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Abstract: The rise in availability of huge amounts of historical data and the need for accurate forecasting 

techniques of future behavior of electricity consumption emphasize the need for efficient techniques able to 

reliably estimate the stochastic dependency between the past and future observations in the grid. This 

study introduces a new time-series forecasting technique for performing short/medium-term electricity 

consumption forecasting with high accuracy, given a limited period of historical measurements available to 

extract trends present in time-series. Proposed technique can predict the future energy requirements 

without the need for additional information such as date or time of the measurements. Described hybrid 

method can overcome the performance drop issue, where there is redundant or missing data in historical 

measurements or when the historical measurements are noisy by utilizing three machine learning 

algorithms; Random Forests, Quinlan’s M5 and Linear Regression. The operation of the proposed method is 

tested on different substations located in central London and the prediction performance established by 

comparing it to AutoRegressive Integrated Moving Average (ARIMA) and Autoregressive Neural Network 

(NNAR) time-series forecasting methods.  
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1. Introduction 

The electricity industry and energy demand are growing at an extremely fast pace due to the 

development of human population and technological advances. Related technologies are being developed 

and implemented every day from smart grids to advanced metering infrastructures. Accurate forecasting 

and efficient management of the electrical energy are therefore becoming more important than ever.  

Power generation and distribution industry has been rapidly growing and adopting smart technologies in 

the recent years. The power grid networks tend to use more renewable sources of energy which can 

nowadays be owned either by a main supplier or be placed in the smart industrial complexes themselves. 

The study [1] explains how the renewable energy sources (RES) differ from the old sources of energy in 

terms of supply and demand. In traditional grids, the supply will constantly match the load however, when 

the RES are available in the grid there will be instances when the supply could be significantly higher than 

demand. In these cases, the RES should be detached from the grid to prevent the collapse of the grid [2]. In 

April 2013 for example, in Germany 11.2 GW were forecasted from a photovoltaic (PV) sources for the next 
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day while actual PV generation was 11.2 GW. The grid supplied the additional 8.8GW which resulted in 

instability of the grid itself [3]. This illustrates the importance of forecasting the load demand in the grid 

accurately. Forecasting the load in a complex grid is an impossible task without the help of a smart 

computerized system. Implementing such systems in real time and performing the associated data 

processing is one of the main features of smart grid technology [4]. This usually requires artificial 

intelligence-based techniques to find trends and patterns in historical load consumption data. 

 Time-Series Forecasting 1.1.

Time-series forecasting techniques have been influenced, from the 1960s on, by linear statistical methods 

such as ARIMA [5] models. ARIMA have been used in many different fields, including energy [5], economics 

[6], health [7] and tourism [8]. Since the time-series data in real world usually have non-linear 

characteristics [9], using ARIMA is not optimal for most of the real-world problems [10]. More recently, 

machine learning models have drawn attention and have established themselves as serious contenders to 

classical statistical models in the forecasting community. Artificial neural networks (ANN) have been 

studied and implemented in time-series forecasting applications by several researchers [11]-[15]. Data 

driven approaches such as ANNs and in general machine learning algorithms (MLAs) are suitable for many 

empirical datasets, in which there is no theoretical guidance to explain the data generation and its rules. 

 Machine Learning Approaches to One-Step Ahead Forecasting 1.2.

The work by Atkeson et al. [16] suggests that given there is a historical data record (time-series T), 

supervised learning can be applied to one-step forecasting issue. Supervised learning in general performs 

modelling of a set of observations in regard to the relation between a set of inputs and outputs in those 

observations. In one-step forecasting the model M returns the next step value of the time-series at the time t 

by modelling the m previous values of the time-series [T_0,…,T_(t-1)]. This is illustrated in Fig. 1. 
 

 
Fig. 1. One-step-ahead model created by supervised learning. 

 

One-step-ahead forecasting requires prediction of the output value of such system given the historical 

observed values are available, hence, machine-learning is a required tool to perform this task. This paper 

focuses on local learning [17] techniques when it comes to machine learning. Local learning helps reducing 

the number of assumptions when modelling the data. It also enables the system to adopt online learning 

capabilities.  

The most important feature of local learning is that it can model non-stationary data. This is beneficial to 

time-series forecasting since it can model both spatial and temporal dimensions of a time-series. Various 

machine learning strategies can be adopted to perform one-step-ahead forecasting, for instance utilisation 

of nearest neighbors and lazy learning techniques have been explored in some recent works [18]. 

 Machine Learning Approaches to Multi-step-ahead Forecasting 1.3.

Unlike the one-step-ahead approach, in multi-step forecasting the model predicts the next p values of the 

time-series [T_t,…,T_(t+p-1)]. There are five main strategies [18] for multi-step-ahead forecasting, Recursive, 
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Direct, DirRec, MIMO and DIRMO.  

Recursive strategy is actually a one-step ahead model which repeats its forecasting recursively for 

multi-step-ahead forecasting [19]. The weakness of this strategy is that the error rate increases 

dramatically as the size of the points ahead increase particularly if the first point forecast is not predicted 

accurately. This strategy is also prone to accumulation errors. Despite these weaknesses, this strategy has 

been used successfully in real world problems by different MLA’s such as artificial neural networks (ANN) 

[20] and nearest neighbours.  

Direct strategy creates p separate models for p points ahead. Since the models are built independently the 

dependencies between the predictions are not considered by this method. Another drawback of this 

strategy is that it requires more computational power to create multiple models specially as p increases 

[21]. This method has been used for different forecasting tasks by ANNs [22] and decision trees [23]. 

By combining the Direct and Recursive methods, a new strategy called DirRec was introduced [19]. This 

strategy creates separate models for r ahead points (r<p) and enlarges the inputs set by adding the r 

forecasted points to the training set. It repeats this process recursively to achieve the desired number of 

points ahead (p). This reduces the functional complexity and computational power requirements of forecast 

as well as learning the statistical dependencies of every subset in order to use that for more accurate 

prediction. 

All strategies explained above are consisting of a multi-input single-output core technique, however, by 

adopting multi output techniques it is possible to perform a multi-input multi output (MIMO) strategy, 

which will consider the full stochastic dependencies between the future points. Despite the benefits of this 

technique, [24] explains that this strategy can reduce the flexibility of forecasting. Additionally, there are 

only a few machine learning algorithms that can perform multi-output regression, which is another 

limitation for this approach. 

In order to combine the benefits of MIMO and DirRec, these two strategies can be combined to create 

DIRMO [24]. Here, multiple partitions of the final p forecast size are created first, followed by MIMO 

forecasting on each partition. The size of each block in this strategy determines the level of predictor output 

flexibility and the degree of stochastic dependency. 

2. Proposed Hybrid Method 

2.1. The Dataset 

In this work, a dataset of power consumption measurements on substations located in central London 

has been analyzed and used to demonstrate the effectiveness of our approach. Full dataset consists of 77 

substations with measurements taken every 1 hour over the period from January 2010 to January 2012. 

The frequency of the measurements taken in each substation is 24 (one per hour).  

The measured load data is seasonal with daily patterns; however, no obvious weekly or monthly patterns 

can be identified in the dataset. There are sudden fluctuations in the data which can be caused by failure of 

measurement equipment, grid reconfiguration by the network operator or even weather conditions; 

however, the proposed system does not require additional information about the date, network 

configuration or weather conditions for forecasting. 

2.2. Predictor Variables Construction 

The aim of this stage is to convert a one-dimensional time-series (one observation per time instant) 

containing L measurements into multi-dimensional set of observations by sampling and reshaping the 

time-series. If D new points (prediction size) for the measured time-series are to be predicted, series needs 

to be reshaped into (2 ×  D) × (N ÷ 2) sampling matrix (SM) where obviously, the length of the time 
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series L must be such that L = D × N. Rows of SM are formed by taking 2 × D successive measurements 

from the start of the original time-series. In each row of the SM the first D points will act as the predictors 

and the second D points act as the target variables. The SM matrix formed in this way can now be split into a 

training and testing sets by considering all rows of the SM but one for training matrix and the last row for 

the testing set. The target for the testing set will be the D points in the future to be forecasted.  

For a sample time-series containing measurements collected over Z days, extracting two days’ worth of 

measurements into columns will result in the sampling matrix indicated in the Fig. 2. Furthermore, 

partitioning of the sampling matrix into training and testing sets is also indicated in this figure. 

Each column on the right-hand side of the SM in Fig. 2, acts as the target variable for the machine learning 

algorithm while the left-hand side columns will be used as the predictor variables. A regression model will 

be fitted to the training set based on Direct strategy in order to predict the target variables in the testing set. 

By doing this the system is able to predict D new points in the future. 
 

 
Fig. 2. Splitting time-series data into training and testing sets by creating a sample matrix. 

 

2.3. Time-Series Decomposition and Hybrid Forecasting 

Prior to training the system, the historical load time-series is decomposed by locally-weighted scatterplot 

smoothing (LOWESS) method. The decomposition by LOWESS provides the seasonal component, the trend 

and the remainder of the time-series which is most likely the noise. Each of the three components is 

forecasted separately by different machine learning algorithms (MLAs). The selected combination of MLAs 

forms the order of the system i.e. (Seasonal, Trend, Remainder) or (S, T, R). In this paper 3 MLA’s have been 

selected for the main forecasting system and developed in R (R Core Team, 2014). Random Forests (RF), M5 

from Quinlan [25] and linear regression (LR). 

The final multi points ahead forecast for the time-series will be achieved by recomposing the time-series 

back from its three forecasted components. The orders of the system represent the MLAs chosen to forecast 

for each component of the time-series. LR, RF and M5 have been considered to be orders 1,2 and 3 

accordingly. 

2.4. Optimal Prediction Size 

Term prediction size is used to denote the number of new points to predict. The significance of the 

prediction size comes from the fact that it is directly correlated to the size of the training and testing sets 

and in general the size of SM. As the prediction size increases, more points of the data will be entered as 

predictors and targets to the system. Thus, the MLA needs to find a link between a larger number of 

predictors and target values. This increases the chances of the MLA over-fitting a model which also 

considers the link between the noise in the data and the target variables. Moreover, the larger the target 

variables become fitting a multivariate regression model becomes harder and the results get less accurate. 

Smaller prediction sizes most likely result in an under-fitting model being created and a larger data set is 

generally required to properly train the system. 
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This emphasizes the significance of an optimal prediction size for every dataset before starting 

forecasting. To solve this a few prediction sizes have been used on one substation’s data to test the accuracy 

of the system. The mean absolute percentage error (MAPE) is calculated each time by comparing the actual 

consumption with the prediction. The general formula to calculate MAPE is shown in (1), where A is the 

actual value and F is the forecasted value: 

( ) ( )
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= ä        (1) 

Additionally, the root-mean-square error (RMSE) has been obtained and used as an additional 

performance measurement tool for each forecast. RMSE can be calculated using (2). 
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Fig. 3 demonstrates the impact of prediction size on the error rates. As it can be realised from this figure, 

prediction sizes between 2 and 6 can achieve the lowest error rates however, the total points ahead forecast 

can be very limited by selecting these prediction sizes. 

To find the most suitable prediction size for the time-series, a novel approach has been used by finding 

the Power Spectral Density (PSD) of the time-series. 

 

 
Fig. 3. Impact of the prediction size on MAPE and RMSE for different number of training days. 

 

Following the simple frequency analysis it is established that the prediction sizes that were achieving the 

lowest forecast error rates in Fig. 3, correspond to dominant frequency and the second harmonic present in 

the measured data set. The dominant frequency of the time-series and 9 of its most significant harmonics 

are presented in Table 1. 
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Since analyzing the PSD of the time-series technique helps with finding the most accurate prediction rate, 

the optimal prediction size should be determined prior to forecasting for each dataset. 

 

Table 1. Top 10 Dominant Frequencies of Substation 1 
Rank Frequency Period Power 
1 0.0416666667 24.00000 122445.6796 
2 0.0833333333 12.00000 45105.2598 
3 0.0006944444 1440.00000 2824.8824 
4 0.0013888889 720.00000 1820.9545 
5 0.1250000000 8.00000 1669.5960 
6 0.2083333333 4.80000 861.6264 
7 0.0777777778 12.85714 827.8121 
8 0.0361111111 27.69231 771.2810 
9 0.0423611111 23.60656 719.2211 
10 0.0041666667 240.00000 703.9741 

 

2.5. Transformation into DirRec 

To lift the limitation of the maximum number of the forecast points, recursive prediction strategy is 

added to the system architecture in this section. After finding the most optimal prediction size if the desired 

forecast points are higher than the prediction size, the system will divide the forecast points into blocks of 

prediction size length and repeat the forecast for each block by adding the initial predicted values to the 

original time series data. Moreover, the error rate increases by selecting shorter blocks as previously 

discussed in section 2.4. The final architecture of the Hybrid DirRec Time-series Forecasting (HDTF) system 

is provided in Fig. 4. 
 

 
Fig. 4. Complete model for the HDTF system. 

 

The performance of the proposed system has been measured by comparing the results of the three 

different strategies for 12 points to 96 points ahead forecasting. The comparison results indicate that the 

DirRec strategy outperforms Direct and Recursive strategies in all forecasting tasks except for one. 

The reason for Direct method outperforming DirRec in 24 points ahead is that 24 points is the period 

corresponding to the dominant frequency for this dataset. On the other hand, in terms of processing speed, 

Direct strategy achieves the best results by performing the forecast faster specially in situations where the 

forecast size is larger. This was expected since recursive strategy involves repeating the forecast which 

makes the overall process slower in DirRec and even more so in Recursive strategy. Recursive strategy is the 

slowest and the least accurate method as already discussed in Section 1. 

3. Results 

In order to establish the performance of the HDTF method, two different experiments have been 

performed on the dataset. First, keeping a short prediction period constant, different amount of training 

data has been provided for the system. Second, for a fixed length of training data, length of prediction 
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horizon has been varied. 

The experiments have been performed using the proposed method as well as two other standard 

techniques, Autoregressive Integrated Moving Average (ARIMA) [26] and Autoregressive Artificial Neural 

Networks (NNAR) which are available in R package forecast [27]. 

3.1. Short-Term Forecasting 

For short term forecasting experiment, the data from 5 different substations are selected to perform the 

tests designed for 12-hour, 1-day and 2-day power consumption forecasting. The minimal training period 

for each test starts from 7 days and gradually extends to 31 days with one day interval. MAPE, RMSE and 

processing time are averaged over all 25 tests and the final results are provided in Tables 2, 3 and 4. 

HDTF outperforms NNAR and ARIMA in most cases when predicting one day (24 points) and two days 

(48 points) ahead in terms of error rate. However, since HDTF’s strategy changes to Direct while forecasting 

12 hours ahead, there is a slight increase in error rates which results in NNAR performing better in some 

case (see Table 3). In terms of processing time, ARIMA is the fastest method with a large advantage 

compared to the machine learning methods. HDTF performs faster than NNAR in 12 hours ahead prediction 

but it is slower in general compared to the other two scenarios for these three short-term forecasting tasks. 

 

Table 2. Twelve-Hour Prediction by Average of 7 to 31 Days Training 
Method ARIMA HDTF NNAR 

Tools MAPE 
(%) 

RMSE TIME 
(Sec) 

MAPE 
(%) 

RMSE TIME 
(Sec) 

MAPE 
(%) 

RMSE TIME 
(Sec) 

Sub1 7.91 3.57 0.16 7.70 3.56 1.64 8.20 3.73 2.88 
Sub2 8.11 7.40 0.17 7.57 7.10 1.71 7.41 6.72 2.75 
Sub3 7.74 8.29 0.18 7.74 8.28 1.62 6.18 6.69 2.45 
Sub4 9.12 11.27 0.18 8.75 10.78 1.73 10.71 13.42 2.60 
Sub5 26.15 12.26 0.16 20.72 11.03 1.69 19.39 9.44 2.68 

 
Table 3. One-Day Prediction by Average of 7 to 31 Days Training 

Method ARIMA HDTF NNAR 

Tools MAPE 
(%) 

RMSE TIME 
(Sec) 

MAPE 
(%) 

RMSE TIME 
(Sec) 

MAPE 
(%) 

RMSE TIME 
(Sec) 

Sub1 7.47 4.03 0.12 7.09 3.80 2.61 8.23 4.48 2.84 
Sub2 7.19 7.44 0.16 7.01 7.48 2.64 7.49 7.96 2.61 
Sub3 6.94 9.39 0.16 7.87 10.98 2.66 6.86 9.82 2.46 
Sub4 9.36 11.04 0.18 8.78 10.46 2.85 10.46 13.12 2.69 
Sub5 20.13 9.86 0.15 17.09 8.95 2.75 20.32 9.42 2.71 

 
Table 4. Two-Day Prediction by Average of 7 to 31 Days Training 

Method ARIMA HDTF NNAR 

Tools MAPE 
(%) 

RMSE TIME 
(Sec) 

MAPE 
(%) 

RMSE TIME 
(Sec) 

MAPE 
(%) 

RMSE TIME 
(Sec) 

Sub1 7.68 4.18 0.24 7.20 3.91 5.57 8.97 4.95 3.10 
Sub2 7.54 7.97 0.25 7.24 7.80 5.34 8.21 9.10 2.76 
Sub3 8.01 11.00 0.23 8.38 11.96 5.24 8.99 13.03 2.55 
Sub4 10.97 13.24 0.23 9.61 11.75 5.53 10.99 13.94 2.71 
Sub5 22.01 10.99 0.22 18.55 9.85 5.31 25.37 11.87 2.68 

 

3.2. Long-Term Forecasting 

In order to measure the performance of the methods over longer periods of time. Three medium to long 

term forecasting tasks have been performed on substations 1, 2 and 3. The training set for each substation 

is constant at 30 days. The forecast goal starts from 1 days ahead and increments up to 20 days ahead. The 

performance of HDTF is then compared to NNAR and ARIMA. The results indicate that HDTF outperforms 
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the traditional ARIMA and NNAR methods in medium to long-range forecast tasks as well. This is more 

obvious especially when the noise levels are high (i.e. substation 3) where statistical methods like ARIMA 

fail. The impact of the forecast days on MAPE can be observed for 3 substations in Fig. 5. This figure shows 

that HDTF performs very consistently for all substations however the performance of NNAR and ARIMA is 

data and noise dependent. 

 

 
Fig. 5. The error-rate curves of ARIMA, HDTF and NNAR for forecasting 1 to 20 days ahead in three different 

substations. 

4. Conclusions 

Predicting the future load consumption is one of the most important tasks in power systems from 

generation to distribution, especially where the grids are complex. 

This paper introduced a new hybrid method for short and medium range time-series forecasting based 

on DirRec strategy, called HDTF. Additionally, application of this method in demand forecasting in power 

stations was established without the need for extra information about the date or weather conditiions. 

Finally, the performance of HDTF is compared to two well-known time-series modelling and forecasting 

techniques, statistical modelling technique, ARIMA and feed forward neural network-based technique with 

lagged inputs, NNAR.  

The comparison results of short-term forecasting show that HDTF outperforms both other methods 

except for the cases where the forecast period is very short or less than its optimal “prediction size” i.e. one 

day in this work’s dataset. The reason for this limitation is that forecasting a period less than its optimal 

“prediction size” will result in the method switching to direct strategy which will result in faster processing 

times but lower accuracy as evidenced in Table 3. 
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The medium to long range forecast test results also demonstrate that HDTF not only outperforms the 

other two techniques, but also overcomes the noise present in the dataset. The reason for the good noise 

tolerance of the proposed method is that, the orders selected for the datasets include M5 and Random 

forest regression methods for two components of the complete time-series. Both these MLAs are tree based 

methods, designed to have great noise tolerance compared to statistical methods such as ARIMA. This was 

more obvious in the noisier dataset of substation 3 where ARIMA failed. 

In comparison with MLA based forecasting systems, HDTF shows consistency in error rates over different 

forecast periods. This is an advantage compared to NNAR method, which shows sudden increases in error 

rates as the prediction size increases. All methods show a gradually increase in MAPE trend as the forecast 

points ahead increase except for substation 3 where ARIMA’s MAPE increases faster than the machine 

learning based methods due to higher noise levels. 

Although the comparison results of the HDTF show improved performance compared to other two 

methods, the impact of the different orders of the system on the short and long ranged forecasting needs to 

be further investigated. This will be the focus of the continuation of this work. 
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