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Abstract 

Increasingly complex value chains and rising competition require firms to employ advanced 

planning mechanisms for efficient resource allocations aiming for an increase of their 

productivity level. Planning is frequently done by corporate entities based on performance 

analysis techniques such as the Data Envelopment Analysis (DEA). Within planning 

processes, total resource levels that should be allocated among processes are regularly 

defined ex-ante, giving rise to decision problems that go beyond basic efficiency analysis. 

We have developed a method allowing the allocation of an ex-ante defined resource level 

across various processes of an organization to ensure the achievement of overall 

productivity targets. We propose a mixed-integer/linear program (MILP) that incorporates a 

social welfare function, allowing decision makers to consider fairness aspects. The 

practicability of the method is demonstrated in a real-life case study of setting productivity 

targets to processes at a first-tier automotive supplier. The model-based allocation strategy 

is compared to alternative approaches, as well as the strategy applied by the organization 

in the past. The proposed approach is beneficial in two dimensions: Either fewer activities 

are required to reach the total productivity target, or a lower overall strain level among the 

activities in respect of their improvement efforts can be achieved. 
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1 Introduction 

Decisions on resource level reductions are commonly made by top management. Typically, 

challenging market situations can require that all internal processes of an organization have 

to improve their productivity in the sense that they deliver the same level of output with less 

resources consumed. Advanced decision support methods are essential to facilitate the 

decision making process by top management. They allow precise statements regarding 

where and to which degree a resource level should be reduced to reach a pre-defined 

overall resource reduction target. Furthermore, fairness should be ensured among the 

decision alternatives regarding the efforts that each process faces to achieve required 

improvements. This study reports on a decision support approach fulfilling these 

requirements and addresses the overarching research question: How should a pre-defined 

resource reduction level, aiming for an increase of productivity, among processes in an 

organization be allocated considering process resource efficiency and overall allocation 

fairness? 

Data Envelopment Analysis (DEA) has received significant attention for the purpose of 

allocating resources based on efficiency analyses (Korhonen & Syrjänen, 2004; Lozano & 

Villa, 2004; Lozano et al., 2004). To measure the efficiency among decision making units 

(DMU), which can be processes of an organization, it is commonly assumed that 

benchmarking figures are available. However, the burdens of generating valuable (external) 

benchmarking figures that allow precise productivity analysis are often very high and are 

probably not available at short notice. Therefore, it seems tempting to rely on internal 

organizational data for productivity analysis which might be available more widely (e.g. 

Seidenschwarz et al., 2009). The potential heterogeneity of DMUs in respect to the 

underlying distinct process technologies must be considered when a DEA analysis among 

the internal processes of a single organization is performed. One approach that addresses 

heterogeneity among DMUs in the context of resource allocation was introduced by Lozano 

(2014), and will be used as a basis for the approach developed in this study.  

DEA is focused on determining efficient frontiers. If all processes would be improved to the 

level of the efficient frontier (e.g. reduction of input with constant output), the (theoretical) 

achievable input reduction (e.g. cost reduction) and therefore productivity increase might 

exceed what the decision maker actually wants to achieve. In other words, if the pre-defined 

resource reduction level is smaller than the maximum reduction level determined by DEA, 

the decision makers face the problem of determining resource reduction levels for each 

process. In such multiple-criteria decision situations, additional allocation premises are 

required, which should further allow the consideration of decisions maker preferences 
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(Korhonen & Syrjänen, 2004). Considering that the strain level of each process increases 

in tandem with its individual resource reduction level, we have developed a Mixed Integer 

Linear Programming (MILP) model for that purpose. It allows decision makers to control the 

level of fairness with regard to overall social welfare, based on a model introduced by 

Hooker and Williams (2012). We consider the strain level of a process by evaluating the 

required efforts of efficiency that a process needs to produce for performing the same tasks 

with fewer resources consumed (aiming for a higher level of productivity). 

Based on the allocation premises of Hooker and Williams (2012), this study considers 

fairness with regards to equity among the DMUs, following the maximin principle defined by 

Rawls (1971) – maximizing the welfare of the worst of – until it takes too many resources 

from others, causing a switch to a utilitarian objective. The welfare of each activity is 

expressed through its individual strain level to reach cost reductions. To ensure the 

satisfaction of the fairness objective throughout the allocation process, a social welfare 

function is used, introduced by Williams and Cookson (2000) and extended by Hooker and 

Williams (2012). The benefit of formulating a social welfare function for the purpose of 

allocating resource level reductions is that the function can be subject to different 

constraints and be maximized, allowing always to determine the most desirable 

equity/efficiency trade-off for the decision maker. The developed decision-making method, 

relying only on internal information, is of particular interest for indirect processes (i.e. 

processes that are needed to keep the direct value generating process running), as the 

generation of reliable, external benchmarking figures for these processes is particularly 

difficult (Lee & Covell, 2008). Furthermore, as less improvement potential can currently be 

found in direct areas (Becker et al., 2007), a concentration of productivity improvement 

activities in indirect areas takes place in business practice.  

The following section describes the requirements for allocating resources among the 

internal processes of an organization based on a review of DEA literature. With regard to 

the identified shortcomings of previous research, a new approach is proposed in Section 3. 

Section 4 applies the developed method to a real case study setting of a first-tier automotive 

supplier, analyzing indirect plant-related processes and evaluating the results in terms of 

alternative allocation proceedings. Lastly, Section 5 will provide an outlook on future 

research potential. 
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2 Literature Review 

DEA is a mathematical approach for the evaluation of the relative efficiency of DMUs 

(Charnes, Cooper, & Rhodes, 1978). DEA is used for the measurement of the efficiency of 

a set of DMUs, in the sense that all DMUs transform the same type of resources (inputs) 

into the same type of products (outputs) using the same technology (Dyson et al., 2001). 

Accordingly, each DMU can consider all other DMUs as possible benchmarks to assess 

their relative efficiency.  

It is commonly assumed that DMUs are homogenous. Nonetheless, when intending to apply 

DEA to detect inefficiencies among different processes of a single organization, potential 

sources of heterogeneity must be considered. Heterogeneity can occur for different 

reasons. It can be caused by different technologies used by the DMUs (Tiedemann et al., 

2011; Sala-Garrido et al., 2011; Medal-Bartual et al., 2012; Wu et al., 2012; Wang et al., 

2013), different applicable in- and outputs (Castelli et al., 2001; Saen et al., 2005; Cook et 

al., 2013), interdependencies between DMUs (Castelli et al., 2001), different sizes of DMUs 

(Sengupta, 2005; Samoilenko & Osei-Bryson, 2010), or even external factors (De Witte & 

Marques, 2010; Meza et al., 2011; Tao, 2013).  

Different approaches to addressing these sources of heterogeneity have been described in 

literature. One approach is to cluster DMUs into homogenous groups and examine multiple 

DEAs. This can be done by the comparison of the generated efficiency values with the help 

of statistical tests (Lee et al., 2009), the usage of efficiency values of each analysis as a 

basis for decision trees (Samoilenko & Osei-Bryson, 2008), the usage of a correction 

respectively connection factor to create comprehensive DEA results based on single 

analysis (Meza et al., 2011; Gomes et al., 2012; Cook et al., 2013), or neural networks 

(Samoilenko & Osei-Bryson, 2010). Furthermore, the ex-post clustering based on the 

results of multiple and recursive DEAs has been suggested (Sharma & Yu, 2009). 

Moreover, in order to address the aspect of different technologies, metafrontier analyses 

have recently gained attention (Tiedemann et al., 2011; Sala-Garrido, 2011; Medal-Bartual 

et al., 2012; Wang et al., 2013). In addition, using multidivisional DEAs to consider the 

efficiency of DMUs simultaneously but independently in one model have been 

demonstrated (Wu et al., 2012). Furthermore, smoothing techniques have been examined 

to reduce random variations causing heterogeneity, and are based on statistical tests and 

regression analysis (Sengupta, 2005). To ensure homogenous ex-ante data, the selection 

of only relevant benchmark partners has also been suggested (Adler et al., 2013). To 

address interdependencies between sub DMUs, the concept of network DEA has been 



 
 

 

5 
 

introduced (e.g., Castelli et al., 2001). Finally, if input or output values are missing, AHP has 

been applied to generate such missing values (Saen et al., 2005). 

There are some restrictions to applying the existing approach for the reduction of resource 

level among the processes of a single organization. While these restrictions can be 

addressed easily by adapting the model’s constraints (see method development), the 

approach has its limitations if an ex-ante target setting of a total resource level is intended. 

In this case, an additional multiple criteria problem emerges, which is addressed by this 

study, and detailed in the following section.  

3 Methodology 

As a guidance throughout this section, the methodological approach, induced by a problem 

definition (see Section 1 and 2), is graphically summarized in Figure 1. The two main steps 

– DEA Analysis and Resource Allocation – have to be followed in order, besides the 

supporting activities of data collection and the definition of allocation premises. By doing so, 

an allocation decision can be made by the end.  

 

 

Figure 1: Methodology  
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Step I 

The activities (a) of an organization are identified and clustered into homogenous processes 

(p). Within a process, activities can be considered homogenous and comparable with a DEA 

using the same technology. Each activity (a) has the same kind of inputs (I) and outputs (O) 

given by the amounts xia (inputs consumed) and yoa (outputs generated). The processes 

can be heterogeneous with each other. A DEA model with variable returns to scale based 

on Lozano (2014) is proposed to identify the minimum input level (x̂ia) needed for each 

activity while being able to perform the same tasks (1). More precisely, the same output 

needs to be producible as formulated through the constraint (3), added to the approach of 

Lozano (2014) (e.g., Barnum et al., 2011).  

The maximum cost reduction of each activity (Ra) – given by Ra = cia (xia – x̂ia) – is determined 

by the difference between the current input level (xia) and the minimum level calculated by 

the DEA. In the resource reduction in step II, only the inefficient activities (i.e. xia > x̂ia) are 

considered. This is done because the acceptance of the derived targets would otherwise 

be low in real case examples, and the efficient activities would not work in respect of their 

in- and output possibilities, set as a benchmark for the inefficient activities, as claimed by 

Asmild et al. (2009). It is noteworthy that, in this model, we do not consider the option of 

eliminating activities as suggested by Lozano (2014), as it is not feasible in the context of 

continuous improvement management, which aims for an improvement of the existing 

processes, not a reorganization of them. 

Sets 

Ap    set of activities a belonging to process p 

I    set of inputs indexed by i 

O    set of outputs indexed by o 

P    set of processes indexed by p 

Parameters 

cia   unit costs of input i for activity a 

xia   amount of input i consumed by activity a 

yoa   amount of output o generated by activity a 
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Decision variables 

λja     multiplier variable on activity j corresponding to activity a 

x̂ia    minimum amount of input i to be consumed by activity a 

Objective function 

 min ∑ ∑ ∑  cia x̂ia

i ∈ Ia ∈ App ∈ P

  
(1) 

Constraints 

∑ λja xij  ≤ x̂ia 

j ∈ Ap

 ∀ i ∈ I  ∀ p ∈ P  ∀ a ∈ Ap (2) 

∑ λja yoj 
= y

oa
 

j ∈ Ap

 ∀ o ∈ O  ∀ p ∈ P  ∀ a ∈ Ap (3) 

∑ λja  = 1 

j ∈ Ap

 ∀ p ∈ P  ∀ a ∈ Ap (4) 

λja  ≥ 0 ∀ p ∈ P   ∀ j ∈ Ap  ∀ a ∈ Ap (5) 

x̂ia  ≥ 0 ∀ p ∈ P   ∀ j ∈ Ap  ∀ a ∈ Ap (6) 

Step II 

The DEA model having highlighted inefficient activities, the second step defines which 

activity and how much it needs to improve given the reduction goal G defined by the decision 

maker. By improvement we refer to reducing cost (or generally ressources) while producing 

the same value and therefore increasing productivity. If solely a constraint aiming for the 

allocation of the desired reduction goal would be to be added to the model in step I, but if G 

would be smaller than the determined maximum overall reduction level (G < ∑ R
aa∈A ), an 

infinite number of optimal solutions would be possible. This could lead to extreme allocation 

scenarios in which, for example, some activities could receive very demanding reduction 

targets, while others remain unaffected. Consequently, further allocation objectives are 

required to ensure a specific and precise allocation proceeding. 

Therefore, we incorporate fairness in our approach, an objective that has received recent 

attention in the literature (e.g., Ogryczak et al., 2006; Bertsimas et al., 2012). To allow the 



 
 

 

8 
 

consideration of fairness in respect of the strain of each activity that needs to improve, we 

base our approach on an allocation model developed by Hooker and Williams (2012). To 

the best of our knowledge, this approach is so far unique in allowing for individual strain 

respectively utility levels of each DMU. If other objectives should be considered to ensure 

an allocation in line with stakeholder expectations, for example the ability of each DMU to 

change its input-output mix, alternative multiple criteria methods might be of interest, e.g., 

Korhonen & Syrjänen, 2004. 

The approach of Hooker and Williams (2012) is based on a social welfare function, which 

is maximized in a MILP formulation. The two allocation principles integrated in this model 

are the maximin principle and, in extreme situations, the utilitarian objective. This allows the 

consideration of equity and efficiency in the decision process. We have defined the utility 

level (ua) of each activity in respect of its strain level (sa) as: ua = 1 – sa where sa ∈ [0,1]. The 

switch between the maximin principle to the utilitarian objective occurs when the difference 

between the utilities is higher than ∆: ua – umin ≥ ∆ with umin being the lowest utility among all 

utilities. The threshold parameter ∆ must be defined by the decision maker within the 

allocation process, and is measured in the same units as the utilities of the decision 

elements. When ∆ is chosen, it ensures that the same policy is applied in any allocation 

situation by maximizing the social welfare function.  

As the aim of this study is to facilitate the reduction of resources among activities, we will 

focus on the strain on each activity in reaching the required resource reduction levels. The 

necessary strain functions of the activities, required to design the n-person model, have to 

indicate how the strain level of the activities change with an increasing reduction level, and 

indicate their specific strain in respect of the intended cost reductions (ra; 0 ≤ ra ≤ Ra). The 

strain level maximum at sa = 1 is reached when ra = Ra.  A set of intervals (D) to determine 

the piece-wise linearized functions is defined. The interval in which ra is allocated is 

determined by the lower (lbad) and upper bounds (ubad) of the intervals and φ
ad

. To border 

the linearized utility functions in each interval in respect of ra, further auxiliary decision 

variables, kad
−

 and kad
+

 are introduced. Furthermore, we rely on two additional decision 

variables, originally defined by Hooker and Williams (2012), which are required to perform 

the resource allocation: va and δa. 

The following optimization model consequently calculates the allocated resource reduction 

(ra) among inefficient activities in order to achieve the overall reduction goal (G). The 

decision maker can decide, in order to ensure fairness, to place more focus on either equity 

or utility among the activities in the allocation process through the choice of ∆. In other 

words, the ∆ determines how many inefficient activities have to contribute in order to reach 
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the overall resource level, and to what extent. For the sake of illustration, an exemplary 

linearized utility and strain function is shown in Figure 2. 

Parameters 

bad   y-intercept of the utility function of activity a in interval d 

D    number of intervals d 

∆   threshold for switching from efficiency approach to equity approach 

G   reduction goal 

lbad   lower bound of the dth interval of activity a 

M   large number 

mad   slope of the utility function of activity a in interval d 

n   number of activities 

Ra    maximum possible cost reduction of activity a 

ubad   upper bound of the dth interval of activity a 

Decision variables 

ra   cost reduction for activity a 

ua   utility level of activity a 

w    lowest utility level amongst all activities 

z    overall utility contribution amongst all activities 

Auxiliary decision variables 

kad
-

= { 
1 if  ra ≥ lbad    
0     otherwise

     

kad
+

= { 
1 if  ra ≤ ubad

0   otherwise
 

φ
ad

= { 
1 if  lbad ≤  ra ≤ ubad

0       otherwise         
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δa  binary variable indicating if activity a is making a utilitarian (δa = 1) or 

a rawlsian (δa = 0) contribution in the objective function 

va auxilliary decision variable to specify the objective function 

contribution of activity a  

Objective function 

max z  (7) 

Constraints 

  

 z  ≤  (n - 1) Δ + ∑  ∑ va

a ∈ App ∈ P

  (8) 

ua – Δ ≤ va ≤ ua – Δ δa ∀ p ∈ P  ∀ a ∈ Ap (9) 

w ≤ va ≤ w + M δa ∀ p ∈ P  ∀ a ∈ Ap (10) 

ua - mad ra ≤ bad + M (1 - φ
ad)   ∀ p ∈ P  ∀ a ∈ Ap  d = 1, …, D  (11) 

lbad kad
-

 ≤ ra ∀ p ∈ P  ∀ a ∈ Ap  d = 1, …, D  (12) 

ra ≤ ubad kad
+

 +  (1 - kad
+ ) M ∀ p ∈ P  ∀ a ∈ Ap  d = 1, …, D  (13) 

kad
-

 + kad
+

 = 1 + φ
ad

 ∀ p ∈ P  ∀ a ∈ Ap  d = 1, …, D  (14) 

∑  φ
ad 

D

d = 1

= 1 ∀ p ∈ P  ∀ a ∈ Ap (15) 

∑  ∑ ra ≥ G

a ∈ App ∈ P

  (16) 

0 ≤ ra ≤ Ra ∀ p ∈ P  ∀ a ∈ Ap (17) 

ua ≥ 0 ∀ p ∈ P  ∀ a ∈ Ap (18) 

δa ∈ {0,1} ∀ p ∈ P  ∀ a ∈ Ap (19) 

 

The objective function (7) maximizes social welfare. Constraints (8)–(10) ensure that the 

premises underlying the objective function (following a maximin principle and, in extreme 

situations, a utilitarian objective) are fulfilled. δa is 0 and va is umin if ua – umin < ∆ and 1 
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respectively ua – ∆ otherwise. Constraints (11)–(15) connect the utility via the strain of 

activities a and the corresponding reduction target ra, respectively. This is done via a 

linearization of the utility regarding the strain functions. Constraint (16) ensures that the 

overall target G is met, while constraint (17) ensures that ra does not exceed Ra. Finally, 

constraints (18) and (19) define the domain of the remaining decision variables. 

 

 

Figure 2:  Illustration of a linearized utility and a strain function  

To facilitate the implementation of the developed approach in real-life situations, we 

describe how best to collect the necessary data in the following section. 

Data collection 

First, the activities need to be identified and mapped. In order to determine the importance 

of each activity Analytic Network Process (ANP) is used to account for interdependencies 

between activities. In order to collect the cost incurred from each activity, activity-based 

costing (ABC) is adopted. The complete description on how to search the required input 

values for the DEA, (i.e. costs), as well as outputs values, is described in Ihrig et al. (2017). 

One essential element of Hooker and Williams’ (2012) approach is the definition of a utility 

function. To determine the utility functions, several approaches are conceivable (Farquhar, 
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1984), although there is still no gold standard for doing so (Heldmann et al., 2009). In our 

case study, the extraction of the utility function with the help of a strain function by expert 

evaluations and piece-wise linearization, roughly based on the approach described by 

Goodwin and Wright (2004), has demonstrated its practicality.  

4 Case Study 

To demonstrate the practicality of the developed method, we apply it in a real case setting. 

The case study organization is a first-tier automotive supplier plant that is confronted by 

demanding cost pressures. Top management asserted that cost reductions across their 

indirect processes are crucial in order to stay competitive. In the following, the same process 

data are used as in Ihrig et al. (2017).  

4.1 Step I 

First, the direct core processes of the plant and all indirect activities a (DMUs for DEA) that 

increase the internal, and indirectly the external customer value, are identified. The activities 

range across logistics, maintenance, and quality management functions. The activities are 

clustered into homogenous processes p (clusters for DEA) and the interdependencies have 

been identified.  

The 83 identified activities are analyzed using ABC to determine their cost (cia, inputs in 

DEA). The ANP, which takes into account interdependencies, is applied to determine their 

values in ensuring the direct processes of the organization’s running (yoa – output in DEA). 

The values of the activities are assessed according to the criteria of quality and delivery in 

a group decision process (see Appendix 2, Table 5). Given this data, the maximum cost 

reduction of each activity can be calculated. Both optimization models have been 

implemented and solved using CPLEX.  

31 of 83 activities were found inefficient. Their total reduction potential is 15.94 million EUR, 

which is 28% of the total cost (56.56 million EUR) incurred by all activities in one fiscal 

business year (see Appendix 2, Table 6).  

Regard heterogeneity of the examined processes, it should be pointed out that they all serve 

the same organizational internal customer (direct production process), allowing the 

evaluation of all activities in one ANP model using overall valid evaluation criteria. 

Furthermore, as the activities depend on each other, having an impact on the respective 

priority value of each activity in the ANP analysis, a non-centralized analysis of the allocation 

of the overall target G would probably lead to only a partially optimal solution. 
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4.2 Step II 

A reduction target G is determined by the decision maker. In the case study, we examine 

possible total reductions from G=1 to 15 million EUR, with 1 million EUR interval steps. 

Each cost reduction level is examined in respect of ∆ ranging from 0 to 1 in 0.01 steps. In 

total, we have run 1.515 possible allocation scenarios (101 different ∆, 15 cost reduction 

levels).  

An expert focus group, including two senior accounting managers and one process expert, 

has been held in order to construct the strain functions of the activities. One representative 

activity of each of the eight clusters has been chosen for the discussion.  

In Figure 3, the possible shapes of the strain curves discussed by the experts can be found 

as well as a brief explanation of their rationale. In course of the discussion, it has been 

decided by the experts that the function type 2 represents the most appropriate shape for 

all activities and should therefore be considered for the further data analysis. This is in line 

with the assumption that the utility function of a risk averse behavior (which we assume in 

such a decision situation) is best described by a monotonic increasing concave function 

(Murthy & Sarkar, 1998). Since in our setting the strain is the inverse of the utility and 

therefore rather a loss than a gain, as described on the y-axis, the choice of a convex strain 

function is supported (see discussion for criticism). 
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Figure 3:  Shapes of the strain curves and explanations  

The experts have been asked to determine function parameters using a certainty 

equivalence approach as well as a mid-value splitting technique, what represents half the 

difficulty of reaching the maximum reduction level, respectively one quarter for the activities 

(see Appendix 1 for how the request was designed). The function shape extracted from this 

approach is shown in Table 1 in the intervals d according to Ra, revealing the maximum cost 

reduction determined by DEA (x-intercept). 
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d mad bad 

1 –
0.25

 0.56 Ra 
 1 

2 –
0.25

 0.25 Ra 
 1.3 

3 –
0.25

 0.14 Ra 
 1.94 

4 –
0.25

 0.05 Ra 
 5.33 

 

Table 1:  Linearized concave utility function of type 2  

The decision maker has to determine ∆. Hooker and Williams (2012) do not discuss how 

this should be done in general, as allocation strategy that should be followed is to be 

decided by the decision maker. However, in respect of the case setting a range of ∆ and 

some turning points can be determined, which are probably of high interest for the decision 

maker. The range from 0 to ∆, in which at least for one activity δa=1 is valid, making a 

utilitarian contribution to the objective function, is listed in Table 2. For this purpose, we 

define ∆rawl to be the threshold at which any ∆ ∈ [∆rawl,1] will lead to an allocation scenario 

in which all activities make a maximin contribution.  

 Reduction goals G in million EUR 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

∆rawl 0.04 0.06 0.09 0.10 0.14 0.17 0.20 0.23 0.25 0.31 0.37 0.43 0.47 0.59 0.70 

 

Table 2:  ∆rawl for various reduction goals G 

Furthermore, an interesting turning point has been identified, in which the number of 

activities that have to contribute in order to reach the overall reduction goal (ra > 0) increases 

abruptly with larger ∆, and the number of those with δa=1 (meaning more activities 

contributing to the social welfare function by the maximin principle) drops sharply at the 

same time. For a reduction level G of 10 million EUR, for example, this turning point lies 

between a ∆ of 0.23 and 0.24 (see Figure 4). Furthermore, the cumulated total strain level 

of all activities experiences the sharpest increase at this point (see Figure 5). 
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Figure 4: Turning point for a reduction level of 10 million EUR  

With regard to a possible demand to reach other higher reduction goals over time, and the 

fact that ∆ is probably chosen only once to ensure consistent policymaking, this turning 

point is of additional interest. If, for example, a reduction level of 11 million EUR is intended, 

this point also indicates when a switch from 10 to 11 million EUR would allow the decision 

maker to choose a level, so that the total strain level, as well as the number of activities that 

need to contribute in order to reach the total reduction goal, would be the same (see Figure 

5). 

 

 

Figure 5:  Turning point for a reduction level of 10 million EUR in comparison to a 

reduction level of 11 million EUR (own illustration) 
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However, it would not be possible to prevent at least one activity from experiencing a sharp 

increase in strain as w indicates, as shown in Table 3 (meaning that the utility level of the 

worst off will drop, indicating at the same time that its corresponding strain level increases; 

see Figure 7 and 8 in Appendix 2 for a detailed comparison of the change in distribution of 

the individual strain levels among the activities). 

 
∆ 

0.23 0.24 

w for reduction of 10 million 
EUR 

0.524 0.666 

w for reduction of 11 million 
EUR 

0.502 0.502 

 

Table 3:   Comparison of w at turning point (own illustration) 

Even though no general recommendation can be derived regarding how to choose ∆, the 

analysis shows that at least an interesting range (see table 3) could be identified, which is 

probably worthwhile for the decision makers to consider. 

4.3 Comparison to alternative resource allocations 

The advantage of the developed approach becomes obvious when the allocation results 

are compared with alternative methods for deciding a total productivity gain of 10 million 

EUR. When reliable information is not available, the Pareto principle is often used to allocate 

the required reductions among activities bearing the largest costs (e.g., Grosfeld-Nir et al., 

2007). The Pareto-principle has been applied on a regular basis at the case study 

organization in several resource allocation situations. It has also been applied in previous 

budgeting processes for the examined indirect processes. In this research, we impose 

uniformly distributed cost reductions among the activities that contribute 80% of the total 

costs (37 of 83 activities) corresponding to their share of the total desired reduction level. 

In addition, the Target Setting for Indirect Processes (TSIP) method (Ihrig et al., 2017) can 

be considered as a valid alternative to decide on the activities that require cost reductions 

and is also currently applied by the case organization. The method, based on an adapted 

value control chart, also suggests imposing the reductions on 37 activities (not all the same 

as in the Pareto-principle). The resulting strain levels for both approaches (TSIP and Pareto) 

were determined with the assistance of the above-defined, convex-shaped strain function 

(Figure 3, type 2). For those activities that should receive reduction targets within the Pareto 

and TSIP proceeding, but which are performing their tasks efficiently according to the DEA 

(Ra=0), we considered the same function shape, assuming that their maximum reduction is 

equal to their total costs. By doing so, those activities are probably included in the analysis 
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with strain values that are too low. In Table 4, the results of these two proceedings in 

comparison to our developed method are presented. 

 

Pareto TSIP 

New approach 

 ∆ 

 0 0.23 >0.31 

sum of strain level (∑sa) 7.11 6.01 3.81 4.29 9.85 

highest strain 1.00 1.00 0.75 0.48 0.32 

second highest strain 1.00 0.57 0.75 0.48 0.32 

third highest strain 1.00 0.52 0.56 0.48 0.32 

number of required 
reductions 

37 37 9 9 31 

 

Table 4:  Comparison of the results of different allocation proceedings  

Within the Pareto-principle, it is remarkable that the highest strains are all 1 (non-efficient 

activities according to DEA obtained targets larger or equal to Ra). Even though the sum of 

the strain values of all activities is not significantly high (keeping in mind the probability of 

strain value that are too low), it is doubtful that the imposed reductions can be reached. In 

comparison, the TSIP approach reaches a lower overall strain level, and the strains of the 

activities are, apart from one exception, lower than 0.6. One reason is that the TSIP 

approach is based on an efficiency analysis and considers the ‘potential for improvement’ 

of each activity, determined by an ANP analysis, within its allocation process (implicitly 

representing an alternative formulation of the production function of each process). 

Therefore, the probability of reaching the imposed productivity targets can be considered to 

be much higher. With regard to our developed method, it is remarkable that, if a low ∆ is 

chosen, even lower strain values can be reached with considerably smaller numbers of 

activities that need to contribute. However, these activities experience relatively high strain 

levels. In summary, our developed approach is beneficial for two reasons. First, all allocated 

resource level reductions lie within the production possibility set of the respective activities; 

second, the satisfaction of a pre-defined fairness policy among the activities by the decision 

maker is ensured. 

5 Conclusion 

The allocation of resources and therefore productivity targets by a decision maker is a highly 

challenging task. Literature has not given detailed insight into how to do so if productivity 

targets are to be allocated among processes of a single organization, and in the absence 

of (external) benchmarking figures. The core idea of our method is to define processes and 
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their corresponding costs as inputs, and their value as output within a DEA. Resources are 

allocated by means of an optimization model, incorporating a social welfare function that 

enables the decision maker to determine whether the focus should be on equity or utility. 

The advantage of the developed approach have become obvious when applied in a real 

case setting, and when compared to alternative allocation methods. It allows for the 

allocation of resource reductions and therefore productivity gains among significantly fewer 

processes, while still generating low strain levels and ensuring fairness. 

However, considering the usage of DEA for efficiency analysis, one general aspect of DEA 

has to be reflected critically: the number of activities under each process might not be 

sufficient in all case settings (rule of thumb: the number of DMUs should be at least three 

times as high as the sum of all input and output factors Paradi & Zhu, 2013). Even though 

this could just be a matter of how to design the process structure appropriately in real case 

contexts, this aspect should not go unmentioned. Furthermore, it needs to be considered 

that, if an ANP is intended to determine the process values, the number of alternatives 

should not exceed a critical large number at the same time. Therefore, in the case study 

design, adaptations for the ANP analysis were necessary in cooperation with the case 

organization.  

Furthermore, the associated efforts cannot be denied. Specifically, the determination of the 

process and activity values and their respective strain functions demand some effort. This 

was also the case in the examined real case study. Even though it was intended to keep 

the efforts at a reasonable level to determine the strain functions, it appeared that different 

experts evaluated the activities differently, making additional, in-depth discussions and 

simplifications necessary. Along with these simplifications a potential loss in accuracy and 

increase in subjectivity cannot be denied. In future research alternative strain function 

extractions might therefore be of interest. Some might consider SMART(ER) (Edwards & 

Barron, 1994) or UTA (Jacquet-Lagreze & Siskos, 1982) to be useful; two commonly 

discussed approaches in the literature to determine utility functions. 

With regard to the unique possibilities of the developed method and the demand of 

managers for advanced decision methods, along with an increase in the dissemination of 

comprehensive process management approaches, we are hopeful that the research 

insights will gain wider attention in academia and in practice. 
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Appendix 

1 Strain Function Extraction 

The certainty equivalence approach that was used to extract the strain function was 

designed as the follows: the process experts of the case organization were requested to 

evaluate piece-wise what represents half of the difficulty level and that which represents 

one and three quarters, respectively, in order to reach the total reduction level of activity 3.5 

(xi3.5 = 492.437; R3.5 = 338.480). The request was designed using spreadsheet software. 

Based on the evaluations, the piece-wise linearized utility function was derived in respect 

of Ra. and by inverting sa The proceeding is exemplarily shown below, indicating the request 

for two intervals (one quarter and half the strain with regard to the maximum reduction level). 

 
 

Figure 6:  Exemplary certainty equivalence approach (own illustration) 

 

  

Yes

No, less difficult x

No, more difficult

Yes

No, less difficult x

No, more difficult

Yes

No, less difficult

No, more difficult x

Yes x

No, less difficult

No, more difficult

Yes

No, less difficult x

No, more difficult

Yes

No, less difficult

No, more difficult x

Yes

No, less difficult x

No, more difficult

Yes x

No, less difficult

No, more difficult

Do you perceive the reduction of 171'884 as half as difficult as the reduction of 275'015 ?

Do you perceive the reduction of 189'073 as half as difficult as the reduction of 275'015 ?

Do you perceive the reduction of 137'508 as half as difficult as the reduction of 275'015 ?

Do you perceive the reduction of 206'261 as half as difficult as the reduction of 275'015 ?

Do you perceive the reduction of 296'170 as half as difficult as the reduction of 338'480 ?

Do you perceive the reduction of 275'015 as half as difficult as the reduction of 338'480 ?

Do you perceive the reduction of 169'240 as half as difficult as the reduction of 338'480 ?

Do you perceive the reduction of 253'860 as half as difficult as the reduction of 338'480 ?
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2. Case Study Data Analysis 

a 
- activity- 

xia 
[EUR] 

yoa 
- quality- 

yoa 
- delivery- 

 a 
- activity- 

xia 
[EUR] 

yoa 
- quality- 

yoa 
- delivery- 

1.1 
         
8‘214   0.001   0.003  

 5.1 
      
148‘302   0.004   0.001  

1.2 
        
65‘712   0.011   0.004  

 5.2 
      
323‘483   0.009   0.007  

1.3 
      
123‘210   0.005   0.003  

 5.3 
      
328‘560   0.003   0.002  

1.4 
        
41‘070   0.002   0.003  

 5.4 
        
82‘140   0.003   0.002  

1.5 
         
8‘214   0.001   0.002  

 5.5 
      
287‘490   0.006   0.005  

1.6 
      
748‘198   0.008   0.005  

 5.6 
        
32‘856   0.004   0.003  

1.7 
        
24‘642   0.003   0.004  

 5.7 
      
410‘700   0.042   0.005  

1.8 
        
82‘140   0.003   0.003  

 5.8 
      
328‘560   0.096   0.027  

1.9 
         
8‘214   0.001   0.002  

 5.9 
        
82‘140   0.005   0.003  

1.10 
   
1‘235‘693   0.010   0.121  

 5.10 
        
82‘140   0.009   0.003  

1.11 
   
1‘000‘807   0.010   0.075  

 5.11 
      
134‘399   0.059   0.019  

1.12 
   
1‘820‘540   0.010   0.043  

 5.12 
      
263‘236   0.013   0.018  

1.13 
      
297‘875   0.010   0.034  

 5.13 
      
228‘560   0.028   0.018  

2.1 
        
61‘099   0.001   0.002  

 6.1 
      
545‘443   0.002   0.006  

2.2 
      
236‘314   0.001   0.002  

 6.2 
   
2‘051‘585   0.002   0.010  

2.3 
      
365‘657   0.002   0.002  

 6.3 
      
444‘012   0.001   0.001  

2.4 
      
303‘555   0.002   0.002  

 6.4 
   
1‘442‘738   0.000   0.001  

2.5 
      
237‘703   0.003   0.002  

 6.5 
      
665‘093   0.001   0.004  

2.6 
      
425‘447   0.015   0.002  

 6.6 
   
2‘660‘371   0.001   0.008  

2.7 
      
651‘869   0.015   0.002  

 6.7 
      
590‘783   0.000   0.000  

2.8 
      
280‘732   0.012   0.011  

 6.8 
      
368‘879   0.000   0.000  

3.1 
      
195‘573   0.008   0.001  

 6.9 
      
484‘082   0.000   0.001  

3.2 
      
905‘638   0.008   0.002  

 6.10 
      
418‘576   0.000   0.001  

3.3 
      
452‘819   0.061   0.008  

 6.11 
   
3‘661‘751   0.003   0.015  
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3.4 
      
204‘014   0.004   0.000  

 6.12 
      
406‘533   0.003   0.015  

3.5 
      
492‘437   0.010   0.005  

 7.1 
      
998‘168   0.006   0.014  

3.6 
   
2‘083‘747   0.010   0.010  

 7.2 
      
845‘905   0.006   0.014  

3.7 
      
392‘579   0.009   0.017  

 7.3 
      
284‘777   0.005   0.013  

3.8 
      
121‘971   0.011   0.007  

 7.4 
      
274‘834   0.004   0.012  

3.9 
      
242‘627   0.013   0.002  

 7.5 
      
154‘141   0.002   0.008  

3.10 
      
290‘279   0.010   0.002  

 7.6 
   
1‘518‘811   0.004   0.012  

4.1 
   
1‘513‘443   0.017   0.021  

 7.7 
   
2‘575‘714   0.001   0.007  

4.2 
        
62‘696   0.008   0.004  

 7.8 
        
71‘344   0.005   0.012  

4.3 
      
160‘240   0.010   0.015  

 7.9 
        
71‘344   0.005   0.012  

4.4 
      
312‘132   0.006   0.003  

 8.1 
   
2‘223‘265   0.021   0.004  

4.5 
      
427‘128   0.007   0.006  

 8.2 
        
82‘140   0.019   0.005  

4.6 
   
6‘911‘206   0.091   0.026  

 8.3 
        
82‘140   0.010   0.005  

4.7 
   
2‘226‘686   0.034   0.058  

 
8.4 

        
65‘712   0.005   0.001  

4.8 
   
2‘123‘634   0.008   0.024  

 
8.5 

        
32‘856   0.011   0.004  

4.9 
   
1‘087‘685   0.033   0.009  

 
8.6 

      
246‘420   0.012   0.005  

4.10 
   
1‘339‘668   0.033   0.033  

 
8.7 

      
328‘560   0.007   0.007  

4.11 
      
664‘902   0.006   0.057  

 

Table 5:  Case study raw data (own illustration) 
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a 
- activity- 

Ra 

[EUR] 

ra 

[EUR] 
sa δa w 

1.3 93‘122  - 0.00 1.00 0.52 

1.4 22‘869 -                         0.00 1.00 0.52 

1.6 686‘370 541‘034 0.48 - 0.52 

1.8 59‘286 - 0.00 1.00 0.52 

1.11 259‘443 - 0.00 1.00 0.52 

1.12 1‘428‘559 1‘126‘068 0.48 - 0.52 

2.2 175‘215 - 0.00 1.00 0.52 

2.3 263‘213 - 0.00 1.00 0.52 

2.4 211‘448 - 0.00 1.00 0.52 

2.5 122‘339 - 0.00 1.00 0.52 

2.7 226‘422 - 0.00 1.00 0.52 

3.2 712‘888 561‘938 0.48 - 0.52 

3.5 338‘480 - 0.00 1.00 0.52 

3.6 1‘867‘173 1‘471‘808 0.48 - 0.52 

3.9 12‘345 - 0.00 1.00 0.52 

3.10 85‘902 - 0.00 1.00 0.52 

4.1 969‘606 764‘297 0.48 - 0.52 

4.5 213‘825 - 0.00 1.00 0.52 

4.8 1‘852‘104 1‘459‘929 0.48 - 0.52 

5.2 241‘434 - 0.00 1.00 0.52 

5.5 230‘119 - 0.00 1.00 0.52 

5.9 40‘885 - 0.00 1.00 0.52 

5.13 9‘648 - 0.00 1.00 0.52 

6.1 119‘059 - 0.00 1.00 0.52 

6.2 892‘053 703‘165 0.48 - 0.52 

6.5 284‘987 - 0.00 1.00 0.52 

6.9 65‘506 - 0.00 1.00 0.52 

6.11 3‘255‘218 2‘565‘941 0.48 - 0.52 

7.3 9‘943 - 0.00 1.00 0.52 

7.6 1‘022‘285 805‘821 0.48 - 0.52 

8.6 164‘280 - 0.00 1.00 0.52 

 
 

∑15.8  

million EUR 

 

∑10  

million 

EUR 

 

 

Table 6:  Analysis for ∆=0.23 and G=10 million EUR (own illustration) 
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Figure 7:  Distribution of sa at 10 million EUR cost reduction (own illustration) 

 

 
 

Figure 8:  Distribution of sa at 11 million EUR cost reduction (own illustration) 
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