
The Computer Network Faults
Classification Using a Novel

Hybrid Classifier

By

Karwan Hussein Qader

Supervisor

Dr. Mo Adda

This thesis is submitted in partial fulfilment of
the requirements for the award of the degree of

Doctor of Philosophy of the University of Portsmouth.

February, 2019





I would like to dedicate this thesis to my loving family . . .
The soul of my Mother-in-law, whose memories persist in being forever

my Mother, whom I owe my life

my Father, who sacrificed his life for us

my Father-in-law, who who was being my guardian during my PhD course

my loving Wife "Asmaa" and Daughters "Dya & Lya, who are my eternal gratitude



ii

List of publications

Published articles

Qader, K., Adda, M., Allaf, Zirak. (2019). A Proposed Subtractive Fuzzy Probabilistic
Neural Network Classifier (SFPNNC) to Classify The Different Scenarios of The Traffic
Faults in Computer Network System. Journal of IEEE Transactions on Fuzzy Systems.
Special Issue (under review)

Qader, K., Adda, M. (2019, July). DOS and Brute Force attacks faults detection using An
Optimised Fuzzy C-means. In IEEE International Conference on INnovations in Intelligent
SysTems and Applications (INISTA)(under review)

Qader, K., Adda, M., Al-Kasassbeh, M. (2017). Comparative analysis of clustering tech-
niques in network traffic faults classification. International Journal of Innovative Research in
Computer and Communication Engineering, 5(4), 6551-6563.

Qader, K., Adda, M. (2014, September). Fault classification system for computer
networks using Fuzzy Probabilistic Neural Network Classifier (FPNNC). In International
Conference on Engineering Applications of Neural Networks (pp. 217-226). Springer, Cham.

Qader, K., Adda, M. (2013). Network Faults Classification Using FCM. In Distributed
Computer and Communication Networks: Control, Computation, Communications (DCCN-
2013) (pp. 66-73).

Qader, K., Adda, M. (2013). A survey of network faults classification using clustering
techniques. International Journal of Advanced Research in Computer and Communication
Engineering, 2(10), 4028-4032.



Declaration

Whilst registered as a candidate for the above degree, I have not been registered for any other
research award. The results and conclusions embodied in this thesis are the work of the
named candidate and have not been submitted for any other academic award

April 2019





Acknowledgements

Firstly, I would like to thank almighty God for guiding me through my PhD and granting

me the strength to complete it. The last few years of my PhD have been some of the hardest,

but also most inspiring and rewarding in my life. I can say that the lessons I have learnt

throughout this period of time have been both professional and personal. There are a number

of people whom I must mention and give thanks to.

First and foremost, I must offer my appreciation to my supervisor,Mo Adda, who has been

a beacon of inspiration and guidance for me throughout my PhD journey. The professional

and personal knowledge and support I received I will always remember.

Secondly, my dearest and closest friend and colleagueZirak Allaf . I am forever indebted to

him for the endless encouragement and direction he was always to pleased to give me.

My parents, sisters and brothers have also offered me warm encouragement and support, for

which I am also grateful.

Finally, and most importantly, I must thank my wonderful and loving wife,Asmaaand my

two beautiful daughtersDya andLya who always remind me that life should always be

enjoyed.





Abstract

The increasing importance and complexity of networks led to the development of network

fault management as a distinct �eld, providing support for network administrators with

quality services and ensuring that networks work appropriately. Fault diagnosis is a central

aspect of network fault management. Since faults are unavoidable in communication systems,

their quick detection and isolation are essential for the robustness, reliability and accessibility

of the system. In large and complex communication networks, automating fault classi�cation

is critical. Because of many factors, including the volume of network information, it is hard

to solve network fault problems with traditional tools, rendering intelligent analysis a critical

method in the process of network fault diagnosis.

This work stated how the common traf�c faults in a computer network system could be

classi�ed ef�ciently and improved the performance of the network which is lead to lessening

the cost and the time consumed amount. Thus the network administrators will avail to

diagnosis the network issues instantly. The experimental work used the datasets of IF-MIB

variables which is detected by a researcher in two different scenarios that captured in the

router and the server.

To address these issues, this research has conducted several signi�cant contributions,

which is relate to the concern of fault management in the computer network system. One of

the main tasks of classifying faults is re�ning the existing datasets. Usually datasets obtained

from network analysis tools and experiments are prone to noise, ambiguities and inaccuracies.

Thus to produce cleansed datasets that are free from any noises, and inconsistent, two

different �ltering techniques (normalisation and standard scaling) are proposed.

The optimised fuzzy clustering means (subtractive fuzzy clustering means), which is

hybridised with the subtractive clustering is also developed to indicate the optimal number

of clusters ef�ciently. Other researchers did not address the ef�ciency of their clustering

methods.

Further, based on the advantages of the PNN classi�er, the SFCM is consolidated with

it, and a new proposed classi�er model is developed which is de�ned as a subtractive fuzzy

probabilistic neural network classi�er (SFPNNC).
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The newly generated datasets have been tested through different algorithms to output

clusters �rst then labelling each group of the fault traf�c. The experimental analysis revealed

that the SFCM achieved immensely higher performance and more accurate results than

K-means and Expectation Maximisation (EM).

Ultimately, the empirical outcomes showed that our proposed hybrid classi�er model

(SFPNNC) outperforms the existing classi�er (PNN) and achieved higher precisions and

performances.

Overall conclusion, it is validated that the proposed SFCM outperformed the K-means

and EM which the partition coef�cient (PC) reached to (0.96). The (SFPNNC) classi�er

outcomes showed that the proposed method classi�ed the faults very ef�ciently with an

accuracy of 94% for light traf�c workloads.
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Chapter 1

Introduction

Computer networks have become integral aspects of modern society. They are now utilised

for everyday activities by vast proportions of the populations and they are increasingly

invaluable in the business world. Regrettably, these networks are frequently abused as a

result of the unsanctioned dissemination of copyrighted material, the distribution of fraud-

ulent communication and online attacks on other customers, among others. Such actions

can present signi�cant risks to online users, businesses or creative professionals, which

emphasises the need to determine methods that can provide protection. As each of these

threats has unique characteristics, it is necessary to develop different strategies. For instance,

online defence could take the form of an appropriately structured network �rewall, regular

updates to operating systems and applications, legal constraints, scanning of network traf�c

and the �ltering of undesired applications. Parallel with the increased magnitude of networks

of communication in the real world, it has become a necessity to enhance the ef�ciency of

network management. As the condition and security of networks are essential factors in

the maintenance of performance, systems should implemented that that control networks in

terms of attainability, scalability, adaptability and tolerance of faults (Qader et al., 2017). In

order to achieve this, it has become a necessity that measures are developed to control and

categorise network errors, with the goal of applying preventative approaches in addition to

developing methods of crisis management and plans for all eventualities.

A network error is de�ned a defect that occurs within a communication network. This

means that it is the unintended de�ciency of hardware, software or any other aspect of the

particular network. These errors can be caused by different factors, such as failure of a router,

disruption to �bres or various other reasons. Furthermore, each instance of service disruption

may not be caused by an error and vice versa (Cho et al., 2003). It was suggested by Gill

et al. (2011) that network faults are generally caused by either the breakdown of links of
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devices, which both lead to traf�c losses. Hence, tolerance of faults is a critical attribute of

such networks (Angjeli et al., 2013). It also represents the capability of a network to maintain

functionality regardless of the emergence of errors within the system. Both tolerance for

errors and strong reliability are coveted attributes of all networks (Bistouni and Jahanshahi,

2015). Faults that occur in networks can lead to packet loss and network faults frequently

occur in load balancers (Gill et al., 2011).

Applications designed for monitoring networks are becoming increasingly important as

they provide bene�ts for network security as well as for diagnosing errors in the network.

The concept of managing network faults is not new. The detection and categorisation of

errors is a critical component of the maintenance of network performance as well as the

prevention of any system breakdowns. It can facilitate the process of network administration

and enables the implementation of appropriate actions that guarantee network functionality

and the provision of service quality. One of the most frequently used methods of data mining

is clustering, which is employed in applications designed to manage faults for the purpose

of grouping objects and resolving issues related to increased dimensionality. Fuzzy Cluster

Means can be utilised in combination with Probabilistic Neural Networks (PNN) in order to

categorise network errors, with the goal of enhancing the performance and improving the

precision of classi�cation (Qader and Adda, 2014). The object groups that are determined by

this procedure enable network administrators to make informed decisions that will provide

protection for data communications throughout the network. There are numerous existing

methods that are employed for the process of clustering and classi�cation in relation to data

mining.

The objective of the present study is to devise a method of classifying network issues

by utilising datasets that incorporate the aspects of management information bases (MIB)

variables in the local nodes, as mentioned in Chapter 4 and 5. This will be accomplished

through the application of machine learning approaches that are predominantly founded on

a semi-supervised technique that uses Subtractive Fuzzy Cluster Means (SFCM) and the

Probabilistic Neural Classi�er (PNN), which have the capability to classify the irregular

traf�c activity in the extant datasets. Furthermore, this project will provide an explanation

regarding the preparation and re�nement of noisy data into pure data for the purposes of

classi�cation. Subsequently, a model will be proposed that is dependent on the partition

of datasets into subsets by utilising FCM, while the process of clustering will be bene�cial

for improving the precision of the outcomes. When data is tested without being clustered,

there is a signi�cant amount of noise and this can lead to reduction in the precision of

the classi�ers. The aim here is to augment the precision of the current classi�er through
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the use of hybrid techniques, with the combination and introduction of various supervised

and unsupervised algorithms. Resultantly, the acquired results will facilitate the process

of network administrators making effective decisions, which can prevent network system

malfunctions.

1.1 Motivations

One of the most signi�cant dif�culties in the modern world lies in how the performance

of computer network structures can be calculated when different kinds of networks are

combined. Recently, data-focused networks have transformed into converged frameworks in

which the importance of real-time traf�c continues to expand. These structures consist of

conventional or more advanced �bre connections as well as mobile and wireless networks

(Al-Kasassbeh and Adda, 2008). Many different techniques are currently being used for the

classi�cation of errors, which determine the measurements for the network.

Recently conducted studies have employed various different approaches in this �eld,

although they have predominantly revealed new problems; for example, some do not deal

with issues related to the performance of the classi�er, while others only concentrate on single

faults without considering the principle source involvements such as the router or server,

which could be the primary targets of such events. Furthermore, network administrators

are cognisant of how the errors are isolated, which will reveal information on the precise

origins of the issue. There are several explanations as to why service providers, and network

administrators in general, have declared a profound interest in having the ability to determine

network traf�c, which include: i) tracking application tendencies; ii) the capability to

implement policies based on the class of traf�c, such as enabling improved quality of

service for voice traf�c; iii) comprehension of the applications being utilised facilitates the

understanding of end users and provides a bene�cial input for numerous research studies,

ranging from experience quality to marketing forecasts.

This endeavour presents various challenges as a result of the rapid expansion of networks

and the transformation of software that can generate various forms of traf�c. Additionally,

some applications attempt to obscure traf�c in order for it not to be detected, as can be

observed in peer-to-peer clients. Therefore, a contest can be observed between the techniques

of obfuscation and detection that have similarities to those involved in computer security.

Thus far, although there has been substantial research in this �eld, there are a number of

factors that require further investigation. In the present study, comprehensive investigation

will reveal problems that have previously been ignored, such as classi�er portability problems
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that use a Probabilistic Neural Network Classi�er. Various techniques are also proposed that

can be used to design a model to classify and address faults through the development of a

hybrid classi�er based on machine learning.

Hence, it is of utmost important that an ef�cient structure is developed for the classi-

�cation of such abnormalities as well as to determine the different types of fault. It can

be challenging to differentiate certain faults from conventional traf�c as they have similar

characteristics. This problem can be resolved through the application of the proposed hybrid

Subtractive Fuzzy Cluster Means (SFCM), which has the ability to precisely identify different

data points that are contained within groups of traf�c. Systems of monitoring, which do

not possess �exibility, can be challenging in terms of implementation or create acceptable

overheads are not an appropriate means of accomplishing sensitive measurements.

1.2 Research questions

This part of the thesis determines and provides an explanation for the research questions that

are necessary to generate an answer to the proposed hypothesis.Hypothesis:The creation of

an ef�cient model in a complex computational environment that has the capability to classify

both light and heavy network workloads with accuracy and precision.The network delay,

bandwidth, loss of packets and additional parameters will be considered as the effects that

can generate quality services and network application. The suggested hybrid technique for

the classi�cation of traf�c should be able to resolve certain problems and should aim to

sustain the quality of the network, which generates the following questions:

1. How should network traf�c in light and heavy loads be classi�ed in real-time, ensuring

that the cost of the determined devices (server, router and the network bandwidth)

remains affordable? Additionally, how should traf�c faults that are identi�ed and

gathered in various scenarios be resolved?

2. How can the traf�c that emanates from different devices be characterised and is it light

or heavy traf�c?

3. How does the clustering augment the outcomes of the classi�cation of traf�c faults?

4. What effect does pre-processing have on the performance of the system?

5. To what extend does the proposed hybrid method improve the outcomes in comparison

to the current classi�er?
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In order to validate the hypothesis and address the questions listed above, the �ndings

derived from the experiments will generate de�nitive answers in the conclusion of the

research.

1.3 Original contributions and bene�ts of this Work

The aim of this thesis to provide a bridge between the actual requirements of the network

industry and the research conducted in the �eld of network traf�c classi�cation. Although

the majority of the current methods that have been developed for classifying network traf�c

have reported high precision, they generally have not dealt with the practical problems in

relation to how such systems can be incorporated into actual environments.

This thesis presents some contributions in the �eld of computer faults management and

classi�cation. In this research, two different �ltering methods (Normalisation and Standard

Scaler) are designed which they are used to purify and re�ne the existing datasets. Thus new

datasets will be constructed which is free from the noises, removing any misrelated features

and inconsistency, which makes the data to be ef�ciently adaptable to the classi�er model

and improves its accuracy results, see Appendix C and D.

Next, Fuzzy Cluster Means (FCM) has used to avoid the classi�er from any misclassi�ca-

tion when possibly all faults may conceive in the system. To the best of our knowledge, no

other research applied FCM to the IF-MIB variables to make the data grouping. There are

few rare works that used FCM, but they applied the algorithm to a different environments

and diverse nature of the data as explained in chapter 2. To overcome the central issues of the

FCM which is known commonly for its slow performance, we combined a new algorithm

(Subtractive Clustering- SC), and new FCM is proposed named as Subtractive FCM (SFCM).

The SFCM as the fuzzy clustering compared with K-means the hard clustering and EM the

hard and soft clustering method has achieved higher ef�ciency plus performance depending

on the PC metric see section 5.2 in Chapter 5.

Furthermore, the new hybrid method which is a semi-supervised approach is developed

to classify the potential traf�cs and faults that may occur in different conditions and resources

of the computer network system. The proposed system combines the SFCM with the PNN

classi�er to build a (Subtractive Fuzzy Probabilistic Neural Network Classi�er- SFPNNC).

Then the obtained classi�cation results in two different classi�ers -the proposed one and

the existing PNN classi�er- are validated based on their performances and accuracy as

reported in see section 5.5 Chapter 5. The results shown that the proposed method (SFPNNC)

outperforms the existing classi�er (PNN)
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The majority of past studies and projects have only focused on the classi�cation of faults

within various environments rather than computer networks. Although some researchers

have investigated the process of detecting faults, they have not extended this research to the

classi�cation of such faults. While some studies have discussed fault classi�cation, they have

only concentrated on a minimal number of faults with a disregard for other factors.

Some previous studies have not taken the MIB variables into consideration. As these

variables are critical factors in the process of detecting and classifying faults, it is important

that this area receive more attention. Some studies in the literature have concentrated on the

bene�ts of certain methods when applied for the purpose of fault management. However,

the limitations were not investigated by examining different types of faults observed in

different network situations. The �ndings of other studies have been founded on the current

analytical tools and their characteristics instead of assuming a more holistic approach to the

identi�cation and classi�cation of network faults.

As has been emphasised, all of the issues mentioned above will be addressed by this

project.

1.4 Research aim and objectives

The principal aim of this thesis is the development of a new technique and a proposed semi-

supervised technique that will combine Probabilistic Neural Network (PNN) and proposed

Subtractive Fuzzy Clustering Means (FCM) that will have the capability to classify different

categories of faults. The development of a logical classi�cation system would have particular

bene�ts for the process of network management, could prevent system failures through the

earlier isolation of faults, could forecast abnormal occurrences and determine the type of

fault in order for ef�cient repair.

Additionally, the ensemble model will amalgamate the strengths and weaknesses of the

individual members and effectively employ the fusion strategy to obtain augmented outcomes.

By combining the outcomes of each individual model, this will result in enhanced overall

performance.

The key objectives of this project are:

1. To classify network faults by utilising a semi-supervised technique in the form of a

hybrid technique through the development of Fuzzy Clustering Means (FCM) with

Probabilistic Neural Network (PNN) based on arti�cial intelligence in order to precisely

classify network faults.
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2. To investigate the necessity for a new network fault management technology that can

address the contemporary and future network speci�cations and needs

3. To study the utilisation of ensemble machine learning instruments in the classi�cation

of network faults.

4. To study statistical techniques, predominantly in the pre-processing and re�nement of

data, based on various approaches, including Feature Scaling, min-max scaling and

normalisation, and use them in the process of purifying actual sensitive faults in the

network

5. To provide guidance to network managers so that they can take the appropriate mea-

sures to ensure that network functionality is sustained and service quality is provided,

while the groups of objects generated are bene�cial for network managers when making

informed decisions to ensure protection of data communications through the network.

6. To demonstrate the signi�cance of MIB attributes that have an effect on the achievement

of enhanced classi�cation performance

1.5 Research methods

We have attempted to resolve the de�ciencies related to the past studies and projects in the

literature. The principle value of this study is that it proposes new techniques beginning

with the initial stages of �ltering data utilising different statistical methods through to

the re�nement and acquisition of adequately prepared sample data. Furthermore, semi-

supervised techniques such as Fuzzy Clustering Means will be utilised, which are important

in the scenario where the sample datasets have different faults simultaneously, which leads to

traf�c within the network as a result of its magnitude.

In order to prevent this scenario, the recommendation is that it will be distributed as

segments of the datasets or subsets. Moreover, the clustering process breaks down any

big data into smaller data that makes the proposed classi�er to be a valuable application

to process big data ef�ciently, and this is considered one of the main contributions of the

research. In order to address this issue, unsupervised machine learning is employed to cluster

the datasets that emanate from distinct segments of the traf�c in the network.

In this context, FCM is considered to have certain advantages over previous techniques

for the process of clustering. This can be explained by its capability to allow an object to

belong to multiple clusters with a certain level of probability. This type of soft computing
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has strong potential for application in real-world systems where the particular focus is on

precision.

An additional algorithm de�ned as PNN, which is a feed-forward neural network, has

signi�cant bene�ts for the network fault classi�cation. It is another frequently used algorithm

that employs the Probability Distribution Function (PDF) for each of the classes when making

decisions related to classi�cation.

In this work, a hybrid system for managing network faults is proposed which is called a

Subtractive Fuzzy Probabilistic Neural Network (SFPNNC), which makes use of the fuzzy

clustering potential of FCM and the ef�cient classi�cation of PNN in order to generate more

precise and ef�cient network fault classi�cation.

The reasoning behind the consideration of FCM and combined with the Subtractive

Clustering in this context is detailed below:

1. The FCM can resolve problems where the boundaries of clusters are not exact, allowing

the opportunity for soft clustering decisions to be made

2. It can be bene�cial for problems of high dimensionality.

3. It is an iterative algorithm that is used for the optimisation of objects into different

clusters. It is appropriate for the examination of network traf�c, particularly the

management of faults.

4. The SC support the FCM to overcome its limitation and improves the performance of

the method see 5.2 in chapter 5.

Hence, the ideal attributes of the proposed hybrid system would incorporate training that

is more ef�cient than in BP networks, assurance of improved convergence in comparison

to Bayesian networks, and the facilitation of incremental training with uniform speed and

durability when addressing sample noise.

1.6 Thesis Organization

This thesis is arranged as follows:

1. Chapter Two presents relevant background information regarding the area of network

traf�c classi�cation and provides an in-depth explanation of supervised and unsuper-

vised techniques utilised in the classi�cation of faults. In the literature, the main gaps

of the research papers are pointed out.
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2. Chapter Three the utilisation of supervised and unsupervised methods for the clas-

si�cation of network traf�c is presented, along with the proposal of a new method

founded on the semi-supervised technique (a hybrid method-SFPNNC). The context

of the network situations render this approach ideal for a real-time traf�c classi�cation

solution. After this, the framework structure of the proposed system will be shown in a

diagram, in which each stage will be illustrated accompanied by an explanation.

3. Chapter Four the data visualisation for all data and scenarios will be presented. The

processes of data manipulation and pre-processing based on two different data �ltering

that are administered to the unprocessed data are explained

4. Chapter Five the outcomes of the that conducted by employing the proposed tech-

nique will be presented in this chapter. First the FCM is validated in performance and

effectiveness with the K-means and EM. Following the outcomes of the hybrid method

including three different algorithms, namely fuzzy clustering means, subtractive clus-

tering and the probabilistic neural network is demonstrated. Then, the outcomes from

the proposed method and the PNN classi�er will be discussed, followed by a compari-

son of the experimental �ndings in order to assess the individual performance of each

approach.

5. Chapter Six presents a conclusion of the thesis along with recommendations for future

research and the author's opinion regarding how the �ndings of this paper could be

advanced in future projects.



Chapter 2

Background and Literature Review

The identi�cation and classi�cation of network faults is crucial in ensuring the health of

various types of global communication networks. Further research in this area is therefore of

paramount importance. This chapter reviews the literature on network fault classi�cation and

elucidates two important aspects of this research: the clustering and classi�cation methods

involved, and their utility in network fault classi�cation. It also reviews current research on

fault classi�cation and management.

2.1 Network Fault Classi�cation: An Overview

There is an increased need to manage communication networks ef�ciently as they continue to

grow. Network security and the health of services play a vital role in sustained performance

and it is therefore important to have mechanisms in place to manage the availability, scala-

bility, �exibility, and fault tolerance of networks. Measures are therefore needed to manage

and classify network faults and take preventive steps while developing strategies to support

disaster recovery and contingency plans.

2.2 Network Faults

A network fault is a malfunction in a communications network caused by an unplanned

software or hardware failure. Such faults may occur for various reasons such as router failure,

a �bre cut, and so on (Bathula et al., 2018). Jhawar and Piuri (2017) state that network

failures are due either to link failure or device failure, both of which result in loss of traf�c.

Fault tolerance is therefore a very important characteristic of a network as it denotes its
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ability to continue functioning despite the presence of faults in the system (Wang et al., 2018).

Fault tolerance and high reliability are therefore desirable qualities for a network (Siewiorek

and Swarz, 2017). Network faults cause a loss of packets and many faults are experienced by

load balancers (Roy et al., 2017).

2.3 Network Fault Management

Fault management refers to the process of diagnosing faults and taking corrective measures.

It is conducted in two phases: fault management tuning for fault management con�guration,

and the action taken when faults are encountered (Paradis and Han, 2007). Analysing network

traf�c and faults is therefore an essential part of network management. The classi�cation

of internet traf�c can help network administrators and security personnel understand traf�c

demands, diagnose faults, and develop strategies to build better models (Auld et al., 2007).

Network faults or malicious traf�c are therefore a key element of traf�c classi�cation.

One such class of traf�c is known as attack traf�c (Moore and Papagiannaki, 2005). The

characteristics of network faults affect the nature of fault diagnosis which is both non-linear

and complicated. This is the rationale underlying the need for a form of network classi�cation

that offers more utility regarding fault management (Li et al., 2008). Network reliability

and fault tolerance can be enhanced by considering different dimensions. These include the

identi�cation and characterisation of network faults, estimation of their possible impact, and

an analysis of the effectiveness of network redundancy (Palanikumar and Ramasamy, 2018).

Different parameters of the network are associated with faults, such as unknown protocol

rate, utilising rate, error rate of input, error rate of output, drop rate of input, drop rate of

output, interface operating status, and interface admin status. The network fault patterns with

which these characteristics are associated are incompatible protocol, insuf�cient network

bandwidth, traf�c jams, insuf�cient interface buffers, physical faults in the cables, incorrect

con�guration of interfaces, and physical faults in an interface (Li et al., 2008). Fault detection

and isolation (FDI) play an important role in fault diagnosis in sensor networks. Principal

Component Analysis (PCA) is one of the techniques used to detect and isolate faults. Sensor

fault diagnosis involves the identi�cation and classi�cation of faulty sensors. Approaches

such as Auto-associative Neural Networks (AANN), Partial Lease Squares (PLS), and Fisher

Discriminant Analysis (FDA) are also used for the classi�cation of fault patterns (Shari� and

Langari, 2011).
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2.4 Current Types of Network Fault Classi�cation

Network faults can be of different types. Machine Learning (ML) is therefore needed to

automate the classi�cation of faults so that they can be managed and counter measures or

implement contingency plans employed to improve the health of networks. Machine learning

provides Arti�cial Intelligence (AI) that enables computers to learn and implement well

informed decisions. ML focuses on two aspects: improving through experience and dealing

with the laws that govern learning systems (Jordan and Mitchell, 2015).

In supervised learning approaches, new data is classi�ed based on already labelled data

or training data (Classi�cation and Regression, while unsupervised learning approaches �nd

structure in unlabelled data (Clusters) and groups of data objects based on their similarity

with each other (Lin, 2015) see Figure 2.1. K-Means is an example of unsupervised learning

(Velmurugan, 2014). Clustering and classi�cation are the two machine learning approaches

widely used in classifying network faults. Clustering is the process of grouping of similar

objects. All objects in a cluster should have high intra-cluster similarity and minimal inter-

cluster similarity. Clustering is a form of unsupervised learning that does not require a

training dataset. Classi�cation, on the other hand, is used to predict labels for unlabelled

objects. It is a form of supervised learning that uses a training dataset to train the classi�er

(Qiu and Sapiro, 2015). These two machine learning approaches are frequently used in the

classi�cation of network faults. The supervised machine learning process is depicted in

Figure 2.2.

Fig. 2.1 Machine learning – supervised vs. unsupervised
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Fig. 2.2 Supervised machine learning

So the outcome of the supervised machine learning is a classi�er that can be used to

classify network faults or any other objects. The classi�er is evaluated prior to further use.

Similarly, unsupervised learning is used to group objects with high similarity. This is achieved

without using any labelled data or a training dataset. It is dif�cult to �nd latent patterns

based on the features of data and data objects are grouped together. Fuzz C Means is another

example of unsupervised learning (Kasim et al., 2015). The work�ow of unsupervised

learning is presented in Figure 2.3 In unsupervised learning, data are analysed and a model

then constructed that is composed of different clusters based on their features and similarity.

Once the model is built, it continues to be updated when new data are added to re�ect the

new clusters. This phenomenon is known as unsupervised machine learning (Hastie et al.,

2009). Subsequent sections will review literature on the clustering and classi�cation methods

used in the classi�cation of network faults.

2.4.1 Clustering Methods

A cluster is a group of objects with similarities and clustering is one of the most widely

explored areas in data mining. Many de�nitions of clustering exist in the literature and

there is no one precise de�nition (De et al., 2016). A plethora of techniques for clustering

are therefore available. These can be classi�ed into different types, as shown in Figure
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Fig. 2.3 Work�ow of unsupervised learning

2.4, namely hierarchical clustering methods, partition clustering methods, density-based

clustering methods, model-based clustering methods, grid-based clustering methods, and

soft-clustering methods.

Each category of clustering methods has a different approach depending on their modus

operandi and utility. More details on hierarchical and partitioning clustering methods are

given in subsequent sections.

2.4.1.1 Hierarchical Clustering

This is a deterministic approach to clustering given data objects. It is not dependent on

de�ning the number of clusters beforehand (De et al., 2016; Wang et al., 2015). Hierarchical

clustering is a method that can be subdivided into many other clustering methods including

agglomerative, divisive, single link, complete link, and average link. These approaches differ

in their determination of the cluster formation. The most widely used clustering scheme

is agglomerative hierarchical clustering. This is mostly used for embedded classi�cation

schemes, as discussed by (Kumar et al., 2014). Hierarchical clustering is a recursive approach

in which clusters are constructed in a top-down or bottom-up fashion. The resultant clusters

then form a hierarchy. The two main types of hierarchical clustering are agglomerative and

divisive.
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Fig. 2.4 Summary of clustering algorithms

In the agglomerative approach, each object is initially treated as a cluster. Based on their

similarity, different objects are then merged into one or more clusters. An important criterion

is that similar objects are grouped into a cluster. In the divisive hierarchical approach, all

objects are initially formed into a single cluster. They are then veri�ed for similarity and

divided into different clusters. The result of divisive clustering is a nested group of objects.

However, different measures of similarity can be employed. One such measure is used to

determine whether two objects are similar. Depending on the utility of the similarity measure,

hierarchical clustering can be divided into three different types: average-link clustering,

complete-link clustering, and single-link clustering (Chang et al., 2011). Versatility and

multiple partitions are the strengths of hierarchical partitioning. However, Wu et al. (2008)

notes that the downside of hierarchical clustering methods are less scalability and a lack

of backtracking capability. Agglomerative hierarchical clustering was used by Guralnik

and Foslien (2009) to automatically classify faults in the known abnormal behaviour of

model-based processes.

2.4.1.2 Partitioning Clustering

Partitioning clustering is an approach in which similar objects are grouped by relocating

objects among clusters. This follows the process of initial clustering (Äyrämö and Kärkkäi-

nen, 2006; Hung et al., 2005). This means that the user needs to provide information to the

clustering method about the number of clusters. Partitioning clustering algorithms are broadly

classi�ed into two types; graph-theoretic clustering and error minimisation algorithms. As

the name implies, error minimisation algorithms reduce the error rate while clustering. These

algorithms employ the Sum of Squared Error (SSE) to achieve error minimisation. Graph
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theoretic methods, on the other hand, use graphs when producing clusters. Important exam-

ples of graph theoretic methods are the Minimal Spanning Tree (MST) which was described

by Zseb�ok et al. (2018), and Limited Neighbourhood Sets, which was discussed by Chang

et al. (2011). A fault classi�cation model was built by Enrico et al. (2008) using fuzzy logic

and was based on the partitioning clustering method.

2.4.1.3 Density Based Clustering

This is a type of clustering where a cluster is formed with a maximal set of density connected

points. Thus, clusters are nothing but dense regions in data space and are separated by regions

that exhibit low object density. This method therefore discovers randomly shaped clusters

from a given dataset. An example of density-based clustering is the Density Based Spatial

Clustering of Applications with Noise (DBSCAN) which groups together points that are close

to one another. Points in low-density regions are therefore considered outliers. This algorithm

requires two arguments which are the minimum number of points denoted as minPts and the

maximum radius of the neighbourhood from the given point p denoted ase. Density is then

computed based on these two parameters (Patwary et al., 2012). This is illustrated in Figure

2.5 where it is assumed that the value of minPts is 4. The density of point p is considered high

Fig. 2.5 Illustrates high and low density points

as there are a minimum of four points in its neighbourhood. Similarly, point q is considered

low density because there are only 3 points in its neighbourhood. For DBSCAN, every point

in space can be classi�ed into three types: core points, border points, and noise points. Core

points are those that satisfy the minPts parameter in the neighbourhood while border points

have fewer points than the minPts parameter. A noise point does not �t the criteria for core
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or border points (Ertöz et al., 2003). Assuming the core points is set as 10 and minPts as 4,

the functionality of DBSCAN is shown in Figure 2.6.

Fig. 2.6 Differentiating core points, border points, and outliers

Another concept associated with the DBSCAN algorithm is density-reachability. An

object A is directly density-reachable from object B if B happens to be the core object and

A is in the neighbourhood of B. Similarly, in Figure 1 the point q is considered directly

density-reachable from p. However, p is not directly density-reachable from q. Therefore,

density-reachability is asymmetric in nature. DBSCAN is resistant to noise and effective at

handling clusters of different sizes and shapes. However, it is sensitive to parameters and it is

thus dif�cult to �nd the most suitable values for these parameters (He et al., 2011).

Wang et al. (2017) proposed a density-based clustering approach for the detection of

communities. The algorithm takes community structures as input and uses a heuristic

approach to group points and identify communities. Zhang et al. (2016a) proposed a density-

based clustering algorithm that exploits a manifold distance measure. This measure captures

both local and global spatial information while making clustering decisions. The algorithm

was found to be effective with datasets containing noise overlap, multi-scale, and diverse

density features. Hahsler et al. (2017) explored the use of both DBSCAN and Ordering Points

to Identify the Clustering Structure (OPTICS) in the density-based clustering of objects. They

employed a KNN search mechanism on a KD-tree data structure to improve performance.
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2.4.1.4 Model-Based Clustering Methods

In model-based clustering, M clusters are created. An object thus belongs to one of the

M clusters, although it is dif�cult to determine which. Clustering is based on the formal

model that has been built which needs to be updated for every new object. Expectation

Maximisation (EM) is one example of model-based clustering. This is an iterative clustering

method that determines the maximum likelihood of parameters. It creates a random initial

model and then converges this into a more meaningful model. EM is a widely used clustering

approach in data mining, computer vision, and machine learning (Moon, 1996). It can also

be used to solve parameter estimation problem.

Hasnat et al. (2015) proposed an evolutionary clustering method that is also model based

as it makes use of multinomial mixture models. It can be used to study different parametric

models as well as allowing for the temporal evolution of resultant clusters. Singh et al.

(2016) explored differences in performance among various clustering methods, including

those which are model based. Model based methods provide the maximum likelihood with

respect to statistical evolution. Sanse and Sharma (2015) claim that model-based clustering

methods optimise the best �t between a mathematical model and given data. In such methods,

Maximum Likelihood Estimation (MLE) is used to determine the parameters of the model.

Sanse and Sharma (2015) state that EM uses a statistical, mixture density model while

neural network models like the Self Organising Map (SOM) adopt a “winner takes all”

approach to model based clustering. Krueger et al. (2018) chaired a conference in which

authors came up with a solution to achieve model-based clustering using a sequential dirichlet

process mixture (DPM) where multivariate skew t-distributions was employed.

2.4.1.5 Grid-Based Clustering Methods

Grid-based clustering refers to a grid of rows and columns used to organise objects in cells

based on the density of each cell. Cells whose density is less than the threshold are eliminated.

Clusters are formed from contiguous groups of dense cells. There are many advantages of

this approach, for example, distance computations are not required, complexity is reduced,

and clustering is performed on summaries rather than on individual objects. It is also easier

to locate nearby clusters. Grid-based clustering methods make use of a multi-resolution grid

data structure. The number of grid cells can have an in�uence on clustering complexity (Joshi

and Kaur, 2013). There are numerous algorithms that utilise this approach, including the

Statistical Information Grid (STING) approach proposed by Wang et al. (1997) and CLIQUE

which was proposed by Agrawal et al. (1998).
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STING divides the spatial area into rectangular cells, each of which is at a different level

according to their resolution. Each cell can also contain further partitions and is equipped

with statistical information stored a priori to facilitate faster processing of queries. The

parameters of low level cells are used to compute the parameters of high level cells with

ease. The parameters required by STING include min, max, count, mean, and s, as well

as distribution parameters such as uniform and normal. Spatial data queries are answered

using a top-down approach. Query processing with STING is an iterative process that, while

making clustering decisions, starts from a pre-selected layer with a small number of cells

until the bottom layer is reached. Cloud boundaries cannot be diagonal but are either vertical

or horizontal. CLIQUE is another grid-based clustering algorithm that can automatically

identify high dimensional data placed for better clustering. This algorithm can be considered

both a grid-based and density-based algorithm. It divides each dimension into the same

number of equal length intervals and partitions m-dimensional space into rectangular, non-

overlapping units. The clusters formed using CLIQUE are a maximal set of connected dense

units. The accuracy of CLIQUE may, however, be degraded although its approach is simple

(Khan et al., 2014).

Chang et al. (2009) proposed a grid-based clustering method known as the Axis-Shifted

Grid-Clustering (ASGC) algorithm. This combines the features of density and grid-based

approaches and employs an axis-shifted partitioning strategy. This strategy is used to �nd

high density within a given input space. Amini et al. (2011) explored grid-based clustering

algorithms that make use of density-based concepts in the clustering process, especially in the

context of data streams. Among the algorithms they explored were DUCStream, D-Stream

I, DD-Stream, D-Stream II, and PKS-Stream. A useful survey of clustering algorithms,

including those which are grid-based, was recently conducted by Kaur et al. (2016).

2.4.1.6 Soft Computing Methods

Soft computing (SC) involves the fusion of different methodologies and is a computing

phenomenon in which a guiding principle such as tolerance to partial truth, imprecision,

and uncertainty is used to achieve a low-cost and robust solution with tractability. The

diversi�ed techniques used in soft computing include Bayesian statistics, fuzzy logic (FL),

arti�cial neural networks (ANNs), machine learning (ML), and evolutionary computing

(EC). Methodologies are fused so that they can be used to solve real world problems that

are too dif�cult to solve without SC. In contrast, conventional computing is known as hard

computing (HC). SC is fundamentally an optimisation solution, which can refer to either
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maximisation or minimisation depending on the context in which optimisation is performed

(Gan and Tao, 2015).

• Fuzzy Clustering Means (FCM)

This is a clustering technique derived from the K-Means algorithm. The main difference

between FCM and K-Means is that the latter refers to hard clustering while the FCM

is used for soft clustering. FCM is therefore a type of fuzzy clustering that is referred

to as soft computing. It produces soft clusters in which an object may belong to more

than one cluster with a different probability. This approach makes use of a distance

measure that operates on objects placed in an n-dimensional vector (Yang, 1993). It

is an algorithm that is widely used in the data mining domain, especially for pattern

recognition. Dunn (1973) originally developed this algorithm which was then improved

later by Bezdek (1981).

FCM solves real world problems due to its fuzziness and the intelligent control it

has over the process concerned. It has a wide range of applications, including the

classi�cation of network faults and patterns. It uses Euclidean distance which is a

distance measure used to make similarity decisions. The algorithm initially creates

cluster centres denoted asSC0 = C j(0) and setp = 1. The algorithm then computes

cluster centres and updates their membership. This is achieved using the following

equation.

u( i; j = [( di j)
1
m

� 1
k

å
i= 1

[
1

di j
]
1
m

� 1] (2.1)

It then computes a cluster centre to form new cluster representatives using the following

equation.

Cj (p) =
å N

i= 1ui j mXi

å N
i= 1ui j m

(2.2)

Finally, the algorithm checks condition such as whetherjjCj( p) � Cj( p� 1) jj < for j = 1

to k otherwise setp+ 1 ! p and then moves on to the second step. Steps 2 and 3 of

FCM involve major computational complexity. Irfan et al. (2009) claimed that FCM can

be optimised further when it uses a pre-processing step involving Canopy Clustering

as this can also can reduce computational complexity. With canopy clustering, FCM

can speed up the clustering process based on canopies already generated in the pre-

processing phase. McCallum et al. (2000) observed a 25% reduction in computational

time when FCM was preceded by canopy clustering.
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Chang et al. (2011) conducted experiments with FCM and derived two more algorithms

to evaluate performance. These algorithms are CDFKM and MCDFKM. Newton et al.

(1992) developed a hybrid network named Adaptive Fuzzy Leader Clustering (AFLC)

by combining a neural network and fuzzy clustering. This involves embedding FCM

into the control structure of a neural network to make AFLC. The empirical results

showed that the AFLC algorithm was able to produce arbitrary data patterns. Watanabe

and Imaizumi (2001) performed fuzzy modelling using hyperbolic Fuzzy K-Means

while Kau et al. (2006) performed lossless image coding, also using Fuzzy K-Means.

Kau et al. (2006) found that a non-linear predictor exhibited superior performance

to a linear predictor. Liao et al. (2009) employed FCM for the characterisation of

biomedical samples which resulted in good decision making in medical diagnoses.

Yu et al. (2006) then proposed a new sampling technique and used FCM based on

clonal optimisation to improve clustering performance over enormous databases. Du

et al. (2008) used a fuzzy clustering approach for performance fabric clustering which

has associated physical and mechanical properties. Li et al. (2006) proposed fuzzy

K-Modes and compared these with Fuzzy K-Means to show they exhibit superior

clustering performance. Chakrabarty and Roy (2018) proposed a new algorithm based

on FCM known as Agglomerative FKM which facilitates the automatic selection

of cluster members as well as improving the accuracy and time complexity of the

clustering process to detect plagiarism effectively. Hoang et al. (2014) proposed a

fuzzy clustering method in the form of a protocol for a Wireless Sensor Network

(WSN). This algorithm was used to make the network energy more ef�cient. Sulaiman

and Isa (2010) employed an FCM for image segmentation which enhanced the visual

quality of the resultant images. Sivarathri and Govardhan (2014) explored the utility

of FCM over K-Means and found FCM was better for image segmentation. Rajini

and Bhavani (2011) improved FCM using Kernelized Fuzzy C Means to examine

MRI brain images with segmentation. They found that their kernelized version of

FCM exhibited a superior performance. Park (2009) employed Kernel Fuzzy K-Means

clustering for speech feature extraction which exhibited improved performance in

terms of speech recognition. Zhang et al. (2016b) conducted extensive experiments

with FCM and derived new clustering algorithms such as Rationale Fuzzy C-Means,

None Euclidean Relational Fuzzy C-Means, and Any Rational Fuzzy C-Means. They

therefore improved the sensitivity and ef�ciency of the clustering process. de Vargas

and Bedregal (2011) then proposed CKMeans which is a hybrid algorithm. This

algorithm combines the features of K-Means and Fuzzy K-Means to improve the
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accuracy of effective clustering. Zhang and Xu (2015) proposed an Agglomerative

Fuzzy C Means to enhance effective classi�cation using underlying decision cluster

classi�ers. Rong et al. (2011) clustered Wikipedia articles in a cloud environment

using both K-Means and Fuzzy C-Means by utilising Apache Mahout which provides

algorithms for distributed programming. Honda et al. (2012) proposed a Fuzzy C-

Lines algorithm from K-Means with an improved distance measure. This improved the

ef�ciency of the clustering process. Svetlova et al. (2013) proposed a fuzzy clustering

algorithm known as the Minkowski Metric Fuzzy Weighted K-Means to handle high

dimensional data while performing the fuzzy clustering of objects.

• Similarity Measures Used For Clustering

In every clustering approach it is imperative to have a similarity measure. This section

explores the different similarity measures available. Wu et al. (2008) grouped these

measures into distance measures and similarity measures. The distance between two

objects denoted asxi andx j is represented asd(xi ;x j ). Distance measures are used

for ordinal attributes, binary attributes, numeric attributes, nominal attributes, and

mixed-type attributes. According to (Han et al., 2001), the Minkowski metric is best

used with numeric attributes where the distance is computed as follows:

d(xi ;x j ) =
� �
�xi1� x ji +

�
� g

�
�xi2 � x j2

�
� g+ ::: +

�
�xip � x jp

�
� g

� 1
g

(2.3)

With respect to binary attributes, a contingency table is used for the distance measure.

A simple matching coef�cient is used when attributes are symmetric, as presented

in Equation 2.4, while asymmetric attributes make use of the Jaccard coef�cient, as

shown in Equation 2.5.

d(xi ;x j ) =
r + s

q+ r + s+ t
(2.4)

d(xi ;x j ) =
r + s

q+ r + s
(2.5)

In the case of nominal attributes, a simple matching approach is used, as shown in

Equation 2.6. In the case of original attributes, mapping is conducted with numeric

attributes, as shown in Equation 2.7.
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d(xi ;x j ) =
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In the case of mixed type attributes, the measure shown in Equation 2.8 is used, which

combines multiple distance measures.

d(xi ;x j ) =
å p

n= 1d(
i; jn)d(

i; jn)

å p
n= 1d(

i; jn)
(2.8)

Similarity measures, as the name implies, are used to �nd the similarity between

objects. These measures include the dice coef�cient measure, the extended Jaccard

measure, the Pearson correlation measure, and the cosine measure. The similarity

between two objects ranges between 0.0 and 1.0. One indicates 100% similarity while

zero indicates no similarity. Cosine similarity is computed as shown in Equation 2.9.

S(xi ;x j ) =
xT

i :x j

kxik:



 x j




 (2.9)

The Pearson correlation is computed as shown in Equation 2.10.
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n(å xy) � (å x)() å y
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The Extended Jaccard similarity measure is computed as shown in Equation 2.11.
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The Dice coef�cient measure is computed as shown in Equation 2.12.

s(xi ;x j ) =
2xT

i :x j

kxik2+



 x j




 2

(2.12)

These measures have a distinct utility when making clustering decisions. However,

Bonner (1964) notes that it is dif�cult to derive a universal de�nition that re�ects good

clustering. Nevertheless, determining the quality of clusters is possible, and this can
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be of two types: external (structure) and internal (compactness). The internal criteria

include edge cut metrics, C-Criterion, category utility metric, Condorcet's criterion,

minimum variance criteria, scatter criteria, and the Sum of Squared Error (SSE). The

external criteria include the rand index, precision, recall, and mutual information-based

measures Bonner (1964).

2.4.2 Classi�cation Methods

Classi�cation is the process of predicting the class of an unlabelled object based on training

data in which the membership of objects is known. As shown in Figure 2.2, classi�cation

is a supervised learning method and therefore a form of machine learning. There are

numerous supervised learning algorithms, including logic-based algorithms, perception-

based algorithms, statistical learning algorithms, instance-based learning algorithms, and

Support Vector Machines (SVMs). Speci�c examples of learning-based algorithms include

Decision Trees (DT), Neural Networks (NN), Naive Bayes, kNN, SVM and rule learners

(Kotsiantis et al., 2007) see Figure 2.7.

Fig. 2.7 Data mining paradigms including classi�cation methods

A neural network is a computational model that simulates the connections between axons

in the human brain. It consists of numerous units known as arti�cial neurons and employs



2.4 Current Types of Network Fault Classi�cation 25

a machine learning approach to solving complex problems. A Bayesian network, on the

other hand, is a classi�cation technique that employs a directed acyclic graph (DAG). It is a

statistical model where a set of random variables are involved in the process of classi�cation.

The decision tree is a tool for supporting decision-making. It is represented as a tree-like

graph that shows all the decision variables and all the potential courses of action. SVM is

a classi�cation technique that makes use of learning algorithms. Instance-based learning

methods are associated with a set of learning algorithms involved in memory-based learning.

Classi�cation techniques are widely used in various domains. For example, Tuan et al.

(2015) employed supervised learning in the general virology domain to classify viruses. Sub-

sequent subsections review the following supervised learning methods: kNN, DT, statistical

learning algorithms, and instance-based learning methods.

2.4.2.1 Nearest Neighbour Classi�er

The nearest neighbour classi�er is one of the machine learning algorithms used to predict

the labels of objects given for testing. Nikhath et al. (2016) used the kNN classi�er for

text categorisation. Text categorisation refers to the process of inputting texts or documents

to different categories based on their underlying content. It involves two phases: training

and classi�cation. In the training phase, trained documents are provided upon which KNN

constructs a model that can be used to classify test documents, as illustrated in Figure 2.8.

Fig. 2.8 The functioning of kNN
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Anava and Levy (2016) claimed that the k-Nearest Neighbour is a non-parametric algo-

rithm that can be widely used for machine learning and pattern recognition. They employed

kNN and used optimal weights to ef�ciently �nd neighbours in the given dataset. A vari-

ant of kNN, weighted kNN, uses three ingredients; the weight vector, number of nearest

neighbours, and a distance metric. Bhamre et al. (2016) performed image classi�cation using

multiple pipelined methods, including kNN, where the Mahalanobis distance measure is

used to compare images. Hoffer and Ailon (2016) explored the use of metric embedding for

deep learning using a semi-supervised approach. Their approach can be used to construct

classi�cation models. They also used nearest neighbour classi�cation to predict class labels

based on trained labelled samples.

2.4.2.2 Decision Tree Classi�ers

The Decision Tree is a widely used classi�cation technique. It employs a series of intelligent

questions that are used to build a classi�cation model. The outcome of the model is a decision

tree, which is used to understand trends in the data and make well-informed decisions. Ashari

et al. (2013) investigated the utility of the decision tree and compared its performance with

other classi�ers. They found that DT was faster than kNN and Naive Bayes. Examples of

DT classi�ers are ID3, C4.5, and CART. Gallé (2018) proposed an ensemble method to form

random forests with the help of decision trees. They thus exploited the power of decision

trees in making automated decisions.

The decision tree algorithm C4.5, shown in Figure 2.9, is an iterative process with a

condition inside. The condition veri�es the criteria in given instances. If the condition is

satis�ed, a new decision path tree is constructed. If the condition is not satis�ed, it adopts

child-link values for the completion of the same decision path. Decision trees provide utility,

resource costs, event outcomes, and possible consequences.

2.4.2.3 Statistical Learning Methods

Statistical learning is a method that can be used to �nd predictive functions from data.

Understanding and predicting are the two important goals of statistical learning methods.

Liu et al. (2017) employed statistical learning methods to solve a learning problem where a

random variableY is used to predict another random variableX and its observations. They

used a hypothesis to evaluate the quality of the predictions. With the help of SVMs, Joachims

(2001) proposed a statistical learning model that would be able to conduct text classi�cation.
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Fig. 2.9 The process underlying the decision tree algorithm C4.5

This involved handling features of text classi�cation such as high-dimensional feature space,

sparse document vectors, the heterogeneous use of terms, and a high level of redundancy.

As shown in Figure 2.10, statistical methods are generic and can be used with datasets

from different domains. Pre-processing steps such as Extra-Cellular Recordings (ECR),

functional Magnetic Resonance Imaging (fMRI), and Electroencephalography (EEG) are

performed before utilising statistical methods such as feature sensitivity, feature selection,

and classi�cation.

2.4.2.4 Instance-Based Learning Methods

Instance-based learning is also known as memory-based learning. Instead of explicit general-

isation, it encompasses a family of algorithms that are used to compare new instances with

instances that are seen in training. Brighton and Mellish (2002) investigated instance-based

learning algorithms and exploited technical advances in the process of instance selection.

They developed ways to identify noisy instances and prune them to improve the performance

of applications where instance-based learning methods are employed. New advances in the

selection of instances include selection as removal and the structure of instance space. They

found that structure of class plays an important role in instance-based learning algorithms.

Figure 2.11 illustrates the concept of instance-based learning.
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Fig. 2.10 General statistical learning methods

Toussaint and Berzan (2012) contended that instance-based learning algorithms are

among the best machine learning algorithms used for pattern classi�cation. However, these

algorithms suffer from the curse of dimensionality. This problem is overcome by using

proximity-graph based instance-based learning which exploits minimum spanning trees

(MST), relative neighbourhood graphs, and Gabriel graphs. Li et al. (2016) employed

instance-based learning for image processing, where it comprised a form of reinforcement

learning (RL). Gershman and Daw (2017) used reinforcement learning paradigms with the

help of instance-based learning. This involves decisions based in experience and RL plays a

vital role in such decision making.

2.4.2.5 Support Vector Machine

The Support Vector Machine (SVM) is one of the supervised learning methods and is

therefore a discriminative classi�er. It uses labelled training data to classify new samples

that are unlabelled and constructs a hyperplane which is designed to have regression or

classi�cation. Some of the applications of SVM include text categorisation, classi�cation

of images, image segmentation, character recognition, identi�cation features, and making

predictions. Ghamisi and Ho�e (2017) proposed a framework for composite kernel SVM

to classify LiDAR data with high accuracy and reduced resource consumption. Nakayama

et al. (2017) employed SVM in high-dimension settings for having bias-corrected SVM for
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Fig. 2.11 Instance-based learning

classi�cation. Chakrabarty et al. (2017) used SVM to construct a feasible non-linear model

predictive controller that provides guaranteed stability. Nandi et al. (2017) employed SVM

for the classi�cation of data in �ood management.

2.4.2.6 Neural Networks

A neural network is a computational model with interconnected nodes that resemble the

neurons in the human brain. The network contains multiple layers including an input layer, a

hidden layer, and an output layer. The computational model proposed by McCulloch and

Pitts (1943) paved the way for research on neural networks. Goudar and Buonomano (2018)

explored how neural networks could be used to convert spoken words into hand-written

text. Masood et al. (2017) studied the utility of such networks in facilitating the automatic

identi�cation of vehicle colour, make, and model. Poria et al. (2017) employed convolution

neural networks to investigate human emotions and thoughts extraction from video content.

Ferrari et al. (2017) also used convolution neural networks and bacterial colony counting for

digital microbiology imaging.

• Probabilistic Neural Network

The Probabilistic Neural Network (PNN) is based on the estimation of Probabilistic

Density Function (PDF) and Bayesian classi�cation. PNN was �rst introduced by
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Specht (1990), since then, it has become widely used to solve numerous classi�cation

problems based on its underlying statistical foundations in Bayesian estimation theory.

PNN is largely similar to the Parzen Window PDF estimator. For each class, the sub-

network present in PNN is nothing but a Parzen Window PDF estimator. Therefore,

PNN relies on Parzen window classi�ers that are associated with a non-parametric

procedure. Each classi�er is able to make a decision after computing the PDF for each

class based on the training examples given. One such classi�er decision is as follows.

Pk fk > Pj f j (2.13)

WherePk represents the prior probability of examples occurring from a given class

denoted ask and the estimated PDF is represented asfk. It is known as a “neural

network” because it contains two-layer feed-forward network mapping.

Fig. 2.12 Architecture of PNN

As shown in Figure 3.6, the PNN contains four layers: input layer, pattern layer,

summation layer, and decision layer. The PNN recognises the number of classes

represented by c. Input features are represented by the �rst layer with n features.

The nodes present in the pattern layer represent the instance in the training set. The

�rst layer is fully connected to the second layer; it is responsible for distributing

inputs to the neurons and does not perform any sort of computation. The next layer is
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the summation layer which is semi-connected to the pattern layer. A set of training

instances is connected to one single node in the summation class. This means that

the nodes in the summation class contain the sum of inputs derived from the selected

training patterns. PNN creates a set of multivariate probability densities. These are

derived from the inputs or training vectors given to the network. Any input instance

whose category is not known is sent to the pattern layer. The nodes in the pattern layer

receive input and the output of each node in the layer is calculated as follows.

pc
i =

1
(2p)n=2s n

exp[�
(x� xi j )T(x� xi j )

2s 2 ] (2.14)

wherep denotes the features of instancex which is the input. The smoothing parameter

is represented bys and the training instance for a given categoryc is represented as

xi j . The neurons in the summation layer compute the likelihood ofx which is classi�ed

asc. The computation for this is as follows.
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whereNi represents the number of samples present in c. If the probabilities and losses

for incorrect decisions for each class are same, the patternx is classi�ed by the decision

layer according to the rules derived from the output of the summation layer. This is

calculated as follows.

C(x) = argmax[pi(x)]; i = 1;2; :::;c (2.16)

where C(x) represents the envisaged class of pattern x and the total number of classes

in the given training set is represented by m. If the probabilities and losses associated

with an incorrect decision for each class are different, the result of the summation layer

is calculated as follows.

C(x) = argmax[pi(x)costi(x)aproi(x)]; i = 1;2; :::;c (2.17)

where the misclassi�cation of input vector is denoted ascosti(x). The probability of

the occurrence of prior patterns in class c is denoted asaproi(x).
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2.5 Fault Classi�cation Challenges

Fault classi�cation is an essential activity in network fault management for understanding

faults and taking well-informed decisions. However, Rozaki (2015) found that this activity

presents certain challenges that need to be addressed, including the dynamic and real time

classi�cation of faults, fault handling, and achieving compliance with better Quality of

Service (QoS) under enforced QoS constraints. Multi-layer fault localisation is also another

challenging area to be addressed. The proliferation and usage of certain technologies are

insuf�cient in this respect. Moreover, faults are bulky which means data mining techniques

need to be employed. One possible solution to overcome these problems is to couple a data

mining technique with other approaches to deal with the size and complexity of data when

performing fault localisation, detection, and classi�cation. Some of the speci�c challenges

pertaining to fault classi�cation are as follows.

• It is by no means -trivial to have to test all MIB variables and the extent of their

in�uence on exact fault identi�cation.

• There is a plethora of machine learning techniques. It is dif�cult to determine which is

most suitable for fault detection and management.

• The reliability of research on fault classi�cation depends on the quality of datasets.

It is an immense challenge to obtain datasets that provide scope for meaningful

interpretations through machine learning techniques.

• The fact that a large number of MIB variables need to be investigated in the network

fault management system leads to the curse of dimensionality problem. Moreover, MIB

variables belong to different groups. Overcoming the high dimensionality problem is

therefore another challenge.

• Automation of fault isolation is dif�cult for certain faults due to a lack of established

procedures.

2.6 Prior Works on Fault Management and Classi�cation

Al-Kasassbeh and Adda (2009) proposed a method that used a Wiener �lter-based agent for

network fault detection. The software component with intelligence that they used was the

Mobile Agent (MA). MA can move across networks and obtain Management Information

Base (MIB) variables from different nodes. Abnormal changes in the behaviour of MIB
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variables can then be studied. Their method operates on four different datasets captured

from two network scenarios. The network manager node is provided with a high level of

information, including conclusions and recommendations. This level of knowhow can help

the node make expert decisions. It is achieved by identifying and classifying network faults.

The use of multiple mobile agents with a �ltering process makes this approach ef�cient and

scalable. Cross correlation of MIB variables is also conducted to check abnormalities in the

traf�c.

Al-Kasassbeh (2011a) exploited MIB variables to build change detection algorithms.

Change detection can provide useful insights into any problem that might have occurred in

the network. In network traf�c it may detect the presence of a possible anomaly. Various

change detection methodologies were explored by Al-Kasassbeh (2011a). Those applications

that are of interest and related to network change management include network performance

management, security management, and network fault management. However, research on

the adaptive detection of change or the utility of any hybrid approach that provides better

results has yet to be conducted.

Al-Kasassbeh (2011b) also investigated network attacks and explored the need for an

intrusion detection system (IDS) to enable the automatic detection of network attacks. He

argued that commercial IDSs are generally centralised and are not scalable. To overcome

scalability issues, a distributed model was introduced based on the concept of a mobile

agent. This is an autonomous program that collects information from different places in the

network. A Weiner �lter is used to investigate issues with network data and detect anomalous

behaviour. Statistical methods and the Weiner �lter can be combined to enhance the detection

of network attacks. The algorithm was tested for its effectiveness in both lightweight and

heavyweight scenarios. Its main drawback was that it did not work well with heavy traf�c.

Further investigation is therefore required to �nd an IDS that can perform well in heavy

traf�c scenarios.

Wang et al. (2008) studied faults in aero-engines and proposed a method for the detec-

tion and classi�cation of faults that would work in conjunction with self-recovery. When

combined with other approaches this method has made a signi�cant contribution to fault

classi�cation. These methods include Support Vector Machine (SVM), Wavelet Packet

Analysis (WPA), and Stochastic Resonance (SR). Building multiple fault classi�ers paved

the way for ensuring effective fault identi�cation and classi�cation.

Zhang et al. (2011) investigated network-based nonlinear systems in the presence of

random missing measurements and communication constraints. They proposed a fault

detection �lter to improve the quality of fault identi�cation. Both fault detection and �ltering
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are achieved by addressing detection and �ltering problems using a stochastic switched fuzzy

time-delay system. Yu et al. (2011) also proposed a method for the diagnosis and classi�cation

of faults. Their method exploits two approaches known as Independent Component Analysis

(ICA) and Empirical Model Decomposition (EMD) which is used for decomposing intrinsic

mode functions. These functions are subjected to both aliasing and correlation. Thus,

information redundancy is eliminated through better fault disclosure and fault diagnosis. The

ICA method is also involved in fault classi�cation. In this process a vector is created to

provide enough information to make classi�cation effective. The information contained in the

vector includes entropy, entropy of frequency, and correlation coef�cients which are subjected

to the regression neural network. Youssef (2009) proposed a new approach for the real time

detection and classi�cation of faults by exploiting the effectiveness of SVM and integrating it

with online wavelet-based pre-processing. They found that the good generalisation in SVM

was extremely useful for the classi�cation of faults in power transmission systems.

Yeo et al. (2003) proposed a new algorithm for classifying faults in transmission lines.

They classi�ed faults into High Impedance Faults (HIF) and Low Impedance Faults (LIF).

Their algorithm is based on the Adaptive Network-based Fuzzy Inference System (ANFIS)

which takes current signals into the system and identi�es as well as classi�es faults. A

neural network structure that classi�es catastrophic faults in integrated circuits is another

approach used to ensure effective fault detection and classi�cation. Many earlier techniques

assumed that the variances of faults in circuits are the same. This assumption is released

and found that neural networks to be slow. However, the heteroscedastic probabilistic neural

network exhibited better performance in terms of fault detection and classi�cation (Yang

et al., 2000). ANN with back propagation was used by Tayeb and Rhim (2011) to locate,

detect, and classify faults in transmission line system. Back propagation is one of the training

approaches in ANN that optimises the results.

Saravanan and Rathinam (2012) explored fault location and classi�cation techniques for

double circuit transmission lines. These are useful for detecting different faults such as LG,

LLG, and LLLG and protecting networks from such faults. They proposed neural network

solutions with three feed forward variations which were the Radial Basic Function Network

(RBF), Back Propagation Network (BPN), and Cascaded Correlation Feed Forward Network

(CFBPN). The proposed method extracts a hidden relationship from input patterns to locate,

detect, and classify faults. This approached worked well with different system parameters.

RBF was found to be the most effective of these variations.

Dasgupta et al. (2012) proposed an algorithm for the classi�cation of network faults

in underground cables. They used a hybrid approach that combines Probabilistic Neural
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Network (PNN) and Discrete Wavelet Transform (DWT) and improved the accuracy with

which faults were classi�ed. The different types of fault they classi�ed were the three-phase

fault, line to line fault, double line to ground fault, and the single line to ground fault.

Xu and Chow (2008) studied fault diagnosis. They proposed a hybrid algorithm for

fault diagnosis based on arti�cial immune systems and fuzzy classi�cation. This contains

features such as computation of support and con�dence, rule cleaning, and classi�cation.

Their method is known as the Fuzzy Arti�cial Immune Recognition System (FAIRS). FAIRS

performed better than the E-algorithm and Arti�cial Immune Recognition System (AIRS).

Nagaraja et al. (2003) explored the performance and availability of cluster-based services.

They employed analytical modelling and fault injection techniques to evaluate the perfor-

mance and availability of networks that use protocols, such as VIA and TCP. They conducted

empirical research on different fault loads and found that VIA based networks showed the

greatest availability. The faults that were injected were network hardware faults, node faults,

application faults, and memory exhaustion faults. With both protocols they found 99% to

99.8% availability on cluster-based services. However, they acknowledged that their research

requires further validation.

Jaudet et al. (2005) proposed temporal classi�cation as a method for predicting fault-

predication in telecommunications networks. Using this method, alarm messages are analysed

and fault-predication made using temporal classi�cation. To ensure temporal classi�cation,

temporal rules must be de�ned and used. The temporal version of the Decision Tree (DT)

classi�er was compared with the non-temporal DT classi�er. The results showed that the

temporal DT classi�er performed better than its non-temporal counterpart. However, this

method needs to be improved further to consider the downtime caused by each fault in the

multi-vendor environment.

Mohamed and Basir (2010) studied computer networks and proposed a distributed alarm

correlation technique that used a fusion-based approach for fault identi�cation. Their work is

signi�cant as thousands of alarms are generated by networking systems. When alarms are

correlated using the fusion-based approach, it is possible to have accurate fault identi�cation.

An intelligent agent is used to correlate local alarms globally. By fusing local alarms into

global alarms and �nding the representative faults, it is possible to reduce fault data to ensure

better fault diagnosis and classi�cation. Mohamed and Basir conducted their experiments in

noisy network environments. Multiple intelligent agents were used to correlate local alarms

produced by different domains in a managed network. The detection rate for this method

was higher than for its predecessors.

Barakat et al. (2010) proposed a method for fault detection and identi�cation for large
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scale industrial plants. The method is known as Input-Output Classi�cation Mapping (IOCM).

It makes use of RBF neural networks where the output of the input layer is mapped to the

input of the output layer. After decomposing the data, both techniques are used to ensure

the accurate identi�cation of faults. The IOCM was compared with RBF and IOCM+DWD

systems and both IOCM and IOCM based systems exhibited higher performance than RBF

systems.

ElMadbouly et al. (2010) proposed a fault detection method based on Fuzzy Cluster

Means (FCM) and Centre of Gravity (COG) defuzzi�cation. For the signal separation, FCM

is used while defuzzi�cation is used for fused signal generation. The components included

in the system are sensor measurements, FCM algorithm, fusion engine, a fault detector unit,

and a performance index calculator. Due to fuzzy membership in the clustering process, this

method exhibited superior performance in terms of fault detection.

Khalid et al. (2011) proposed a hybrid mechanism for fault detection and classi�cation in

two tank process industries. They used techniques such as Genetic Neuro-Fuzzy Systems

and the Kalman Filter. Their hybrid approach was named the Genetic Adaptive Neuro-

Fuzzy Inference System (GANFIS). The novelty of this approach lay in discovering critical

information that indicates the presence or absence of a fault at the earliest possible time.

Additionally, it provides �ne-grained details of the fault that is detected. This makes fault

diagnosis more accurate and reliable. The error rate of the method is considerably less than

that of ANFIS, ANN and Fuzzy methods.

Benkaci et al. (2011) explored a novel approach for feature selection named fuzzy-

ARTMAP whose ef�ciency lies in the classi�cation of faults in an automotive application. It

is a neural network approach for pattern classi�cation that utilises both con�ict intersection

and classi�cation for the isolation and classi�cation of faults and enhances performance. The

discriminative feature is employed for con�ict intersection which determines the actions taken

for classi�cation and fault isolation. Although the ef�ciency of the system was demonstrated

through simulations, it needs to be applied to a real-time scenario to fully demonstrate its

bene�ts.

Harmouche et al. (2012) proposed a hybrid approach based on Kullback-Leibler Diver-

gence and Principal Component Analysis (PCA) for fault detection and diagnosis which is

applied in Hoteling T2 system. In this approach, a diagnosis criterion is employed from

Kullback-Leibler Divergence while the PCA is conducted through control charts. In terms of

performance, this method was able to detect small faults that went undetected by a Hostelling

test. Once again, although the effectiveness of the method was shown through simulations it

needs to be tested on a real time system.
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Malik and Mishra (2014) employed a data mining tool known as RapidMiner to extract

the most in�uential features. These were then subjected to PNN for fault diagnosis. The

feature selection with PNN showed highest classi�cation performance in terms of accuracy

when compared with FL, IEC, and AFC. The data mining approach has therefore been

shown to be ef�cient and will be further enhanced to provide online fault diagnosis in power

transformers.

Wang et al. (2014) proposed a method for fault detection and classi�cation at the multi-

sensor feeder level using two techniques known as SVM and PCA. The method yielded

high accuracy in both fault detection and classi�cation. Because it was applied to the sensor

networks, it needs to be improved further by determining sampling frequency, the optimal

number of sensors, and reliability by increasing the number of sensors used in empirical

testing.

Flores-Martos et al. (2015) studied mobile networks for Key Performance Indicators

(KPI) and alarms. They explored Long Time Evaluation (LTE) networks because the size

and complexity of mobile networks is continually increasing. The Bayesian networks

technique was used for fault diagnosis. Their system comprised two phases. In the �rst

phase, Expectation Maximization (EM) was used for the discretisation of input data while

in the second phase call status was identi�ed. Faults in LTE networks were then diagnosed.

The results were evaluated and compared with different discretisation methods such as

hierarchical classi�cation, K-means clustering, and EM algorithm. A high success rate was

achieved with the EM algorithm.

Zhang et al. (2016c) proposed a Fuzzy K-Nearest Neighbour (FK-NN) algorithm for

locating and classifying faults in transmission lines. They found that fuzzy K-NN exhibited

better performance than traditional K-NN. However, further improvement is required because,

as network faults grow larger in size, traditional computational power will be insuf�cient.

It is therefore essential to use online big data analytical tools such as Spark and Storm to

ensure comprehensive classi�cation results.

Aggarwal et al. (2016) proposed a method for classifying network faults in transmission

lines. They considered ten categories of shunt faults and employed a combination of two

techniques to form a hybrid mechanism. The two techniques were Probabilistic Neural

Network (PNN) and Empirical Mode Decomposition (EMD). Intrinsic Mode Functions

(IMFs) were used to model faults with the help of EMD to form an intelligent fault detection

model. Higher classi�cation accuracy was then achieved.

The article by Chen et al. (2017), describes research carried out by the authors into an

ef�cient intrusion detection system for mobile ad hoc networks (MANETs) implementation
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into cloud-based storage environments. The paper proposes an FCM technique in the form

of an ef�cient fuzzy clustering-based algorithm which seeks to detect possible attacks.

The authors concluded that the new model successfully identi�ed malicious had improved

performance over that of previously used models.

The patent �led by Cardente et al. (2017), describes and illustrates their invention; a

computing system which delivers a classi�cation technique to correctly identify and manage

network types. The invention is illustrated in several embodiments of how the system can

be implemented in a network. In one case it in used to monitor the activity of a network

and classifying and identi�ed unknown endpoint type. The embodiment of the invention in

another case is used to monitor behaviour of an endpoint and examine the endpoint against

its expected behaviour. Additional embodiments of the system include, but are not limited to;

computer networks, apparatus and articles of manurfacture.

The research paper by Swain and Khilar (2017), describes the study carried out by the

authors on fault diagnosis in wireless sensor networks (WSNs). A new neural network-based

fault diagnosis algorithm is presented in this paper, which aims to help WSNs to manage a

composite fault environment. The algorithm seeks to achieves this through four stages which

include; clustering, communication, fault detection and classi�cation. Conclusions from the

paper show that's the new protocol is superior in comparison to existing algorithms in case

of fault detection accuracy, false alarm rate and false positive rate.

Oliveira et al. (2017), delivered in their research their �ndings on Fault Detection Diag-

nosis (FDD) built on Weightless Neural Networks (WNN) and their use in univariate and

multivariate dynamic systems. The paper presents a new system which executes three stages

on the input; time series mapping of data, detection and diagnosis, and �nally passing through

a clustering �lter. The research outlines �ndings from two tests the system was put through

which involved two simulated cases; monitoring temperature of a sales gas compressor for

natural gas and against data from an industrial plant. Conclusions from the research show

that the proposed system solved the problem of Fault Detection and Diagnosis in the cases of

multivariate and univariate dynamic systems.

A research article by Khokhar et al. (2017), presents �ndings of the authors around the

subject of successful classi�cation of Power Quality Disturbances (PQDs). The paper presents

an algorithm using a Probabilistic Neural Network (PNN) based classi�er simultaneously

with an Arti�cial Bee Colony (ABC) optimization technique, which the researchers sought to

provide a new method to automatically classify both single and hybrid PQDs and ultimately

recognise the origin of disturbances. Findings from the simulation carried out in the research

concluded, that the innovative PNN-ABC approach successfully singled out both single and
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multiple PDQs. Thereby proving itself to be a superior method of classi�cation against

methods used previously.

In their research article, Zhang et al. (2018) offer their �ndings around the topic of

variable performance of intelligent fault diagnosis methods in relation to the challenges of

changing workloads and work environment noise. The paper proposes a new model built

on deep learning which the researchers aim to combats both problems with the additional

aid of data augmentation. The paper concludes that the model, named Convolution Neural

Networks withTraining Interference (TICNN), was found to deliver great accuracy on normal

datasets when exposed to changing workloads and noisy environment. This differed from to

that of a Deep Neural Network (DNN) model which deteriorated under the same conditions.

2.7 Summary and Research Gaps

This chapter has comprehensively reviewed current literature on the cutting-edge techniques

used for network fault management. It has de�ned network faults, network fault management,

and different fault management techniques, in the process elucidating various aspects of

network faults and their classi�cation. The review focused on machine learning approaches

such as supervised learning and unsupervised learning methods. It explored different cluster-

ing methods that fall under the rubric of unsupervised learning. These include hierarchical

clustering, partitioning clustering, density-based clustering, model-based clustering, grid-

based clustering, soft computing methods, and Fuzzy Clustering Means (FCM). Each of

these clustering techniques needs to use different measures to �nd the similarity between

objects and make clustering decisions. The different measures discussed include the cosine

similarity measure, Pearson correlation, extended Jacquard, and the coef�cient measure.

The review then covered supervised methods, otherwise known as classi�cation methods.

These include Nearest Neighbour (NN), Decision Tree (DT) classi�er, statistical learning

methods, instance-based learning methods, neural networks, SVM, and PNN. The challenges

involved in network fault classi�cation and prior work focusing on network classi�cation

were also discussed. Various insights from the literature were presented and research gaps

were identi�ed. Some of the speci�c research gaps were as follows.

• Most of the research articles found in the literature focused on fault classi�cation in a

range of environments that were not necessarily computer networks.

• Some researchers explored the detection of faults but not their classi�cation. Similarly,
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articles addressing fault classi�cation focused on one or two types of faults while

ignoring many others.

• Some of the articles did not take MIB variables into consideration, yet these play a

vital role in the detection and classi�cation of faults.

• Some techniques were presented solely in terms of their advantages regarding in fault

management. Their limitations were not explored in relation to different types of faults

captured from different network scenarios.

• Some articles provided research insights based on existing analytical tools and their

features rather than taking a holistic approach to the identi�cation and classi�cation of

network faults.

FCM is considered better than its predecessors for clustering. The rationale behind this

claim centres the ability of an object to belong to multiple clusters with a certain degree of

probability. This type of soft computing has high utility in real-world applications where

accuracy is afforded great importance. Another widely used algorithm, known as the PNN

algorithm, is a feed forward neural network that is also very useful for classifying network

faults. It makes use of the Probability Distribution Function (PDF) of each class to make

classi�cation decisions. Although the PNN can classify network faults, it needs an ef�cient

pre-processing step that can only be provided by FCM. In this thesis a hybrid approach

is therefore proposed for network fault management. The proposed hybrid technique is

Subtractive Fuzzy Probabilistic Neural Network (SFPNNC). This exploits the soft clustering

power of FCM and the classi�cation ef�ciency of PNN to provide a more accurate and

ef�cient classi�cation of network faults. The rationale for considering FCM is as follows.

• FCM can handle issues arising from unclear boundaries (big data) between clus-

ters break down into smaller segments that provide more chances to implement soft

clustering decisions.

• It can shed light on the high dimensionality problem.

• It is an iterative algorithm used to optimise the clustering of objects into different

clusters. It is suitable for network traf�c analysis, especially fault management.

The desired features of the propose hybrid approach therefore include: faster training than BP

networks, guaranteed convergence (better than Bayesian networks), facilitation of incremental

training with consistent speed and the robustness to deal with sample noise.



Chapter 3

Methodology and Framework Design

It is possible to acquire an effective performance classi�er through the combination of sepa-

rate algorithms in order to produce classi�cation outcomes with superior quality. In recent

years, researchers into community classi�cation have increased their focus on the classi�ca-

tion of fault systems. In general, ensemble learning can be explained as a machine-based

learning system that comprises a group of separate learner models that employs a decision

fusion approach to amalgamate each of their results and ultimately generates one answer to a

speci�c issue. In this context, the fundamental concept involves the combination of different

experts and the effective use of the outcomes generated by each of these experts within the

group. Hence, the resultant ensemble model should be capable of amalgamating the positive

and negative attributes of each of the individual components and then effectively applying

the fusion strategy to obtain augmented outcomes. Through the process of consolidating the

outcomes of each individual model, it will be possible to increase the overall performance

level. In recent years, numerous scholars have chosen to utilise a mixture of different classi�-

cation algorithms in their work with the goal of improving the performance in comparison

to single classi�ers As a result of diverse factors in the process of classi�cation, including

insuf�cient training data, the disadvantages of feature extraction, the �ltering of data and

learning algorithms, the performance quality can be constrained. Various researchers have

demonstrated that the precision of ensembling classi�ers exceeds that recorded by the optimal

individual classi�er (Ho et al., 1994; Kittler et al., 1998; Xu et al., 1992).

This chapter will present the fundamental concepts involved in the combination of

distinct supervised (Probabilistic Neural Network Classi�er- PNNC) and unsupervised

(Fuzzy Clustering Means- FCM) algorithms required to generate classi�cation outcomes

with higher quality. Additionally, in terms of unsupervised algorithms, a further technique

(Subtractive Clustering- SC) is injected with FCM in order to enhance the iteration stages
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and to determine the ideal cluster centres as well as the initial cluster identi�cation of the

faults. An additional development is administered in order to generate optimal training data

founded on the sensitive features that are affected by the fault traf�c.

3.1 Fuzzy Theory

The majority of researchers on modern projects are dependent on “yes or no” instead of

“more-or-less” decisions. However, it is not always the case that problems have to take the

form of “yes or no” or “true or false”. Furthermore, it is sometimes observed that there

are instances where the problem is fuzzy and obscure. These problems can be resolved

by applying fuzzy theory (Bezdek, 1981). A fuzzy theory system has the capability to

produce more accurate outcomes for any classes that lack precision by using 33 mathematical

explanations for vagueness. The central functionality of a fuzzy system is based on “IF-

THEN” rules, which is a system based on knowledge. The fuzzy theory has developed over

time after the initial concept was effectively proposed by Zadeh (1965). The primary tenet

of fuzzy logic is found on various basic components that have signi�cant importance in

fuzzy modelling. Each component or observation in a fuzzy system has a connection with a

membership degree, meaning that each component is assigned a membership value.

The principle objective of the membership function is to transform the group of real data

values into vague datasets, in which every individual datapoint will be connected with a

proper degree of every input variable within the fuzzy control system. This can be achieved by

a set that is formed as a mixture of (A, m), where A represents the set and m the membership

degree,m: A ! [0;1]. In order to explain the ambiguity of a data set to the greatest extent

possible, the design of systems based on fuzzy theory is dependent on discrete or continuous

membership functions that use IF-THEN rules.

Within computer traf�c faults data, there is uncertainty and inaccurate information that

emerge from the different variables related to Management Information Base (MIB) groups,

which are de�ned as the group of network entities that can be controlled through the use

of Simple Network Management Protocol (SNMP). Methods of hard clustering, including

k-means and Self Organizing Maps (SOM), are not compatible with the examination of

such data, as the traf�c faults clusters are frequently observed to intersect as a result of

the involvement of multiple MIB variables in each distinct �aw. There are various positive

aspects of fuzzy theory in terms of its approach to managing data that contains a degree

of uncertainty. Fuzzy clustering methods are compatible with the theory of fuzzy sets,

which takes uncertainty into account when the data features of Simple Network Management
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Protocol (SNMP) are examined. Hence, every feature vector within the dataset will be

assigned a membership value with each of the groups, thus implying the degree to which it

belongs to the cluster (Bezdek, 1981). The aim of fuzzy clustering is to provide a de�nition

for every cluster by determining its membership function, and it is bene�cial for resolving

the issue of high dimensionality. It is regarded as an iteratively optimal algorithm that has

greater �exibility, particularly for the examination of traf�c.

3.2 Fuzzy C-Means

Fuzzy C-Means (FCM), which is an adaptation of Hard C-Mean clustering, was originally

proposed by Bezdek (1981). It is de�ned as an unsupervised machine learning clustering

approach that can be applied to numerous diverse problems, including the design of clas-

si�cation, clustering and feature analysis. FCM is predominantly applied by considering

the distance between different data points, while the generation of every cluster is designed

based on the measurement of each distinct from the cluster centres. Thus, there will be a

centre associated with every group and through optimisation of its location, it will be possible

to determine the optimal amount of clusters. Similar to other clustering methods, FCM

is predominantly dependent on calculating the distance between different data points and

employs the measure of Euclidean Distance to determine similar features among objects.

FCM is one approach to fuzzy logic that enables each datum to be associated with multiple

data groups. Calculation of the distance between data points facilitates the process of the

algorithm making decisions regarding the creation of sets for each of the data points based on

their similarities and dissimilarities. Those data points that are considered to have similarities

are maintained in a group de�ned as a cluster. The value of the similarity measures ranges

between 0.0 and 1.0, where the value of 0.0 indicates strong dissimilarity and a value of 1.0

is an indication of the strongest similarity between the relevant objects.

The primary goal of FCM is to reduce Jm, as shown in the equation below with the aim

of obtaining the optimal number of clusters. As this approach is iterative, it is important that

the minimisation is improved at each iteration.

The Euclidean Distance Function, which is de�ned as the objective functionJm, is

utilised in FCM to obtain the C partitionA = A1;A2;A3; : : : ;An for the speci�c dataset

A = X1;X2;X3; : : : Xn as well as the volume of clusters, de�ned asc.

Jm(m;V : X) =
c

å
i= 1

n

å
j= 1

(mi j )m



 Xj � Vi




 2 (3.1)
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Wheremi j represents the membership function of the data point in thei cluster,m

represents the fuzzi�er that serves as the fuzziness controller value; in general,mcan be a

real number over 1. This parameter acts to manage the degree of vagueness of every obtaining

clusters that has a membership represents the centre of thei cluster, whilejj :jj indicates the

Euclidean distance between the prototype and the vector.

Equation 3.1 is employed to calculate the value ofJm(U;V) as well as to ascertain the

criterion function depending on a given threshold. Objects are denoted by the letter n, while

clusters are represented by the letterc, thei cluster centre denoted byVi and the ith cluster of

the membership of an object by Xi is denoted by

0 � ui j � 1and
c

å
i= 1

mi j = 1 (3.2)




 Xj � Vi




 2 represents the Euclidean distance between the prototype Vi and the vectorXi .

The fuzziness of the subsequent partition is constrained by the parameterm. This denotes

the level of distribution of the membership of each of the faults considered in the present

study, which are separated into (F1, F2, F3 and F4) via the clusters. In this scenario, the

letter F depicts the separate traf�c in each of the scenarios with diverse sources. Further

explanation of this will provided in the following chapter of this thesis. Consequently, the

FCM data develops into a hard cluster. Additionally, the outcome is that the clusterj are

used by the prototypesVi , thus ensuring that the fuzziness of the partition is optimised. Users

are required to determine the minimal change values in the objective function in addition

to the parameterm in order to enable termination and to achieve the maximum number of

iterations.

The two partial derivatives are assigned the value of zero with the purpose of identifying

the closed form formulas for updates. This facilitates the acquisition of pattern prototypes

and the fuzzy partition matrix after the iteration has converged (Bezdek, 1981). In order that

the outcomes of each iteration in the process are optimised, both the fuzzy membership and

the fuzzy cluster centroids are updated by applying the following equations:

c

å
i= 1

mi j = 1 (3.3)

The total of all the memberships in each of the clusters must equate to 1, as indicated by

the equation shown above. Subsequently, the cluster centres and membership level will be

updated at each iteration, which will enable the optimisation of the number of clusters using

the following equations:



3.2 Fuzzy C-Means 45

Vi = (
n

å
j= 1

(mi j )mXj )=(mi j )m (3.4)

mi j = [
c

å
k= 1

(



 Xj � Vi




 2)=(




 Xj � Vk




 2)( 1

(m� 1)]� 1 (3.5)

In FCM, data are attached to each cluster through a membership function, which depicts

the algorithm's fuzzy behaviour. The algorithm constructs a suitable matrixU containing

matrix components that range between 0 and 1, which denote the level of membership that

exists among the data and cluster centres. Figure 3.1 is an illustration of a mono-dimensional

example, depicting a one-dimension dataset that is spread along the x-axis.

The above data set can be conventionally grouped into multiple clusters. By determining

a threshold at a point on the x-axis, the data can be largely divided into two separate clusters;

although it is also possible to have three or four clusters, the optimum number is two. In the

�gure, the subsequent clusters have been highlighted by red circles. In this scenario, each

data point that belongs to the data set is assigned a membership coef�cient of either 1 or

0, which are illustrated in the �gure by the addition of the y-axis. In regard to the k-means

Fig. 3.1 Distribution of mono-dimensional data

algorithm, each of the datum is linked with a certain centroid. A pair of clusters (Cluster 1

and Cluster 2) can be determined in the vicinity of the two concentrations of data. Figure 3.2

depicts the membership degree for k means, which is de�ned as hard clustering.

In the fuzzy clustering process, every data point can be a member of different clusters.

If the de�nition of the membership coef�cients is not speci�cally constrained to 1 or 0, it
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Fig. 3.2 k-means membership degree

is possible for the coef�cients to have any value between 1 and 0. In Figure 3.3, the data

from the aforementioned clustering is shown, although in the case, fuzzy c-means clustering

has been used. Firstly, the two clusters can now be re-de�ned by the creation of a different

threshold value. Subsequently, each data point will be assigned new membership coef�cients

that are based on the clusters' centroids, in addition to the distance of the data point from the

centroid.

As demonstrated in Figure 3.2 the central data point belongs to both Cluster 1 and Cluster

2. The data point's membership coef�cient for Cluster 1 is calculated as 0.5.

3.2.1 Initialization

In FCM, disparate initialisations can cause diverse outcomes as it only will only converge

to local minima. The traditional method applied to prevent FCM being constrained in

local minima is to apply the FCM with various initialisations and the outcome with the

lowest value function is selected. Nevertheless, such a process can be lengthy with a

certain level of instability. In recently conducted studies, FCM has been combined with

optimisation algorithms, including Subtractive Clustering, Self Adaptive Clustering, the

Genetic Algorithm, Particle Swarm Optimization, and Ant Colony Optimization (Ghosh and

Acharya, 2011; Loginov et al., 2011; Mehdizadeh et al., 2008).

The subtractive clustering technique is an extrapolation of the mountain clustering

approach that uses data sets generated by utilising the mountain function, thus forming
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Fig. 3.3 Fuzzy c-means membership level

cluster centres. The functionality of this method involves the assemblage of n data points in

an m-dimensional space and begins with the establishment of a data point xi as a possible

cluster centre, with the de�ned potential as a function of the Euclidean distances of the entire

data points. Thus, the potential at data pointxi is identi�ed by the function through the

following equation:

Pi =
n

å
j= 1

e� akxi � x jk
2

(3.6)

Wherea is a parameter given by:

a = 4=r2
a (3.7)

In Equation 3.7,ra represents the cluster radius, which determines a hypersphere of

data points that can be regarded as neighbours based on their in�uence on the cluster centre

potential. The value ofra has a signi�cant impact on the number of clusters that are induced.

It is important to note three observations in relation to this value: a data point that that exists

outside the vicinity of radiusra only has a minimal impact on the potential of the relevant

neighbour centre data point; a higher value of ra generally leads to the creation of a reduced

amount of clusters and therefore the model will be overly generalised; however, a low value

of ra could suggest that there will be an excessive volume of clusters, thus leading to the

scenario where the model is not adequately generalised. In general,ra values are selected to
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ensure that that there is a suf�cient volume of clusters, which are linked with the subsequent

amount of fuzzy rules. It is possible to �t thera parameter depending on the complexity of

the targeted model and its generalisation capability. After the potentials of all data points

have been determined, through Expression 3.6, the subtractive clustering technique denotes

the �rst cluster centre to be the data point that has the greatest potential. Subsequently, it is

possible to re-assess the potential of this data point by utilising the assignment provided by:

Pi ( Pi � P�
1 e� bkXi � X�

1k2

(3.8)

In Equation 3.8P�
1 represents the potential value of the �rst cluster centre,X�

1 is the

location of the centre andb is a parameter calculated as follows:

b = 4=(dra)2 (3.9)

In Equation 3.9,d represents the squash factor that determines the neighbourhood of data

points that can assert a considerable calculable diminishment in the potential value. Generally,

a value ofd = 1:5 represents a suitable option. After determination of the initial cluster

centre and each of the possible data points has been re-assessed by employing the process

detailed by assignment 3.8, the data point that is revealed to have the greatest potential is

selected as the second cluster centre. Normally, after acquiring thekth cluster centre, the

potential of every data point is reassessed through the following assignment:

Pi ( Pi � P�
k e� bkXi � X�

k k2

(3.10)

In assignment 3.10,P�
k represents the potential value of thekth cluster centre, whereasxk�

is the centre's location. Consequently, fuzzy rules are established as a result of the selected

cluster centres. The cluster approximations acquired from subclust function can be applied

to initiate clustering techniques iterative optimisation (fcm) as well as model identi�cation

procedures (such as an�s). The clusters are discovered by the subclust function through

the use of the subtractive clustering method. The Sklearn.cluster in the python function

expands the subclust function in order to generate a rapid, one-pass algorithm to gather

input-output training information. In this context, the radius of the subcluster that is acquired

by integrating a new sample and the nearest sublcuster must be shorter than the threshold. If

this is not the case, then a new subcluster is initiated. If this value is particularly low, then

splitting will be promoted, while the opposite also holds.
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3.2.2 Volume of Clusters

In the process of clustering data in the absence of any a priori knowledge of the structure

of the data, it is normally necessary to make certain suppositions about how many clusters

there are. For example, in Figure 3.4, it is demonstrated that it is possible to divide the data

in question into �ve clusters while it is also feasible that the data can be grouped into four

clusters. The clustering outcome is signi�cantly dependent on the optimal amount of clusters,

as different numbers of clusters can generate distinct explanations.

Fig. 3.4 Optimal number of clusters

3.2.3 Fuzziness Degree

The fuzziness exponent m is a parameter that has signi�cant importance as it dictates the

impact of noise on the analysis of the clusters (Bezdek, 1981). Whenm= 1, FCM develops

into hard clustering and the FCM algorithm is the same as the k-means clustering. In this

case, the membership values can only be zero or one. When calculating the cluster centre,

each traf�c fault is treated in the same way, Elevating the parameterm diminishes the impact

of traf�c that has a lower membership value. Fault vectors with high dimensional features

are usually observed to have reduced membership values, as the associated traf�c fault is not

adequately represented by an individual cluster and is therefore partly allocated to multiple

clusters. As m approaches in�nity, all membershipsmi j =j, the FCM will reach their fuzziest

level and each of the clusters will dissolve. The default setting for the fuzziness exponential
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Table 3.1 Fuzziness degree

Fuzziness Parameters Fuziness Value Cluster optimality number
M1 1.25 2
M2 1.5 3
M3 1.69 4
M4 1.85 5
M5 1.94 6
M6 2.05 7
M7 2.2 8
M8 2.45 9

is established asm= 2, which is the most common value used be relevant applications. In the

present study, in order to optimise the partition by updating the cluster centres and the degree

of membership that are reliant on this parameter, it is necessary to test different values of m,

as demonstrated in Table 3.1 The data in the table shows that the optimal cluster solution for

the dataset traf�c is obtained with the fuzziness parameter M3 with a value of 1.69, whereas

the extant data managed four separate traf�cs.

The ideal values for m can be different in each dataset. Various researchers have proposed

methods for selecting the m values, but these approaches frequently involve a lengthy process.

In empirical terms, the FCM algorithm can determine the optimal clustering outcomes

through the minimisation of the objective function.

¶J
¶m

=
c

å
i= 1

n

å
j= 1

(mi j )mln(mi j )



 Xj � Vi




 2 (3.11)

Based on Formula 3.11, the objective function is monotonically decreased as the value of

m increases. It is feasible that the value ofm at the point where the clustering outcome is

minimised. The objective function has a minimum point in relation to the partial derivative

of the objective function with regard to parameterm (Dembele and Kastner, 2003).

m� =
�

mj(
¶ j
¶m

)
�

= 0 (3.12)

In terms of fuzzy clustering, the point of in�ection of the objective function is only

associated with the lowest value of its derivative. Consequently, it is possible to select the

ideal weighted indexm� by applying the formula shown below:

m� = arg
�

min
�

¶ j
¶m

��
(3.13)
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Based on the experimental results presented in this thesis, the fuzzy exponent m for

the datasets utilised is empirically selected using the equation shown in Table 3.1. Further

explanation will be provided in Chapter 5.

3.2.4 Euclidean Distance

When applying clustering methods, it is generally necessary to de�ne the distance or similar

features of data in order to determine which traf�c faults or samples have corresponding

expression pro�les. The determination of the measurement of similarity is essential for

the clustering outcome, and it is dependent on the distinct attributes of the particular data

framework. The distance metrics that are most frequently employed in the analysis of

traf�c faults expression are Pearson Correlation coef�cients and Euclidean distance. The

Euclidean distance calculates the difference by using the value of absolute expression, which

is formulated as:

E(x;y) =

s
n

å
i= 1

(xi � yi)2

n
(3.14)

In Equation 3.14, the expression pro�leyi is subtracted directly fromxi, which means

that it is therefore necessary to con�rm that the data faults are suitable normalised when the

Euclidean distance approach is applied.

The Euclidean distance has a level of sensitivity to both outliers and noise. For example,

an individual noise has the potential to change the Euclidean distance into an unrestricted

value. The measurement can easily be in�uenced in the circumstance that the levels of

expression are not evenly spread along the expression pattern. For instance, where a pair of

expression patterns have a single high calculated value with the same condition, an increased

correlation coef�cient score will be returned, irrespective of the expression values of the

remaining traf�c conditions. Likewise, a signi�cant disparity in the level of an individual

expression will generate a large Euclidean distance, irrespective of the levels of the additional

expressions.

3.3 K-means

K-means algorithm has been used for many years to perform hard clustering, which it

performs of objects into clusters which there is similarity between them, while the dissimilar

objects belong to another cluster. It is based on similarity measure, used to ensure intra-

cluster faults are highly similar while inter-cluster faults are highly dissimilar. Its general
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�ow is as shown below:

jm =
k

å
i= 1

n

å
j= 1






 x( j)

i � c j






 (3.15)

The speci�c steps of the algorithm are: 1) identify initial group centroids; 2) use distance

measure to identify objects that are closer to a group and assign it; 3) once all objects are

assigned, recomputed the position of centroids; and 4) repeat the second and third steps until

convergence.

3.4 Expectation Maximization

It is more than of an approach to deriving an algorithm for approximately obtaining maximum

likelihood or maximum or maximum a posterior estimates of parameters when some of the

data is missing. The general form of Expectation maximisation is built as written below:

p(Xi jQ) =
n

å
c= 1

P(Xi jti = c;Q)P(ti = cjq) (3.16)

It has many bene�ts, including its optimisation for a large number of variables simulta-

neously and it gives reasonable estimates for missing values. It supports both hard and soft

clustering.

3.5 Neural Networks for Fault Classi�cation

The application of neural networks creates the potential to diminish or completely remove

the necessity for complicated mathematical system that require the utilisation of signi�cant

resources and time. It is normal for data to be acquired for neural networks in real time,

which can be subsequently examined using time series methods. There are certain signi�cant

drawbacks to neural networks that that are trained via back-propagation algorithms. The

decision in regard to the appropriate network framework is frequently conducted on an exper-

imental basis, whereby the amount of levels and nodes in the concealed layer are signi�cantly

dependent on manual testing. The training procedure can take a considerable amount of

time, particularly if a signi�cant volume of training data is considered. Probabilistic neural

networks, which have adopted the majority of the bene�cial aspects of neural networks, have

also been adapted for problems involving classi�cation. They incorporate a comparable

feed-forward framework that is established in a straightforward manner based on the volume

of training samples and the output classes. As the training is essentially a one-pass process, it
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is a particularly ef�cient process. A PNN has the capability to make classi�cation decisions

based on strategy rules determined by Bayesian strategy and can additionally calculate both

the reliability and probability of every classi�cation. When probabilistic neural networks

are trained ith an adequate number of training samples, their performance is comparable

to neural networks that have been trained via back-propagation methods. The important

bene�ts of PNNs are that training only necessitates a single pass, while it is guaranteed that

the decision surfaces will converge on the Bayes optimal decision boundaries proportional to

the increased volume of training samples. Additionally, the form of the decision surfaces

can be rendered as complicated or as straightforward as required; it is normally signi�cantly

more ef�cient that the commonly used back-propagation approach for scenarios where the

progressive adaptation of the back-propagation represents a considerable proportion of the

overall calculation time (Specht, 1990).

3.6 Theory of Neural Networks

A neural network has certain similarities to a biological neural network, which facilitates

connections between neurons with the goal of creating a complicated learning and interaction

structure. Those NNs that are applied to applications including fault diagnosis are de�ned as

ANNs. The fundamental structure of the network has similarities to other biological neural

networks, in which there are clear levels and neuron layers between the inputs and outputs.

The complexity of the complete neural network model is generally established by the amount

of layers as well as the organisation of the neurons in addition to the inputs and outputs.

The fundamental concept of a neural network is that a connectionist approach is utilised in

the resolution of problems that occur in the real world, which enables the neural network

to interact and learn during the process of its development. The general framework of the

neural network is constantly changing and generally evolves as new information is learned

(Montavon and Müller, 2012). Explained simply, a neural network can be considered to be

the combination of different mathematical functions that can be delineated from the inputX

to the outputY as f : X ! Y.

In this scenario, the distribution could be overX or a combination of bothX andY. As

well as the representation utilising functions, it is important to note that such functions could

be subject to certain rules that facilitate learning. Additionally, a neural network model

comprises a group of such functions that map the input to the output. It is possible to obtain

these functions and the group of functions by changing the inputs and outputs to ascertain

the reaction of the complete neural network model. One of the crucial aspects of any ANN
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model is that the network itself forms the connection between various nodes and neurons.

Dissimilar to other more simple networks, the components/neurons in a neural network

possess weighted links with each other that are continually modi�ed as new information is

learned by the network. The simplest neural network comprises three clear layers that are

linked by a network of neurons. The outer layer is comprised of neurons that only accept

inputs and then subsequently transfers them to the next layer of neurons. This second layer of

neurons is frequently described as the hidden layer, as its arrangement has not been accurately

determined. This layer is followed by a third layer of neurons, which serve as the outputs of

the neural network framework. Such a system is demonstrated in diagram form in Figure 3.5.

Fig. 3.5 Representation of a typical simple neural network

It is important to note that when dealing with more complicated neural networks, the

second layer as depicted in the �gure will contain many different levels. Consequently, the

general complexity of the neural network in question will be determined by how many levels

there are as well as how they are arranged. Mathematical functions are the fundamental tools

used to explain neural networks in greater detail. The function of any neuron network is

generally reliant on additional functions, which themselves are dependent on other functions.

Such dependencies among different functions facilitate the generation of a network frame-

work. The typical framework of a neural network can be represented in the mathematical

form shown below:



3.7 Probabilistic Neural Network 55

f (x) = K(å wigi(x)) (3.17)

x represents the input variable(x) represents the output functiongi(x) represents a

function in the hidden layer that is reliant on other functionswi(x)) represents the weight of

gi(x) K represents the activation function

3.7 Probabilistic Neural Network

A speci�c application of Probabilistic Neural Networks is represented by PNNs that are

fundamentally feed-forward neural networks that consist of a pattern layer as well as addi-

tional layers. A PNN is dependent on inputs that are not associated with a speci�c pattern.

Specht was the �rst to develop PNNs, exempli�ed by his proposed high-ef�ciency PNN

that was utilised to resolve problems with classi�cation (Specht, 1988). The fundamental

principle of a PNN is that estimations are generated in order to calculate the probability

density function associated with the different categories that are determined in a classi�cation

problem. By using the Bayes Decision Theory as the foundation, PNNs are developed from

ANNs, which facilitates the emergence of a probabilistic approach. Supervised training is

frequently employed in conjunction with PNNs so that the probability density functions that

are utilised in the pattern layer can be developed. The application of PNNs provides the

speci�c bene�ts of faster training, an innate parallel organisation that facilitates more simple

convergence in addition to increased �exibility that permits the deletion and introduction of

training samples without the necessity for comprehensive training work (Revett et al., 2005).

A PNN's input layer is followed by its pattern layer and �nally, the category layer. The system

is dependent on the variation between the training input and the input vector when calculating

how close one is to the other. Conversely, the PNNs second layer generally combines the

different inputs in order to generate the probability of each connection occurring. These

probabilities are subsequently screened by using a transfer function that generally operates by

distinguishing the highest probability, which is then assigned the value “1” and the remaining

probabilities are assigned the value “0”, which therefore determines which possibility has a

greater likelihood of occurring in comparison to the others.

3.7.1 Classi�cation Theory of PNN

One of the primary aspects of PNNs is classi�cation, which enables PNNs to function and

learn more ef�ciently than different kinds of ANNs. Furthermore, classi�cation facilitates a
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centralised scheme that transforms the inputs into outputs as a result of learning acquired

from the training sets. It is possible to increase the understanding of classi�cation for a

standard PNN by considering it from a mathematical viewpoint. Consider vectorx, such that

it possessesm dimensions for a PNN's input, it is assumed that it is possible to classify it

into one of two categories. These categories can be classi�ed as C1 and C2, meaning that

the vector x cannot be classi�ed into any other category. Similarly, it is possible to label the

probability density functions for the respective categories asF1(x) andF2(x). In this scenario,

L1 and L2 represent the cost function or the losses connected to inappropriate classi�cation

of the input vectors associated with categories C1 and C2, respectively. In a similar manner,

P1 and P2 are the prior likelihoods that x is associated with categories C1or C2, respectively.

By applying the Bayes decision rule, it is possible to conclude that x can only be associated

with category C1 if:

F1(x)
F2(x)

>
L1P2

L2P1
(3.18)

Conversely,x could only belong to the categoryC2 if:

F2(x)
F1(x)

>
L1P2

L2P1
(3.19)

It is also important to note that in a variety of different PNN scenarios, the loss function

and prior probability are either the same or almost the same. By applying this condition to

the above mentioned classi�cation processes, it is evident that classi�cation is for the most

part purely dependent on probability density functions. Therefore, it is possible to conclude

that probability density functions sourced from the training patterns can be successfully

implemented to classify the input vectors for a particular PNN (Goh, 2002). The Parzen

window approach is utilised in PNNs with the aim of calculating the class reliant probability

functions. It should be noted that these estimations have a non-parametric nature. Such

class-reliant probability functions that are generated in this way are subsequently applied

in the classi�cation of present categories based on the Bayes decision rule. This approach

enables the veri�cation of whether it is possible to categorise an input vector pattern into

one of the determined categories. This data is subsequently added to the relevant frequency

of every category in order that the PNN can choose the category that best corresponds to

the given input vector pattern. It is important to consider that both the Bayes decision rule

and the Parzen window techniques have been utilised for many years and are well regarded,

which means that there is high reliability. In mathematical terms, it is possible to express



3.7 Probabilistic Neural Network 57

the Parzen window estimate for the probability distribution function for category C1 as the

following (Goh, 2002):

f1(x) =
1

(2p)
m
2 s mn

n

å
j= 1

e
�
�

(x� x j )T(x� x j )
2s 2

�
(3.20)

n represents the different data training sets utilisedm represents the dimension of the

input vectorx j represents the pattern being usedw represents the smoothing parameter being

utiliseds = smoothing parameter

3.7.2 The Architecture of Probabilistic Neural Networks

Fundamentally, a PNN is a feed-forward kind of ANN. The most simple application of

PNN is founded on non-parametric probability density functions in addition to the Bayes

classi�cation rules. The model approach to training in PNNs involves a single pass through

each of the given training data sets. As this is more rapid and ef�cient, it generally means

that the training process in a PNN is quicker in comparison to alternative neural networks;

however, this generally necessitates increased memory in order to allow for the increased

number of training patterns and their associated data sets. The development of more cost

effective and ef�cient computer memory in recent years has resulted in reduced focus on

increasing the data storage capacity when implementing modern PNNs (Tripathy et al., 2010).

PNNs are feed-forward neural networks that are comprised of four layers with a design that

enables them to determine the most appropriate classi�er. Gaussian activation functions are

frequently used, meaning that the classi�ed pattern is either located in region with an output

of “1” or a different region that is classi�ed as “0”. PNN output functions are only limited to

these two possibilities. Furthermore, PNNs have no connection in terms of form or behaviour

to any normal methods of distribution. A typical example of a PNN is displayed in Figure

3.6 below:

PNNs function in a non-linear manner using non-parametric techniques to form a pattern-

recognition algorithm. A PNN normally de�nes a probability density function for the

different classes of data by utilising information collected from the training sets in addition

to the kernel width. The outputs of a given PNN can be regarded as Bayesian probabilities,

which determine that the inputs are members of the output class based on a certain probability.

Thus, all PNNs are purely based on Bayes classi�cation method and can be expressed in

mathematical terms as the following:

hici(x) > h jc j f j (x) (3.21)
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Fig. 3.6 Standard PNN structure

Where:hi andh j represent the preceding probabilitiesci andc j represent the costs of

improper classi�cationfi and f j represent the probability density functions

In a given PNN, the preceding probabilities cannot be determined, as it is dif�cult to

ascertain whether the input sample is sourced from the data in the training set that is utilised

to develop the PNN in question. The most effective method of addressing this problem is

to employ the training set data to calculate such probabilities. This kind of assessment is

founded on Parzen's method of probability density function estimation (Shaffer and Rose-

Pehrsson, 1999). A probabilistic neural network is usually comprised of layers, including the

input layer, the pattern layer, the summation layer and the output layer, and is appropriate for

problems of classi�cation see Figure 3.6. The amount of input layer units corresponds to

an identical number dimension of input pattern vectors, the amount of pattern layer units is

identical to the amount of training samples, and the amount of output layer units is identical

to the amount of classes that exist in the training samples.

The one-pass training procedure incorporates the memorisation of all patterns that exist

in the training set, in which every Gaining pattern is allocated to the matching node. For

instance, the weight,Wi j , between theith input node and thejth second layer pattern node

is allocated by establishing thatWi j = Xi j (i = l ;2; :::; p) andp is the dimension of the input

pattern,Xi j is the ith input in the jth training pattern). As part of the examination procedure,

every input pattern vector is distributed to each pattern unit and a dot product is generated
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at every pattern unit and then conducted via a nonlinear function (typically a multivariate

Gaussian function). The summation units calculate the total of the outputs of the associated

pattern units that are in identical classes. It is possible to interpret the output value as the

probability distributions of different classes. Hence, the output layer has the capability to

determine to which class a pattern belongs by utilising a conventional decision-making

technique, such as the Bayes decision strategy. It is possible to modify two different types of

weights of the PNN in order to ameliorate its effectiveness, namely the coef�cientCk, which

is related with class k, and the smoothing parameter, a, in the activation functions, which

is a multivariate Gaussian function that is applied to calculate the class probability density

function.

3.7.2.1 Input layer

The input layer represents the initial layer that consists of m input variables that comprise the

input vector x. Every neuron that exists in the input layer corresponds to a predictor variable.

Neurons that exist in the initial layer serve to spread the different inputs of vector x throughout

the next layer. There are equivalent numbers of neurons and parameters (variables) within

the system. There is a complete connection between the neurons in the �rst layer and the

neurons in the second layer, as illustrated in the red rectangle in Figure 3.7.

In regard to categorical variables, N-1 neurons are utilised in the scenario where the

number of categories is equal to N. The range of values is standardised through the process

of subtracting the median and then dividing by the interquartile range. Subsequently, the

input neurons supply the values to each of the neurons located in the hidden layer. In the

hidden layer, the Input vectorX = ( Xa;Xb; : : : Xn) wherea;b; : : : n represent the data points

that are fed from the FCM vectors of the MIB features and Weights of Edges = Input Vector.

3.7.2.2 Hidden layer

The next layer, de�ned as the pattern layer, has an equivalent number of neurons to the input

layer. The patterns in this layer can be best represented by stating that a neuron exists for

each input in the input layer. Neurons that exist in the layer are allocated different weights

based on the various training sets that are used.

The amount of units present in this layer equate to the amount of samples present in the

training set. The radial units are direct copies from the training set and there is only one for

each case. Each of them models a Gaussian function that is centred on a training sample. An

output unit exists for every class, which has an association to each of the hidden units that
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Fig. 3.7 Input aspect of the PNN

belong to this class, but has no associated with any other units, as illustrated in Figure 3.8. In

this layer, the activation function listed below is used:

f (x) = e� (wi � xi)t(wi � xi)
2s 2 (3.22)

Wherewi represent the weights, xi represent the model's variables ands is a smoothing

parameter, which is the only network parameter that must be set at the start of the training

process. Every training sample corresponds to a speci�c pattern unit. The pattern unit

output is calculated by determining the Gaussian Distance between every sample and the

corresponding unit, as follows:

F(x) =
1

(2p)d=2s d

1
j

j

å
i= 1

e� (x� xi j )t(x� xi j )
2s 2 (3.23)

Where: X= unknown (input)Xi j = ith training sample from categorys = smoothing

parameterj = number of training samplesd= length of vectorC= Class
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Fig. 3.8 PNN Pattern layer

3.7.2.3 Summation layer

At the summation layer, the amount of neurons is equivalent to the amount of data classes.

Every neuron has a connection to each of the neurons within the pattern layer that are

members of the class that that this unit represents. The process of summing the Parzen

window estimate's exponential terms is completed by the summation layer, where the amount

of neurons is lower in comparison to the prior layer, as illustrated in Figure 3.9 . Rather, the

amount of neurons in the summation layer is in fact based on the number of categories, as

every neuron generally represents each category.

It should be noted that the connections in the summation layer are basically restricted to

1, in order that the pattern layer outputs are only summed together. The resulting values are

subsequently transferred to the last output layer, in which there is only one neuron component

that implements the classi�cation. Each neuron's output in this layer is an indication of the

likelihood that the input vectorX will belong to classCi , which can be represented as:

P(xjCi) = Pi =
jCi j

å
j= 1

f (x) (3.24)

Where,Ci represents the amount of training patterns from classC.
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Fig. 3.9 Summation unit of the PNN

3.7.2.4 Decision layer

In general, the neuron present in the output layer of the PNN generates a binary value that is

a result of the probability density function that has the highest value, as illustrated in Figure

3.10. Essentially, the greatest value acquired by using this mechanism is an indication of the

optimal classi�cation that the PNN can give for the given input pattern (Bolat and Yildirim,

2003).

The output value is regarded as the probability distributions for the different classes. Thus,

the output layer is capable of determining which class the input pattern belongs to through

the application of a conventional decision-making approach, such as the Bayes decision

strategy. There is one neuron in the output layer, which facilitates the classi�cation decision

related to the input vector X based on the Bayes decision rule. The output can be calculated

through the following equation:

C(x) = argmaxi= 1! m
1

(2p)d=2s d

1
j

j

å
i= 1

exp� (x� xi j )t(x� xi j )
2s 2 (3.25)

mrepresents the number of classes presented in the system(Specht, 1990).



3.7 Probabilistic Neural Network 63

Fig. 3.10 Decision unit of the PNN

3.7.3 Radial Basis Function

Once the training is over, the probabilistic neural network parameter adaption process is

complete. Subsequently, the testing samples are classi�ed. In this process, a test sample is

assigned to the class in which the output nodes in the PNN have the highest output based on

the Bayes rule, which assigns a test sample x to class A when:

or if only (class A and B involved)

fA(x) > L(hA=hs) (3.26)

wherehA represents the a priori likelihood of the incidence of the test samples from

class A, lA represents the loss factor linked to incorrect categorisation,L = lB=lA represents

the loss ratio andfA(x) is the probability density function associated with classA. The

coef�cient Ck; (k = l ;2:::n) shown in 3.9 is calculated byCk = hklk=nk. In the scenario where

no information is available concerning the a priori likelihood of the incidence of each one

of the classes,hk can be ascertained based on the incidence of the classes in the training

samples; for example,hk = nk=n, wherenk represents the amount of training samples in class

k and n is the overall amount of training samples.Ik can be selected based on the user's own

experiences or speci�c approach. The PNN classi�ed determined by Specht (1990) utilises

an equation that is similar to the Parzen probability density function estimator, which has a

strong association with the interpolation technique of the radial basis function:
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wherei = pattern number,Uk = number of training samples in class k,Xki = ith training

pattern from class k,s = smoothing parameter,p = the dimension of input vector space.

Every training sample in class k- generates a Gaussian distribution centred at itself, andfk(x)

represents the total of these small Gaussian distributions.

3.7.4 The smoothing parameter,s

The smoothing parameter,s , is utilised in the process of modifying the signi�cance of each

pattern unit found in the second layer. If the value ofs is small, each of the training patterns

will exhibit a thin Gaussian distribution surrounding itself. There are numerous different

modes involved in the class probability density function. An input pattern de�ned as x that

has a strong similarity to a particular training pattern, for exampleXki, will have a high value

of exp[(x� xki)t(x� Xki)=2s 2]. Therefore, the value offk(x) is predominantly determined

by Xki instead of alternative class k patterns that are situated at a greater distance fromx,

which can be detrimental to the generalisability. If the value ofs is large, numerous wider

Gaussian distributions are inclined to intersect each other, andfk(x) must be determined by

each of the patterns in classk. In such a scenario, there is a higher level of interpolation

among the training patterns in the PNN, and it exhibits tolerances to incorrect training

samples, as the class pdf is largely determined by most of the class patterns. Nevertheless, if

the value ofs is excessively large, this will signi�cantly reduce the importance of the roles

of individual training patterns, which means that it will not be possible to generate a model

that will effectively solve the problem. The selection ofs will determine how the complex

the decision surface is and therefore makes a signi�cant contribution to the performance

level of the PNN. (Specht, 1990) conducted an experiment that revealed the outcomes of

using various different values ofs where electrocardiograms were categorised as either

abnormal or normal. Superior diagnostic precision can be obtained with a speci�c wide range

of s that is relatively easy determine. In Figure 3.11, the overall association between the

smoothing parameter,s , and the incorrect classi�cation �aw in the training and test samples

is demonstrated.
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Fig. 3.11 Smoothing Parameter

3.8 Frame work design

The conceptual framework in this study is founded on various machine techniques and

algorithms, beginning with the cleansing and then loading of data into the system, culminating

in the �nal step of generating output classes. The principle conceptual framework of this

research can be clearly seen in Figure 3.12, which commences with the process of data

puri�cation.

As there are an excessive amount of problems related to the data, such as variability, re-

peated values, data de�ciencies and noise, a data pre-processing algorithm has been employed

in the preparation of the data. The pre-processing of data is considerably important to ensure

high precision and performance. Hence, two key methods are utilised for normalisation and

standard scaler in order to enhance the model precision. In the following stage, processing of

data occurs and various equations are utilised to generate data that is suitable for clustering

and classi�cation in a manner that will ensure superior outcomes. Further explanations of

these speci�c procedures are given in Chapter 4. Subsequently, the puri�ed data is transferred

into the unsupervised clustering system. In this stage, one of the most widely used clustering

methods is Fuzzy c-means, as its performance exceeds the process of clustering traf�c fault

data. Nevertheless, this algorithm has certain drawbacks in that the process of ascertaining

the number of clusters and clusters at the start can be relatively lengthy. Furthermore, an ex-

cessive amount of iterations are required in the optimisation of the initial and optimal cluster

numbers. As the performance of FCM is reduced in the process of attempting to resolve these
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problems, an additional algorithm de�ned as subtractive clustering (SC) is introduced into

the FCM in order to resolve the aforementioned problem. The primary objective of utilising

FCM is its contribution to both grouping and segmentation; however, in the scenario where

there are different datasets that have multiple faults simultaneously, this can lead to network

traf�c as a result of its magnitude. In order to prevent this issue, unsupervised machine

learning is applied to cluster the different datasets that originate from diverse segments in the

network traf�c. Following this, each of the clusters that occurs is optimised and the output

feature vectors are moved to the subsequent stages so that all faults that exist in the system

can be classi�ed and labelled appropriately. FCM is comprised of various mathematical

equations that are applied that ultimately function to minimise the objective functions, which

can be achieved through the optimisation of the degree of membership and cluster centres

at each iteration. Furthermore, the FCM technique is bene�cial for managing vague cluster

boundaries. It is essential that the problem of high dimensionality is resolved in such a

scenario. FCM is an algorithm that is iteratively optimised and is believed to have greater

�exibility, particularly for the analysis of traf�c.

Additionally, superior outcomes can be achieved by using FCM for overlapped datasets

in comparison the K-means algorithm. As opposed to k-means, in which each data point is

required to only belong to one cluster centre, in FCM, the datapoint is allocated to cluster

centre, which means that it could belong to multiple cluster centres.

In this stage, various mathematical equations are applied to process the data, as a result

of which four separate clusters are created based on the attributes of the extant datasets.

Subsequently, the �nal outputs that have been generated are stored in various feature vectors

proceed to the classi�er.

Following this, for every speci�c vector in the input datasets, a matching target vector is

generated in another matrix in order to create the same magnitude as the data vector and it is

comprised of values 1,2,3 and 4 that match with the primary erroneous components in the

data vector. These correspond to the light and heavy cases in the router and server that are

utilised in the PNN training process.

Each of the data sets has an identical amount of samples taken from standard and faulty

scenarios. The data set and target vector are both separated into equally sized subsets by

taking all the other values of the vectors, where one is intended for PNN training and the

other for testing the network after training is complete. This means that a total of two data

sets are generated. The �rst subset from the time dimension is separated into two subsets that

are equal. As the sample data utilised for training the PNNs in this case is allocated at a ratio

of 70% for training and 30% for testing,. Subsequently, data simulation implemented and by
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using a trial and error process, the spread parameter of the PNN is calculated as 0.06. Lastly,

the classi�cation outcomes are observed by plotting the �gures that have different features.

The overall suggested �ow chart for this research project is displayed in Figure 3.13, which

reveals all the steps in the process as well as the principle calculations involved in each stage.

The execution processes listed above are explained in greater detail in Chapter 4 and 5

along with the result discussions for every step that are based on the dataset utilised in this

research project.

Eventually the new developed algorithm is proposed to classify the faults in the network

system as depicted in the below:

Algorithm 1 SFPNNC Class�er

1: procedure PREPROCESSING(DATA )
2: m= degreeo f f uzziness
3: X = Load(data)
4: V;Xinit = Estimate(X)
5: Cluster;Center;membership = Euclidean(V;X)
6: U = U pdate;membership(ClusterCenter;membership)
7: V = U pdate;cluster;center(U;membership)
8: if optimal(V) then then
9: Dset= Jm(V;X;U)

10: Classi f ier= PPN(Dset)
11: Evaluate(Classi f ier)
12: else
13: goto: 4
14: end if
15: end procedure

3.9 Chapter Summary

The methodology and design architecture that are proposed to be used for this project are

presented in this chapter, including all parameters for the techniques, such as the supervised

and unsupervised algorithms and the other methods. The suggested model is designed based

on the bene�ts of each of the models utilised. In order to enhance the outcomes of the process,

it begins by re�ning the noisy data by pre-processing the data, thus purifying an effective

sample that that can be readied for the system.

The suggested system of classi�cation as depicted in the framework design shown in

Figure 3.12 commences with the �ltered data being loaded into the Fuzzy Cluster Means,
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in order to group all clusters that occur in each sample. To prevent excessive time being

taken in the process of cluster initialisation and identi�cation of the optimal cluster centre

based on the nature of the existing datasets, a new algorithm is introduced to the FCM

called Subtractive Clustering. The primary objective of utilising FCM is its importance in

the process of grouping and segmentation, while in the scenario where the sample datasets

have different faults simultaneously, network traf�c can be generated as a result of its

magnitude. Furthermore, the ideal clustering technique is Fuzzy Cluster Means because

of its strong attributes that allow it to resolve problems involving network fault diagnosis,

including dealing with vague cluster boundaries, high dimensionality issues as well as its

level of �exibility, particularly in the analysis of traf�c, as it is an iterative optimal algorithm

(Qader and Adda, 2014). Similarly, PNN exhibits superior attributes, including the increased

accuracy of the non-linear algorithm. The analogous weight values of the PNN represent the

sample's distribution in the model, while it is not necessary to train the network, which means

that it is suitable for real-time processing. Additionally, its robust attributes such as sample

noise, rapidity of the training data and the classi�cation precision rate enable outcomes with

increased quality to be achieved. Based on the bene�cial aspects of FCM and PNN, a hybrid

method is developed and proposed called the Subtractive Fuzzy Probabilistic Neural Network

Classi�er (SFPNNC), which is explained in greater detail in the main proposed �owchart of

SFPNNC, see 3.13.
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Fig. 3.12 The framework design of the proposed method
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Fig. 3.13 The main proposed �owchart of SFPNNC



Chapter 4

Data visualisation and preprocessing

This chapter will present the datasets that have been utilised during this project along with

an explanation of all the data as well as analysis of its speci�c features. Furthermore, as a

result of considerable noise and inconsistencies in the data, the principal stages of the data

pre-processing procedure will be demonstrated. In order to comprehend the data, each of

the datasets will be visualised individually. The initial stage in the preparation of data for

the purpose of machine -learning is data pre-processing, the objective of which is to purify

the data so that it can be classi�ed. Additionally, this chapter will examine the important

role that data pre-processing plays as well the manner in which the form of the data will

be transformed from the public and defective shape into pure data after the eradication of

its �aws. Hence, it is imperative that the datasets have good quality in order to ensure that

effective results can be obtained from the analysis in the research. It is often necessary to

make modi�cations to the format of the datasets to enable them to be �tted for classi�cation

purposes. For instance, the datasets in this research incorporate both small and large values,

which means that a normalisation process must be implement to generate consistent and

bene�cial format data.

In the subsequent parts of this chapter, the different types of data characteristics will

be presented, including noise as well as irrational and deviation feature values. Based on

the extant datasets, it will be possible to determine which of the frequently used statistical

methods can be applied to re�ne the data. Ultimately, the main aim of this chapter is to

enhance the data quality in order to ensure that all measurements are precise, accurate and

exact, while also providing as complete data as possible
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4.1 Network Traf�c Fault Datasets Characteristics and Types

Generally, errors can materialise naturally and are not created. One of the dif�culties

presented in this project involves the process of introducing errors into the Testbed. As

suggested by Carr (1990), Leinwand and Conroy (1993), Durvy et al. (2003) and Comer

(2006), errors can be grouped into �ve different network problems, namely:

• cable issues

• connectivity issues

• collisions within the network

• software issues

• replicated IP addresses

These errors can materialise for a variety of reasons, including transmission link collapse,

failure of a network component, software malfunction, protocol malfunction, hostile network

activity, unwarranted network growth, disconnection of the interface and miscon�guration.

In this research, four frequently occurring faults including (cable issues, connectivity issues,

collisions within the network and replicated IP addresses) have been selected in order to

assess the outputs of the IFAgents and IPAgents. All errors have been stimulated under

conditions of both light and heavy traf�c.

The datasets for this experiment were extracted from a study performed by Al-Kasassbeh

and Adda (2009) on the diagnosis of errors. In their study, the researchers utilised diverse

instruments in varied situations as well two distinct sources, namely a router and server. They

predominantly utilised MIB variables and from the 12 distinct groups of these variables, they

chose the most appropriate characteristics of the network errors from the IP and IF groups

according to the work environment. Nevertheless, in the �nal stages of the process, they only

concentrated on 6 for data gathering from the server and 12 features were captured from the

router, while all features were found in the IF group. The datatypes all consist of numerical

values, ranging from zero to billions, which means that there is signi�cant inconsistency in

the data. Nonetheless, the datasets were utilised by Al-Kasassbeh (2011b), which resulted in

signi�cant noise and incorrect classi�cation.

A simple network management protocol (SNMP) is utilised to gather and arrange infor-

mation regarding the instruments pertaining to an Internet protocol (IP), including routers,

switches, hubs, printers and servers. An SNMP employs a management information base
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Table 4.1 Parameters of network involved in router anomalies

Network Parameter Parameter Name
P1 IfInNUcastPkts22
P2 IfInNUcastPkts33
P3 IfInOctets22
P4 ifInUcastPkts22
P5 ifInNUcastPkts22
P6 ifInUcastPkts33
P7 ifOutNUcastPkts22
P8 ifOutNUcastPkts33
P9 ifOutOctets22
P10 ifOutOctets33
P11 ifOutUcastPkts22
P12 ifOutUcastPkts33

(MIB) to acquire this information, which incorporates numerous octets or packets that are

distributed, delivered, received and discarded. In total, there are 178 MIB variables, from

which 12 variables belonging to the interface (IF) group were included in our experimental

research to represent router traf�c, while an additional 6 variables from this category (IF)

represented server traf�c. These variables demonstrate higher levels of sensitivity in regard

to Internet traf�c behaviour. The datasets examined in Al-Kasassbeh (2011b) incorporate 12

parameters that will facilitate the diagnosis of network faults in the router and 6 parameters

for the server, as illustrated in Tables 4.1 and Table 4.2.

Network errors can be grouped under different categories of problems, including IP

con�icts, connectivity issues, cable issues, system malfunctions and software issues. There

are a number of factors that could cause such malfunctions. For example, transmission

connection malfunction, failure of a network component, software malfunction, hostile

activity, unwarranted traf�c growth, disconnection of the interface and miscon�guration. The

MIB variables exhibited in Tables 4.1 and 4.2 belong to the interface category. Additionally,

further details on the datasets and given in Table 4.3.

In this research, four frequently occurring errors have been chosen. The datasets were

collected under two different conditions, namely lightweight and heavyweight (in terms of

the volume of traf�c) in both the router and server Al-Kasassbeh (2011b). Explanations of

these common traf�c faults are provided in the following sections.
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Table 4.2 Parameters of network involved in server anomalies

Network Parameter Parameter Name
P1 ifInNUcastPkts22
P2 ifInOctets22
P3 ifInUcastPkts22
P4 ifOutNUcastPkts22
P5 ifOutOctets22
P6 ifOutUcastPkts22

Table 4.3 Datasets details

Data Name Number of Instances NUmber of Attributes
Heavy scenario in the router 960 12
Light scenario in the router 960 12
Heavy scenario in the server 960 6
Light scenario in the router 960 6

4.1.1 Server crash and link failure

This is a form of network error that can lead to server collapse and link malfunction. MIB

variables can provide bene�cial insights in regard to sudden change in the event that the

client machines begin to overwhelm the server with a disproportionate volume of requests.

This barrage of FTP requests will ultimately lead to server crash. The MIB variables gathered

within the environment with 5PCs are utilised to simultaneously inundate the server. For

the purposes of inundation, the DoSHTTP instrument was utilised, which employs 5 PCs to

distribute packets to the server on a continuous basis. This attack was initially implemented

for 7 minutes, followed by a second attack lasting 9 minutes. This caused the server to

crash and cease functioning. Two errors were introduced into the experiment, namely server

malfunction and link failure.

4.1.2 Broadcast Storm

This is different for of identi�ed error. This error materialises in network conditions in which

one of the PCs sends messages to other PCs requesting services and information. The PCs

that receive these messages then begin to reply, which leads to unwarranted network load.

This error in the network reduces performance and can also spread to different network areas.
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4.1.3 Babbling node

This is also an example of a fault in the network. It is likely the outcome of an issue generated

by a network protocol or potentially the PC's Ethernet card. This fault is observed in the

event that a PC continuously distributes packets to the network. It is important to note that

the experimental design has the capacity to capture errors with signi�cant precision in the

light conditions in comparison to the heavy traf�c conditions.

4.2 Data Visualisation

For the majority of machine learning, effective learning algorithms are created in order to

improve the comprehension of the datasets and to determine a method in which the data

can be visualized. In order to understand the essence of each dataset and to investigate

the relationships between the features, this section will involve visualization of all the

datasets as well as analysis to determine any redundant, irregular or unintegrated data. In

this part of the research, a sample of light traf�c taken from the router dataset will be

shown with a comparison of each of the features to ascertain the signi�cance of their role

in the classi�cation. The remainder of the samples will be presented in the appendix and

a declaration is emphasised in total for each. As stated by the researchers Al-Kasassbeh

(2011b), for each of the distinct situations and instrument sources, normal traf�c and three

separate errors are captured. Figures 4.1 , 4.2, 4.3 and 4.4 illustrate the visualisation of the

four distinct types of traf�c in the light conditions that have been gathered from the router,

incorporating the normal traf�c data in comparison to the traf�c with three kinds of fault

(server malfunction and link failure, broadcast storm and babbling node), respectively.

In the comparison of Figure 4.1, which depicts normal light traf�c in the router, with

Figure 4.2, which illustrates the traf�c in the light conditions with server malfunction or any

disruption in the link to the router, it can be seen in the event that this error materializes, it

will have an impact on all extant features. The �rst feature (i�nNUcastPkts22) is the only one

that that is not completely affected by the error, although a small modi�cation still occurs

in the shape of the curve, which cannot be utilized as one of the primary features on which

the classi�er relies. Apart from this, the remaining 11 features are noteworthy and there are

signi�cant alterations in their behaviour when the hostile attack or error materialises.

In relation to the second error, namely the broadcast storm depicted in Figure 4.3, it

can be observed that abnormalities begin to occur at the time of the traf�c fault as well as

that all features apart from (i�nNUcastPkts22) and (ifoutNucastPkts22) exhibit considerable
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Fig. 4.1 The normal traf�c of the router in the light scenario
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