see e.g.
Refs. [4–8]). This was recently extended to enable searches
for gravitational radiation from coalescing neutron-star–
black-hole (NSBH) binaries which include aligned-spin
effects [9–11]. Under reasonable distributions of binary
configurations and the assumption that the BH spin and
orbital angular momentum are aligned, including spin
effects has been shown to improve the sensitivity of the
search method with respect to methods neglecting the effect
of spin altogether [11].
However, NSBH binaries are generally expected to have

a BH spin misaligned with respect to the orbital angular
momentum. The formation of NSBH binaries coalescing in

a time useful for detection seems to require a dissipative
common-envelope phase [12,13], which tends to align the
angular momenta and spin up the BH, followed by the
supernova explosion of the smaller object, which imparts a
significant kick to the resulting neutron star (NS). Binaries
surviving the second supernova explosion turn out to have a
NS kick that effectively tilts the orbital plane with respect to
the BH spin [14].
Nevertheless, tilting the orbit by large angles turns out to

be very hard; simulations suggest that most NSBH binaries
will generally have a misalignment angle smaller than
about 60°, with a large fraction having an angle smaller
than 45° [15–17]. Unfortunately, x-ray studies of BH spin
values are not able to measure directly the alignment of the
spin; instead, they rely on the assumption that the accretion
disk should align with the spin, and observational con-
straints on spin magnitudes can thus be influenced by
misalignment [18].
A misalignment between the BH spin and the orbital

angular momentum breaks a symmetry of the system
and leads to a precessing orbital plane. The time-varying
orientation of the orbital angular momentum then causes
a characteristic phase and amplitude modulation of the
chirping GW signal observed on Earth [19,20] which is
absent in a nonprecessing waveform.
Including the effect of precession in a GW search

pipeline has been attempted before, but it did not yield a
significant gain in sensitivity [21,22]. The best strategy for
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including such effects is still unknown, as are the resources
required by a fully precessing search pipeline. Thus, even if
the spin-orbit misalignment may not be very large, it is
important to assess its impact on a search pipeline that
completely neglects precession. In light of the results of
Ref. [22], it is possible that an aligned-spin search pipeline
performs no better than a nonspinning one. It is therefore
important to determine how precession affects the sensi-
tivity of including aligned-spin effects over a cheaper
method that completely neglects spin. This problem has
been recently investigated using bank simulations and
assuming the final design sensitivity of advanced LIGO
interferometers [10,23]. Here the investigation is extended;
in particular it is applied to realistic data rather than
idealized noise, and an “early-advanced-LIGO” sensitivity
curve, which more realistically represents the first (2015)
scientific runs of advanced LIGO, is assumed. The curve
is available in Ref. [24] and plotted in Fig. 1 of Ref. [11]
(black solid line).
Using bank simulations, we first study the loss in signal-

to-noise ratio (SNR) imparted by precession when using
template banks which (i) neglect spin altogether and (ii) only
include aligned-spin effects. For both cases we explore
the dependency of the loss on the parameters which mainly
affect precession, i.e. the magnitude and tilt of the BH spin.
We also use the bank simulations to estimate the loss of
detections produced by considering aligned-spin effects but
neglecting precession. Then, using the approach described in
Ref. [11], we search for a population of simulated precessing
NSBH binaries in synthetic data, and we present the
sensitivity of the search pipeline for different possible
distributions of BH spins. The synthetic data we analyze
consist of 60 days of real data (of which about 25 are useful
for the analysis) from the sixth scientific run of the initial
LIGO Hanford and Livingston interferometers. However,
the power spectral density (PSD) of the data is modified to
resemble the aforementioned early advanced-LIGO sensi-
tivity curve, in order to reasonably represent data expected
from the first scientific runs of advanced LIGO.
Although the merger and ringdown parts of NSBH

signals happen within the bandwidth of the detectors for
some regions of the NSBH parameter space, particularly
antialigned systems, we neglect them in this work and
focus instead on purely precessional effects, which we
expect to be somewhat complementary. We reserve a
comprehensive study of merger and ringdown effects to
a future article.
The paper is organized as follows. In Sec. II we present

bank simulations showing the effectualness of a nonspin-
ning template bank for precessing NSBH signals and of a
spinning but nonprecessing bank. In Sec. III we present
the results of running our search pipeline, using the above
banks, on a stretch of realistic data containing simulated
precessing NSBH binaries. Section IV summarizes con-
clusions and future work.

II. EFFECT OF PRECESSION ON SNR LOSS

The first step in studying the effect of precession is
calculating the fitting factor between the population of
precessing signals we want to observe and the template
banks we intend to use, which is equivalent to asking how
good, on average, our bank is at recovering the signals we
target. This can be done via bank simulations. For a full
description of the basic ideas behind template banks and
bank simulations, as well as more details of the banks we
use in this section, see Ref. [11].
The source population we are interested in contains

NSBH binaries with BH mass mBH between 3M⊙ and
15M⊙ and NS mass mNS between 1M⊙ and 3M⊙. The
dimensionless BH spin has magnitude uniformly distrib-
uted within the bounds imposed by the Kerr solution,
0 ≤ χBH ≤ 1. The tilt angle ϑ of the BH spin with respect to
the orbital angular momentum is defined by a uniform
distribution of κ ≡ cosϑ in the range �1, such that χ̂BH is
uniformly distributed on the sphere. Although the resulting
spin distribution is a reasonable choice if no information
is available about BH spins, a number of studies and
observations exist suggesting that χBH may be large
[12,25]. At the same time, models based on population
synthesis suggest that ϑ is likely peaked at 0, with only a
small fraction of NSBH binaries having ϑ > 60° [15,16]. In
other words, there is a small region of the ðχBH; ϑÞ plane
which may be much more common astrophysically than
the rest. The NS spin is known to have a small effect
on a search for NSBH coalescence [11]. Nevertheless we
take a uniform distribution of its magnitude in the range
0 ≤ χNS ≤ 0.05, which should include the fastest spinning
NSs observed in compact binaries (see e.g. Ref. [26]). The
distribution of χ̂NS is also uniform on the unit sphere.
The nonspinning bank (NSB) we use here covers BH

masses between 3M⊙ and 15M⊙ and NS masses between
1M⊙ and the smallest of either the equal-mass boundary
or the line corresponding to a total mass of 18M⊙. The
aligned-spin bank (ASB) covers the same BH masses, NS
masses between 1M⊙ and 3M⊙ only, dimensionless BH
spin projection along the orbital angular momentum ~χBH ·
L̂ ∈ ½−1; 1� and NS spin projection ~χNS · L̂ ∈ ½−0.4; 0.4�.
The NSB and ASB contain ∼2.8 × 104 and ∼1.5 × 105

templates respectively; including aligned spin leads to a
∼5× larger computing cost. Template waveforms are
computed in the frequency domain using the TaylorF2
approximant. Their inspiral phasing contains orbital terms
up to 3.5 post-Newtonian (pN) order and spin-orbit terms
up to 2.5 pN. Waveforms start at 30 Hz and terminate at the
frequency of the innermost stable circular orbit (ISCO).
To separate the effect of spin from mass-related issues of

the banks, we first restrict our attention to binaries with
fixed masses mBH ¼ 7.8M⊙ and mNS ¼ 1.35M⊙, which
represent typical mass values for BH and NSs in binaries
[27,28]. This allows us to study the fitting factor of the NSB
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and ASB as a function of the BH spin parameters only and
with high statistics. The result of this first set of simulations
is shown in Fig. 1, which displays the fitting factor as a
function of the amount of BH spin orthogonal to the orbital
angular momentum and parallel to it,

χ⊥BH ≡ jj~χBH − ð~χBH · L̂ÞL̂jj ð1Þ

χ∥BH ≡ ~χBH · L̂: ð2Þ
The behavior of the two banks allows us to roughly divide
this space in three approximately defined regions.
The first region is defined by low values of the black hole

(BH) spin magnitude, approximately χBH ≲ 0.4. Not sur-
prisingly, both banks perform well here. The spin-orbit
terms in the signal waveforms are small enough that the
consequent dephasing can be accommodated by a small
bias in the symmetric mass ratio η [29] allowing the NSB to
recover signals well. Moreover, even if the spin is tilted, its
magnitude is too small for precession to induce significant
modulation.
The second region is defined by a small perpendicular

component of the BH spin but a large parallel component
(positive or negative), i.e. χ⊥BH ≲ 0.5 and either χ∥BH ≳ 0.4 or
χ∥BH ≲ −0.5. Here the NSB has a sudden and severe loss of
effectualness, while the ASB performs significantly better.

This loss happens because the spin-orbit terms in the
waveform phase acquire their most extreme values, so
neglecting them causes the largest possible dephasing. The
resulting bias in η when ignoring spin is too large to fit into
the NSB: unphysical templates with η > 1=4 would be
required to recover positively aligned signals, and tem-
plates with mNS < 1 would be needed to match negatively
aligned ones. In other words, signals in this region “fall off”
the NSB [11]. However, the signal modulation due to
precession is still small in this region, so the ASB is able to
recover almost all the signal power.
The third region is the highly precessing case, roughly

identified by χ⊥BH ≳ 0.5. The main features here are the very
similar performance of both banks and the significant
spread of the fitting factor with respect to the other two
regions, with some sources being recovered well and others
poorly. The former effect happens because spin-orbit terms
are small, so the NSB is still able to compensate them by
using templates with a biased symmetric mass ratio. At the
same time, the modulation induced by precession is strong,
and both banks are equally unable to recover the power
going into the modulation sidebands. This suggests that the
effects of the modulation and of χ∥BH effectively decouple,
as predicted for example in Refs. [30,31].
The second effect visible in this region, i.e. the scatter of

the fitting factor, is due to the different possible orientations

FIG. 1 (color online). Fitting factor of our nonspinning bank (left), aligned-spin bank (middle) and their ratio (right) for a population of
20,000 precessing NSBH binaries with fixed masses mBH ¼ 7.8M⊙, mNS ¼ 1.35M⊙. The horizontal axis is the amount of BH spin
orthogonal to the orbital angular momentum, while the vertical axis is its projection along the orbital angular momentum; thus, the origin
corresponds to nonspinning signals, and the vertical axis corresponds to the aligned-spin case. The spin magnitude and orientation on the
sphere are both uniformly distributed.
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of the total angular momentum ~J with respect to the
detector, as demonstrated in Fig. 2. In fact, the orientation
changes the fraction of signal power in the modulation
sidebands, which nonprecessing templates cannot recover.
In particular, face-on and face-off binaries almost look like
nonprecessing systems when viewed from the detector, so
their waveforms have a smaller modulation, and thus larger
fitting factor, than edge-on systems. Note that edge-on
systems can also have good fitting factors at four particular
orientations of ~J; however, those orientations produce
quiet signals at the detector. Because of the almost-linear
polarization of their radiation, edge-on systems are in fact
generally quieter than face-on or face-off ones at the same
distance. Thus, although recovering them is challenging
even with the ASB, they are also the least detectable even in
the ideal case.
One can therefore ask whether the poor performance of

the ASB in the high-precession case is really affecting the
overall sensitive volume to a population of binaries with
uniform spin and angle distribution as we assume here. The
bank simulation enables a rough estimate of the sensitive
volume of an aligned-spin search pipeline relative to a
hypothetical ideal generic precessing pipeline:

V ≡ VASB

Vprec
≃

P
iðmiρiÞ3

m3
prec

P
iρ

3
i
: ð3Þ

Here the sums are over the simulated signals, mi is the
fitting factor of signal i obtained from the bank simulation,
ρi is the optimal SNR of signal i at a fixed reference
distance, and mprec ¼ 98.5% is a guess for the average
fitting factor of the hypothetical precessing bank. This

estimate does not include the likely increased false-alarm
background of the precessing pipeline, which would
increase V. Evaluating this increase requires constructing
a generic precessing template bank, which is an open
problem and is outside the scope of this paper. The
estimation also neglects the effect of signal-based vetoes,
which would instead reduce V. The effect of vetoes,
coincidence and realistic data can be included by running
a full aligned-spin search pipeline, which will be described
in Sec. III. With this caveat in mind, the fixed-mass bank
simulation gives, for no restriction on spin,

Vall
FM ≃ 81%: ð4Þ

If we restrict our attention to highly precessing binaries, say
with χBH > 0.7 and 1

4
π < ϑ < 3

4
π, we obtain instead

VHP
FM ≃ 61%: ð5Þ

We now repeat the bank simulation for the full distri-
bution of masses described earlier in this section. The spin
parameters are distributed as before. Figure 3 shows the
results, and it can be seen that the match variation is
qualitatively consistent with the fixed-mass case. A notice-
able difference, however, is the much worse mismatch of
the NSB for some of the strongly spinning and antialigned
systems (lower region of first and last plots). These happen
to be heavy systems, with BH mass larger than about
11M⊙. Their poor match is not due to precession but again
to the bias in the symmetric mass ratio produced when
attempting to recover spinning signals with zero-spin
templates. In this case the spin is antialigned, so the bias
is negative; signals are well matched by templates asso-
ciated with a lighter NS and a heavier BH. For signals with
small enough mass, the bias is within the mass space
covered by the NSB, and a good fitting factor is obtained.
Signals with negatively spinning BHs heavier than
∼11M⊙, however, fall off the high-BH-mass edge of the
NSB; templates with BH masses higher than 15M⊙ would
be needed to recover these signals. This effect is less
dramatic in the fixed-mass bank simulation because the
masses are far from the boundary of the bank.
As done for the fixed-mass bank simulation, we can

again estimate the loss of detections of the aligned-spin
pipeline relative to a hypothetical generic precessing pipe-
line. Using Eq. (3) with the result of the varying-mass bank
simulation yields

Vall
VM ≃ 86%: ð6Þ

High-mass systems have a larger weight in this estimate
due to the higher intrinsic loudness of their signals, and
they also exhibit the largest precession effects due to the
high mass ratio. VVM may therefore overestimate preces-
sion effects, but nevertheless the resulting loss is still quite
small. The relative volume for varying-mass, highly pre-
cessing systems (χBH > 0.7 and 1

4
π < ϑ < 3

4
π) is

FIG. 2 (color online). Fitting factor of the aligned-spin bank for
strongly precessing NSBH binaries as a function of the orienta-
tion of the total angular momentum with respect to the detector.
The south and north poles of the projection correspond to face-on
and face-off orientations, while the equatorial line is the edge-on
case. Sources have fixed masses mBH ¼ 7.8M⊙ and mNS ¼
1.35M⊙ and spin parameters χBH > 0.8 and jκj < 0.2. Each
source is shown as a black dot.
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VHP
VM ≃ 71%: ð7Þ

These two first exercises show that (i) the ASB is much
better exactly where population synthesis models suggest
the majority of signals will be (χBH → 1 and ϑ → 0);
(ii) antialigned systems (χBH → 1 and ϑ → π) give rise
to the worst matches in the NSB, but this problem could
be alleviated by adding heavier-BH templates to the
NSB; (iii) both banks show a comparable inefficiency with
strong precession, i.e. near maximal spin misalignments
(ϑ → π=2), but this effect is smaller than the loss imparted
by neglecting spin-orbit terms and only happens for some
orientations of the total angular momentum; and (iv) even if
a generic precessing template bank is not yet available,
when taking into account the orientation-dependent intrin-
sic loudness of signals, the poor performance of the ASB
with strong precession seems to reduce the detection rate by
a few tens of percent at most. This result is compatible with
similar existing studies [10,23]. However, the estimate only
considers the loss of SNR and obviously needs to be
evaluated more precisely by running a full, realistic search
pipeline.

III. EFFECT OF PRECESSION ON A REALISTIC
SEARCH PIPELINE

The overall efficiency of a search is determined primarily
by two features. The first is the background of false alarms
generated by the template bank due to the detector noise. It

has been shown in our previous study that the increase in
background due to using the larger ASB is not considerable
relative to the NSB when the reweighted SNR is used as a
ranking statistic [11]. The second feature is the ability of
the waveforms in the chosen template bank to match the
targeted signals; we studied that in the previous section.
Based on these results, we expect a search using the ASB to
perform at least as well as the NSB and to significantly
outperform it for a population of almost-aligned systems.
However, it remains to be checked whether coincidence
between the detectors and the inclusion of the χ2 veto alter
the result significantly in the presence of precession. As a
final result, we also want to compare the search sensitivity
at a fixed false-alarm rate.
In this section, we thus apply the search method

described in Ref. [11], with identical parameters and data,
to the fixed-mass and variable-mass precessing signal
populations described in the previous section. We recall
that this is a matched-filter, exact-match-coincidence pipe-
line based on the PyCBC toolkit, with settings similar to
what was used in the last initial-LIGO searches. The data
we analyze are constructed using two months of data
from the sixth science run of the Hanford and Livingston
LIGO detectors and modifying their PSD to resemble the
early advanced-LIGO sensitivity curve we assume in
this work.
Similarly to what was done in Ref. [11], we first

compare, for each simulated system, the combined SNR
and combined reweighted SNR observed by the pipeline

FIG. 3 (color online). Fitting factor of our nonspinning bank (left), aligned-spin bank (middle) and their ratio (right) for a population of
20,000 precessing NSBH binaries with the mass distribution described in the text. Compare with Fig. 1.
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to the optimal combined SNR. The latter is calculated by
simulating the system’s waveform and using it as its
own optimal template.1 The comparison for the fixed-mass
population is shown in Figs. 4 and 5; results for the varying-
mass systems are consistent with the fixed-mass case and
are not shown. In Fig. 4 it can be seen that many systems
have a large loss of both ranking statistics. The reweighted
SNR is particularly affected, which can be explained by
the χ2 veto penalizing strongly precessing signals in both
banks. As the signals shown in Fig. 4 have no constraints
on spin parameters, and relatively few points have high and
quasialigned systems, the advantage of the ASB is not
clearly visible in these plots. Figure 5 shows instead the
observed fraction of optimal SNR across the spin parameter
space and can be compared with Fig. 1. The optimal SNR is
not a good predictor of the reweighted SNR when signals
become too loud, because in that regime even a small
residual mismatch causes the χ2 statistic to become very
large. In order to make Fig. 5 more clear, thus, the
reweighted SNR plots exclude signals with observed

combined SNR larger than 50. For both statistics the
results are consistent with Sec. II: the ASB performance
is superior to the NSB for large spin and tilt angle close to
0° or 180°, while both banks perform similarly for small
spin or tilt angle around 90°. In particular, looking at the top
of the plots, it can be seen that many high-spin and small-
tilt signals are not detected at all by the NSB. Thus, the χ2

veto and exact-match coincidence preserve the features of
the banks described in Sec. II.
As a final step, we turn our attention to receiver operating

characteristic (ROC) curves, showing the sensitive volume
of the pipeline (proportional to the detection rate) as a
function of the false-alarm rate.2 ROCs for fixed masses are
shown in Fig. 6, where different plots compare the pipelines
using the NSB (dashed lines) and ASB (solid lines) for
different cuts on the BH spin magnitude χBH and tilt angle
ϑ. Error intervals represent the standard deviation of 100
realizations of each curve, each constructed from a random
selection of half of the background and half of the
simulated signals. The first plot contains systems with
no restrictions on spin parameters, and in this case the ASB
gives a slightly larger sensitivity, although the difference is
within the error intervals. The second plot corresponds to
weakly spinning BHs with no restriction on tilt angles.
Such a population would be almost “tuned” to the NSB,
and in fact the ASB has a slightly lower sensitivity due to
the larger background. The difference is nevertheless still
comparable to the error intervals. The next three plots
assume respectively large spins, large spins and small tilt
angles, and small tilt angles only. In this case the ASB has a
clear advantage, with a sensitivity between 50% and one
order of magnitude larger. If the existing population
synthesis models and spin measurements are assumed,
the most realistic scenario would lie somewhere between
plots 4 and 5. We can also see from Fig. 6 that the
sensitivity of the ASB remains good for most choices of
cuts on spin parameters, while the sensitivity of the non-
spinning pipeline drops significantly when χBH > 0.7.
Nevertheless, if a large fraction of sources has strong
and misaligned spins (plots 3 and 6) the detection rate
drops noticeably also with the aligned-spin pipeline.
ROCs for the varying-mass population are shown in

Fig. 7. The curves are qualitatively similar to the fixed-mass
case, and we can thus extend our previous conclusions to
a realistic distribution of masses. The curves should be
compared to the final plot of Ref. [11].
Similarly to what was done in Sec. II, ROCs allow us to

estimate the detection rate of an aligned-spin search pipe-
line relative to an ideal generic precessing pipeline, once we
make the two following approximations. The first is that the
precessing pipeline produces the same false-alarm back-
ground as the aligned-spin one. This is likely not the case,

FIG. 4 (color online). Combined SNR and reweighted SNR
observed by our search pipeline vs the optimal SNR one would
achieve by using templates perfectly matched to each simulated
system. The source population has fixed masses mBH ¼ 7.8M⊙,
mNS ¼ 1.35M⊙. There is no clear difference between the left and
right plots because relatively few points have large and almost
aligned spins.

1Note that, with precessing signals, waveforms observed by
different detectors are not simply related by phase rotations and
amplitude scalings but can be qualitatively different due to the
variable relative orientations between the system and the detec-
tors. Therefore, the optimal template in one detector is, in general,
not optimal for another detector.

2The exact definition of ROCs used here is Eq. (15) of
Ref. [11].
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so our result will overestimate the loss of detections due to
neglecting precession; nevertheless, based on the compari-
son between the false alarms of the NSB and ASB in
Ref. [11], we expect the error to be small. The second
assumption is that the number of detections of the precess-
ing pipeline, averaged over the orientation of ~J, is inde-
pendent from χ⊥BH; in other words, we assume that
precessing sources are not intrinsically more visible than
nonprecessing ones, when all orientations of ~J are consid-
ered. This assumption is reasonable because precession
distributes the radiated power more evenly across the sky,
but it does not make the signal significantly longer or
louder [20]. If these assumptions are met, the fraction of
generic sources detected by the precessing pipeline should
be equal to the fraction of weakly precessing sources
detected by the ASB. Since the fraction of detected sources
is our definition of the ROC, the ROC of the ASB for
weakly precessing sources (say, χ⊥BH < 0.4) can then be
used as a proxy for the precessing pipeline over the full spin
parameter space. We can thus estimate the relative sensi-
tivity of the aligned-spin pipeline with respect to a
precessing one as

Wfall;HPg
fFM;VMgðfÞ≡

Wfall;HPg
fFM;VMgðfÞ

WLP
fFM;VMgðfÞ

; ð8Þ

where WS
MðfÞ is the ROC associated with the aligned-spin

pipeline and the particular cut S of the spin parameter space

(“all”: no restriction on spin; “LP”: low precession,
χ⊥BH < 0.4; “HP”: high precession, χBH > 0.7 and
1
4
π < ϑ < 3

4
π) and mass distributionM (“FM”: fixed mass;

“VM”: varying mass) and f is the false-alarm rate at which
the ROC is evaluated. We obtain

78% < Wall
FM < 83% ð9Þ

41% < WHP
FM < 50% ð10Þ

80% < Wall
VM < 87% ð11Þ

50% < WHP
VM < 68%; ð12Þ

where the ranges include the different possible false-alarm
rates. As opposed to the estimates obtained at the end of
Sec. II, these estimates do include the effect of the χ2 veto.
This seems to have a small effect in the unrestricted-spin
case, as Wall

FM and Wall
VM are consistent with Vall

FM and Vall
VM

respectively. However, the high-precession estimates are
systematically smaller than Eqs. (5) and (7), suggesting that
the χ2 veto is indeed penalizing precessing signals.
Relaxing the assumption of equal background of the

precessing and aligned-spin pipelines requires at least an
estimate of the number of precessing templates, but it can
only increase all W estimates. We therefore expect that the
loss of detections due to using an aligned-spin pipeline vs a
precessing one is, with no restrictions on BH spin

FIG. 5 (color online). Ratio between combined SNR or combined reweighted SNR observed by our search pipeline and the optimal
SNR one would achieve by using templates perfectly matched to each simulated system. The source population has fixed masses
mBH ¼ 7.8M⊙, mNS ¼ 1.35M⊙. In the reweighted SNR plots, only systems with an observed combined SNR smaller than 50 are
shown, because for louder systems the observed reweighted SNR is much smaller than the optimal SNR.
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FIG. 6 (color online). ROCs associated with nonspinning and spinning search pipelines (dashed and solid lines respectively) observing
populations of NSBH binaries with fixed masses mBH ¼ 7.8M⊙, mNS ¼ 1.35M⊙ and different constraints on the BH spin parameters
ðχ⊥BH; χ∥BHÞ (visualized in the insets). The lighter bands show the 68% error intervals estimated by constructing each curve 100 times
from different combinations of the available data.
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FIG. 7 (color online). ROCs associated with nonspinning and spinning search pipelines (dashed and solid lines respectively) observing
populations of NSBH binaries with mass distribution as in Sec. II but different constraints on the BH spin parameters ðχ⊥BH; χ∥BHÞ
(visualized in the insets). The lighter bands show the 68% error intervals estimated by constructing each curve 100 times from different
combinations of the available data. Compare with the final plot of Ref. [11].
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parameters, no larger than ∼20%; if we make a less
plausible assumption of highly precessing NSBH binaries,
we expect a loss within ∼60%.

IV. CONCLUSION

In this paper we study the effect of precession on NSBH
binary inspiral search pipelines using nonspinning and
aligned-spin template banks.
By means of bank simulations, we first show that the two

banks perform similarly over the parameter space of the
dimensionless BH spin, except for a large drop in effec-
tualness of the nonspinning bank when the projection of the
spin on the orbital angular momentum is larger than ∼0.4 or
smaller than ∼ − 0.5, which corresponds to strongly spin-
ning but weakly precessing systems. When precession is
strong, both banks can lose up to ∼40% of the SNR for
particular orientations of the total angular momentum with
respect to the detector. Nevertheless, the high-precession
systems which are best recovered correspond to face-on
and face-off orientations, which are the most likely to be
observed based on their intrinsic SNR.
Using the same template banks, we then employ a

realistic search pipeline to recover the same signal pop-
ulation in simulated noise, constructed by recoloring
real initial-LIGO data to a sensitivity indicative of early
advanced-LIGO detectors. The search pipeline includes the
χ2 signal-based veto and exact-match coincidence between
the Hanford and Livingston LIGO detectors. We compare
the resulting nonspinning and aligned-spin ROC curves for
different choices of BH spin parameters.
We conclude that using an aligned-spin bank will

increase the detection rate of NSBH binaries by a fraction
which strongly depends on the distribution of BH spin
magnitudes and tilt angles in nature. At the very minimum,
assuming an extreme case of weakly spinning BHs
(0 ≤ χBH < 0.4) and unrestricted, uniformly distributed tilt
angle, a search pipeline based on the aligned-spin bank
would have a larger computational cost, but it would reduce
the sensitivity relative to using a nonspinning bank by
∼10% at most. With unrestricted, uniformly distributed
spin magnitude and tilt, both methods have very similar
sensitivity. On the other hand, for large spin magnitude and
small tilt—a distribution supported by population-synthesis
models and existing BH spin measurements—the improve-
ment in sensitivity can be as large as 1 order of magnitude.
We also find a noticeable improvement assuming either
small tilt and unrestricted magnitude or unrestricted tilt
and large magnitude. A factor of ∼2 in sensitivity is lost for
the unlikely case of strongly precessing systems, even with
the aligned-spin bank. Using these results we estimate that
using a bank of generic precessing templates could increase
the sensitivity by tens of percent or, under less realistic

assumptions, possibly by a factor of 2, assuming the
background does not increase significantly. Quantifying
this improvement more precisely requires constructing a
bank of precessing waveforms (see e.g. Refs. [30,32–36])
and applying it to a full search pipeline with realistic
advanced-detector data, which will be subjects of future
papers.
Although we assumed a particular sensitivity curve, our

conclusion is likely to remain true for the wider-band
sensitivity expected for the final design advanced LIGO.
Bank simulations in Ref. [11] suggest that including spin is
even more important for the zero-detuned high-power
design curve of advanced LIGO; similar calculations with
precessing NSBH signals also produced comparable results
[10,23]. The simulated precessing signals we have used
are based on post-Newtonian expansions and terminate
abruptly, ignoring merger and ringdown effects. For the
mass range considered here, except for highly antialigned
systems, these are likely to be good approximations to the
true waveforms in the sensitive band of advanced LIGO
detectors; thus, we do not expect the inclusion of merger
and ringdown to change our results significantly. Should
the search be extended to much higher masses—such that
merger and ringdown provide the majority of the SNR—the
inclusion of spin could be less important. Tidal interaction
between the NS and BH may be important in some regions
of our parameter space, for instance by altering the post-
Newtonian phasing or disrupting the NS and shutting down
the GW signal before merger [37]. Based on Ref. [38], we
do not expect tidal deformation to significantly affect the
search. Tidal disruption should also not affect our con-
clusions if it happens beyond the ISCO frequency used for
our templates. We reserve studying the inclusion of merger
and ringdown, tidal effects and comparison with numerical
waveforms to a future paper.
Assuming the larger computational cost can be satisfied,

we conclude with the recommendation of switching from
nonspinning to aligned-spin templates for future NSBH
searches in the mass range considered here, as this would
provide good sensitivity across the entire BH spin param-
eter space, including both the aligned and precessing high-
spin cases.
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