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Abstract 1 

Background and aims  Spatial (herkogamy) and temporal (dichogamy) separation of 2 

pollen presentation and stigma receptivity have been interpreted as reducing 3 

interference between male and female functions in hermaphroditic flowers. However, 4 

spatial separation leads to a potential conflict: reduced pollination accuracy, where 5 

pollen may be placed in a location on the pollinator different from the point of stigma 6 

contact. 7 

Methods  To understand better how herkogamous flowers resolve this conflict, we 8 

studied a subalpine herb, Parnassia epunctulata, the nectariferous flowers of which 9 

exhibit sequential anther dehiscence (staggered pollen presentation) and stamen 10 

movements; usually one newly-dehisced anther is positioned each day over the central 11 

gynoecium, while the older stamens bend away from the central position. 12 

Results  The open flowers were visited by a variety of pollinators, most of which were 13 

flies. Seed set was pollinator dependent (bagged flowers set almost no seeds) and pollen 14 

limited (manual pollination increased seed set over open pollination). 15 

Adaptive-accuracy analyses showed that coordinated stamen movements and style 16 

elongation (movement herkogamy) dramatically increased pollination accuracy. 17 

Specifically, dehiscing anthers and receptive stigmas were positioned accurately in the 18 

vertical and horizontal planes in relation to the opposite sexual structure and pollinator 19 

position. By contrast, the spatial correspondence between anthers and stigma was 20 

dramatically lower before the anthers dehisced and after stamens bent outwards, as well 21 

as before and after the period of stigmatic receptivity. Conclusions  We show for the 22 

first time that a combination of movement herkogamy and dichogamy can maintain 23 

high pollination accuracy in flowers with generalized pollination. Staggered pollen and 24 
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stigma presentation with spatial  correspondence can both reduce sexual interference 1 

and improve pollination accuracy. 2 

 3 

Key words: adaptive accuracy, Celastraceae, dichogamy, generalist pollination, 4 

herkogamy, Parnassiaceae, staggered pollen presentation, sexual interference, stamen 5 

movement 6 

 7 
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INTRODUCTION 1 

A key innovation in the evolution of seed plants was the origin of the hermaphroditic 2 

flower, where both male and female sexual functions occur in the same complex 3 

structure (the flower; Stebbins, 1974; Endress, 1996). However this innovation created a 4 

significant problem: sexual conflict, where the function of one sex is compromised by 5 

the proximity and function of the other (Lloyd and Webb, 1986; Barrett, 2002; 6 

Armbruster et al., 2009b). This led to a further fundamental challenge in the function of 7 

animal-pollinated, hermaphroditic flowers: minimizing such sexual conflict while still 8 

enabling the male and female fertile parts to contact pollinators in the same place. Two 9 

solutions to the sexual conflict have been explored evolutionarily by plants: 1) spatial 10 

separation of fertile parts (herkogamy), and 2) temporal separation of sexual functions 11 

(dichogamy). The former may greatly increase the risk that the fertile parts no longer 12 

contact pollinators in the same location, while the latter may preclude reproductive 13 

assurance by self-pollination. Even in dichogamous flowers, the avoidance of sexual 14 

interference often requires movement of fertile parts, such that the first functional 15 

organs make way for the second. 16 

Herkogamy and dichogamy are thus thought to function mainly to reduce sexual 17 

interference between male and female function in hermaphroditic flowers (Lloyd and 18 

Yates, 1982; Lloyd and Webb, 1986; Webb and Lloyd, 1986; Barrett, 2002). However, 19 

successful pollen transfer depends on stigma contact at the site on a pollinator’s body 20 

where pollen grains are placed, which may be impossible when flowers are 21 

herkogamous. Thus, selection for pollination accuracy may operate in the opposite 22 

direction to selection against sexual interference. Other things being equal, we expect it 23 

to reduce the spatial separation between anthers and stigmas in herkogamous flowers 24 

(Armbruster et al., 2009b). Although Lloyd and Webb (1986) recognized that avoidance 25 
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of sexual interference may involve a conflict with pollination accuracy, very few studies 1 

have shown how herkogamy and dichogamy can interact in homostylous species to 2 

reduce interference between pollen removal and pollen receipt and yet maintain a 3 

degree of pollination accuracy (Armbruster et al., 2009a; Armbruster et al., 2009b). 4 

In their simple manifestations, dichogamy and herkogamy differ in their effects on 5 

pollination accuracy in that dichogamy allows pollen and stigmas to be presented in 6 

similar positions (at different times) within the flowers, whereas herkogamy often 7 

results in separation of pollen and stigma positions on pollinators (inaccuracy), at least 8 

when pollinators land directly on open flowers (vs. crawling down a tube, as in 9 

approach herkogamy; Lloyd and Webb, 1986). However, even in open flowers, 10 

accuracy may be increased by organ movement, as when “movement herkogamy” 11 

(sensu Barrett, 2002--where some floral parts move; i.e. "temporal herkogamy" of 12 

Willmer, 2011) is coupled with partial dichogamy: movement of stamens allows them at 13 

the time of pollen release to occupy a position corresponding to the position of receptive 14 

stigmas on older (or younger) flowers, and to be elsewhere during the female phase. In a 15 

recent study, Ren and Tang (2012) observed that Ruta graveolens presented pollen to a 16 

variety of pollinators by successively raising each of its eight stamens one by one to the 17 

flower’s centre, and then moving them back down later. Their results indicated that 18 

pollen removal from the next stamen was significantly reduced when the previously 19 

opening stamen was manipulated to remain at the flower centre, supporting 20 

anther-anther interference as an adaptive explanation for the stamen movement, given 21 

the temporal staggering of anther dehiscence (Ren and Tang, 2012). However, it 22 

remains unclear how this behaviour affects female function and how accurately such 23 

successive stamen movements position the anthers in the flower centre in relation to the 24 

place on pollinators where pollen grains are likely to be picked up by stigmas. 25 
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An additional feature of sequential anther maturation and stamen movements is the 1 

staggered presentation of pollen. Theory suggests that this can increase male fitness in 2 

species in which seed set is pollen limited and pollinator visits are frequent, but 3 

pollinators are inefficient in transporting pollen due to pollen feeding/grooming and/or 4 

inconstancy (Harder and Thomson, 1989; Thomson and Thomson, 1992, Castellanos et 5 

al., 2006).  6 

Sequential stamen movements have been observed in several families, including 7 

Loasaceae, Rutaceae, Celastraceae/Parnassiaceae, and Tropaeolaceae (see Ren, 2010; 8 

Henning and Weigend, 2012; Ren and Tang, 2012). In Parnassia, stamen movements 9 

have been noted in P. palustris in Europe over two centuries, for example by Sprengel 10 

(1793), Gris (1868), Bennett (1869), Arber (1913) and Martens (1936). These authors 11 

observed that the five anthers presented pollen one by one at the flower centre on 12 

different days and then bent away and down to overlie the petals before the stigma was 13 

exposed. Recent pollination experiments on this protandrous herb showed that it was 14 

self-compatible but fruit and seed production largely depended on pollination by a 15 

variety of insects, especially flies (Martens, 1936; Sandvik and Totland, 2003). 16 

However, the exact temporal and spatial pattern of pollen presentation and movement of 17 

anthers has not been documented in any Parnassia species. Nor has the effect of such 18 

complex movements on pollination accuracy been investigated previously. 19 

Adaptive accuracy measures how close a population is to its adaptive optimum and/ 20 

or where it fits on the governing adaptive surface, while taking into account phenotypic 21 

variation in the population (Armbruster et al., 2004; Hansen et al., 2006; Pelabon et al., 22 

2012).  This concept is readily applied to floral morphology of animal pollinated plants 23 

under the assumption that the optimum geometry of flowers is one that causes anthers 24 

and stigmas to contact pollinators in the same location, promoting pollen transport to 25 
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stigmas and pollen receipt by stigmas, respectively (Armbruster et al., 2004, 2009a). 1 

Ignoring for the moment the potential negative effects of self-pollination and other 2 

types of sexual interference, this assumption seems reasonable for most flowers, 3 

including Parnassia.  A significant advantage of using adaptive accuracy to analyse 4 

phenotypes is that it allows us to compare the contributions of adaptive bias (departure 5 

of a population mean from the optimum) versus imprecision (population variation) to 6 

total adaptive inaccuracy. Here we use adaptive accuracy metrics to assess the adaptive 7 

costs and benefits of movement herkogamy (sensu Barrett, 2002) and partial dichogamy 8 

in Parnassia flowers (see Armbruster et al., 2009b). 9 

To evaluate the effect of partial dichogamy and movement herkogamy on 10 

pollination accuracy in “generalist” flowers (flowers pollinated by a variety of animal 11 

species), we investigated Parnassia epunctulata J.T.Pan, a plant with open, white 12 

flowers, in a subalpine meadow in southwest China. The stamens of this species show a 13 

remarkable pattern of repositioning, and dehisce one by one over several days before the 14 

female phase. This feature permitted us to examine whether anthers and stigma are 15 

positioned accurately, thus facilitating pollen removal and receipt. We describe the 16 

progression of flowering and stamen and style movements in P. epunctulata, and we ask: 17 

1) Does P. epunctulata meet the conditions in which gradual dosing through staggered 18 

pollen presentation optimizes delivery (i.e., is seed set pollen limited and dependent on 19 

pollinator visits, and do flowers receive frequent visits by wasteful pollinators; 20 

Thomson and Thomson, 1992; Castellanos et al., 2006)? 2) How accurate is the 21 

positioning of stamens in relation to the position of the stigma and vice versa? 22 

 23 

MATERIALS AND METHODS 24 
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Parnassia (Celastraceae/Parnassiaceae) comprises about 70 species of perennial herbs 1 

occurring in arctic and temperate regions of the Northern Hemisphere, with nearly 2 

three-quarters of the species being restricted to South and Southeast Asia (Wu et al., 3 

2009). We observed flowers of Parnassia epunctulata in July and August 2012 in the 4 

Hengduan Mountains, Yunnan, China. Plants grew on well-drained areas in a marshy 5 

subalpine meadow (altitude 3369 m a.s.l.) grazed by cattle, yaks and sheep located in 6 

the Sicun Valley, Jiantong Town, in Shangri-La County, ca. 5 air miles east of 7 

Shangri-La (previously named Zhongdian) (27

49.79 N, 99


45.69E). 8 

The late floral development and organ movements were monitored for 70 tagged 9 

flowers in various stages of development; we recorded the position of each anther and 10 

the stigma daily at about the same time for five successive days. After deleting records 11 

for flowers that were lost, damaged or diseased, we were left with records for 59 12 

flowers spanning the whole 5-day period. On a further set of 25 flowers, we measured 13 

the lengths of one anther filament in each of three positions (when present): (1) 14 

immature stamens below the level of the staminode tips, (2) stamens that had emerged 15 

to overlie the stigma, and (3) stamens that had bent outwards, with anthers clear of the 16 

stigma. We also measured in a series of flowers (at one time) the heights and positions 17 

of dehisced and undehisced anthers and receptive and unreceptive stigmas in order to 18 

calculate the accuracy of pollen and stigma positioning in various phases of late floral 19 

development. 20 

The excess temperature in sunlit flowers was measured with a digital 21 

thermometer (Digitron Instrumentation Ltd) and a fine thermocouple. For 22 

measurements in the flower the thermocouple was positioned about 2 mm above the 23 

centre of the flower, and for corresponding ambient temperature measurements, it was 24 

about 5 cm away from the flower at flower height. Each datum was the mean of a set of 25 
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ten measurements taken in rapid succession. Each set of ten measurements taken in the 1 

flower alternated with a set of ten measurements of ambient temperature outside the 2 

flower. 3 

Insect observations were made by four observers in 50 10-minute watches, each 4 

covering 9-13 flowers, between 1025 and 1445 h on 4, 5 and 6 August 2012. Individual 5 

flowers were first mapped, and classed as pistillate (with the stigma exceeding the 6 

staminodes and no anthers in the central position) or staminate (with at least one anther 7 

over the unreceptive stigma). Insects were categorised as small (up to 3 mm long), 8 

medium (up to 6 mm) or large (over 6 mm) flies, or bees (mostly small halictids), wasps 9 

(mostly parasitic hymenopterans), ants, butterflies or moths. During 29 of the 10-minute 10 

sessions, we recorded whether each visitor was seen to touch the anthers or stigma. 11 

To test for autogamy whole plants in three sites not more than 200 m apart were 12 

bagged on 5 August with fine-mesh polyester bags when the flowers were in bud, to 13 

exclude insects, and another flower within 2 m of each bag, in a corresponding stage, 14 

was labelled as a control. To test for pollen limitation, on 13 August one pistillate 15 

flower (with the last anther having moved outwards and the stigma having emerged 16 

above the level of the staminode tips) near each control was hand pollinated with mixed 17 

pollen from multiple donors. To maintain phenological synchrony, this was done eight 18 

days after bagging, when many of the control flowers had reached a similar stage.  19 

Fifteen days later, on 28 August, the fruits were harvested and the seeds and 20 

undeveloped ovules were counted. Reallocation of resources from other flowers on the 21 

same plant was not likely to have caused a problem in this experiment because most 22 

experimental plants bore only one flower in the year of the study.  In the three 23 

experimental sites 91%, 96% and 84% of plants bore a single stem with one flower; the 24 

remaining plants bore two, three or four flowering stems. 25 
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Adaptive inaccuracies were calculated for all three floral-organ stages 1 

(pre-receptive, receptive, and post-receptive) in order to gain insights into the extent that 2 

floral movements improve pollination accuracy, if at all. Inaccuracies were calculated 3 

by assuming that the optimal position of a fertile structure (anther releasing pollen or 4 

receptive stigma) is the position of the opposite fertile structure (receptive stigma or 5 

anther releasing pollen, respectively). The adaptive inaccuracy was calculated as: 6 

Inaccuracy = (Adaptive Bias)
2
 + Imprecision 7 

where the adaptive bias is the difference between the population mean and the optimum 8 

and the imprecision is the population variance in the structure’s position.  In order to 9 

be able to compare male and female inaccuracies, the adaptive target variances were not 10 

included in our calculation (cf. Armbruster et al., 2009a). For comparisons between 11 

structures of different sizes, inaccuracies were scaled to the square of the population 12 

mean (see Armbruster et al., 2004, 2009a; Hansen et al., 2006; and Pelabon et al., 2012 13 

for further details). 14 

Statistical analyses were performed in R (R Core Team, 2012) and with IBM 15 

SPSS Statistics 20 (IBM-SPSS 2013).  16 

 17 

RESULTS 18 

Flower morphology and organ movements 19 

Flowers of Parnassia epunctulata (Fig. 1) have five sepals and five white, clawed 20 

petals, weakly fimbriate towards the base, forming a horizontal disc. The tripartite 21 

(rarely quadripartite) stigma at the flower centre is surrounded by the insertion of five 22 

stamens, alternating with five flattened staminodes, each with three blunt lobes. The 23 

staminodes together form a tight cup-like ring, enclosing the immature anthers and the 24 

stigma. We detected no measurable nectar, but it was presumably present. Visiting 25 
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insects probed with their probiscides between the staminodes and the gynoecium; their 1 

behaviour indicated that, as in P. palustris (Sprengel, 1793; Sandvik and Totland, 2 

2003), the staminodes bear nectar near the base of the inner surface (Fig. 2). 3 

When the bud first opened the anthers were immature, with short filaments (1.12 4 

 0.086 mm, mean  s.e.m., n = 15), and located within the ring of staminodes and 5 

below the staminode tips. Each day the filament of usually one stamen extended and 6 

curved inward, bringing the anther into a position above the pistil (filament length 4.26 7 

 0.089 mm, n = 18) (Table 1, Fig. 1). In the field, fresh pollen was available only on 8 

this centrally-placed anther, those elsewhere still being closed (younger) or depleted 9 

(older). Usually the next day the stamen bent outwards clear of the stigma, often losing 10 

its shrivelled anther, overlying the petals or descending between them into the hollow of 11 

a sepal, and its filament extended further (to 4.68  0.088 mm, n = 25). After the last 12 

stamen had bent out of the way, the style elongated and elevated the newly receptive 13 

stigma (now with divergent lobes) to a location close to that previously occupied by the 14 

pollen-bearing anthers (see accuracy section below). The flowers were long-lived; some 15 

flowers remained apparently receptive and retained petals for 11 days or more after the 16 

beginning of the pistillate phase (and for some time after the ovary had begun to swell), 17 

giving an estimated flower lifetime of at least 16 days [longer than most (10/11) species 18 

studied by Ashman and Schoen (1994)]. 19 

In two flowers that opened on plants in a small patch of turf kept indoors, the 20 

stamens behaved differently. In the absence of insect visitors they retained apparently 21 

fresh pollen until day 5, and they often remained in position above the stigma for more 22 

than one day (so that there were two or three anthers above the stigma on 4 out of 6 23 

flower-days). After straightening to lift the anther away from the stigma the filaments 24 
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sometimes remained vertical for one or two days before bending outwards horizontally, 1 

a situation that was rare in the field. 2 

 3 

Insect visits 4 

Most floral visitors probed the base of the staminodes, presumably for nectar, thrusting 5 

the proboscis or the head down between the inner surface of the staminodes and the 6 

ovary, and often touching the stigma or the central anther in doing so (Fig. 2). Some 7 

visitors collected pollen. One tenthredinid sawfly visited flowers to capture other floral 8 

visitors; it caught a pollinating fly and consumed it. Some insects rested in the flowers, 9 

perhaps because these were warmer than the ambient air. In ten sequences of ten 10 

measurements inside and outside a sunlit flower, the mean air temperature in the centre 11 

of the flower was always higher (by up to 2.95
o
C) than the ambient temperature. 12 

Of a total of 561 insect visits to Parnassia flowers in 50 10-minute sessions, 13 

most (84%) were made by Diptera, most of which were more than 3mm long (Table 2).  14 

Small bees made a further 12% of the total, and the remaining 20 visits were made by 15 

wasps (most of them parasitic hymenopterans, but including one aculeate wasp), ants 16 

and lepidopterans. In 29 of the 10-minute sessions we recorded whether or not the insect 17 

touched the anthers or stigmas. Flies more than 3 mm long were seen to touch the anther 18 

or stigma on over 75% of their visits, bees on 60%, and wasps more than 3 mm long on 19 

83% of their (few) visits. Small flies and wasps, less than 3 mm long, were seen to 20 

touch less often. Pistillate flowers and staminate flowers received a mean of 7.2  1.00 21 

and 5.9  0.65 visits/flower/hour respectively (mean  s.e.m., n = 39 sessions). 22 

Insect visits were thus numerous; flies were the most frequent visitors, mostly 23 

obtaining nectar, and many of the larger visitors touched the anthers or stigma and were 24 

therefore potentially capable of transferring pollen from one flower to another. Thrips 25 
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(Thysanoptera; including Thrips sp.) were present in many of the flowers. They may be 1 

capable of transferring pollen, as Martens (1936) suggested in P. palustris, but they are 2 

unlikely to be important pollinators here in the presence of such frequent visits from 3 

larger insects. 4 

 5 

Accuracy and precision 6 

Receptive stigmas were positioned accurately in the vertical plane in relation to stamen 7 

position; inaccuracy was calculated as only 1.59%, of which 18.9% was due to bias and 8 

81.1% due to imprecision. In comparison, inaccuracy would have been dramatically 9 

higher were the stigmas receptive in the pre-receptive phase (26.72%; 93.6% due to bias 10 

and 6.4% due to imprecision) and modestly higher in the post-receptive phase (4.83%; 11 

36.9% due to bias and 63.1% due to imprecision; Fig.3).  12 

Dehiscing anthers were positioned very accurately in the vertical plane in relation 13 

to stigma position; inaccuracy was calculated as only 1.41%, of which 23.9% was due 14 

to bias and 76.1% due to imprecision. In comparison, the spatial correspondence 15 

between anthers and style was dramatically lower before anther dehiscence (inaccuracy 16 

in pre-dehiscence phase: 361.2%; 98.1% due to bias and 1.9% due to imprecision), and 17 

after stamens bent outwards (inaccuracy in post-dehiscence phase: 200.9%; 99.5% due 18 

to bias and 0.5% due to imprecision; Fig. 3).  19 

 20 

Pollination experiments 21 

A two-way ANOVA showed a significant effect of treatment on seed set (p < 0.0001), 22 

but no significant effect of site (p = 0.14), or interaction between site and treatment (p = 23 

0.49). Seed set was very low in flowers kept bagged from the bud stage to exclude 24 

insects (mean seeds per ovule 0.010  0.0008, mean  s.e.m.; n = 15). No ovules 25 
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developed at all in 13 of the 15 bagged flowers. Seed set was significantly higher in the 1 

open-pollinated controls (mean seeds per ovule 0.279  0.055, n = 24, p < 0.0001, 2 

Welch two-sample t test). We conclude that bagging to exclude insects reduced seed set.  3 

Seed set was significantly higher in hand-pollinated flowers (mean seeds per ovule 4 

0.531  0.034, n = 22)  than open-pollinated flowers (p < 0.001, Welch two-sample t 5 

test), indicating that seed set was limited by the availability of pollinator-transported 6 

pollen (“pollen limitation”).  7 

DISCUSSION 8 

Our observations indicate that Parnassia epunctulata is protandrous and shows 9 

elaborate stamen movements comparable with those of P. palustris (Sprengel, 1793; 10 

Martens, 1936) and Ruta graveolens (Ren and Tang, 2012), with gradual presentation of 11 

pollen, generally by one fresh anther each day over a period of about five days. We 12 

found that, as in P. palustris (Sandvik and Totland, 2003), seed set requires pollinator 13 

visits and is pollen limited. Insect visitors were numerous and diverse, were often 14 

generalist feeders, had low constancy (WSA, unpubl. observations), and were 15 

presumably inefficient. In this respect, we can expect staggered pollen presentation to 16 

be selected for (Harder and Thomson, 1989; Thomson and Thomson,1992; Castellanos 17 

et al. 2006; Ren and Tang, 2012). 18 

It would be interesting to explore the unconfirmed suggestion, arising from our 19 

indoor observations, that this may be a “dynamic dispensing schedule” (Harder and 20 

Wilson, 1994), responsive to local conditions, as seen in other species. In P. palustris, 21 

stamen movement may be delayed if pollen is not removed (Martens, 1936) so that the  22 

anthers remain in the optimal position for pollen dispersal, and so that, in the absence of 23 

insect visitors, anthers with fresh pollen may remain near the stigma, perhaps providing 24 
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reproductive assurance through autogamy. A comparable dynamic schedule has been 1 

described in Ruta (Ren and Tang, 2012). 2 

The movement of the anthers into the “correct” position for dehiscence, by 3 

elongation of the filament, dramatically increases the male adaptive accuracy (Fig. 3).  4 

In contrast, if the anthers still contained pollen, post-dehiscence movement would 5 

dramatically decrease adaptive accuracy (Fig. 3). This would be another factor 6 

favouring condition-dependent organ movement describe above. Elongation of the style 7 

just before apparent stigma receptivity also markedly increases female adaptive 8 

accuracy compared to an un-elongated style. The inaccuracy measure then again 9 

increases moderately in the post receptive period with further elongation of the pistil 10 

(Fig. 3), although , because the fruit is already developing, this “inaccuracy” no longer 11 

has an adaptive cost. 12 

One characteristic that distinguishes P. epunctulata from many other Parnassia 13 

species is that the staminodes are tightly integrated into a cuplike ring rather than being 14 

showy and spreading (as in, for example, P. palustris and P. aff. simaoensis/wightiana 15 

of north western Yunnan (Baishui Terraces); Fig. 4). Because the nectar is apparently 16 

secreted at the bottom of this cupule, the staminodes control, to some extent, which 17 

insects can gain access to it, and what orientation they must assume, forcing them up 18 

against the pollen-bearing anthers or receptive stigmas as they probe for nectar (Fig. 2). 19 

In this way the integration of the staminodes into a ring further increases the accuracy of 20 

pollination by forcing nectar feeders of the “right” size to behave appropriately for 21 

consistent pollen placement and pick-up. Thus P. epunctulata appears to have achieved 22 

higher pollination accuracy than its relatives with divergent staminodes, if perhaps at 23 

the cost of being less visually attractive to flies (see Faegri and van der Pijl, 1979). In a 24 

species from south western Sichuan, P. aff. leptophylla Handel-Mazzetti, the petals, 25 



  16 

rather than the staminodes, form the walls of the cup-like chamber (at least distally) into 1 

which pollinators must insert their proboscides, heads or bodies to obtain nectar. The 2 

gap between the chamber wall and the single centrally located anther or stigma 3 

influences which insects can reach nectar and/or contact the fertile structures (WS 4 

Armbruster unpublished observation; for an analogous situation in Linum, see 5 

Armbruster et al. 2006, 2009a). This represents an example of transfer of function 6 

between floral structures as Stebbins (1974) described for dispersal mechanisms. 7 

It is thus clear that the coordinated movement of pre- and post-dehiscent anthers 8 

into and out of the central position in the ring of nectariferous staminodes not only 9 

reduces stamen-stamen interference (see Ren and Tang, 2012) and interference with 10 

pollen arrival to receptive stigmas, but also leads to maximal positional accuracy for 11 

placing pollen in the “right” place on the “right” species of pollinators. Similarly, 12 

elongation of the style only just before stigma receptivity not only keeps the stigma out 13 

of the way of the pollen-bearing anthers, reducing or precluding self-pollination and 14 

pollen discounting, but also puts the stigma into the right place at the right time for 15 

receiving cross-pollen, thus raising the adaptive accuracy of pollination.  16 

Successive stamen movements have been reported previously in the Loasaceae, 17 

Parnassiaceae, Rutaceae and Tropaeolaceae (Ren, 2010; Henning and Weigend, 2012; 18 

Ren and Tang, 2012). The phenomenon of staggered pollen presentation through 19 

sequential movement of anthers into a similar position probably occurs in additional 20 

species with open-shaped flowers. At least one other family, Saxifragaceae, can be 21 

added into the list of those with successive stamen movements. We observed the ten 22 

stamens of Saxifraga sp. in Shangri-La Alpine Botanical Garden, SW China presenting 23 

pollen sequentially 1-2 at a time in a position subsequently occupied by the stigmas, 24 

behaviour very like that seen in Parnassia. Indeed, an early note described sequential 25 
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stamen movements in Saxifraga sarmentosa (Todd, 1880) but the adaptive advantages 1 

have not been explored experimentally. Other examples may include Ranunculaceae; 2 

Weber (1993) described sequential movements of the 50-70 stamens in Nigella arvensis, 3 

and corresponding subsequent positioning of the styles. 4 

Although several previous studies have suggested that movement herkogamy is 5 

the result of selection to avoid sexual interference within hermaphrodite flowers (Lloyd 6 

and Yates, 1982; Webb and Lloyd, 1986; Ren and Tang, 2012), none has previously 7 

considered the role of the opposing selection for pollination accuracy. Our 8 

measurements of adaptive accuracy in P. epunctulata show how movement herkogamy 9 

maintains high accuracy while reducing sexual interference, and, more generally, they 10 

shed light on the functioning of flowers that are hermaphrodite, which is the dominant 11 

condition in angiosperms.  12 

13 
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Figure legends 1 

Fig. 1.  A. mean numbers of anthers dehisced (mature or shrivelled) on successive 2 

days, in flowers with 1 (closed circles), 2 (open circles), 3 (closed squares) or 4 3 

(open squares) matured anthers on day 1 (n = 10, 7, 3 and 8 respectively).  B. A 4 

flower of Parnassia epunctulata after removal of one petal, two staminodes and two 5 

sepals, to show the tripartite staminodes and four of the five stamens, of which two 6 

are immature, one (with a dehisced anther and fresh pollen) is positioned over the 7 

pistil and one (with a shrivelled anther) has bent down between two petals to lie 8 

against a sepal.  Black: anthers and cut surfaces; stipple: calyx and gynoecium. 9 

Fig. 2.  Diverse insects, mostly generalist pollinators, visiting male-phase (A, C, D) 10 

and female-phase (B, E, F) flowers of Parnassia epunctulata, showing sequential 11 

movement of the five stamens with one dehiscing anther at the centre of the flower.  12 

(A) A syrphid fly obtaining nectar from an early male-phase flower; the second 13 

anther to dehisce is at the flower’s centre. Note yellow pollen grains on the fly’s 14 

back; (B) a tephritid fly obtaining nectar from a female-phase flower; (C) a halictid 15 

bee collecting both nectar and pollen from a male-phase flower, surrounded by a 16 

whorl of greenish-yellow staminodes; (D) a butterfly (Melitaea jezabel) obtaining 17 

nectar from a male-phase flower; (E) a small fly obtaining nectar from a 18 

female-phase flower; the five dehisced stamens have moved down between the 19 

petals; (F) a halictid bee obtaining nectar from a female-phase flower, where it is 20 

likely to deposit pollen on the stigma. Dehisced and spent stamens are marked with 21 

arrows. 22 

Fig. 3.  Adaptive inaccuracies (scaled to square of trait means) for stigma position 23 

(blue) and anther position (red) of Parnassia epunctulata flowers at various stages 24 

of development.  Flowers are protandrous; pre-receptive stigmas occur during the 25 
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male phase of the flowers and post-receptive stigmas after ovaries begin to swell.  1 

Pre-receptive anthers are those not yet dehisced, receptive anthers are those on the 2 

first or second day after dehiscence, and post-receptive anthers are on older stamens 3 

that have bent away from the centre of the flower (see Fig. 1).  The inaccuracy of 4 

this last category reflects deviation from the optimum position in two dimensions 5 

(vertical plus horizontal planes) and was calculated using the Euclidean distances.  6 

Fig. 4.  Showy, spreading staminodes (arrows) of a Chinese species of Parnassia, P. 7 

aff. simaoensis YY Qian (= P. wightiana Wallich ex Wight and Arnott s.l. 8 

complex), which do not restrict pollinator access to nectar or position them relative 9 

to the pollen-bearing anthers and receptive stigmas.  Note one pollen-bearing 10 

anther at the centre of the flower, one spent anther at circumference and three 11 

undehisced anthers appressed to the ovary. This species appears to follow the same 12 

basic pattern of stamen movement as observed in P. epunctulata. 13 
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Table 1. Number (and %) of flower-days on which given numbers of stamens made the 

transition (a) from the immature position (below the level of the staminode tips) to the 

position over the style, and (b) from there outwards to a peripheral position away from 

the flower centre.  The usual condition is shown in bold. 

 

 (a) Immature to over style (b) Over style to peripheral 

0 stamens 8 (11%) 16 (16%) 

1 stamen 45 (64%) 57 (57%) 

2 stamens 16 (23%) 22 (22%) 

3 stamens 1 (%) 4 (4%) 

Number of 

flower-days 

70 99 
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Table 2. Insect visits to Parnassia epunctulata flowers. Visits were recorded in 50 

10-min sessions, and in 29 of those sessions (367 visits) the recorder also noted whether 

or not the visitor touched the stigma or anthers. 

 

 Number (%) of visits 

Number (%) of visits 

that touch 

Diptera > 6 mm 137 (24) 76 ( 78) 

Diptera 3-6 mm 211 (38) 119 (76) 

Diptera < 3 mm 126 (22) 18 (28) 

Apoidea 67 (12) 21 (60) 

Other Apocrita: 

Wasps 3-6 mm 

 

9 (2) 

 

5 (100) 

Wasps < 3 mm 5 (1) 0 (0) 

Others 6 (1) 3 (75) 

Total 561 visits 242 touching visits 
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