
Hardware Based Approach
To Confine Malicious Processes

From Side Channel Attack

By

Zirak Allaf

Supervisor

Dr. Mo Adda

This thesis is submitted in partial fulfilment of
the requirements for the award of the degree of

Doctor of Philosophy of the University of Portsmouth.

January, 2018

I would like to dedicate this thesis to my loving family . . .
The soul of my Father and Father-in-law, whose memories persist in being forever

my Mother, whom I owe my life

my Mother-in-law, who always encourages me

my loving Wife "Sivar", who was being my guardian during my PhD course, and
children "San & Lara, who are my eternal gratitude

ii

List of publications

Published articles

Allaf, Z., Adda, M., and Gegov, A. TrapMP: Malicious Process Detection By Utilising
Program Phase Detection. In 2019 International Conference on Cyber Security and Protection
of Digital Services(Cyber Security). IEEE.
Allaf, Z., Adda, M., and Gegov, A. (2018). Confmvm: A hardware-assisted model to confine
malicious vms. InUKSim2018: UKSim-AMSS 20th International Conference on Modelling
Simulation. IEEE.
Allaf, Z., Adda, M., and Gegov, A. (2017). A comparison study on flush+reload and
prime+probe attacks on aes using machine learning approaches. In UK Workshop on
Computational Intelligence, pages 203–213. Springer.
Allaf, Zirak. "Review of data leakage attack techniques in cloud systems." Data Security
in Cloud Computing. IET, 2017. IET Digital Library. http://digital-library.theiet.org/.
September 2017.

Declaration

Whilst registered as a candidate for the above degree, I have not been registered for any other
research award. The result and conclusions embodied in this thesis are the work of the named
candidate and have not been submitted for any other academic award.

April 2019

Acknowledgements

Firstly, I would like to take this opportunity to give thanks to all those who have made a
contribution to the accomplishment of my challenging PhD journey.
I would like to sincerely thank my supportive supervisor, Dr. Mo Adda, for his great help,
continuous encouragement and guidance during my study. My special thanks also go for my
second supervisor Dr. Alexander Gegove for his great support and advice.
I would like to express my sincere gratitude to my beloved father Mohammad Allaf who was
an ideal example of fatherhood and a great example of a loyal person.
I am indebted to my good friends Dr. Twana Haji, Dr. McCalpin John, Dr. Rasber Rashid
and Dr. Karwan Qader for the excellent suggestions they had given me during my study.
Finally, my special thanks go out to my family: my mother and mother-in-law, my beloved
wife (Sivar), son and daughter (San, Lara), my sisters Rupak and Dilpaq, my brothers, and
nephews and nieces, for their continuous love and support throughout my studies. This
challenge would not have been accomplished without them.

Abstract

Cryptography can be considered as a set of algorithms which primarily relies on mathemat-
ical theories with computational supports to be practised in computer systems. Therefore,
Cryptography is employed as the main component to security solutions mainly in Internet
and could computing. Despite this, hardware and firmware implementations have failed to
securely manage program executions in computational environment. This limitation has
made it possible for hackers to carry out side channel attacks on computer systems and steal
sensitive cryptographic components, such as the secret keys, which are used in securing
communication channels. Such issues are alarming, and crucial, and therefore obligate the
detection and identification of attackers of the systems.

In this thesis, side channel attacks, exploiting the weakness in hardware and firmware im-
plementations, are addressed along with existing counter-measures. The current side-channel
attack techniques show that attackers can exploit the micro-architecture vulnerabilities to
achieve their goals. The recent Meltdown attack for instance misuses program execution
attributes such as “out-of-order execution”, through a Flush and Reload mechanism, to break
the logical isolation between the memories of two independent processes in the kernel space.

Furthermore, in this work, a real-time detection and identification framework has been
developed against side-channel attacks. The concept behind this is to take a course of
program phase analysis to extract Malicious Loop (ML) phases at the processor core level.
Unlike previous works, the proposed detection system within the framework does not rely
on synchronisation between the attackers and the victim. Instead, it banks on the Hardware
Performance Counters (HPC) utilisation, which is a hardware feature built-in to the modern
computational environments. The framework offers high accuracy and efficient detection
of Flush+Reload activities before the attacker completes the malicious task. Moreover, the
detection can be achieved with minimum time required to detect the attack(s) in both native
and cloud systems at the same cost. Additionally, the framework benefits from very low
overhead performance approximately less than 1

Table of contents

List of �gures xiii

List of tables xv

Nomenclature xvi

1 Introduction 1

1.1 Motivation . 1

1.2 Research Questions . 3

1.3 Research Aim and Objectives . 3

1.4 Chapter Outlines . 5

2 Background and Related Work 6

2.1 Background . 6

2.1.1 Data State and Vulnerabilities . 7

2.1.1.1 Data-At-Rest . 7

2.1.1.2 Data-in-motion . 8

2.1.1.3 Data-in-Use (DIU) . 8

2.2 Core Technology Vulnerabilities in Cloud Systems 9

2.2.1 Web Technology . 9

2.2.2 Virtualization Technology . 10

2.2.3 Cryptography . 10

2.3 Side-channel Attacks . 11

2.4 Side Channel Attacks in Two Decades . 13

2.4.1 Targeted Data Types . 19

2.4.1.1 Cryptographic Keys . 19

2.4.1.2 Files . 20

2.4.2 Source of Leakage . 20

x Table of contents

2.4.2.1 CPU Architecture . 20

2.4.2.2 Main Memory . 21

2.4.2.3 Timing . 22

2.4.2.4 CPU Power Consumption 22

2.4.2.5 Page Sharing . 22

2.4.2.6 Shared Library . 23

2.4.2.7 Kernel Address Space Layout Randomisation 23

2.4.3 Types of Channel attacks . 23

2.4.3.1 Covert-Channel Attacks 24

2.5 Related Work . 25

2.5.1 Mitigation Techniques . 25

2.5.1.1 OS level . 25

2.5.1.2 Application level . 28

2.5.1.3 Hardware level . 30

2.5.2 Pro�ling-Based Detection Systems 32

2.5.3 Summary . 34

2.6 Limitations of Existing Works or Summary and Research Gaps 35

3 Preliminaries - Synchronous Trace-based Detection 39

3.1 Introduction . 39

3.2 Background . 40

3.2.1 CPU Architecture and Components 40

3.2.2 Performance Measurement Tools 44

3.2.3 High Performance Counters (HPC) 45

3.2.3.1 Events: . 45

3.2.3.2 Model Speci�c Registers 46

3.2.3.3 Performance Event Select Registers 46

3.2.3.4 Hardware Performance Counters Setup 48

3.3 Threat Model . 49

3.4 Methodologies . 50

3.4.0.1 Classi�cation and regression or prediction 51

3.4.0.2 Bias and Variance . 51

3.4.1 Principal Component Analysis (PCA) 52

3.4.2 Neural Network (NN) . 52

3.4.3 K Nearest Neighbour (k-NN) . 53

Table of contents xi

3.4.4 Tree Algorithms . 54

3.5 Model Evaluation Metrics . 55

3.5.1 Confusion Matrix . 56

3.5.2 Evaluation Metrics . 58

3.5.3 Receiver Operating Characteristic (ROC) curve 59

3.5.4 Cross-Validation . 60

3.6 Synchronous Trace-based Detection . 60

3.6.1 Hardware and Software Speci�cations 60

3.6.2 Experiment . 60

3.6.3 Result Analysis and Discussion 62

4 Designing and Implementing the Framework (TrapMP) 68

4.1 Motivation . 69

4.2 Components of Computational Environment 69

4.2.1 Multi-core Platforms . 69

4.2.2 Multi-tasking (Model) Systems 70

4.2.3 Real-time Scheduling . 72

4.3 Program Phase . 73

4.3.1 Program Phase Utilisation . 73

4.3.2 Program Phase De�nition . 74

4.3.3 Malicious Loop Phase Modelling 74

4.4 Threat Model and Assumptions . 75

4.5 The Framework Approach . 77

4.6 Challenges . 78

4.7 The Framework Design (TrapMP) . 79

4.8 Experiment Setup . 80

4.9 Benchmark . 80

4.10 Data Collection . 81

4.10.1 Data Labelling . 82

4.11 Feature Selection and Thresholds . 84

4.11.1 L1, L2 and LLC Misses Are the Best Features to describeML activi-

ties by Flush+Reload Attack programs 84

4.11.2 Descriptive Statistics to Describe Program Executions 85

4.11.2.1 Descriptive Statistics 85

4.11.3 De�ning Thresholds . 86

xii Table of contents

4.11.3.1 Distribution . 86

4.11.3.2 Program Execution Instability - Tendency 88

4.11.3.3 Comparison of Feature Variability 89

4.11.3.4 Min and Max . 90

4.12 Detection Phase . 91

4.12.1 Moving Window Aggregation (MWA) 91

4.12.2 Detection Model Overview . 93

4.12.3 Methodology . 94

4.12.4 Experimental Design . 98

4.12.5 Experimental Results and Analysis 98

4.12.5.1 k-NN Results . 99

4.12.5.2 Single Tree C4.5 Results 101

4.12.5.3 Bagging-Random Forest Results 103

4.12.6 Performance . 104

4.12.7 Discussion . 106

4.13 Identi�cation Phase . 107

4.13.1 Interrupt . 108

4.13.2 Identi�cation Model . 109

4.13.3 Identi�cation Phase Evaluation . 111

4.14 Discussion . 112

5 Conclusions And Future Work 114

5.1 Conclusions . 114

5.1.1 Research Summary . 114

5.1.2 Contribution to knowledge . 115

5.2 Limitations . 116

5.3 Future Work . 116

References 119

List of �gures

3.1 Layout of IA32_PerfEvtSelit h MSRs . 47

3.2 A typical Flush+Reload attack against AES 51

3.6 Comparison of time execution for training in selected classi�ers 66

4.1 Signature of the attacker program in the native system shows the behaviour

of the Flush+Reload program and how it interacts with underlying hardware

during its execution . 76

4.2 Signature of the attacker program in the native system shows the behaviour

of the Flush+Reload program and how it interacts with underlying hardware

during its execution and transparently provides interfaces to access HPCs.

It is assumed that no malicious bodies have access to the PHCs to modify

settings and distort the observations. 76

4.3 An overview of the proposed framework (TrapMP) 79

4.4 Is the different L3 and L1 cache misses which is considered as noise 87

4.5 L1 and L3 cache misses distribution of the attacker's program in cloud systems87

4.6 L1 and L3 cache misses tendency of the attacker's program 89

4.7 Min and Max of each �xed counters of attacker program in native system . 91

4.8 Aggregation and �ve shifts of the data-set.shi f t5 represents the best aggre-

gation which captures the whole samples of one of theML jobs, which is

counted as an attack activity . 92

4.9 Detection model overview . 93

4.10 Over-�tting problem on training data-set 95

4.11 ROC-AUC for k-NN algorithm in the native system 100

4.12 ROC-AUC for k-NN algorithm in the cloud system 100

4.13 ROC-AUC for single tree algorithm (C4.5) in a native system 102

4.14 ROC-AUC for single tree algorithm (C4.5) in a cloud system 103

4.15 ROC-AUC for bagging algorithm (random forest) in a native system 104

xiv List of �gures

4.16 ROC-AUC for bagging algorithm (random forest) in a cloud system 105

4.17 The performance overhead without the detection model using SPEC 2006

benchmark . 105

4.18 The performance overhead while the detection model is running and SPEC

2006 benchmark . 106

4.19 The execution time line which is sliced among the attacker in a native system

and 4 SPEC workloads. The malicious loop inside Flush+Reload program

phases for LLC cache misses appear as chunks of samples which can be

observed as process transactions on a speci�c processor core. 112

List of tables

2.1 Side and Covert Channel Attack Classi�cations 16

2.2 Categorise PMU-based attack and defence for side channel and Malware

studies . 34

3.1 Fixed function events . 46

3.2 Confusion Matrix . 57

3.3 Classi�cation Accuracy for the three methods C4.5, PCANN and k-NN,

against two attacks Flush+Reload (FR) and Prime+Probe (PP). 62

4.1 Hardware and software speci�cations . 81

4.2 Relevant events to side channel attack . 82

4.3 Describes the necessary statistics to support statistical analysis to �nd the

best features and thresholds. This statistic is the key for process identi�cation.

The data is collected in a native system and outliers are removed 90

4.4 Describes the necessary statistics to support statistical analysis to �nd the

best features and thresholds. This statistic is the key for process identi�cation.

The data is collected in cloud system and outliers have been removed from

the data . 90

4.5 Describes the necessary statistics to support statistical analysis to �nd the

best features and thresholds. This statistic is the key for process identi�cation.

The data is collected from native and cloud systems and outliers have been

removed from the data . 91

Nomenclature

Abbreviations

AES Advanced Encryption Standard

APIC Advanced Programmable Interrupt Controller

ASLR Address Space Layout Randomisation

AUC Area Under Curve

CART Classi�cation and Regression Trees

CAT Cache Allocation Technology

CL Control line

CV Cross-Validation

DoS Denial of Service

FR Flag Registers

GPR General Purpose Registers

HPC Hardware Performance Counters

IaaS Infrastructure as a Service

IOAPIC Inpu/Output Advanced Programmable Interrupt Controller

IR Instruction Register

KASLR Kernel Address Space Layout Randomisation

LAPIC Local Advanced Programmable Interrupt Controller

Nomenclature xvii

LLC Last Level Cache

MAR Memory Address Register

MBR Memory Buffer Register

ML Malicious Loop

ML Malicious Loop

MSR Model Speci�c Registers

MWA Moving Window Aggregation

NN Neural Network

OS Operation System

PMC Model Speci�c Registers

PMU Performance Monitor Unit

PMU Performance Monitoring Unit

PTE Page Table Entry

ROC Receiver Operating Characteristic

RSA Rivest–Shamir–Adleman

RTS Real-Time System

SGX Software Guard Extensions

SPEC Standard Performance Evaluation Corporation

SSE Sum of Squared Error

SVM Support Vector Machine

TR Temporary Register

TSC Time Stamp Counter

VT Virtualization Technology

xviii Nomenclature

Symbols

MW Molecular weight [kg/kmol]

Subscripts

1 Inlet

Chapter 1

Introduction

Cloud computing is a client server con�guration that uses services which are available on the

Internet to enable its users to access technologies with no need for the users to understand

either the technologies or the services themselves that allow their delivery. The range offered

by cloud computing models means that the cloud provides a computational environment of

great richness through which the users can access the applications that they require at any

time and wherever they may be. The hardware resources can be scaled up as required and the

cloud offers unparalleled �exibility, allowing for a quick response to the user's requirements

with no intervention by the users' IT managers. Set against this is the drawback that the ease

with which the cloud can be accessed increases the possibility of threats, both to resources

that are being shared with others and to the computing environment itself. The essential point

of the cloud is that it makes hardware and software services available to users in a way that

allows the applications to be continuously available to meet the end-user needs. However,

the integrity and protection of data becomes a key issue, particularly when, as it is usually

the case, the data is manipulated and the hardware is outsourced by a third party, the cloud

provider, in a location which is not disclosed to the end user. In brief, the data manipulation

and hardware security are outside of the control of the data owners and the data, which for

most companies and organisations are critical asset, - are vulnerable to data leakage attacks.

This chapter will set out the importance of this research and will provide the aims and

objectives of the research in addition to the research questions.

1.1 Motivation

The internet in general, and cloud computing in particular, is increasingly in use on a variety

of devices, both desktop and mobile. These devices outsource the end users' privacy to the

2 Introduction

cloud. As a result of this, the data is exposed to a number of threats, and maintaining the

data and keeping it safe from attackers is a challenging task. The most important role in

maintaining data security in all of the states that it passes through (during its transmission,

its processing and its storage) falls to cryptography. The vulnerability of the data attracts

hackers who seek, through side channel attacks, to obtain access to the data by stealing

important components of cryptography, one of which is secret keys. Previous research has

put forward a number of sophisticated techniques through which side channel attacks can

be carried out. Success makes the protection of the user data suf�ciently unreliable such

that the end users either avoid using cloud services or restrict their use of cloud services.

Recent research has demonstrated that considerable use has been made of the opening for

side channel attacks and that these openings have allowed attackers to retrieve the entirety of

a security key in less than a minute on native systems and less than three minutes in cloud

systems (Irazoqui et al., 2014) and through various system settings (Irazoqui et al., 2015).

This matters because there have been some well publicised hacks in which the hackers have

stolen large amounts of data. Such attacks offer the ability to read the arbitrary memory

in which sensitive information might be stored. In addition, recent research showed that

side channel attacks affect any end-users who use devices including PC, laptop, servers,

tablets and mobiles, which support Intel, AMD and embedded processors. Furthermore,

the attacks do not care about any particular system or platform such as Windows, XOS and

any UNIX-based OSes, as cloud systems including Docker containers Xen and OpenVP are

affected by the attacks. Meltdown attacks are a case study which is where an attack can

break down the logical isolation mechanisms between the different applications which are

supposed to be securely managed by the OS. Some of the existing detection and protection

software available such as anti-viruses fail to detect side channel attacks because the attack

does not leave any traces through traditional log �les. This is due to the fact that the side

channel attack code runs in user land, does not require any privileges and does not require

system calls during the program execution. However, researchers in previous studies have

showed there to be various detection (Briongos et al., 2017) and prevention (Kim et al., 2012)

techniques, and patches (Simakov et al., 2018), in both native and cloud systems. Each

response has limitations, such as the detection applying only in its native OS (Alam et al.,

2017; Payer, 2016), monitoring all VM instances, monitoring all processes in the systems

(Payer, 2016), monitoring suspicious malicious VMs and monitoring sensitive programs

such as cryptography-based applications (Zhang et al., 2016a) or the detection rely on the

synchronisation between the attacker and victims (Kulah et al., 2018). It is therefore critical

to develop an ef�cient and reliable framework which is able to detect and identify side

1.2 Research Questions 3

channel attacks in native and cloud systems at the same cost, each of which requires a very

low number of samples to function accurately. This results in being able to maintain the

performance of the system while the proposed detection system is running.

1.2 Research Questions

This section provides the hypothesis of this study and sets out the research questions.

Hypothesis: A complex computational environment can be modelled and analysed automati-

cally in relation to security as de�ned by the user.

The following research questions will be posed in order to validate the hypothesis.

1. How feasible is it to create a new knowledge-based framework which is capable of

mitigating side channel attacks launched against cryptography algorithms?

2. Can supervised Machine Learning be used to build a classi�cation model which is

capable of detecting side channel attacks? If yes, is it possible to achieve optimum

accuracy when detecting such attacks?

3. Is it possible to use the automated observation of processor cores to isolate the activities

which are identifying processes with malicious intent?

4. What countermeasures can be used effectively to mitigate data insecurity and the risks

that it poses to the user's sensitive data on both native and cloud systems?

5. What impact on the occurrence of monitored events can be attributed to the CPU

workloads running independently in the computing environment?

1.3 Research Aim and Objectives

The aim of this research is to create a new knowledge-based framework which is able to

leverage hardware support in order to analyse the process activities with the aim of detecting

malicious processes which may be running in the user space. The framework should be able

to mitigate and eliminate security threats against cache memories, particularly when the

cryptography algorithms are running. Machine Learning techniques will be used as part of

this process. Adding tree-based classi�ers takes the research into the search for techniques to

mitigate complex security problems. Following objectives had to be ful�lled to achieve this

aim:

4 Introduction

1. Propose the utilisation of Machine Learning methods as Neural Network, Decision

Trees, Random forest and k-NN in order to provide a comparison of their ef�ciency

and accuracy under different workloads. This work is represented in Chapter 3.

2. Through an examination of CPU component usage, examine user programs' execution

attributes to extract program phase of malicious programs.

3. Propose a new mechanism for process identi�cation in order to detect the attackers

when malicious processes are present in the system to avoid performance overhead.

This work is represented in Chapter 4.

4. Propose minimum hardware-assisted PMU custom settings to observe the process

activities in the CPU, which will also help to determine other security vulnerabilities.

This work is represented in Chapter 4.

5. Suggest that different attacks may have behaviours which are reliant on different events.

This work is represented in Chapter 4.

6. Describe the micro-architecture of modern CPU in the way that it permits comprehen-

sion of the attack as well as the Performance Monitor Units (PMU) which are capable

of supporting the detection models of side channel attacks. This work is represented in

Chapter 3 and 4.

7. Use Hardware Performance Counters (HPC) to provide an overview of the program's

execution in the user space. This work is represented in Chapter 3 and 4.

8. Examine the program phase analysis which emerges detection and identi�cation of

malicious processes. This work is represented in Chapter 4.

9. Analyse the machine learning techniques introduced in side channel attack detection

by different studies. This work is represented in Chapter 2 and 4.

10. Design and implement a model which incorporates the analysis of the detection

techniques to make accurate and reliable side channel attack detection. This work is

represented in Chapter 4.

11. Evaluate the accuracy of the detection system by testing it with SPEC CPU 2006

benchmark suit. This work is represented in Chapter 4.

1.4 Chapter Outlines 5

12. Deploy the detection system on the host OS and evaluate the energy ef�ciency and

performance of the host OS along with the detection system operations. This work is

represented in Chapter 4.

1.4 Chapter Outlines

1. Chapter Two presents a discussion of the existing literature on side channel attacks

from their �rst use against cryptographic algorithms until now. Vulnerable points

in hardware and software that have been exploited by attackers to steal sensitive

information will be described, as well as a number of existing countermeasures for

mitigation and prevention of side channel attacks. Points for and against existing

countermeasures will be discussed. Finally, research gaps and limitations in the

literature will be itemised.

2. Chapter Three sets out the background detail required to understand typical CPU

architecture in a manner descriptive of the intercommunication between cache mem-

ories and the CPU in a way that it reinforces the description of side channel attack

techniques. The state of data and its importance will be described, as will be the core

technologies making the cloud vulnerable to side channel attacks. Instrumentation

used in both attack and defence will be described. This chapter also demonstrates the

ability of machine learning methods to detect malicious loops that can be used for

side channel attacks (Flush+Reload and Prime+Probe), which rely on synchronisation

between the attacker and victim.

3. Chapter Four sets out the challenges and motivations and the key intuition on which

this study's approach is based. The framework design will also be explained. This

chapter also explores a range of machine learning techniques and addressed the lim-

itations of single decision tree algorithms in the context of our work. Finally, This

chapter details the illustration of the identi�cation phase, including a brief background

of interrupt handlers and the way they work with HPCs.

4. Chapter Five summarises the research, draws conclusions and suggests fruitful av-

enues for future studies.

Chapter 2

Background and Related Work

A number of studies have shown it is possible to carry out side channel attacks on CPU

components and sensitive applications through the use of user credentials and compromising

technologies. This chapter, �rstly, provides a necessary background on the current technolo-

gies which manage and transfer digital information from front to back end services and how

they prone to side channel attack. Secondly, summarises the literature from the previous

studies into the use of techniques and mechanisms both to conduct side channel attacks and

to counteract them. Also explored is the attitude of the hacker and their intention in the

use of a number of approaches for exploitation of up software and hardware, with a focus

on components that attackers have targeted and compromised. At the end of the chapter,

we review the gaps in research into presently available countermeasures and discuss those

countermeasures' limitations, then address them and link them with the sections of the thesis.

2.1 Background

This section charts the vulnerabilities to leakage in CPU architecture, technologies, and data

and describes current side channel attacking techniques and the countermeasures available to

defeat them.

Weaknesses in hardware and software can be exploited by using leakage of information in

a channel-based attack to generate communication between two processes that share physical

resources but should not communicate with each other; the environment may be virtualised

or non-virtualised.

The lion's share of such attacks has been shown in recent studies to target cryptosystems

through the exploitation of poor software standards and by improper use of physical resources

in a shared environment. What causes attacks on cryptosystems is that they are necessary

2.1 Background 7

components in data protection in a client/server and cloud environment (as mentioned in

2.2.3) as data passes through untrusted communication channels and/or is processed in

untrusted computing environments. The heavy reliance of such environments on co-residency

and shared features raises the likelihood that attackers will �nd themselves next to a target's

neighbour under virtual isolation, increasing vulnerability to computational analysis.

Where side channel attacks take place on native systems where cloud computing is

becoming mainstream, and the attacks are low level, it becomes clear that side channel

attacks are easy to mount in the Cloud.

2.1.1 Data State and Vulnerabilities

Clearly, data is one of any organisation's most important assets. To understand the dangers

inherent in data leakage, a de�nition is needed of exactly what is meant by “data” in

computing environments. According to Shabtai et al. (2012) data passes through three stages

in the processing cycle: Data-At-Rest (DAR), Data-In-Use (DIU) and Data-In-Motion (DIM).

These three stages embrace everything that happens to data from the moment of its creation

through its processing (which may involve a number of computing resources) to the point

at which it is transmitted through the cloud. The hardware resources in which data may be

found include �les, the content of memory, and packets transmitted over a network, and the

representation of the data in each of these resources is different. As Table 1 shows, there have

been data leakage attacks in recent years in every one of the possible data states (Chen et al.,

2010; Ristenpart et al., 2009; Stolfo et al., 2012; Yarom and Falkner, 2014), The subsections

following contain explanations of data states and the threats applicable at each of these states.

The main focus will be on data leakage attacks while the data is in the in-use stage (DIU).

2.1.1.1 Data-At-Rest

In the DAR state, data is in storage. A computer's hard disk constitutes a permanent data

storage, and DAR is the stage at which the data is in such a device. One concern that arises

in connection with cloud computing is transparency of the data's location as a result of the

way that the complexity of the infrastructure making up the cloud is hidden from cloud

consumers – a cloud consumer is not aware of where their data is stored. Some organisations

considering migrating to the cloud hesitate as a result of this lack of transparency, which

causes them concern about who may be dealing with data that is sensitive to them. There are

also concerns on the part of consumers about the action of others who may be co-located

on the same storage device with malicious intent. (Ristenpart et al., 2009) indicated the

8 Background and Related Work

possibility of a covert channel attack, hard disk-based, against arbitrarily selected VMs on

the Amazon cloud facility, EC2. They supported this suggestion by successfully identifying

co-residents in cloud storage and demonstrating the transmission of data between VMs when

accessing shared storage devices.

Concerns also arise over the way that, to counteract the limits on space available in main

memory, the operating system will deal with large �les by loading part of the �le (with

contiguous pages) into main memory while the rest of the �le stays on the system's storage

device where it has the same physical addresses as those from which the �le originated.

Bernstein (2005) showed how this feature could be exploited in the construction of a covert

channel attack that would use time variation to identify those parts of the �le already loaded

and those still on the disk. This works because it takes less time to access recently accessed

parts of the �le than to access those that have not been touched recently.

2.1.1.2 Data-in-motion

DIM (Data-in-motion) describes the data as it is transferred over a network from source to

destination. In this condition, data is at risk from eavesdropping attacks which can inspect

packets. Cryptographic technology such as Secure Shell (SSH) has been developed to protect

the data at this point in its cycle, but the data is not fully protected against information

leakage. Song et al. (2001) demonstrated an example of a leakage attack on packages being

carried on the network – speci�cally in that case, looking for the password. That study

developed a Hidden Markov Model (HMM) and an algorithm to predict the sequence of key

presses by the target, the keys in question being the password.

Software as a Service (SaaS), is using cloud systems to enable the delivery of applications

through the web to end users. The data while in the DIM stage will be client/server requests

and responses, and needs protection from eavesdropping attacks. The protection will be in

the form of encryption, but that is also not a complete protection against hostile attacks, as

attackers will still be able to analyse the packet size and timings in order to extract sensitive

information (Chen et al., 2010).

2.1.1.3 Data-in-Use (DIU)

The Data-in-Use (DIU) state occurs when data has been loaded into a computing resource.

For the most part, the resource in question will be a component of a CPU – perhaps a

register, perhaps a cache, perhaps main memory. When data is loaded into a CPU register

from a storage device, it will normally have to pass through a number of hierarchical

2.2 Core Technology Vulnerabilities in Cloud Systems 9

buffers which will include main memory and CPU caches (L1, L2 and L3) before it reaches

the registers. Once there, it is prepared for read/write operations (among other possible

operations). Depending on the application in question, the data alignment and organisation

can vary according to data type as it is loaded into main memory. Possibilities include lists,

linked lists, arrays, class, and structure. Physical resources in multitasking environments

are shared between processes that occur in different layers. Examples would include the OS

layer for page sharing and the application layer for shared libraries. The data will be used by

those resources frequently, and so the operating system alternates the use of those resources

by processes so that a memory region is shared between processes – an AES buffer lookup

table would be an example (Bernstein, 2005). Research recently has shown that data in

multitasking systems is vulnerable in the DIU stage in both the OS layer (e.g. page sharing)

(Gruss et al., 2015a; Suzaki et al., 2011), the achieved memory deduplication attack, and the

application layer (e.g. shared library) Irazoqui et al. (2014). The main focus in this study is

on the DIU state.

2.2 Core Technology Vulnerabilities in Cloud Systems

Cloud computing is a combination of existing technologies including the web, cryptography

and virtualisation to provide companies and organisations and enterprises with optimum

solutions. Technologies may be wide-ranging in the domains they serve, with the health sector,

education, government, social networks and e-Commerce all well represented. The fact

remains that combining technologies in cloud-based data handling introduces vulnerabilities

capable of being exploited by attackers seeking to steal sensitive data for malicious purposes.

A list will now be provided of common cloud technologies that have been compromised in

data leakage attacks.

2.2.1 Web Technology

In SaaS (Software-as-a-Service), applications are delivered online to web clients. Web

technology is a client/server con�guration that enables communication over networks. Most

desktop applications have today been converted to web applications thanks to their ease

and low installation cost, user-friendly interface, and no update required from the client.

The platform is independent and continually being technologically enhanced. All the end

user needs is a web browser to provide communicate with the server. The drawback is that

this communication takes place through networks, which carry the danger that they may

10 Background and Related Work

reveal sensitive information such as data, application states and state-transits. Encryption is

needed to protect this information from network sniffers, but this does not prevent the theft

of information. Chen et al. (2010) showed the continuing viability of sensitive information

leakage.

2.2.2 Virtualization Technology

Virtualisation Technology (VT) begins with actual physical hardware resources (CPU, RAM,

IO and network) and from them creates a number of virtual machines (VMs), each of which

appears to have (is visualised as having) a physical presence with its own hardware and

operating system. Each VM is ascribed appears logical isolation and appears to be an

independent part of the system. Each VM runs on top of an additional layer called the

hypervisor, of which the chief responsibilities are to monitor and manage shared resources

between VMs through a sandboxing technique in such a way as to maintain security. VT

ampli�es discrete hardware resources to serve many VMs. The primary feature is a memory

sharing memory technique, which has been widely developed by VT-based software designers

for greater memory ef�ciency; an example is Kernel Same Page (KSM) in KVM. This does,

though, signi�cantly impact the security of the system, particularly in regard to data leakage

attacks. Opportunities to build hidden communication channels make it possible for nefarious

VM operators to exploit hardware vulnerabilities, leading to information leakage in which

data exchange is performed through unauthorised and illicit processes. Security threats are

endemic to the VM system, which is especially susceptible to data leakage attacks.

2.2.3 Cryptography

Cryptography is in effect a set of algorithms relying primarily on mathematical theories

computationally supported for use in computer systems. Cryptography as the chief component

in a number of security solutions is designed to be compromised, It is used widely in a number

of domains as a data protection solution against third parties planning to steal credential

information with malicious intent. Application may be multi-use by the operating system

layer or application layers, and it is suitable for a variety of purposes including email services,

banking, health records, and encrypted stored data.

As an OS-level solution, it may protect data by storing it in encrypted form on a physical

storage device. During installation of a modern operating system, an optional step is to request

encryption of user �les before they are stored on an internal storage device. This facility gives

cloud consumers reliability because need not be concerned about transparency of storage

2.3 Side-channel Attacks 11

location. It is also usable at the application layer on top of the OS layer. Especially for

web applications, software designers embed cryptographic algorithms into pages to encrypt

data exchanged between client/server in response to a request in order to guard against

eavesdropping (Chen et al., 2010). This can have value in cloud-based Platform-as-a-Service

(PaaS) applications.

Although widely used in computer and cloud systems, cryptography remains vulnerable to

information leakage attacks. This study is focused on side channel attacks in native and cloud

systems, mounted to extract sensitive information like secret keys by exploiting vulnerabilities

in software implementation and/or hardware architecture, rather than through a brute force

attack based on guesswork or an attack on the algorithms' underlying implementation.

2.3 Side-channel Attacks

Current trends especially in cloud systems, are towards shared systems, with the result that

securing execution time and shared resources have become major issues.

Recent research has shown that side channel attacks are not restricted to cryptography. In

fact, they are used to target data in such environments as: Database (Kellaris et al., 2016)

smart card (Messerges et al., 1999, 2002) BTree search algorithm (Dachman-Soled et al.,

2017) satellite (Santhanam et al., 2017), CAPTCHA (Hernandez-Castro and Ribagorda,

2010), printer (Backes et al., 2010), Web Applications (Chen et al., 2010), keystroke (Cai

and Chen, 2011; Lipp et al., 2017) and etc.

Side channel attacks have been mounted against cryptosystems to extract secret keys using

information sources instead of through Brute Force attacks or attacks against algorithms'

mathematical implementation, in which the attacker relies on being able to deduce the target's

secret keys to obtain information, identifying those keys as non-functional properties of

program output. Methods include observation of such things as execution time, memory

usage in shared systems, and the timing and scale of encryption cycles). Popular algorithms

researched in the last ten years include RSA (Yarom and Falkner, 2014)(Aciiçmez, 2007),

AES (Osvik et al., 2006) , DES (Ac�içmez et al., 2010). Attackers monitor shared resources

to collect the �ne detail information that will help identi�cation of the usage of targeted

data by victims. The attacker does not need to be privileged in order to obtain yield the

information, as resource sharing will suf�ce to enable the attack.

Attackers utilise C/C++ due to the direct access to the hardware resources such as

memories in the system. Moreover, they are the language most operating systems and kernel

components are written in. Further, they are able to run assembly language directly with

12 Background and Related Work

native language's statements. Besides, they are the programming language most suitable

for areas where data leakage attack models exist. In addition, they are able to virtualise

memories into array form, especially CPU cache memories, giving greater capabilities to

programmers while dealing directly with such on-board resources.

Side channel attacks were �rst introduced by (Kocher, 1996). Over the past 15 years,

there has been extensive research into side channel attacks extracting cryptographic keys

through CPU caches (L1, L2 and L3 or LLC) which have been practised successfully on both

native and cloud systems. The approach has been to analyse the access time variations by

tracing use of the CPU cache

The �rst practical attack against a cryptographic algorithm DES was proposed by Tsunoo

et al. (2003) in 2003, taking some 1023 samples and retrieving ca 90% of the secret key.

Researchers �rst looked at the AES algorithm in 2005. It was practised �rst by Bernstein

(2005); with the attacker remotely analysing the algorithm's overall execution time. Bernstein

also published a full implementation of the attack, which was subsequently extended and

re�ned by Neve et al. (2006). They addressed limitations of Bernstein's attack and retrieved

all key bits though taking fewer samples. In a 2013 enhancement of Bernstein's side channel

attack, Aly and ElGayyar (2013) reproduced the attack on modern CPUs with the latest

version of AES.

As cloud computing has become more popular, so has cryptography, with the focus of

researchers being to solve weaknesses of logical isolation between cloud entities existing on

the same physical machine. Ristenpart et al. (2009) addressed Amazon EC2 cloud systems'

internal hardware vulnerabilities with proposed attacks at high level and low resolution. In

2012, (Zhang et al., 2012) greatly improved resolution through the use of L1 cache, while

in 2014, Yarom and Falkner (2014) achieved a side channel attack of very high resolution

through the use of L3 combined with unrelated processes, each of which was on a different

core. LLC has since become the hardware most heavily targeted by attackers seeking to

extract secret keys (Gruss et al., 2015b)(Irazoqui et al., 2015).

A number of side channel attack techniques exist; the four most often used by researchers,

especially in cloud computing, are:

Time+Evict (Osvik et al., 2006)(Tromer et al., 2010):This technique assumes that a

shared library is linked at the same time to programs run by attacker and target; an example

would be a lookup table in AES. Each party can access the lookup table. The attacker

monitors cache line(s) synchronised with the array1 with the aim of �rst �nding the average

time taken by a single encryption, after which the attacker triggers encryption and evicts

1The lookup table is represented as an array when it is loaded in to main memory

2.4 Side Channel Attacks in Two Decades 13

those cache lines that have already touched the array. The attacker then triggers a series of

encryption, measuring each one. Any encryption call that takes longer than average is an

indication that the target recently accessed the evicted cache line(s).

Prime+Probe (Zhang et al., 2012)(Maurice et al., 2015b): This technique involves

monitoring by an attacker of the target process by �lling the CPU cache with the attacker's

data. The purpose of this is to identify attacker's cache lines evicted by the target's data. To

achieve this, the attacker uses a malicious loop which, in each iteration, sleeps for a speci�c

time to wake the attacker process and measure access time variations to its cache lines. A

longer access time shows the cache line to have been evicted by the target so that it must be

reloaded from a higher memory level. This technique works on all memory levels.

Flush+Reload (Gullasch et al., 2011)(Yarom and Falkner, 2014): This is the inverse

of the Prime+Probe technique. Both attacker and target need to be able to access the same

data concurrently (the shared library feature mentioned in 1.5.2.6). The attacker process

�ushes the cache to ensure removal of all cache lines. After �ushing, the attacker waits until

data is accessed by the target. The �ush means that data accesses must be from higher level

memory, and the target's data �lls some cache lines. The attacker then tries to access data

from the same source as the target; a shorter access time means that the target has already

accessed the cache line in question

Flush+Reload has become an powerful technique in achieving side channel attacks against

various machine learning algorithms, exploiting OS, hardware and application vulnerabilities,

and various platforms x86 and mobile devices Lipp et al. (2016)

Flush+Flush (Gruss et al., 2015b)(Gruss et al., 2015c): Two �ushes comprise this

technique, which differs from Flush+Reload in that it does not have a reload step. The cache

is thus free of misses. The attacker is relying on time variations in a series of �ushes rather

than monitoring cache line accesses

2.4 Side Channel Attacks in Two Decades

There has been widespread use of several attack techniques in leaking sensitive data in cloud

systems. They are similar to techniques already described, except in the use of different

system settings and CPU architecture.

As already mentioned, one of the things covert and side channel attacks offer attackers is

the ability to interfere with underlying hardware activities and, for example, measure changes

in the time it takes to access higher level memory. This is the mechanism at the centre of

such attacks, allowing an attacker to assume the target's credentials through resource sharing.

14 Background and Related Work

What follows is a generic model for Cloud system attacks, along with the history of the past

15 years of attacks against a variety of shared resources.

Cloud components' vulnerabilities to data leakage attacks has already been shown.

Achieving data leakage depends on how attackers view the secret keys or other targets they

are out to steal. The importance of cryptographic algorithms in real systems as a way of

encrypting data has already been mentioned, and has encouraged deployment of sophisticated

attack techniques to obtain secret keys. This attack model's scope will be the targeting of

secret keys. Two steps are required for a data leakage attack to succeed: placement a

malicious VM, and the attack itself in cloud systems.

When the attacker has identi�ed the data type, the next step is to locate the attack

processes on the same physical machine as the target. Placing a new VM instance in a lab

is cheaper than in such real systems such as EC2 (Ristenpart et al., 2009)(Xu et al., 2011)

because, in real systems, cloud providers try to hide cloud infrastructure's complexity as

well as the complexity of data storage to prevent the cloud being mapped. The attacker

therefore needs further action to happen before the target can be located Ristenpart et al.

(2009) overcame this problem by establishing a covert channel attack in Amazon EC2, a

real cloud system, by using network probing techniques to reveal EC2 mapping in which

internal and external network address spaces correspond to an entity creation. This helped

the attacker in the early stages to �nd the internal map of EC2 in order to locate the attack

process in the same EC2 zone as the target. In this way, the possibility is created that the

attacker and the target may be on the same physical server in the same zone.

Next, the attacker uses such attack techniques prime+prob and Flush+Reload (2.4). The

attacker monitors the target's activities on shared hardware. There has been considerable

recent research into these attacks across a range of on-board resources including CPU caches

(L1 (Zhang et al., 2012), L2 (Wang et al., 2012) and L3 or LLC (Yarom and Falkner, 2014))

and memory pages (Zhang et al., 2011). Table 2.1 shows typical attacks mapped against

physical resources.

The theft of secret keys from cryptographic algorithms relies on the nature of the algo-

rithms. AES algorithm, for example Bernstein (2005)(Briongos et al., 2016) encrypts plain

text by means of a lookup table which holds values to be used during the encryption rounds.

As the most critical of the algorithm's components, this table has been targeted by attackers.

AES attackers look for cache contentions and cache line accesses to determine recent cache

line usage, generating candidate elements in the target's lookup table by utilising auto timing

registers.

In the RSA algorithm (Yarom and Falkner, 2014), however, dependence on the S-Box

2.4 Side Channel Attacks in Two Decades 15

is replaced by dependence on the mathematical operations square and multiply. Attackers

therefore seek to trace execution of the target's program rather than memory accesses.

To investigate attacks against L1 cache Zhang et al. (2012) built constructed a side channel

attack using L1 instruction cache to extract AES secret keys from a target VM co-resident

with the attacker's VM, with both VMs running libgcrypt shared library. They addressed

hardware and software noise sources against the attacking VM and could reduce the noise

during the observation stage by combining SVM with the Hidden Markov Model (HMM) to

deduce key bits.

To investigate attacks against L2 cache, Ristenpart et al. (2009) introduced a cross-VM

covert channel attack against CPU L2 cache, targeting large �les to transfer messages between

two VMs with the object of identifying co-resident VMs on shared storage devices. Their

interested was in hard disk contention patterns revealed by recording variations between

VMs in access time to certain portions of the �les. Xu et al. (2011) improved resolution of

this attack through higher bandwidth and lower error rate.

Attackers then improved the leakage attack model through the use of L3 and other

resources, recovering entire keys in reduced times. Previous studies had shown core-sharing

between attack and target VMs to be a requirement of the attacks. Previous to 2014, L1 and

L2 cache levels were most targeted and it was necessary to pair attack and target processes on

the same core. Zhang et al. (2012) attack model used IPI interrupts to force core migration

of the target process, allocating it to the same core as the attacker process. Hoevery, Yarom

and Falkner (2014) introduced a new form of side channel attack by using L3 cache and

exploiting the inclusiveness feature. Their proposal was for a Flush+Reload technique to

extract from the GnuPG RSA implementation the private key's components, amounting to

some 97.7% of the key. In this case, attack and target processes were on different cores but in

shared page settings. The authors successfully constructed an LLC-based channel between

two unrelated processes in a virtualised environment.

Deduplication is a key function in virtualisation, enabling the host to reclaim large

amounts of memory where contents are identical. Previous studies showed this feature to have

been exploited in cloud systems. The reason for Microsoft Azuru disabling hyperthreading

in the cloud system was the side channel attack proposed by Marshall et al. (2010). Suzaki

et al. (2011) proposed matching as a technique to identify applications (sshd and apache2)

running on Linux OS and Firefox and IE6 on Windows XP) and to discover a targeted �le

downloaded by a browser on the target VM. Bosman et al. (2016) suggested a side channel

attack against Windows Edge Browser based on a Java script to retrieve an HTTP hashed

password. This vulnerability encouraged CPU makers to disable the feature, but this has

16 Background and Related Work

not prevented the leaking of information against hardware resources by attackers. Irazoqui

et al. (2015) tried to overcome the leakage of information but, even when deduplication is

disabled, it remains possible. Pages of huge size were used, and the attacker was able to

obtain complete physical addresses from virtual addresses. In cache addressing, the same

physical addresses are used for cache addressing.

In shared page settings, an LLC based channel was successfully created between two

unrelated processes in a virtual environment. Deduplication is a key function in virtualisation,

enabling the host to reclaim large amounts of memory where content is identical.

Table 2.1 Side and Covert Channel Attack Classi�cations

Data Leakage Attack Techniques in Cloud Systems

Stat Type Tech App Res Type System Publications

DAR
CC PP – L1 File IaaS (Ristenpart et al., 2009)

CC PP – L1 File IaaS (Xu et al., 2011)

DIP

SC – DES L1 Key Native (Tsunoo et al., 2003)

CC FR – L1,2 – mobile (Lipp et al., 2016)

CC – – – – native (Kocher et al., 2011)

CC – – – – native (Messerges et al., 2002)

CC – – – – native (Picek et al., 2017)

CC – – – – native (Maurice et al., 2015a)

CC – – – – native (Aciicmez and Seifert,

2007)

CC – – – – native (Brickell et al., 2006)

CC ET – LLC – native (Brasser et al., 2017)

CC ET – LLC – native (Yarom et al., 2015)

CC ET – LLC – native (Yarom et al., 2015)

CC – – DRAM – native,

cloud

(van der Veen et al.,

2016)

CC FR – DRAM – native,

cloud

(Pessl et al., 2016)

SC FR KASLR – resolve

address

native,

cloud

(Gruss et al., 2016a)

– – – PTE – native (Gruss et al., 2016b)

Continued on next page

2.4 Side Channel Attacks in Two Decades 17

Table 2.1 – continued from previous page

Data Leakage Attack Techniques in Cloud Systems

Stat Type Tech App Res Type System Publications

– – – PTE – native (Seaborn and Dullien,

2015)

CC PP RSA L1, L2 key native (Gruss et al., 2017b)

CC PP RSA L1, L2 key native (Percival, 2005)

SC PP AES L1 Key native (Bernstein, 2005)

CC SMT/FU program L2 �le native (Wang and Lee, 2006)

SC SMT-

cache

AES L2 key native (Wang and Lee, 2006)

SC – RSA L1I Key native (Aciiçmez, 2007)

SC ET, PP AES Page – native (Osvik et al., 2006),

(Tromer et al., 2010)

SC PP – L1I – native (Ac�içmez et al., 2010)

CC PP browser Pages �le PaaS (Chen et al., 2010)

SC ET, PP AES L3 key native (Gullasch et al., 2011)

CC PP – L2 �le cloud (Xu et al., 2011)

CC PP browserspages �le IaaS (Suzaki et al., 2011)

CC PP browserspages �le IaaS (Suzaki et al., 2011)

SC PP AES L2 key native (Gullasch et al., 2011)

SC FR AES L3 key native (Irazoqui et al., 2014)

CC PP browserspages �le PaaS (Zhang et al., 2014)

CC FF RSA L3 Key IaaS (Yarom and Falkner,

2014)

SC FR AES L3 Key IaaS (Irazoqui et al., 2015)

CC FF browser L3 �le IaaS (Gruss et al., 2015b,c)

SC FR Kernel

Mod-

ule

KASLR – native,

IaaS

(Hund et al., 2013)

SC PP KASLR L1 – native,

IaaS

(Evtyushkin et al.,

2016)

SC FR AES L3 key native (Gülmezo�glu et al.,

2015)

Continued on next page

18 Background and Related Work

Table 2.1 – continued from previous page

Data Leakage Attack Techniques in Cloud Systems

Stat Type Tech App Res Type System Publications

SC PP AES L2 key IaaS (Younis et al., 2015)

SC FR AES LLC key native (Gruss et al., 2015d)

SC FR kernel LLC Memory native,

cloud

(Hund et al., 2013)

SC PP, FR AES LLC key native (Kayaalp et al., 2016)

SC PP, FR AES LLC key native,

IaaS

(Gulmezoglu et al.,

2016)

SC – browser – JPEG IaaS-

SGX

(Xu et al., 2015)

SC – browser – JPEG native (Jana and Shmatikov,

2012)

SC RAM browser RAM JPEG native (Gruss et al., 2016b)

SC RAM browser – JPEG native (van der Veen et al.,

2016)

SC PP Btree LLC – native (Dachman-Soled et al.,

2017)

SC FR, PP Btree keyst-

rokes

embed-

ded

(Lipp et al., 2017)

SC FR, PP RSA cache-

bank

key native (Yarom et al., 2017)

SC PP RSA page-

fault

key native (Brasser et al., 2017)

SC PP AES L1 key IaaS (Moghimi et al., 2017)

SC FR RSA — key — (Bernstein et al., 2017)

SC FR RSA BLISS,

BLISS-

b

key — (Pessl et al., 2017)

SC FR RSA BLISS key — (Bruinderink et al.,

2016)

SC FR ECDH – key — (Genkin et al., 2017)

DIT

CC Timing database– Dataset IaaS (Stolfo et al., 2012)

Continued on next page

2.4 Side Channel Attacks in Two Decades 19

Table 2.1 – continued from previous page

Data Leakage Attack Techniques in Cloud Systems

Stat Type Tech App Res Type System Publications

CC – database– Dataset IaaS (Stolfo et al., 2012)

CC RSA database– Dataset IaaS (Ac�içmez et al., 2007)

SC – browser – http native (Qian et al., 2012)

2.4.1 Targeted Data Types

The following subsections will describe commonly targeted data types that can be compro-

mised by side channel attacks. Table 2.1 shows how side and covert attacks are classi�ed by

the way they target data types against cryptographic applications and web browsers in native

and cloud systems.

2.4.1.1 Cryptographic Keys

A key is a set of letters or symbols forming a string that, when cryptographic algorithms are

used to combine it with plain text, produce cipher text; the process also works in reverse.

This is the core source of cryptographic encryption and decryption. Cryptographic keys may

be 64-bit, 128-bit, 256-bit, or some other size. A short key might be the right choice against

a Brute Force attack, because modern CPUs can have a large number of cores and it may be

possible to �nd the right key by checking the maximum number of possible keys in a short

time while, even with the power of the modern CPU, a long key takes a long time. Example:

it would take 150 trillion years to crack a 128-bit AES key (Penchalaiah and Seshadri, 2010)).

Keys come in different types, and to use them it is necessary to know how the algorithm

works. An AES algorithm encrypts and decrypts by use of a secret key, while the RSA

algorithm uses a private and a public key, one to encrypt and one to decrypt. An encryption

algorithm starting the generation of cyphertext by a combination of a key with plain text

meets a number of mathematical operations in sequence (the operations being, for example,

division, multiplication and mode). The algorithms most commonly used for data protection

in real systems are AES and RAS – but they are also the most attacked algorithms. Attackers

suborn the algorithms' components and characteristics to get the results they want. AES, for

example, generates encrypted data through the use of T-Table, while RSA uses mathematical

operations. While the algorithms are executing cryptographic operations, an organised

utilisation of the CPU components. Thus, the observation of the memory transactions of the

processes which belong to the algorithms can be made easily.

20 Background and Related Work

2.4.1.2 Files

Features like shared storage and service synchronisation which are everywhere in the Cloud

lead Cloud users to get in the habit of storing documents remotely on storage over which

they have no control; examples are Google Drive, Dropbox, and SkyDrive, which share

similar data methods (Chu et al., 2013). Shared characteristics of this sort can be seen in

online applications deliverable as PaaS. Recent research has looked at the weaknesses in

implementing the web applications that can lead to a data leakage attack. Percival (2005);

Ristenpart et al. (2009); Xiao et al. (2012); Xu et al. (2011) all targeted user shared storage

�les by building side/covert channels through shared resources.

2.4.2 Source of Leakage

There are a number of characteristics offered by cloud technologies to offer highquality

services, such as resource pooling, multi-tenancy and rapid elasticity (Mell and Grance,

2011). However, they are vulnerable to information leakage attacks, particularly resource

sharing features, which are fundamental for cloud computing to gain suf�cient performance

to lease suf�cient number of cloud tenants. Consequently, studies have shown that this

feature is prevalently exploited by attackers for their malicious intentions.

Stealing sensitive data is possible at all data states (DAR, DIP and DIT) (see Table

2.1) as they all have special consideration and techniques to achieve the attacks. Data in

multitasking/users' systems can be processed by different resources, such as CPU caches,

memory, storage and network media. Each media has its own characteristics on which the

attackers rely during experiments. So, it is crucial to focus on the common features that have

already been exploited by previous studies

2.4.2.1 CPU Architecture

Past studies showed that CPU is the most targeted resources by attackers. It is the main

physical resource in computational models due to interconnection with on-board resources

such as main memory and IO devices through buses. Modern CPUs have multiple cores

to offer more ef�cient performance and facilitate to accommodate a suf�cient number of

programs concurrently. Each core represents a logical isolated processor inside the CPU die.

The CPU has different cache levels.

In computer systems, the size and speed of memories are ordered from small and high

to large and slow (e.g. registers, L1, L2, L3 and main memory). The main responsibility

of CPU caches is to buffer data requested from the main memory, due to the trade-off

2.4 Side Channel Attacks in Two Decades 21

performance between fast-to-slow and small-to-large memories in order to supply the CPU

when it is operating on the requested data. Each core can have its own L1 and L2 caches,

or only L1 privately, while L2 is shared between two or more cores, depending on the

CPU architecture design, and cores from L3 and above are shared for all CPU cores. Ge

et al. (2016) demonstrated modern microprocessors' architecture and their compromising to

information leakage attacks in �ne-grain details.

CPU cache is the main source of information that attackers relay on to perform side and

covert channel attacks. By reviewing such attacks since last 15 years, it can be noticed that

the attackers utilised one of the cache levels as primary communication channels between

two processes (attack and victim) that provides the state of the victim process unintentionally.

Earlier attacks targeted L1 and L2 cache as communication channels between attack and

victim processes, which reside on the same core. However, core migration makes noise to

the measurement when operating system alternates assigning processes to a core (Zhang

et al., 2012). Researchers then continued to explore faster and higher bitrate attacks against

L1 in cross-core settings. Until 2014, uni�ed cache L3 has gained most of the attention due

to higher resolution with less time required to recover sensitive information (Yarom and

Falkner, 2014).

2.4.2.2 Main Memory

Rowhammer is much used as an attack on main memory, DRAM, and depends on a memory

fault during program execution allowing an unauthorised program launched by the attacker

to change bits of DRAM cells. The OS uses these bits in the management of memory

locations. Repeated accesses of DRAM cells allow the attacker to make changes in adjacent

memory locations (Gruss et al., 2017b). by means of which the attacker is able to deduce

the target's memory location. A number of approaches have been used to launch side

channel RowHammer attacks. Gruss et al. (2017b) used the Flush+Reload technique through

exploitation of prefetch address translation (Gruss et al., 2016a) to map virtual to physical

addresses, enabling attackers to map virtual addresses of attacker and victim to the same

physical page. Pessl et al. (2016) proposed a high-speed covert channel up to 2Mb/s using

a side channel attack across the CPU, without memory being shared. The authors bridge

between two processors by way of main memory.

22 Background and Related Work

2.4.2.3 Timing

Most published side and covert channel attacks have relied on timing for their success.

Attackers are interested in hardware activities at the most basic level including the number

of cycles it takes to access a single line in L1 cache. Attackers use their own program and

data to measure the differences in time taken to access memory locations, so that they can

synchronise target data stored in the same memory in shared hardware. Modern processors

such as Intel offer hardware support, a register to capture time of all operations with high

accuracy. Intel also offers a Read Time Stamp Counter (RDTSC) instruction to read the

counter register's value2. Attackers measure memory accesses using the RDTSC instruction

through a number of techniques including Prime+Probe (Maurice et al., 2015b)(Percival,

2005), Flush+Reload (Yarom and Falkner, 2014) and FLush+Flush (Gruss et al., 2015c).

2.4.2.4 CPU Power Consumption

Attackers monitor the power consumption of the CPU over time in order to work out

mathematical operations, on the basis that operations like multiplication and division use

more CPU components than add and subtraction. This information is helpful to an attacker

seeking to extract secret keys from cryptographic algorithms. This works because in a

computer running cryptographic algorithms the CPU executes a series of divisions and

multiplications increasing the CPU's power consumption. The attacker is then able to analyse

power consumption variations to deduce the secret key bits (Banerjee et al., 2015; Wu et al.,

2010). This approach will not be covered in the present study.

2.4.2.5 Page Sharing

A heavily used technique is memory page sharing, which �nds widespread use in OSs and

hypervisors like KVM Kernel Same Page (KSP) (8) and ESX Transparent Page Sharing

(TPS) (Arcangeli et al., 2009) The OS or hypervisor scans memory pages looking for those

in which the contents are identical in each time period, so that only one copy is kept and

the rest are removed (Pan et al., 2011; Waldspurger, 2002). In virtualisation, a hypervisor

running the same OS in multiple VMs can reclaim suf�cient memory. VMWARE VMWARE

(2009) statistically showed that, if ten VMs are running, the memory saving can exceed 40%.

Take, for example, a ten page shared by two VMs (VM1 and VM2). If VM1 modi�es

two pages, the OS executes a copy-on-write creating two private copies of the pages which

2RDTSC is an assembly instruction, it can be used in C and C++ in-line assembly. For more detail on how
to use RDTSC in modern Intel CPUs (Paoloni, 2010)

2.4 Side Channel Attacks in Two Decades 23

are then referred to VM1. VM2 can no longer access VM1's private copies. This means that

each VM has two private and eight shared pages. Variations in writing time between shared

and private pages are observable by VM1. Writing on a shared page takes longer than on a

private page, with the result, as shown by previous studies, that covert channel attackers can

exploit this feature in computer (Wang and Lee, 2006) and cloud systems (Bosman et al.,

2016; Suzaki et al., 2011; Xiao et al., 2012).

2.4.2.6 Shared Library

Shared libraries are code compiled to be linkable in run time by other programs. Loading

a shared library into memory causes multiple linked programs to share the same memory

locations. Memory is thereby saved because, instead of each program needing its own copy,

only one copy is required. Shared libraries also have the advantage of easy maintenance,

since a modi�ed library, once loaded, is instantly available to all linked programs. There

is, though, an exploitable vulnerability since a shared library shares characteristic between

processes with a negative impact on data protection. Shared library vulnerability has been

illustrated at its most visible in the use of the OpenSSL implementation of AES (Bernstein,

2005; Zhang et al., 2012). This provides a dynamic shared librarylibcrypto for linking

with multiple programs in UNIX-based OSs. AES uses a lookup and S-Box table, an array

of values for use during encryption rounds. If this table is used by a target during encryption,

an attacker can see which elements of the lookup table the target has recently looked up.

2.4.2.7 Kernel Address Space Layout Randomisation

Kernel Address Space Layout Randomisation (KASLR) KASLR is a layer used by host OSs

to prevent an unprivileged side channel attacker from being able to work out memory accesses

on sensitive data, but Gruss et al. (2016a) exploited the prefetch instruction mechanism to

map virtual memory addresses to physical addresses, giving the attacker information about

hierarchical pages.

2.4.3 Types of Channel attacks

Side channel and covert channel attacks have been implemented recently as two common

types of information leakage attacks. They look for hierarchical memory accesses by

analysing variations in time taken by the accesses. These two types of attacks produce similar

results, though covert channel attacks are broader than side channel attacks, and deployable

in a number of layers including network (Shah and Blaze, 2009) (Hovhannisyan et al., 2015),

24 Background and Related Work

OS (Hund et al., 2013), I/O (Shah et al., 2006)(Ristenpart et al., 2009) and application (Gruss

et al., 2015a). Side channel attacks speci�cally target cryptosystems in order to extract secret

data through a number of routes including CPU components and OS vulnerabilities. The

following sections will describe covert channel attacks but mostly side channel attacks.

2.4.3.1 Covert-Channel Attacks

The idea of a side channel attack began with the work of Lampson (1969). in late 1969

who pointed out that communication channels between two processes could be created

for the exchange of information. The privileged, or insider process, sends information

indirectly through shared resources to the unprivileged, or spying process. This can happen

on different layers which have different transmission bit rates: OS (Xu et al., 2011), CPU

cache (Ristenpart et al., 2009), virtual memory (pages) (Irazoqui et al., 2015)and network

packets among others (Wu et al., 2015). Security such as a �rewall, or an IDS (Intrusion

Detection System) will not pick up this activity because it is not visible to access control

mechanisms. Covert channel attacks are limited by the low bit rates involved and the cost of

setting them up.

In 2005, Percival (2005) studied covert channel attacks in 2005 in both L1 and L2 cache

with bit rates of 200kps and 100kps, respectively in a native system. His research led him

to the conclusion that a covert channel attack on L2 cache was more practicable than on L1

cache because process core migration makes L1 cache more noisy. In 2006, Wang and Lee

(2006) showed how to build a covert channel SMT/FU in which the attacker exploited OS

vulnerability, interfering with target progress is through the shared pool of Functional Unit

FU to interfere with the victim's process.

In 2009, following the rise of cloud computing, Ristenpart et al. (2009) demonstrated a

functional high level covert channel attack against L2 cache with the low bit rate of 0.2bps,

while 2012 saw research by Xu et al. (2011) into exploiting the memory bus in order to

increase bit rate to 3bps, Maurice et al. (2015b) in 2015 demonstrated that limiting bit rate

between two processes formed a barrier to covert channel attacks through the uncertainty

created by a higher frequency of core migration. That study used inclusive cache L3 to

overcome the issue and found higher bit rates than in previous attacks, with 751bps on

unchanged attack settings.

2.5 Related Work 25

2.5 Related Work

Side channel attacks have been studied in the laboratory and in real systems over the

past twenty years. They have been practised against on on-board resources such as CPU

computational units, cache and main memories. The majority of these attacks have been

concerned with cloud systems, with an emphasis on IaaS (Infrastructure as a Service), in

which the physical resources of the same machine are logically isolated across VMs. As the

cloud grows in popularity, cloud providers need a full understanding of how such attacks

threaten their privacy. Consequently, it is crucial that cloud providers and software companies

take cognisance of what resources they have that are primarily used in cloud systems that are

vulnerable to side channel attacks. In the previous sections, the past and ongoing side channel

attacks against vulnerable hardware and/or software have been outlined. The following

sections will continue the review on the detection and prevention systems used to mitigate

such attacks. Finally, the limitations of the recent studies related to the proposed framework,

as demonstrated in Chapter 4, have been summarised and linked to the coming chapters.

2.5.1 Mitigation Techniques

2.5.1.1 OS level

Recent studies have shown that Operating systems are vulnerable to side channel attacks.

CPU designers as well as software companies have responded with more ef�cient hardware

designs and data fetching mechanisms in order to alleviate the attacks on sensitive data. This

section will describe the proposed mitigation techniques to support OS against side channel

attacks and to note their drawbacks with consideration to the performance overheads of the

system.

Earlier research has demonstrated the achievement of high resolution (Yarom and Falkner,

2014) and very fast (Irazoqui et al., 2015) side channel attacks through a Flush+Reload attack,

which has the potential to exploit the systems characteristicpage sharing, which is described

in detail in section 3.2.1. These attacks leverage the shared pages, which are utilised by OSes

to merge identical pages and to share them across online and concurrent processes (or VMs).

The content is a shared library of the same applications on the machine, such as an AES

shared library in relation to SSL implementation in Linux; the possible attacks against this

setting are detailed in section 2.4.2.5. In a drive, free space can be leased to more tenants. In

the early stages of the cloud, the cloud providers aimed to reclaim the maximum possible

amount of memory by utilising shared pages. However, the disclosure of the page sharing

26 Background and Related Work

vulnerability has caused software industries and cloud providers to disable the page sharing

feature, which was previously the systems' default setting. An example software product is

VMWare, and an example cloud provider is Amazon EC2 (Maurice et al., 2015b; Zhou et al.,

2016). To mitigate side channel attacks against page sharing, Maurice et al. (2015b); Zhou

et al. (2016) proposed the kernel space solution CACHEBAR to provide concrete protection

to shared pages across VMs in PaaS. The drawback to this proposal is the OS modi�cations

and performance impairment, particularly in cloud systems.

Besides, according to the memory page sharing vulnerabilities, Irazoqui et al. (2015)

showed that the usage of S$A against the LLC cache in large page settings exploited the

memory page's vulnerability and enabled the AES secret keys to be extracted. In their study,

the attack is able to resolve the memory addresses. This is possible because in large size page

addressing, the attackers can see enough physical memory addresses to be able to identify

the victim's most recent accessed cache addresses. The authors showed that the attack could

be defeated if large size pages were disabled and if private cache slices were supported for

each VM, thus preventing cache inferences by one VM on another. While this technique

would prevent the attacker from deducing the cache slices that the target used, the number of

large pages that outperform small pages �le sizes is large. Large pages, on the other hand,

can be compromised using a RowHammer attack as Pessl et al. (2016) suggested.

In order to take advantage of page sharing to resist potential side channel attacks, Kim et al.

(2012) the proposed STEALTHMEM detection system is a technique that uses page sharing

without opening the system up to side channel attacks. STEALTHMEM protects the data

from cache-based side channel attacks using the page colouring technique. STEALTHMEM

blocks the cache lines that hold sensitive data and prevents the eviction of the data by a side

channel attack. The attackers' observations are degraded to the point where the attacker

�nds it impossible to deduce which targeted cache lines have recently been accessed by

the victim. STEALTHMEM requires that the host OS keeps a note of where the sensitive

data is assigned, and this is used for both data encryption and decryption at all levels of the

memory hierarchy, from the cache through to the system's main memory. The price of this

defence method is an overhead that unfairly penalises non-sensitive programs, but Kayaalp

et al. (2017) has shown how to improve cache colouring in LLC so then the sensitive data is

protected without STEALTHMEM and similar software modi�cations being needed in the

operating system. These techniques, however, are expensive to implement. Another useful

technique against side channel attacks is noise generation, which makes the attacker unsure

what his/her observations mean. Varadarajan et al. (2014) suggested a noise generation

technique for use in L1I and L1D caches.

2.5 Related Work 27

Despite its optimisation features,Out-of-order 3.2.1 may cause degradation in the

timing resolution to harden the side channel, but the attack techniques seen recently could

use serialisation to overcome Out-of-order. Yarom and Falkner (2014) recommends the use

of the instructionsmfenceandlfence to counteract this attack. Out-of-order has, however,

counteracted a Meltdown attack. Meltdown is regarded as the highest risk side channel attack

for its ability to compromise billions of user devices from mainframes to mobiles and across

common platforms like Microsoft Windows, Linux and OSX by way of attacks through cloud

providers.

Kernel Address Space Layout Randomisation (KASLR)protects the data by ran-

domising the memory addresses so then the attackers are unable to deduce the targets' use

of memory addresses. It is a technique that has been used in a number of ways, but Hund

et al. (2013) demonstrated a generic attack on both AMD and Intel processors in both native

and cloud settings against enabled ASLR in the host Linux and Microsoft Windows OSes.

The study identi�ed a region between the kernel and user space where candidates might lie

using the vulnerability of the double page fault method which relies on physical addresses.

Evtyushkin et al. (2016) exploited BTB (branch target buffer) contentions to mount a side

channel attack against both user-space ASLR and KASLR. Gruss et al. (2017b) demonstrated

a successful RowHammer attack using a side channel attack (Gruss et al., 2016a) against

KASLR. Gruss et al. (2016a) enhanced the OS protection through KSALR to prevent the

leaking of address information from the host's OS address translation layer by an unprivileged

local attacker. The method was to isolate the address space between the system processes that

manage and translate memory addresses and the user space processes. Gruss et al. (2017a)

suggested using KAISER to prevent the hardware from leaking information from the kernel

to the user programs by creating an isolation layer between the kernel and the user space.

Another way that operating systems are vulnerable is through keystroke stealing, in

which an attacker constructs the keys that the victim has pressed through the exploitation

of the kernel keystrokes when they interrupt the handler. Lipp et al. (2017) demonstrated

that the keys pressed by the target could be stolen through a web application. KeyDown

was suggested by Schwarz et al. (2017b), which fakes keystrokes, as a method of protection

against Flush+Reload and Prime+Probe.

Cleemput et al. (2012) suggested that compilers could be used against side channel

attacks if the execution time were made to be uniform by transforming the code in the

AES algorithm. This study, however, also addressed its own limitations which were the

hardware requirements, the code's complexity, portability and performance. Crane et al.

(2015) suggested that injecting noise into the program upon execution could be used to

28 Background and Related Work

achieve control-�ow diversity. This study provided solutions to the limitations discussed by

Cleemput et al. (2012), but their solutions are speci�c to the application concerned, cannot

be generalised and can degrade system performance as well.

SGX (see 2.5.1.3) is a method of prevention that works through the hardware, to which

an element that is sensitive to data has been added. It was not long after SGX was proposed

that several lines of attack were demonstrated. SGX-based protection is expensive to execute,

generates an overhead cost and any attackers can evade it. Brasser et al. (2017) demonstrated

a side channel attack which could extract data in SGX, even when the Sanctum protection

mechanism is present.

Countermeasures proposed by other researchers include Costan et al. (2016)s proposal

for a Sanctum protection model that �ushes the L1 cache while the host OS performs context

switching. Zhang and Reiter (2013) suggested that a Prime+Probe attack could be defeated

by �ushing L1D/I in order to avoid data dependency. Page (2003) suggested the addition of

memory noise to the memory accesses in order to leave the attacker confused.

2.5.1.2 Application level

The application layer falls on top of the OS layer, in which any applications must access

hardware resources through OS. However, there are strong protection mechanisms in the

OS but unintentional improper software implementations can lead to security holes in the

systems. Attackers can exploit these holes in order to achieve leakage attacks. Consequently,

the researchers demonstrated how improper coding leads to the occurrence of side channel

attacks. This section describes the existing techniques, as the programming guidance, used

to protect the data against side channel attacks, particularly by making it harder for any

attackers to guess secret inputs and execution times, which is the main source that side

channel attackers utilise.

Side channel attacks have increased over the past ten years because of the weaknesses

found in implementing cryptographic algorithms (Bernstein, 2005). Cryptographic software

such as OpenSSL makes shared libraries available at the same time to multiple programs in

order to save memory space. It allows for the software libraries to be updated, but this exposes

the software to potential threats. Section (2.4.2.6) shows the library sharing mechanism in

which the look-up table is at risk of being leaked by the attackers. Protection techniques have

been developed at the application level to mitigate attacks of this sort.

Constant-Time is a form of cryptographic protection against timing-based side channel

attacks. It is application-based. Constant-Time disrupts variations in memory access through

secret elements in the cryptographic algorithms such that the attackers are unable to synchro-

2.5 Related Work 29

nise with the victim's data, making it dif�cult for an attacker to seek out the target programs'

secret elements.

Timing-based side channel attacks work by observing variations in the execution time

of the cryptographic algorithms' secret elements. To combat this, techniques have been

developed to make the execution times constant in both symmetric algorithms like AES

and in asymmetric algorithms like RSA (Pornin, 2016). C language is used to implement

sensitive libraries such as OpenSSL due to its fast access memory. However, Cauligi et al.

(2017) addressed the C language limitation and concluded that it is unsafe to implement such

sensitive programs. The study investigated the usage of bit-wise instead ofIF statement

(Ac�içmez et al., 2007; Osvik et al., 2006) due to the fact that the use of anIF statement in

such programs causes branching. This makes it possible to measure the target programs'

execution time. The study went on to make technical recommendations to cryptographic

library developers. Bernstein (2005) demonstrated side channel attack protection through

a constant-time solution, while Reparaz et al. (2017) suggested the Dudect tool to assess

the tendency to leak information on the cryptographic algorithms and to evaluate between

constant-time slicing (Käsper and Schwabe, 2009) and vector permutation by Hamburg

(2009). The study compared the existing countermeasures with the AES T-table in an

OpenSSL implementation. Implementing such solutions is dif�cult, especially in embedded

systems. Coppens et al. (2009) suggested that time variations could be masked through the

use of programming techniques that would eliminate the data-dependent control �ow. Shinde

et al. (2016) proposed the software-based defence of deterministic multiplexing in CPUs

supported by SGX. Implementing ECDH encryption with Curve25519 in Libgcrypt requires

the Montgomery Ladder algorithm together with a branchless formula if side channel attacks

through high-level secret-input-dependent branches and memory accesses are to be avoided.

A variety of detection mechanisms exist, and multiple researchers have suggested the use of

hashing techniques to con�rm a runtime programs' integrity in order to maintain the security

of program execution �ow in an untrusted environment. Kirovski et al. (2002) combined

the hash function with cryptography, but the side channel attacks got beneath the integrity

mechanisms to go on to threaten the target security.

Bruinderink et al. (2016) proposed a technique against BLISS using 3500 samples, but

their attack only works if certain assumptions are met and if they failed to attack BLISS-b

Ducas (2014). Pessl et al. (2017), on the other hand, proposed an attack that can attack

BLISS and BLISS-b together, but it requires further actions to take place and needs 6,000

samples to mount a successful side channel attack

While solutions capable of protecting sensitive data have been suggested, they have

30 Background and Related Work

failed in practice due to the impracticability of implementing constant-time high-speed AES

algorithms. Yarom et al. (2017) suggested CacheBleed as a way of eliminating noise, and this

is generated in constant-time, through the use of con�icts in the cache bank to expose secret

inputs and execution time differences. Genkin et al. (2017) carried this observation out down

to the Libgcryptlibrarys' low-level side channel vulnerabilities in order to bypass the order-4

elements in the decryption routine in order to highlight the existence of the key-dependent

vulnerabilities.

2.5.1.3 Hardware level

A number of studies carried out over the past ten years have examined many hardware-based

vulnerabilities that have permitted side channel attacks. Most often, the hardware resource

targeted by the attackers are CPU caches. Microprocessor designers have made physical

changes to reduce the impact of such attacks. A study by Percival (Percival, 2005) into

L1 cache data leakage attacks suggested that microprocessor manufacturers should disable

cache sharing between threads and the core to prevent any data from being evicted from the

cache lines. However, by disabling cache sharing across concurrent programs, this leads to

degrading the system performance signi�cantly.

Modern processors support the use of hardware con�guration in relation to enabling

and disabling hardware settings such as multi-threading. One of the objectives of multi-

threading is to support the synchronisation between threads from the same core, and this is a

characteristic that is central to a number of side channel attacks as seen in the past. Disabling

multithreading would seem to prevent the attack (Kim et al., 2012). SEALTHMEM was

proposed in the aforementioned study as an alternative way of mitigating attacks, but Zhang

et al. (2012) demonstrated the possibility that the exploitation of L1 caches can support a

side channel attack. They showed that implementing such an attack was not straightforward,

but that it was still possible.

AES has received attention from researchers and microprocessor designers since Orange

Book chose it as an effective data protection method. Intel (Gueron, 2008) announced a

new instruction set, AES-NI, in 2008. The instruction set is executed by the processor using

the AES-dedicated hardware to accelerate performance and security (Xu, 2010), but not all

platforms and software libraries (including OpenSSL) have implemented this solution. This

means that the vulnerability is still there for the side channel attacks to use.

Cloud providers plan changes in the cloud system infrastructure. Regarding the presen-

tation of a number of side channel attacks, (Ristenpart et al., 2009)(Xu et al., 2011)(Wu

et al., 2012) preceded with a demonstration that showed that constructing a communication

2.5 Related Work 31

channel to separate VMs in Amazon EC2 was feasible. The demonstration included internal

hardware resource maps. The provision of dedicated instances enabled Amazon to improve

its service to cloud consumers, with an emphasis on the �rm isolation of VMs from one

another. The physical resources assigned to one tenants' VM are not shared with the other

VMs. Since 2014, (Irazoqui et al., 2015; Maurice et al., 2015b; Yarom and Falkner, 2014)

have targeted the Intel CPUs inclusive feature to create a bridge for data exchange between

processes that are not related to each other. [21] was unsuccessful in an attempt to implement

an attack on AMD CPUs thanks to differences in the processes' inclusive behaviour. It can

be dif�cult to produce a physical change in a microprocessor because of the in�uence that

this can have on the performance of the CPU. The negative impact of this solution on the

performance of the system makes it commercially non-viable.

The majority of recent attacks have targeted the hardware vulnerabilities (of Technology,

2018,?), including the L1, L2 and LLC caches, but suggested solutions which could detect

and prevent such attacks have been proposed in both hardware and software forms. Liu et al.

(2016) suggested models for protection on LLC, which would protect the operating system

layer through the use of the performance optimisation characteristics shared by each of a

CPUs cores. They then used Intels' recently announced cache technology, Cache Allocation

Technology (CAT), to give OS level protection against side channel attacks to the LLC.

After that, they introduced CATalyst, which combines software and hardware support in the

isolation of LLC slices. It binds each slice to a single core, preventing cross-interference by

cross-cores.

Intel has given its modern processors extended SGX to combat side channel attacks, to

reduce OS vulnerability and to prevent extraction by side channel attack on the secret keys

from the cryptographic libraries. However, in SGX, there are no speci�c protections at the

level of the architecture. However, Moghimi et al. (2017) suggested that CacheZoom is

capable of extracting all of the AES' secret keys once it has obtained a reasonable number

of samples. Then, Costan et al. (2016) demonstrated the Sanctum mechanism as a way of

generating noise in the L1 cache memory as the target process carries out an enclave/non-

enclave switch. Good as it was, this mechanism could not prevent Brasser et al. (2017), who

showed that there was no interruption needed in the enclave in order to probe the cache, so

then nothing occurs to trigger a mode switch or a �ushing of the cache.

Researchers have suggested to CPU designers the possibility of adding an extra bit which

could be used to signal system events or permissions. As well as software protection, Shinde

et al. (2016) suggested that the addition of an extra bit would allow the host operating system

to be noti�ed of intended page faults so then they could avoid context switching. This is a

32 Background and Related Work

response to the way that attackers send instructions to the operating system to load critical

information which is then encoded to give a de�nition of the systems' current state, including

virtual and physical addresses.

2.5.2 Pro�ling-Based Detection Systems

Section 2.5.1 reviewed the proposed techniques and mechanisms in relation to the hardware

and software used to prevent side channel attacks from stealing sensitive data. The fact

is that these approaches and techniques have not, so far, been enough to secure sensitive

data. Consequently, this section extends the study to include existing detection systems that

are helping to detect and identify side channel attacks, particularly concerning detecting

malicious VMs in cloud systems. Detection systems primarily rely on the observation of the

attack activities by pro�ling the execution transactions of the side channel attack programs

and taking advantage of the unintentional memory contentions that are generated by the

attack programs.

Side channel attacks against the microprocessor components often go undetected because

the attacks, which access the system control mechanisms, are hidden. Instead of accessing

the targeted resources in a legitimate manner, the attackers exploit vulnerabilities in the

hardware design and in the way that the software is implemented. Side channel attacks

degrade system performance, and so recent research has shown that the best practice of acting

against side channel attacks is by monitoring the overall computer performance, which is the

main focus in this thesis. Researchers have used performance metrics as a way of detecting

and identifying attacks. Detection of this sort can be classi�ed as a source or an analysis

approach.

A number of approaches have been used for side channel attack detection. Zhang et al.

(2016a) proposed statistical analysis in order to identify cache attacks, relying on CPU

cycles to monitor accessed and non-accessed cache (miss/hit) attacks. Briongos et al. (2016)

proposed monitoring for Flush+Reload attacks against the AES algorithm and the study

looked at theclflush instruction of multiple cache lines, which is the core of the attack.

Detecting attacks in that case used the CPU cycle as its primary data collection source.

Section 3.2.1 discussed the power ofRDTSCas a way of detecting differences in execution

time of memory accesses to reveal which accesses were being used by the attackers with

a very high resolution. As a form of detection, the CPU clock cycle has been used as a

data vector, with which the researchers were able to separate the distinct patterns created

by abnormal activities from the normal encryption processes. Briongos et al. (2016) used

2.5 Related Work 33

the vectors of the observed CPU cycles to detect Flush+Reload attacks against AES using

a statistical model to detect the cache line(s) �ushed by an attacker while synchronising

with the target to infer the targets look-up table. Their �ndings cannot be implemented in

real-life systems because unexpected workloads could trigger false positives, thus reducing

the accuracy of detection. The authors of the study suggested using machine learning to

increase detection ef�ciency, but this would require more than only theRDTSCfeature. HPC

can provide a wide range of system events concerning the current state of program executions

which can then be fed into a machine learning algorithm, yielding more ef�cient and accurate

results.

Recent studies have showed that hardware-based malicious activity detection methods

principally rely on High Performance Counters (HPC)s, in which special registers are built

into mainstream processors. For more details, refer to section 4, on both data leakage and

Malware studies. HPCs provide program execution granularity with a quantum precision.

Table 2.2 shows some of the previous work which has utilised HPCs for both attack and

defence in reference to both data leakage and Malware studies, unlike (Fei et al., 2014)

which basically relies onRDTSCto collect the data in the analysis stage. Data HPC-based

pro�ling has a larger capacity to capture the processors' state of various program execution

characteristics as events. This allows for the machine learning method to be more feasible in

the detection systems. Zhang et al. (2016a) proposed CloudRadar, which deploys a signature

and anomaly detection system to detect side channel and memory Denial of Service (DoS)

Attacks in cloud systems. HPCs also allow for machine learning algorithms to classify the

attack pattern in the computational environment with ef�cient, reliable and highly accurate

results. For instance, Alam et al. (2017) got 99% accuracy in real-time system monitoring.

Zhang et al. (2012) successfully deployed Support Vector Machine (SVM) to support setup

side channel attacks at the core level to establish an L1 channel between the attacker and

the victim. SVM reduces the potential noise from different sources. Briongos et al. (2017)

used machine learning to eliminate unstable program execution noise in relation to the

synchronisation settings between the attacker and victim.

Vogl and Eckert (2012) proposed a trapping technique using PMCs to monitor programs

at the instruction level inside VMs. The authors demonstrated the capability of the monitoring

program's execution features by observing speci�c instructions inside the VMs in cloud

systems. Kayaalp et al. (2017) suggested using Relaxed Inclusion Caches (RIC) to mitigate

side channel attacks. Nomani and Szefer (2015) suggested a mechanism for detection and

mitigation by injections (integrating or hooking) into the OS system scheduler to monitor

how programs use memory as a way of detecting malicious programs. This study focused

34 Background and Related Work

Feild Category Publications

SCA
Attack (Gruss et al., 2015b)(Irazoqui et al., 2015)(Gruss et al.,

2017a)(Zhang et al., 2012)
Defence (Briongos et al., 2017)(Alam et al., 2017)

Malware
Attack (Vogl and Eckert, 2012)
Defence (Wang and Karri, 2013)(Tang et al., 2014)(Demme et al.,

2013)Pfoh et al. (2011)(Schwarz et al., 2017a)(Gupta, 2017)
Table 2.2 Categorise PMU-based attack and defence for side channel and Malware studies

primarily on CPU integers and �oating point units and their in�uence on CPU component

usage. It also used the machine learning algorithm's Neural Network (NN) to predict which

applications would go on to be memory intensive. The fact is that NNs complexity in the

training stage degrades system performance. Zhang et al. (2016a) designed CloudRadar as

a protection system capable of detecting cross-VM side channel attacks on PaaS in public

cloud services against LLC with no hardware or software con�guration settings. Their model

combines signature-based and anomaly-based detection methods and relies on the use of

hardware performance counters.

2.5.3 Summary

None of the detection and prevention techniques developed so far can prevent a side channel

attack from taking place. They can make attacks more dif�cult to carry out, but they

cannot stop attackers from achieving their malicious aims. This is because vulnerabilities

in the hardware and software allow the attackers to �nd ways around them. Ge et al.

(2017) concluded that the most commonly used current processors, including x86 and ARM

processors, are not designed to maintain security in microprocessors. Lipp et al. (2018)

suggested to microprocessor manufacturers that performance should not be the sole aim of

chip design. Instead, they should be more concerned with the security holes present when

making hidden communication channels between two entities (threads, processes or VMs) in

the computational environment to complete execution transactions securely.

What stands in the way of side channel attack mitigation is the overhead generated by

the protection methodologies and the fact that implementing the methods is complex. The

overheads in question relate to the fact that operating systems operate on one kernel space

and that applications operate on user space. OS overheads negatively impact the system.

The fact is that the majority of both of the proposed side channel attacks and the coun-

termeasures against them are reliant on assumptions. Enabling and disabling features is

2.6 Limitations of Existing Works or Summary and Research Gaps 35

an example. It follows that building a reliable security model requires the study of the

vulnerabilities that attackers exploit and it notes the limitations in reference to the abilities of

the existing countermeasures to provide security tailored to speci�c situations.

2.6 Limitations of Existing Works or Summary and Re-

search Gaps

This chapter is a review of the recent work in order to reveal the most up-to-date best

practices in side channel attack detection, addressing the limitations in the previous work

on the subject. Commercial anti-virus software has had limited success in detecting side

channel attacks. This is because the characteristics of such attacks are that they do not require

privilege in order to succeed and utilise system calls. They instead rely on observing the

effect of their own program executions on the same shared hardware and software resources.

A side channel attack's primary aim is to discover vulnerabilities leading to the detection of

data-dependency in secret elements. Computational noise in the CPU makes it dif�cult to use

basic side channel attacks. Because researchers continually propose countermeasures when

new forms of side channel attacks emerge, attackers are beginning to employ more than one

technique to achieve their malicious intentions Kocher et al. (2018); Lipp et al. (2018).

In spite of the recent detection systems proposed to detect side channel attacks, they

are liable in relation to one or more factors which indicates the ef�ciency and accuracy

detection. In the following sub-section, the most recent relevant works regarding the proposed

framework in this thesis have been listed according to the general detection framework

components.

Pro�ling: Zhang et al. (2016a), Payer (2016) proposed the use of theperf tool against

side channel attacks by monitoring existing processes in the system. Zhang et al. (2016a)

selected VMs at random to monitor, while Payer (2016) monitored all processes in the system.

The fact remains that side channel attackers can escape observation because the use ofperf

in both studies depends on the �le systemproc to retrieve information about the system's

existing processes. A case study on Malware attacks Wang and Karri (2013) demonstrated

the feasibility of an attacker modifying theproc �le to hide its process id from the system

so thenperf gained no information about the malicious processes. In this paper, on the

other hand, we have proposed a system pro�ling mechanism that targets the processor cores

instead of theproc �le system, so then all program execution transactions appear on the

36 Background and Related Work

observation. This means that the attackers cannot escape observation. This limitation is

addressed in section 4.13

Native and Cloud systems:Alam et al. (2017) and Chiappetta et al. (2015) proposed

detection systems using the machine learning approach to detect side channel attack in native

systems. However, they failed to detect malicious VMs in cloud systems. Zhang et al. (2016a)

setup a detection system in cloud settings, but their detection system worked only under

certain conditions. For instance, the system requires dedicated hardware to be employed for

the detection system and the signature of the cryptographic applications in VMs must be

recorded. Fei et al. (2014) proposed a detection system in both native cloud systems, but

the cost of VM detection was higher due to the extra analysis needed. Our work proposes

a detection mechanism ofML in both native and cloud systems without an additional cost

concerning the cloud systems.

This limitation is addressed in sections limitation is addressed in section 4.12 and limita-

tion is addressed in section 4.13

Synchronisation: When the side channel attack uses hardware resources such as CPU

cache memory, it basically relies on memory contentions in the repetition manner which leads

to unintentional contentions. The attackers are unaware of this, and this causes signi�cant

abnormal activities. This can be easily detected by utilising a synchronisation approach. This

means that the attack processes can be detected by relying on the data collected by the victim

(Kulah et al., 2018). This approach is vulnerable in two potential circumstances. First, Allaf

et al. (2017) studied a comparison of multiple machine learning algorithms, namely ageis

SPEC cpu2006 int and fp application, in order to stress the CPU cache memory. As a result

of this, heavy workloads have a negative impact on the detection accuracy of three machine

learning algorithms including DT, PCAANN and k-NN. All algorithms performed well when

no workload was running, with int applications such as gcc and bzips degrading the accuracy.

With fp, the accuracy got worse.

Second, there might be smart side channel attacks deploy to evade the defence systems

by slowing down the observations in order to produce irregular unintentional contentions by

the attack programs. Allaf et al. (2018) proposed a detection mechanism that does not rely

on the synchronisation approach. Instead, it monitors the scheduling quantum of each CPU

cores in the system. The proposed detection requires a very low number of samples to detect

and identify the attackers.

Previous works also showed that their detection system requires synchronisation. In this

setting, both the victim and attacker programs are monitored to detect data dependencies

while the attacker program is channelled with the victim programs to force the system to

2.6 Limitations of Existing Works or Summary and Research Gaps 37

trigger hardware contentions Alam et al. (2017); Briongos et al. (2016); Chiappetta et al.

(2015); Payer (2016). The proposed detection systems are vulnerable for the reasons below.

Firstly, in the case where other normal programs use the same shared library as the victim,

such as AES in the implementation of OpenSSL, the unintentional hardware contentions are

feasible when multiple programs (or users) are accessing the same shared library at the same

time. This leads to data dependencies. Thus, the normal programs are detected as an attacker.

Second, out of the workloads used in the test data-set, there is a negative impact on the

detection accuracy (Allaf et al., 2017). Particularly, Gulmezoglu et al. (2017) proposed a

detection algorithm to detect the attack by collecting L1 data. Intensive workloads degrade

detection accuracy.

Third, in the case of smarter attacks, Gulmezoglu et al. (2017) stated that they can be

evaded and the attack will be mis-classi�ed. In the proposed framework, even if the attacker

slows down the attack, the attacker can still be detected unless they slow down to a degree

that cannot be bene�cial in detecting any dependencies. This limitation is addressed in detail

in section 4.12

Machine learning: In the previous works Alam et al. (2017); Allaf et al. (2017); Chi-

appetta et al. (2015), the utilisation of supervised machine learning algorithms needs to be

trained for each of the cryptographic algorithms across existing attacks. However, Briongos

et al. (2017) used unsupervised machine learning to detect side channel attack activities

regardless of what techniques were used. The detection system incorrectly detected normal

users, as mentioned in the previous section, who use the same cryptographic algorithm as the

victim. Unlike the previous work, the proposed detection system uses supervised machine

learning to detect side channel attack activities using the phase detection approach. The

details have been given in section 4.3. This limitation is addressed in detail in section 4.12.

Performance: The performance overhead is the central issue affecting system per-

formance in reference to any potential detection methods. System overheads need to be

considered, and can be classi�ed as either an OS-based overhead or an application-based

overhead. An OS overhead is much more expensive than an application overhead. Nomani

and Szefer (2015) recommends injecting a machine learning algorithm into OS scheduling

to monitor CPU component usage to detect malicious processes. Cloudradar Zhang et al.

(2016a) employs and dedicates three processor cores to monitor malicious processes. Payer

Payer (2016) continuously monitors all existing processes. These mechanisms incur over-

heads in the host system. In the proposed framework, instead of injecting machine learning

algorithms at the OS level, the detection system is placed in the user space and only data

collection is placed in the kernel space. The proposed framework does not monitor the

38 Background and Related Work

whole processes in the system, and it instead pro�les the processor core executions. Finally,

the proposed framework does not require dedicated hardware and OS con�gurations. This

limitation is addressed in detail in section 4.12.6.

Chapter 3

Preliminaries - Synchronous Trace-based

Detection

3.1 Introduction

Data sensitivity is of increasing importance, and this is particularly true in cloud computing.

The primary use of cryptographic techniques on the internet and in cloud systems is to protect

sensitive data such as, among other types, patient records, banking transactions and social

web accounts and posts. However, there have been consequent attacks designed to steal

sensitive data that target critical cryptographic elements as secret keys, look-up tables and

mathematical operations including square multiplication. AES, as an example, has been

developed to protect data in a variety of domains including native and cloud systems. There

has been a good deal of research into the use of side channel attacks on AES algorithms

(Irazoqui et al., 2014).

As mentioned in Chapter 2, there are two main attack techniques, namely Flush+Reload

and Prime+Probe, making the use of malicious activities performed during the attack stages.

The attacks mainly target Last Level Cache (LLC). This is because LLC provides high

bit rates to transfer the largest amounts of data as possible. However, there are different

approaches that have been used in detecting such attacks such as statistical, probabilistic Fei

et al. (2014) and machine learning approaches (Alam et al., 2017). For more detail, refer to

section 2.5.

Fei et al. (2014) proposed a statistical analysis of the cache access driven attacks which

rely on CPU cycles to monitor accessed and non-accessed cache-based (miss/hit) attacks.

Briongos et al. (2016) suggested detection based on FR attacks against AES by analysing

the �ush instruction of the multiple cache lines which form the core of the attack. Their

40 Preliminaries - Synchronous Trace-based Detection

model relied, for the most part, on the CPU cycle as a primary source for data collection. In

another approach, the PMU registers were used to give greater granularity so then the features

supporting the detection mechanisms could be extracted at a higher resolution. Zhang et al.

(2016a) proposed CloudRadar, where the detection of signatures and anomalies were used to

detect existing and new forms of side channel attacks as well as other cache attacks such as

the denial of service attacks against CPU caches. The proposed framework requires dedicated

resources to support detection. However, the proposed framework in this chapter does not

require any additional resources.

It is the expectation that HPC provides more program execution features to investigate

the attack activities. Therefore, machine learning algorithms can emerge to analyse complex

data ef�ciently by detecting the attacker's malicious behaviour in the system. As the use

of machine learning has been studied in a variety of domains, with particular emphasis on

anti-virus work to protect individual computers, Intrusion Detection Systems (IDS) used to

provide greater network security and spam detection to improve the security of information

have emerged. Machine learning methods enable computers to build a data-driven model and

to discover signi�cant patterns of interest in the available data. We therefore have proposed a

study to demonstrate the use of machine learning approach in detecting side channel attacks

and how ef�cient is it in detecting side-channel attacks while they are synchronised with

its victims. We then compared the three popular machine learning methods (NN; C4.5; and

k-NN) to establish machine learning-based detection approach in order to demonstrate which

will achieve the highest classi�cation level in order to detect such attacks, followed by the

impact of various workloads on detection accuracy.

3.2 Background

This section examines the previously suggested techniques and methods for both attacks and

the detection of attacks, for which a number of approaches have been used. This section

also examines the most important of the key components involved in attacks and in defence

against attacks.

3.2.1 CPU Architecture and Components

The CPU, or central processing unit, is comprised of interconnected components that make

it possible for programs to execute. For that reason, it is targeted by side channel attacks

to a considerable extent. In a computational environment, its bus connections with on-

3.2 Background 41

board resources like main memory and input/output (I/O) devices make it the main physical

resource. This is because any data from any of the involved resources must be brought to the

CPU for manipulation. Modern CPUs consists of multiple cores, which makes it possible to

improve performance ef�ciency and to run a number of programs concurrently. Each core

amounts to one logical isolated processor inside the CPU die. Each of which has its own

components as follow:

1. CPU RegistersThe fastest memory in a computing system is the CPU register. It is

also the smallest memory in the system. Registers are online memories and they are the

place where any program instructions are actually executed. Registers are measured by

the number of bits which they hold: eight; thirty-two and sixty-four.

Registers fall into a number of types, each of which has the responsibility of a particular

function. Some registers cannot be accessed by the programmers, only the OS. These

include the Memory Address Register (MAR), the Instruction Register (IR) and the

Memory Buffer Register (MBR), as well as the Temporary Register (TR). However,

some registers are available for use by the programmers by utilising either an assembly

language or another high level language such as C and C++. General Purpose Registers

(GPR hold both program instructions and data. Debugging registers hold program states

in real-time. Flag Registers (FR) hold information on the occurrences of particular

conditions in the operations of the CPU. Debug Registers, Model Speci�c Registers

(MSR) and Control Registers ensure the proper usage of the MSRs in capturing CPU

events accurately. They are all used to improve system performance and to locate

weaknesses in the programme. For security reasons, CPU manufactures, such as

Intel and AMD, do not provide detailed documentation for these registers. However,

researchers have found detailed information on the registers in order to propose their

vulnerabilities (Kocher et al., 2018; Lipp et al., 2018). The focus in this study will be

on MSR, which are charged with capturing events in which the CPU has an interest

which occur in relation to the CPU components: cache misses, branch predictions and

the total number of instructions executed. For more details on MSRs, see 3.2.3.2.

2. Cachesare an on-chip buffer inside the CPU, and their purpose is to promote the

ef�ciency of data transformation. In typical computer systems, memories are ordered

by size (small to large) and by speed (high to slow). The registers include L1, L2, LLC

caches and the main memory. CPU caches the buffer data that has been required from

the main memory in a trade-off of performance against speed, so then the CPU has

the data when it needs it. The buffer arrangement is sequential, with a typical CPU

42 Preliminaries - Synchronous Trace-based Detection

comprising of a cache at three levels: L1, L2 and LLC, which maps the order from

fast to slow and small to large (the larger it is, the slower it is) with the exception that

L1 is split between instructions and data. Speed variations provide attacks, which

run concurrently with the attacker's program, with their main source of information

about the data prefetch activities of other programs (i.e. victims) which can be used

for malicious purposes.

The caches are differently structured from level to level. The LLC cache is the outer

level and is connected to the RAM directly. The basis of communication is through

pages, with each page mapping the LLC cache sets and each cache set is divided

into smaller units calledcache lines1 . Each cache line size varies from 4 to 64

bytes depending on the operating system settings. LLC provides the interface for L2

communication. The number of cache sets will generally be larger in LLC and larger

in L2 than in L1. This is a hierarchical system and the data is tracked from RAM to

L1. CPU caches are the essential intermediate between CPU computational units and

the main memory. Each memory access is called a transaction through CPU caches.

CPU caches are the resources that are targeted the most by attackers.

Cache memory is the most important determinant of performance in a computer system.

A number of algorithms have been proposed to exploit these characteristics by which

future data can be predicted. For programs with loops, algorithms exist to forecast

which data will be needed next by the loop that is to be brought to the closest cache

memory. Using these algorithms raises performance levels as the algorithm advises the

operating system what data is about to be required. Thus, the CPU decreases the ideal

state in which the CPU is waiting until the data is brought to the cache. However, side

channel attackers have exploited these features to achieve their malicious intentions.

Section 3.3 demonstrates how attackers can exploit these characteristics

3. Miss/Hit eventsare memory access occurrences that arise from hierarchical memory

when data is buffered. Their main purpose is latency measurement to identify program

bottlenecks. The CPU begins by asking for data from the lowest level (L1) and if the

data is not found there, then it moves higher level by level until it reaches the main

memory. Each request to move up one level is counted as a miss event at that level;

when no miss event occurs, a hit is registered. Misses and hits can be gathered directly

from the Hardware Performance Counters (HPCs) or by encoding the differences in

time execution for the memory accesses, which is mostly used by side channel attacks.

1It is the smallest unit that can be dealt among cache levels to exchange data

3.2 Background 43

Note, however, that miss/hit events have a greater complexity than simply being

numbers. They can arise from a variety of sources. As an example, when the value of

a variable is accessed in the main memory for the �rst time, there will be a series of

misses as each level fails to provide the required value. There will be cases where the

value has been temporarily evicted from the memory level that it previously occupied.

This is dependent on the design of the hardware and on the programme, and attackers

use such evictions in the measurement of data-dependent accesses.

The reason behind the different ways of organising caches is to yield the highest hit

rate. This to avoid cache line contentions. However, such attacks take advantage of

the contentions in order to encode the victims activities from the usage of the shared

hardware or resources.

4. Performance Monitoring Unit (PMU): Programmers need help in debugging and

locating the bottlenecks in their programs and PMU provides this assistance with

run-time feedback. PMU offers services to programmers by detailing the current state

of the internal CPU and its connection with I/O devices in real-time. More details are

given in section 3.2.3.

5. Timing Timing program execution with a high resolution is a key side channel attack

measure. Different resources exist to align the timing with the platform and CPU

architecture. The timing can be used by taking the start time and end time of the

motherboard's clock such asgettodaytime() , as in Linux systems. However, PMC,

which sets one of the registers to count the CPU cycles, provides more details as given

in the settings in Section 3.2.3.1. Time Stamp Counters (TSC) can also be used at a

low level to count the cycle spent during execution of a program or a piece of code

which is preferred by side channel studies due to its accuracy.

Time Stamp Counter (TSC) is a 64-bit register that has been installed on every x86

processor since the Pentium.TSCobservations are widely used in performance and

side channel attack domains. It provides an automatic count of the number of cycles

from the time which it is started to the time which it is stopped. Executing theRDTSC

instruction accessesTSC, returning theTSCregister contents toEDX:EAX. The main

use ofRDTSCis modelling a data leakage attack, especially in the observation stages

such as Prime+Prob (Maurice et al., 2015b), Flush+Reload (Yarom and Falkner, 2014)

and Evict+Time (Tromer et al., 2010).

6. Out-of-Order and Serialisation is a program execution mechanism used in multi-

44 Preliminaries - Synchronous Trace-based Detection

core systems to execute instructions simultaneously that are subject to the availability

of data and execution unites in a fair manner to avoid CPU stalls. Out-of-order does

not guarantee the sequence in which the program instructions are executed. With an

Out-of-Order execution, it is hard to accurately measure the data access time for a

particular piece of code or instruction due to the interference of the counting cycles

of previous instructions. Instead, it may count the operations of the different codes.

Intel researchers Paoloni (2010) therefore proposed a solution to guarantee the precise

measurement of the data accesses of a piece of code by serialising theRDTSCusing

CPUIDwith some operating system function support to pin down theTSMregister

for assignment to the selected code and to guarantee that the cycles to that code are

counted. Furthermore, Yarom and Falkner (2014) proposed a different serialisation

approach usingmfenceandlfence to accurately observe the cache activities with

minimum costs.

3.2.2 Performance Measurement Tools

HPC are a set of registers in PMU used for performance measurements. The main use

of HPCs is to measure the performance of a piece of code, program or system (Eyerman

et al., 2006) and to �nd out the impact on the system's bottlenecks. The HPCs utilisation

requires careful attention due to the complexity and permissions of its registers. There are

many pro�ling tools and libraries used to abstract the complexity and to easily produce

monitoring reports about the system and program activities in both user and kernel spaces.

The following sections lists the most two popular tools which are used side channel attacks

studies (Chiappetta et al., 2015; Nomani and Szefer, 2015).

1. PAPI In 1999, (13) introduced a portable library Performance Application Program-

ming Interface2 used to abstract the complexity of HPC utilisation (Dongarra et al.,

2001; Terpstra et al., 2010). PAPI is a widely-used research tool, especially in high

performance computing, to measure access time across the memory hierarchy and the

usage of CPU components (Eijkhout, 2015). PAPI can monitor preset events when

two or more events occur simultaneously, but large sets of events generate overheads.

Johnson et al. (2012) extended PAPI-V in 2012 to provide support for VM. However,

PAPI-V cannot support all events as the native does.

2is an opensource library, which is the speci�cation of a cross-platform interface related to hardware perfor-
mance counters in modern microprocessors including Intel and AMD processors. http://icl.cs.utk.edu/papi/

3.2 Background 45

2. Perf Perf is a pro�ler tool made for Linux 2.6+ based systems that abstracts away

CPU hardware differences in Linux performance measurements and presents a simple

commandline interface. Perf is based on the perf events system call interface for most

of the involved tasks.

3.2.3 High Performance Counters (HPC)

This section reviews the HPCs built into modern Intel processors used for debugging and

performance measurements. High Performance Counters (HPC) are a set of registers in

Performance Monitoring Units (PMU). HPC gives the programmers runtime feedback to

help in debugging and to help �nd software bottlenecks in critical parts of various programs.

On the other hand, recent studies showed that the use of HPCs in the security domain have

become popular, particularly in relation to malware and side channel attack detection. HPC

consists of various sets of integrated registers used to set up very precise metrics for different

measurement scales, ranging from micro-operations, pieces of code and applications through

to the entire system. In a modern multi-core processor, each processor core has one HPC

charged with capturing Off-core activities. Furthermore, a set of PMUs on the same machine

are able of working together to monitor Uncore activities3.

This study examines the PMU components used for settings, con�gurations and pro�ling

for performance measurements. The main implementation of this thesis essentially relies

on the utilisation of PMU in the proposed detection system. Consequently, the utilised

components in this thesis have been detailed in the following sub-sections.

3.2.3.1 Events:

Event are the essential characteristics used to establish the metrics that are in turn used to

measure performance, which is described as the occurrence of a hardware action in response

to the usage of CPU components. Examples include the L1, L2 and LCC cache accesses and

branch predictions. Events can be per core (Offcore) or per socket (Uncore). The focus in

this thesis is only on Offcore events.

Supported events vary by manufacturer and processor model. Each CPU architecture

comes with its own list of events. As PMUs are processor speci�c, they thus support two

event types: one of which is architectural events which can be found in the CPUs which have

the same physical components. For instance, LLC cache misses can be found in any CPUs

that have an LLC cache memory, and the supported architectural events listed by CPU model

3For more details, visit https://software.intel.com/en-us/forum

46 Preliminaries - Synchronous Trace-based Detection

Code Description
309H counts the number of instructions which are executed
30AH the unhalted cycles of the processor core
30BH the number of reference cycles at the Time Stamp Counter (TSC) rate when the

core is not in a halt state
Table 3.1 Fixed function events

has been shown in Chapter 18 (Intel, 2014). Non-architectural events vary by processor

model. Modern CPUs typically support hundreds of non-architectural events, which have

been listed by CPU model in Chapter 19 Intel (2014).

3.2.3.2 Model Speci�c Registers

A Model Speci�c Registers (MSR) is a set of registers called Performance Monitor Counters

(PMC)s. A PMC can record the �ne details of low-level activities during program execution.

The number of registers varies from one CPU model to another. There are two types of PMC

Fixed Function, which are three �xed registers in a typical CPU used to count speci�c events

as listed in Table 3.1 and General Purpose registers, which are model speci�c. They typically

consisted of four registers used to count various events. The list of all supported events for

each model has been listed in Chapter 18 (Intel, 2014). Unlike �xed function counters, they

must be set before use. Figure 3.1 shows the layout of the PMC registers holding the counted

value and the number of times that the speci�ed event has occurred. Typical modern CPUs

have seven 64-bit performance counters including both �xed and general purpose registers,

only 48-bits of which are active, so the maximum value that the counter holds is 0xFFFFFF.

If the counter exceeds this number, then it causes over�ow errors. PMC registers can be set

either to zero or to a selected value. In the performance tools, intervals are used to make the

observation within a loop. With every iteration, the counters are reset. On the other hand,

PMC registers set to a value to trigger over�ow Vogl and Eckert (2012) are used to trap the

attacker from using a system call. In this thesis, both �xed and general purpose counters

have mainly been used in the data collection stage. In this chapter, all PMC registers have

been used in the experiments equally. In chapter 4, the only general purpose registers used

primarily contributed in the detection and identi�cation phases.

3.2.3.3 Performance Event Select Registers

Performance Event Select Registers are a set of special registers that control and con�gure the

PMC registers. The only registers that have been utilised in this thesis are listed as follows:

3.2 Background 47

Fig. 3.1 Layout of IA32_PerfEvtSelit h MSRs

1. PerfEvtSeli: the register responsible for setting the programmable counter registers.

We can assume that a processor with four programmable counters PMCi registers is

used to count four supported events by the processor, wheni 2 f 1;2;3;4g. To operate

the PMCi registers correctly in counting events, each PMCi register must be locally

enabled by thePerfEvtSeli register and globally enabled by the overall register. Figure

3.1 shows the layout ofPerfEvtSeli register.

The �rst byte, which starts from bit 0-7, holds an event logic unit. The next byte,

starting from bit 8-15, holds a unit mask. Any candidate event must comprise of

a combination of these two. For instance, an eventUOPS_RETIRED.ALLcomprises

Umask:0x01 and event:0xC2 = 0x01C2

Bit 16 and 17 are used to determine whether the user space is excluded or included and

the OS respectively, including kernel space activities, in pro�ling tasks. This option is

contributed to in the pro�ling mechanism by removing the services which are working

in the background.

INT represents bit 20 in the register, enabling for an APIC interrupt to trigger an

interrupt in the PMC over�ow due to 0xFFFFFF being exceeded. The purpose of EN

bit 22 is to enable or disable counting by the PMC register. However, in this study,

over�ow does not happen because the window interval for each sample is very small.

2. IA32_FIXED_CTR_CTRL The con�gurations of the �xed-function PMCs are done

by writing to the bit �elds in the MSR. The common operations in con�guring PMC are

enabling or disabling the event counters before and after speci�ed tasks, and checking

the status of the counter over�ows, which is globally done by the following MSRs.

48 Preliminaries - Synchronous Trace-based Detection

3. IA32_PERF_GLOBAL_CTRL This MSR can enable/disable the event counting of

all or any combination of �xed-function PMCs and any general-purpose PMCs.

4. IA32_PERF_GLOBAL_STATUS This MSR allows for the querying of counter over-

�ow conditions in any combination of �xed-function PMCs or general purpose PMCs.

5. IA32_PERF_GLOBAL_OVF_CTRL This MSR allows for the software to clear

counter over�ow conditions in any combination of �xed-function PMCs or general-

purpose PMCs.

6. Performance Monitor Interrupts (PMI): A �eld in the control register that generates

an exception through LAPIC in an over�ow condition for �xed function counters and

programmable counters PMCi. In Intel CPUs, IA32 PERF GLOBAL CTRL MSR

provides single-bit controls to enable the counting of each performance counter. PMI

�lls in the various functions for a range of use-cases. It is used to detect faults when and

where counter registers are improperly set. It is also used for the periodic event-based

sampling of speci�ed events on the PMCs. Finally, it has been used maliciously to

detect system calls in Malware attacks (Vogl and Eckert, 2012).

3.2.3.4 Hardware Performance Counters Setup

The performance of measurement tasks requires setting and con�guring the Performance

Event Select Registers. Thus, this section illustrates the steps used to set up the PMC register

to automatically count the speci�ed events. Programming counters set the event-based

interval and aspects of the pro�ling behaviour including the interval at which the samples

should be generated.

Setting up hardware performance by user program or existing tools and libraries requires

therdmsr andwrmsr to read and write MSR registers, including PMCs required to count

speci�c events. These instructions both use theECXregister to transmit the parameters for

writing on the MSR registers or for getting the values of the PMC registers. Therdmsr

instruction can also be used in the user space to read the �xed function4 registers because

they do not require a write on the MSR registers to specify an event.

Read operation: rdmsr instructions load the 64-bit contents of the speci�ed MSR

register into theEDX:EAXregisters. The MSR registers the 32-bit high order as being

loaded into theEDXregister and the 32-bits low order into theEAXregister. TheEDX:EAX

4This does not work if �xed registers have been used by another service, unless the services are denied from
accessing �xed registers such asMNIwatchdog

3.3 Threat Model 49

combination generates the counters' actual number. This can be done in C using bit-wise

operations.

((long long)EDX) | (((long long)EAX) < < 32)

Thewriting operation: wrmsrcannot be executed in the user space and must be executed

in the kernel space. Executions of thewrmsrinstructions must therefore be in privilege ring-0.

Therefore when PMC is used either by the user programs or by the tools, they must interface

with the kernel as a driver to execute thewrmsr instructions .It then stores the contents of

theEDX:EAXregisters to a speci�ed 64-bit MSR register. The contents ofEDXgo into the

high-order 32-bits and the contents ofEAXgo into the low-order 32 bits.

Usingrdmsr andwrmsris not guaranteed to read or write the desired processor core PMC

counters during pro�ling, especially if an interrupt is triggered. The use of Linux built-in

interfaces is therefore recommended, and these are provided in/x86/include/asm/msr.h

to set up an inter-processor interrupt. This will ensure that the MSR register read/write

operations take place in the desired processor core. The interfaces are:

int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)

static inline int rdmsr_safe_on_cpu(unsigned int cpu, u32 msr_no, u32 *l, u32 *h)

Each of these functions takes on a single extra parameter - unsigned int cpu - which is

the ID of the processor core used to guarantee that the pro�ling task will be pinned to the

targeted processor core.

3.3 Threat Model

In this section, a brief microprocessor architecture design has been presented in relation

to the side channel attack technique named Flush+Reload. The Malicious Loop (ML) is

highlighted in a way that the detection system relies on.

In typical computer systems, there are four main memory layers to accommodate data

when it is in a used state (DIU). They are hierarchically categorised from small in size to

high in speed such as the L1 cache to large and slower, which is the main memory. Three

layers (L1, L2 and L3 or LLC) are CPU caches used to buffer data in the main memory for a

very short time. The data accesses are different at each layer; this is the key factor of side

channel attack techniques based on access time or where they rely on data dependency. When

CPU needs to access a piece of data in the main memory, it must be buffered in LLC, L2

and L1. In multi-tasking systems, an OS dedicates a region of memory for a program that is

50 Preliminaries - Synchronous Trace-based Detection

logically isolated from the other regions of other programs in a manner so then the processes

of one program cannot access the regions of other programs. This isolation is secured by

the OS. However, in some OS settings, the OS shares a region of memory across multiple

programs (i.e. shared library in Linux and DLL in MS Windows) to optimise performance

and to reclaim more memory. Here, side channel attacks come into play by exploiting the

resources and shared features.

In this model, a Flush+Reload attack technique is utilised to �nd the memory contentions

while attacker and victim are using shared library. The AES algorithm is used to encrypt the

plain text for both the attacker and victim. In Figure 3.2, the yellow page is the shared library

in which the AES components are stored. The main components that are compromised by the

attacker includes the look-up table (T), which is an array of secret elements which replaces

the run-time computation with a simpler array indexing operation to generate a cipher text.

Inside the victim, the shared library is utilised to encrypt the plain text. In the attacker's

program, there is a ML used to scanT from the beginning address ofT0 to the end address of

Tn to �nd out which element has recently been accessed by the victim, which is called data

dependency. ML has two main tasks, one of which is to �ush an address within the range of

the addresses that theTi is stored. We assume that this is used by the victim processes, and

that this is followed by accessing the �ushed address. This is the key feature in the proposed

framework concerning the detection and identi�cation tasks. In step one, the attacker �ushes

an address in T and waits for a very short time to observe the victim's access to the �ushed

address. When the victim accesses the �ushed address, the data in the �ushed address is

brought to the LLC. In step three, the attacker accesses the �ushed address and compares the

access time. If the access time is approximated to the threshold, which is the cache access

time excluded from the main memory access time, then this indicates that the �ushed address

has recently been accessed by the victim. This way, the attacker encodes the observations

stored in an array, and then statistical analysis is applied on the off-line data to deduce the

secret key.

3.4 Methodologies

This chapter presents three common supervised algorithms to classify Flush+Reload and

Prime+Probe side channel attacks against AES, and then to compare the results of each

method to determine which one most ef�ciently detected the attack under different workloads

and the negative impact on accuracy.

3.4 Methodologies 51

Fig. 3.2 A typical Flush+Reload attack against AES

3.4.0.1 Classi�cation and regression or prediction

Most machine learning algorithms can complete classi�cation and regression tasks. Classi�-

cation allows for the prediction of exact classes from a given data-set. For example, each

instance in the data-set must be either malicious or benign. Regression, on the other hand,

predicts continuous values and not classes - it might predict prices, distances or weights

items in a class that would be likely to be fetched, given the features that each possesses.

3.4.0.2 Bias and Variance

are key components in the accurate measurement of classi�cation and regression tasks.

Researchers use bias and variance to optimise the classi�er (classi�cation) or predictor

(regression) models. Adjusting the degree of each bias or variance will affect the prediction.

Building an optimal model requires a trade-off between bias and variance that will be arrived

at based on the nature of the data (Breiman, 1996b).

1. Variance or over-�tting: An algorithm with very high variance pays excessive atten-

tion to the training data and fails to generalise a new model for the unseen data. It is

basically memorising the training data instead of generalising. When it receives a new

52 Preliminaries - Synchronous Trace-based Detection

data-set that does not closely resemble the training data-sets, it has no way of dealing

with the unseen data.

2. Bias or under-�tting: High bias means that the training data contains errors; an

algorithm with a very high bias pays little attention to the training data, and whatever

actions the training data might be encouraging. The errors can be analysed in different

ways, including low r2 and a large sum of squared error (SSE), among others.

3.4.1 Principal Component Analysis (PCA)

PCA is an unsupervised machine learning algorithm widely used in dimensional reduction

to facilitate classi�cation. It is a simple and widely-used algorithm which can be used to

�n the direction of the spread of the data with the greatest variance before generating new

coordinates.

3.4.2 Neural Network (NN)

NN is a supervised machine learning algorithm. It can be used to build a predictive model

by learning from historical data and using the patterns to throughput binary or multiclass

classi�cations.

The ability of NN to self-learn from examples allows the researchers to train NN with

features from CPU events from which it acquires the knowledge to classify CPU activities

into malicious and non-malicious respectively. Neural network architecture can generally

be categorised into single-layer feed-forward networks, multi-layer feed-forward networks

and recurrent networks. A number of other types have emerged including perceptron,

backpropagation, self-organising map, adaptive resonance theory and radial basis function.

Ngiam et al. (2011) showed the ef�ciency of the algorithm in dealing with low dimen-

sional data sets. This can work more ef�ciently with PCA, which reduces the dimension of

the data. To accelerate the learning process, we used PCA to reduce the dimension and to

then pass it on to the optimisation algorithm, L-DFGS, which is ef�cient for small data sets.

In choosing between the three activation functions, we have considered speed and ac-

curacy. Because attacks are fast, data can be retrieved in less than one minute. Recently,

Kingma and Ba (2014) introduced Adaptive Moment Estimation (ADAM), an optimisation

technique used in NN which is fast, computationally ef�cient and requires less memory than

DFGS. It also deals ef�ciently with large data sets. The Quasi-Newton method, on the other

hand, is computationally expensive and requires more memory to store the Hessian matrix,

3.4 Methodologies 53

while LDFGS accelerates the speed of deep network learning (Dean et al., 2012). They

used the algorithm for large data sets and showed it to be faster than the SGD algorithm.

Limited-memory DFGS do not store Hk and are therefore faster than DFGS. Faced with a

large data set, as we mentioned, ADAM is faster. Therefore, ADAM was used as the activate

function.

3.4.3 K Nearest Neighbour (k-NN)

The instance-based algorithm k-NN is a simple non-parametric classi�cation algorithm that

is long-standing (Cover and Hart, 1967). It may be used in any classi�cation task using

discrete data but the classi�cation of unseen data-sets and regression tasks to predict a

continuous label relies on data-sets based on a time series. Each tested data class is predicted

by measuring the test data items' similarity. The classi�cation process was conducted on the

test data-set realised for each class and its k closest neighbours. Any set of sample data points

can be classi�ed according to its neighbours' majority vote. k-NN makes use of a search

engine based on the measurement distance functions to �nd the closest data items to the

data-set. k-NN has been studied for a considerable period of time and a number of distance

measures have been used, with the most popular being Euclidean, Hamming, Manhattan and

Minkowski. This study has made use of the Hamming measure to �nd the best k instance for

the classi�cation tasks in the training data-set.

DH =
k

å
i= 1

j f � yj (3.1)

Optimalk values are found on the basis that larger values mean a better classi�cation.

Since this approach is not reliable, this study uses the cross-validation (CV) Arlot et al.

(2010); Kohavi et al. (1995) to determine how optimised the k value is. Cross-validation

divides the data-sets into a number of prede�ned data-sets before feeding them independently

to k-NN during training and testing tasks. The optimal k value is selected by the search

engine from a number of independent prede�ned data-sets.

The k-NN algorithm measures the distances between the data items in the data-set. This

is why k-NN has been chosen; the choice of data set rests on the data sample similarities

with stress on the features that are near to their neighbours. The features chosen for this

experiment include L1, L2 and LLC cache misses. This is because Flush+Reload attacks

work by �ushing a speci�c memory address from all levels of cache (L1, L2 and LLC) and,

after a very short sleep, accessing the memory address that was �ushed. Three consecutive

cache accesses are needed; the memory access instruction generates an identical number of

54 Preliminaries - Synchronous Trace-based Detection

hardware events, which in this case consists of cache misses, for each cache level. k-NN is

looking for data items with the least distance between them, and so identi�es ef�ciently the

ML inside the Flush+Reload program.

3.4.4 Tree Algorithms

Tree algorithms work in a divide and conquer fashion by partitioning a given data-set

recursively using either a depth-�rst Hunt et al. (1966) or breadth-�rst Shafer et al. (1996)

approach until all of the data elements belong to a speci�c class. Tree algorithms attempt

to detect the factors which affect the change occurring due to a speci�c event. It builds a

tree structure-like model to ef�ciently predict unseen data (test data). Tree algorithms build

classi�ers in two phases. First, is building a tree for classi�cation purposes. Second, is

pruning the tree to generalise unseen data. The tree structure is composed of root, internal

and leaf nodes. Root node represents the best feature of the data-set used to partition the

data-set and the leaf nodes are the class labels. The internal nodes are generated by utilising

impurity measures. The tree model is then transformed into a set ofif-else-then decision

rules and unseen samples are traversed from the root to leaf nodes to indicate one of the

given class labels.

Impurity is the core function in tree algorithms and heavily affects the tree's performance.

Impurity measures split the nodes of all available features and then selects the features which

results in the most homogeneous sub-nodes. Impurity indicates the degree of homogeneity

of the new sub-nodes to �nd out which sub-node is more homogeneous by checking all

available features. The most common splitting criterion employed in impurity functions are

as follows.

1. Entropy (EN) relies on information theory to measure which subsets require more

information to indicate the degree of impurity in the same manner as if all elements

in a subset are homogeneous. If the entropy is zero, then this leads to gain high

accuracy. Whereas if the elements are equally distributed in a subset, then subset

has an entropy of one and consequently, the model fails to ef�ciently classify the

data. After calculating the entropy of each of the generated subsets, the sum will be

compared with the entropy of the parent.

Let's assume thatD is a data-set which contains samples from c classes. The impurity

functions forEN andGI are de�ned as follow:

3.5 Model Evaluation Metrics 55

EN(D) =
c

å
i= 1

� pi � log2(pi) (3.2)

wherePi is the proportion of classi in D.

2. Gini Index (GI) tries to minimise mis-classi�cation by measuring the total variance

across the classes. Where the Gini function returns zero, this is when the best sep-

aration can be achieved or return one when the distribution of the classes is 50/50.

Consequently, the higher value of Gini function indicates higher homogeneity.

GI(D) = 1�
c

å
i= 1

(pi)2 (3.3)

Gain(T;F) = IM(T) � IM(T;F) (3.4)

When Impurity functionIM = EN = GI; 0 6 IM 6 1, T = target variable andF =

Feature to be split onIM(T;F) = the impurity is calculated after the data is split on

featureF

IMGain : G(T;X) =
X

å
i= 1

Pi � Ei (3.5)

C4.5is one of the supervised machine learning algorithms. It is uniquely easy to read and

understand. The goal is to build a model that predicts the value of a target variable by asking

multiple linear questions one by one to create a boundary. Future data is classi�ed using a

very simple data structure called a Tree. It is a statistical classi�er like other classi�ers, and

uses a set of data to train and build a decision tree model using the concept of information

entropy. The trained data is split into n-dimensional vectors which represent the features of

the sample data and its class.

3.5 Model Evaluation Metrics

This section introduces the existing techniques which are used to evaluate predictive models,

especially the classi�ers generated from the supervised machine learning algorithms.

In supervised machine learning studies, there are various algorithms employed to solve

prediction problems including classi�cation and regression. For each, there are different

metrics that have been utilised to measure a model's performance in predicting the classes.

56 Preliminaries - Synchronous Trace-based Detection

When the machine learning algorithms are used for classi�cation problems, a classi�er

model will be built to predict unseen data for the potential classes. For instance, in binary

classi�cation there are two classes of interest that the classi�er should recognises them, in

our case they are normal and attack classes. Then the model builds a set of rules for both

classes, then unseen samples traverse through the model to output the result based on the

de�ned matching the pattern. After the model classi�ed unseen data, the model needs to be

assessed its performance to test how well the model classi�es unseen samples. Therefore, a

number of metrics have been de�ned for assessing the classi�ers' performance. Training sets

are fed to the algorithms to build the classi�ers. However, 100% correct prediction of unseen

data cannot be guaranteed; there might be failure to predict some samples in the testing stage,

especially in noisy data-sets. Thus, there are various techniques to address the prediction

errors and based on that, further courses should be taken in the training stage such as data

pre-processing to improve the model's performance and robustness.

In this thesis we have used three different methods to assess the machine learning

algorithms' success in predicting the existence of a side channel attack. It then measured

the overall accuracy to show the best candidate for the detection tasks. The next sections

will discuss the most common metrics, which were used by the researcher in the context

of the classi�cation problems to visualise model performance and to indicate how far the

predictions are from the actual values. Therefore, in the following subsections, more details

about the evaluation measurements and their components will be given.

3.5.1 Confusion Matrix

The confusion matrix contains information about the predicted classes produced by the

classi�er models and the actual classes from the original data-sets. The confusion matrix

fairly provides the �ner details of the classi�ers in predicting unseen data. The confusion

matrix can be utilised for binary and multiple class classi�cations. A confusion matrix used

in relation to a binary class classi�cation is a(2x2) matrix, whereas for multiple classes, there

is a(cxc) matrix whenc is the number of classes. Through the confusion matrix, most of

the performance measurement metrics can be derived from the confusion matrix for various

purposes. Table 3.2 represents the actual classes (presented in columns) against the predicted

classes (presented in rows) in a(2x2) matrix. The �rst row in the matrix shows the number

of positive classes that the classi�er predicted and the second row represents the negative

classes. Before giving any details on the measurement metrics, there are terminologies in the

confusion matrix which are described as follows:

3.5 Model Evaluation Metrics 57

Prediction
Positive (P) Negative (N)

Normal (P) TP FP

Attack (N) TN FN

Total Positive Total Negative
Table 3.2 Confusion Matrix

1. True Positive (TP) is the case where the classi�er correctly recognises the positive

samples in the data-set. For instance, if there aren positive samples in the actual class

and ifTP= n, then this means that the classi�er 100% detected the positive classes.

2. False Positive (FP)in this case, represents when the classi�er miss-classi�es the

positive classes as negative.FP = total number of actual positive classes� TP.

3. True Negative (TN) represents the total number of the negative classes detected by

the classi�er correctly.

4. False Negative (FN)when the classi�er miss-classi�es n samples of the Negative

classes as Positive classes.

The ideal case for a classi�er is whenFP= 0 andFN = 0, which means that all potential

classes are predicted correctly.TP= total number of positive samples in the actual class and

TN = total number of negative samples of the actual classes, which means that all of the

positive and negative classes are predicted as actual classes. However, in real world problems,

it is not guaranteed that a predictor of 100% classi�es the class of the target as the actual

class where unseen samples are fed to the models. This leads to generatingFP and FNin

the model outcome. Therefore, most of the efforts are focused on minimisingFP and FN.

Minimising FP or FN relies on the business needs and the context of the problem that is

going to be solved. In some cases, it is advised to minimiseFN rather thanFP, becauseFN

is more important thanFP or vice versa.

58 Preliminaries - Synchronous Trace-based Detection

3.5.2 Evaluation Metrics

After building a prediction model, we need to make sure that the model is ef�ciently applied

in the unseen data-set. Therefore, there are a number of metrics that can be used to assess the

model. Different evaluation metrics are employed for different machine learning algorithms.

For instance, for unsupervised machine learning algorithms, there are a set of metrics and for

supervised algorithms, there are a different set of metrics. In this study, only classi�cation

algorithms have been used, thus the focus will be on the metrics that are commonly used

in supervised machine learning for binary classi�cation problems. As binary classi�cation

is used to classify between normal and attack activities in the system, we will describe the

metrics that have been utilised in this thesis.

To explain the following metrics, let us assume that algorithm 1 captures 100 samples of

real-time program execution activities; 5 samples are actually attack activities (Positive) and

the rest are normal activities (Negative).

1. Recall/Sensitivity (True positive Rate (TPR))corresponds to the proportion of nor-

mal activities that are positive samples.

Recall reveals what proportion of program activities actually were attacks, and what

were classi�ed by the algorithm as attack activities. The actual positive samples are

the normal activities equal to the sum ofTPandFN. The activities classi�ed by the

model that are normal areTP; refer to Table 3.2. Recall is more about capturing all of

the samples that are attacks with the answer as attack. In equation 3.6, if the model

recognises the actual 5 attack activities correctly, then the recall of the model is 100%.

Recall=Sensitivity(True Positive Rate) =
TP

TP+ FN
(3.6)

2. Precision (True Positive Value)measures what proportion of the program execution

activities which are classi�ed as attack activities are actually attack activities. The

predictive attack activities (positive) are the sum ofTPandFP and the actual attack

activities areTP, as expressed in equation 6.

Precision(True Positive Value) =
TP

TP+ FP
(3.7)

3. Speci�city (False Positive Rate (FPR))corresponds to the attack activity samples

which are incorrectly classi�ed as positive. Speci�city exposes the �ner details about

what proportion of the program's execution activities are normal and what were

3.5 Model Evaluation Metrics 59

classi�ed as normal program execution activities otherwise. The actual negative

samples are equal to the sum of theFN andTN from the predictive model and the

program execution activities as classi�ed as being normal (TN).

Speci f icity(False Positive Rate) =
FP

FP+ TN
(3.8)

4. False Positive Valuereveals how many negative samples are correctly detected by the

classi�er; if the FPV is high, then it should be close to 100.

This tells us how many of the test negatives are true negatives and if this number is

high (should be close to 100), then it suggests that this new test is doing as good as the

gold standard.

False Positive Value=
FP

FP+ TN
(3.9)

5. Accuracy is a metric used to indicate how the model is at predicting the samples

correctly in the data-set. This also refers to the total number of correct prediction out

of the total number of samples in the training data-sets. The ideal values is one Total
Total Numbero f(TP and TN)

Total Numbero f samples
. Accuracy is recommended for balanced data-sets.

The accuracy results are shown in the experiment results in this chapter.

Accuracy=
TP + TN

TP + TN + FN + FN
(3.10)

3.5.3 Receiver Operating Characteristic (ROC) curve

The ROC curve as proposed by Bradley (1997) is a graphical tool used for visualising

predictive model performance metrics. It draws line graphs between recall or sensitivity and

speci�city. Points on the curve are the ratio between 0 and 1. The diagonal line from (0,0) to

(1,1) indicates a random guess, which has 50% accuracy. Anything below this line is even

less likely to be correct than a random guess, while anything above the line will range from

good accuracy to excellent accuracy. The closer the line is to the top right corner, the better

the performance.

60 Preliminaries - Synchronous Trace-based Detection

3.5.4 Cross-Validation

The model needed the ability to generalise future data-sets. The data-set must therefore

represent the problem that is to be solved. The data-set was divided into training and testing

data-sets. First, the algorithms were trained on the training data-sets, after which they were

evaluated against the test-set. The trained classi�er models did not work on the test-set,

so predictions on the testing set showed the general accuracy of the classi�er. To ensure

that the selected data-sets represented the problem requiring a solution, a technique called

Cross-Validation (CV) was used. CV shuf�ed the data-set, including its attributes and

labelled classes. It then separated the entire data-set into a large number of equal sized

groups of instances, which are called folds. Each fold was treated as a new data-set, and

each was divided by the user into the recommended percentages of training and testing sets;

80% training and 20% test is one possible division. The data-sets were then fed into the

algorithms and their performance was monitored to evaluate their ef�ciency and accuracy.

Cross-validation transforms the whole data-set into training and testing sets as an alternative

to using separate testing and training sets. All of the data-set is involved in the transformation.

3.6 Synchronous Trace-based Detection

This section demonstrates the side channel attack detection using synchronisation approach.

3.6.1 Hardware and Software Speci�cations

The experiment was conducted on HP Proliant DL360 G7 with Intels Xeon X5650 2.66GHz

processor with 16 GB RAM running Ubuntu 14.04. The various tests used SPEC CPU2006.

3.6.2 Experiment

We have conducted an experiment study by using the data collected from the experiment itself.

We created an agent process that encrypted the fake data with the intention of simulating a

victim, and used the custom Loadable Kernel Module (LKM) to access the PMC registers

with minimum overhead in order to gain high resolution data. Our data set consisted off

features, whenF = f F1;F2;F3; :::;Ff g and f = 7, because only seven PMC counters were

available on the CPU, which is used in the experiment, including three �xed events (core

cycles, reference cycles and core instructions) and four more ef�cient programmable events.

For this experiment, we selected the most ef�cient events that had a positive impact on the

3.6 Synchronous Trace-based Detection 61

classi�cation of the selected methods by considering their relationship to the attacks. In this

experiment, we collectedn samples, when a set of samplesS = f S1;S2;S3; :::Sng, so then

n = 100and 50% of the samples are recorded while the victim is encrypting fake data and the

other 50% of the samples are the samples when the victim is synchronised with the attacker

while both are encrypting data and accessing the same shared library. Each sample row was

arranged so thenSi = f X1(1;v); :::;Xi(f ;v);yig, when1 6 i 6 n andv is the number of

encryption iterations executed by the victim. In this experiment, we used 3000 iterations

for each event sov = 3000. Thus,Xi representse executions of AES encryption function

with the set of featureF. Each row samplesSi is labelled byyi , which is the binary class that

represents either an attack or normal situation. In this experiment, half ofSare labelled as

normal and the other half as attack activities.

The data was collected under two scenarios; one for light and one for heavy workloads.

In the �rst scenario, high resolution data was secured by running only victim and attack

programs. In the second scenario, we added noise by running additional applications from

SPEC SPEC20065; two int applications (bzip2 andgcc) and two �oating applications

(bwavesanddealII)

The data-set was split into training and testing sets. The training sets contained 80

samples and 20 testing sets. To determine the in�uence of the different data set splits under

each method, we split the data sets randomly into 20-fold cross validations. The training set

is given to the machine learning algorithms to build the classi�ers and the testing set is given

to the classi�er to evaluate their performance.

In this study, we have shown the impact of MLs running inside the FR and PP attack

programs on the victim processes, which use a cryptographic algorithm to encrypt the

sensitive data. Our hope was to detect the attack in both light and heavy workloads. The

attacker would try to interfere with the victim processes and to synchronise itself with the

shared LLC by monitoring its cache memory activities and using statistics to deduce the

cache lines most recently used by the victim. We also hoped to detect the attack in the

shortest possible time of less than 5 seconds; an ef�cient attack Irazoqui et al. (2014) requires

over 50 seconds to recover all of the key fragments. This experiment can be applied in cloud

systems, except for the additional overhead which is produced by an additional translation

layer. This de�nitely reduces the resolution rate detection, as the most recent detection work

Gulmezoglu et al. (2017)Briongos et al. (2016)Zhang et al. (2016a) shows the difference in

accuracy rates between the native and cloud systems.

The shared library co-allocates two unrelated processes on LLC to the same machine.

5SPEC SPEC2006 is widely used to evaluate performance of computer systems https://www.spec.org/

62 Preliminaries - Synchronous Trace-based Detection

Table 3.3 Classi�cation Accuracy for the three methods C4.5, PCANN and k-NN, against
two attacks Flush+Reload (FR) and Prime+Probe (PP).

Classi�cation Accuracy on FR and PP

Type Bench\Attack
C4.5 NN k-NN

FR PP FR PP FR PP
� SPEC No SPEC 0.97 0.98 0.93 0.76 0.85 0.83

SPECint
bzip2 0.91 0.96 0.8 0.8 0.8 0.78
gcc 0.87 0.94 0.77 0.79 0.84 0.8

SPECfp
bwaves 0.74 0.74 0.73 0.73 0.73 0.74
dealII 0.75 0.7 0.7 0.64 0.63 0.7

Thus, we are able ot detect malicious FR and PP attack activities when a ML is run to

synchronise with the victim's processes in order to give the attacker a chance of accessing

the shared memory. The aim of our hypothesis was to evaluate the best classi�cation method

and the impact of SPEC in detecting such attacks with a high rate of accuracy even with the

loading of the benchmark.

3.6.3 Result Analysis and Discussion

We are looking for an optimal classi�er that works accurately and ef�ciently among the

selected methods under both light and heavy workloads. Each of the three algorithms

presented in the previous section was run on each of the 20-fold splits of the data set divided

into training and testing sets respectively. Based on the previous studies and the results

gained from our experiment, we compared the methods based on accuracy and ef�ciency

because these two factors are important to the victims when dealing with sensitive data. For

accuracy, the victim needs to correctly classify the attack. For ef�ciency, the victim needs

to detect the attacks quickly before the attacker retrieves the whole key-bits and disrupt the

attack.

The results, as presented in Table (1) and Figure (1), show the accuracy of the side

channel attack classi�cation including the FR and PP techniques for all methods in three

scenarios without SPEC(� SPEC), CPECint or SPECfp. The C4.5 algorithm performed

with the highest accuracy in all scenarios in reference to detecting FR. Without SPEC, the

success rate is 0.97%. This causes a fall in SPECint to 0.91% and to 0.87% inbzip2 and

gcc respectively. There is a further decrease from 0.74% in SPECfp and to 0.74% and 0.75%

for bwavesanddealII respectively. However, in PP detecting, it classi�es better in SPEC,

3.6 Synchronous Trace-based Detection 63

(a) C4.5 Algorithm against FR

(b) C4.5 Algorithm against PP

bzip2 andgcc. It stays the same in thebwaves, but it is worse indealII . This is because,

in aPPattack, the attacker uses more CPU components and this maximises the number of

occurrences of speci�ed events.

PCANN is good at detecting FR without SPECint and SPECfp, but it performs poorly in

64 Preliminaries - Synchronous Trace-based Detection

(a) PCANN Algorithm against FR

(b) PCANN Algorithm against PP

detecting PP attacks even without benchmarks. k-NN has a similar accuracy rate for FR and

PP attacks, but this drops down in a PP attack. The results from C4.5 are therefore seen to

be more reliable and robust than from PCANN and k-NN. This is because the C4.5 method

deals with noisy data better than the rest of the methods due to fast data exploration, �nding

the relationships between the most signi�cant variables. Turning to ef�ciency, the Decision

3.6 Synchronous Trace-based Detection 65

(a) k-NN Algorithm against FR

(b) k-NN Algorithm against PP

Tree is more inef�cient than PCANN and k-NN, but it still detects the attack with reasonable

ef�ciency.

However, runningbzip2 andgcc applications in order to load the SPEC benchmark

showed that C4.5 has a higher level of accuracy than either NN or k-NN. k-NN's ef�ciency

was slightly lower than C4.5, but NN had the worst accuracy overall. Whenbwaveswas

66 Preliminaries - Synchronous Trace-based Detection

Fig. 3.6 Comparison of time execution for training in selected classi�ers

loaded, they all had poor accuracy. This is becausebwavesis in the �oat application

group and �oating operations make heavier use of CPU components than integer operations,

resulting in a high number of cache misses and degrading the training of the classi�cation

models.

The results shown in Figure 3.6 indicate that the size of the data set will be enough for

the detection agent to be able to learn of any malicious activities in a very short time. The

worst case is less than 1 second and this compares well with recent and fast FR attacks by

3.6, which needed over 50 seconds to retrieve the entire key. The agent can thus detect the

attack early enough to prevent the attacker from stealing the whole key, allowing them to

perform the actions necessary to stop the attacker.

It follows that the detection of FR and PP attacks will be dif�cult in noisy environments,

and especially so when intensive �oating-point applications are running. This is because

�oating point applications make use of CPU caches and generate a large number of cache

misses. Detection relies partly on CPU cache misses to detect FR and PP attacks.

These methods can be used by a host OS, in both native and cloud systems (though it

must be noted that cloud systems are less accurate than native systems), in order to distribute

3.6 Synchronous Trace-based Detection 67

a fake process running cryptographic algorithms such as AES to identify malicious activities

and to prevent them from stealing the entirety of a secret key.

The results show that system activities in the background do not signi�cantly impact the

results, with all methods performing well. Intensive workloads introduce more noise into the

system, which has a negative impact on accuracy. In particular, the SPECfp benchmark made

the result worse than the SPECint benchmarks. This is because the �oating operations cause

a high occurrence of CPU events. Loading the SPEC benchmarks places stress on the CPU

components, particularly on the caches. A SPECfp benchmark interferes with the monitoring

processes and introduces noise into the environment.

Chapter 4

Designing and Implementing the

Framework (TrapMP)

This chapter introduces a new framework for securing the computational environment from

Side Channel Attacks in host Operating Systems (OS). The framework utilises hardware

features, namely High-Performance Counters (HPC), which are mainly used to optimise

the performance of programs or systems, in both native and cloud systems. The key to

this framework is that processor core level observation is deployed to detect abnormal

memory contention (or transaction) activities, which are unintentionally performed by the

attackers, during real-time program execution. Currently, existing solutions designed to

detect side channel attacks perform analyses by relying on the synchronisation of workloads

between attack and victim activities. Our approach yields a high-rate detection accuracy with

signi�cant performance improvements as demonstrated by the SPEC benchmark in the KVM

environment.

The attacker then uses the CPU performance counters to measure differences in memory

access, before interpreting the meaning of cache uses by the target's program when both

attacker and target are using the same program. In the side channel attack, the attack program

runs malicious loops that continuously scan the system's memory to deduce what part of

the shared memory the victim is accessing and then builds a statistical model to deduce and

retrieve bits from the secret key used by the victim's program. Using HPCs makes it possible

to extract features from the attack program's activities, and it is, therefore, essential to

establish how such features can be extracted in real-time from program execution attributes.

4.1 Motivation 69

4.1 Motivation

Anti-virus software and other anti-malware tools struggle to detect side channel attacks,

because side channel attacks do not achieve their ends by escalating system privileges. Side

channel attackers make use of the current state of the CPU of interest, more speci�cally

memory contentions, known as cache misses. HPCs are the core of CPU components,

indicating the current state of a CPU. However, HPC utilisation most often requires kernel

or OS privileges either for attack or for defence, but side channel attacks involve abusing

CPU cache memories (L1, L2 and LLC) to detect sensitive memory transactions and then

access them without OS involvements. As a result, side channel attack programs produce

unintentional memory contentions during their execution. Thus, these memory contentions

can be monitored with HPC support with minimum requirements, without, for example,

system settings and con�gurations, dedicated hardware resources (Zhang et al., 2016a) or

injecting the sensitive applications (Kulah et al., 2018), such as cryptographic applications

which are targeted by attackers. Instead, the detection system can be implemented as a

service and deployed into the host OS with very low performance overheads.

4.2 Components of Computational Environment

This section describes the necessary components for building the security framework

(TrapMP) to detect malicious processes in both native and cloud systems. This section

helps to understand how an attack is achieved, what causes the vulnerabilities and in what

settings, and from what con�gurations the attack bene�ts; it also considers how the program

phase is utilised and how it can be used in data collection.

4.2.1 Multi-core Platforms

Mainstream microprocessors support a large number of inter-connected cores with complex

memory systems within the CPU dies. Each processor core has private caches L1 and L2

and one inclusive Last Level Cache (LLC) across the processor cores. Any communications

between processor cores and other sources in the machine must pass through processor cache

memories. Thus, high frequency hardware contentions occur in all cache levels, particularly

in LLC, because it represents the highest level of cache memory and is inclusive for L1 and

L2. The main source which supplies the CPU with data and instructions is the main memory.

Memory access works hierarchically in the sense that each lower level of memory buffers

data from one level higher above it. The speed of cache memories varies from level to level.

70 Designing and Implementing the Framework (TrapMP)

This make the data leakage feasible at each level. Microprocessor industries have provided

�exibility in using CPUs by modifying the hardware settings in multi-core platforms. For

instance, an OS can run under process or thread mode. In process mode, two processes

cannot share private caches, whereas in thread mode, threads can share private L1 and L2

caches.

4.2.2 Multi-tasking (Model) Systems

Multi-tasking systems have brought together CPU designers and the programming com-

munity in terms of their agreement on signi�cantly exploiting the computing power of

multi-core processors to save considerable energy with optimal performance. This has

motivated researchers to focus more effort on proposing various algorithms and resource

adaption (preservation) mechanisms to host the maximum possible number of programs

across processor cores with a minimal degradation of system performance. These efforts

have led to a heterogeneous computational environment which means that various sort of

applications can be accommodated by shared resources such as cache memories. Thus, task

scheduling becomes more complex to handle memory transactions.

In real time systems, a program is composed of one or more tasks or processes (for the

rest of the thesis we use the term process instead of task), each of which is divided into

a number of sub-tasks which are called jobs. Each job consists of a chunk or number of

consequent instructions which are queued and managed by the OS scheduler so that they are

ready for real-time execution, as each has a time quantum which varies depending on the

scheduler algorithms. The scheduler put the jobs in the queue in a fair manner. Each job has

an execution time quantum and is bounded by its life-cycle in the environment. The job has

to be assigned to one of the processor cores by the OS scheduler. It is not guaranteed that the

scheduler will always assign jobs for the same process to the same processor core. Instead,

it shuf�es them across online (active) processor cores to avoid stalls and this is subject to

availability. When a job has been assigned to a processor core, the job has exclusive access

to the available resources until the job is complete except in the case that an interrupt is

triggered and it has to be suspended. Thus, interrupts have been utilised in the Section

Identi�cation Phase 4.13 which traps the attacker processes and changes their execution path

into a check point in order to take the necessary action to identify the attackers.

Two or more jobs of the same task can run concurrently across processor cores, but they

can never be overlapped or pre-empted (concurrent) in the same processor core. Assigning

jobs is on a queue basis. Tasks are given equal time slices called quanta. The jobs of a task

4.2 Components of Computational Environment 71

are divided in the time scale in a sequential manner. One job has to be �nished, then the

next job is assigned to the available cores. When a job is assigned to a core, all the core

components are utilised for the job such as HPC, L1 and L2 caches. But the LLC cache is

available for all online processor cores, maintaining data until the upcoming jobs evict the

previous content. Thus, cross core attacks are viable because it does not matter what accesses

the content of the LLC, particularly when two processes are synchronised (i.e. in the case of

side channel attacks; go to section 3.3 for more details). This is a limitation of the OS which

cannot control memory access at that level, particularly when the resources are shared. As

a result, it is crucial to propose a mechanism which supports attack mitigation and is not

in�uenced by any factors such as attackers evading detection systems or hiding themselves

from monitoring mechanisms such as Hexpads (Payer, 2016).

Hardware threads are virtual cores which maximise the ef�cient utilisation of hardware

resources. Hyper-threading is a technique which helps to manage the utilisation of shared

resources ef�ciently between threads to achieve optimal performance. This is because,

hyperthreading minimises computational latency, particularly in the presence of stalls. When

one thread is stalled another thread can be scheduled and uses the resources. The difference

between processes and threads is that the cost of loading processes is higher than threads

in term of the data structure; more information is held in loading processes than threads.

This require more resources and time to be allocated, initialised and loaded. Besides, in

hyper-threading, threads need a higher number of inter-communications between them and

each interruption requires a context switch. Therefore, high interrupts incur performance

overheads to the system due to using system calls and transferring data from memory to

registers. Moreover, hyper-threading opens up security gaps in terms of leaking data Zhang

et al. (2012) from private cache memory allowing sensitive data to be stolen. This is due to

the fact that in multi-threading, the private L1 and L2 cache may be shared. Consequently,

the multi-threading feature is disabled by default in many cloud systems such as Amazon

AWS, because in this case, processes cannot share private L1 and L2 caches and this prevents

side channel attacks from stealing data at this level.

Both processes and threads are independent sequences of execution. The typical differ-

ence is that threads (of the same process) run in a shared memory space in which L1 and

L2 caches can be exploited for data leakage attacks, while for processes running in separate

memory spaces, each process has exclusive access to the resources of L1 and L2. LLC and

main memory, however, are shared and will be exploited by attackers.

72 Designing and Implementing the Framework (TrapMP)

4.2.3 Real-time Scheduling

Scheduling is one of the core OS services to support and mange hardware resources across

running programs. The main goal of the scheduler is to minimise power consumption (Zhang

and Chang, 2014), which is used by the resources, and offer the optimal performance by

minimising stalls (Sherwood et al., 2003a) to provide the optimal dynamic adoption, dynamic

voltage and frequency scaling (DVFS)1 (Valentini et al., 2013). Thus, OS designers and

researchers introduce optimal scheduling algorithms to aid bottlenecks and reduce power

consumption in order to utilise the highest possible speed that a CPU has taking account

of hardware limitations. The main focus in scheduling studies is the ef�cient usage of

underlying hardware resources and how to virtualise and share them across processes. On the

other hand, side channel attacks come into account to distort smooth scheduling by misusing

the shared resources due to scheduler vulnerabilities while using them (Kocher et al., 2018;

Lipp et al., 2018); this results in an obstacle in front of scheduler to scale up CPU components

as CPU speed.

In this work, we take advantage of understanding how the scheduler slices the core-based

program execution timeline across multiple tasks, and assigns tasks across online cores in

the system. So, it is crucial to categorise the scheduler in real-time systems. There are two

main types of time slicing that the schedulers rely on in real time systems to manage shared

resources: hard and soft real time. Forhard real time, each periodic task has a deadline

for completing its task which means it is restricted to �nishing its computations according

to timing constraints, and such schedulers are built into embedded systems. In contrast,

in soft real time there is a deadline for each task, but it is not compulsory to �nish the

task within the deadline. Instead, it depends on the nature of the program requirement in

terms of utilising the resources; some tasks might have a longer life-cycle than the time that

has been predicted by the scheduler due to e.g. locality. Consequently, there is �exibility

for extending the deadline until the job has been �nished. This extension is important for

this study, because the pro�ling is based on the underlying processor core for which it is

important to know the behaviour or activities of the jobs and the duration of their assignment

in the processor cores. The details are given in Section 4.10.

1This is the adjustment process for power and speed settings in various processors in computing devices.

4.3 Program Phase 73

4.3 Program Phase

This section describes the usage of the program phase proprieties in the experiments con-

ducted for the study, in which the HPC is utilised to capture the relevant events according

to theML's execution attributes to visualise the ML activities as phases with the aim of

identifying the iterations of the ML's inner loop, which performs the observation of the

targeted memory addresses used by victims. This allows the execution analysis models for

the proposed framework to be able to capture and predict the potential iterations that might

occur per job, and which is assigned to one of the online processor cores, in order to bound

and extract the FLUSH+RELOAD attack activities in execution-time.

4.3.1 Program Phase Utilisation

Program phase has been utilised in various computational problems related to performance,

such as saving energy (Zhang and Chang, 2014) and performance tuning (Sherwood et al.,

2003a). Recent studies have found that the use of program phase leverages CPU scaling,

which relies on the correlation between memory and CPU workloads. Program phase

provides information to improve scheduler algorithms in the OS. For instance, Skrenes

and Williamson (2016) employed the Dynamic Voltage and Frequency Scaling (DVFS)

mechanism, which balances high speed CPU with memory access latency to avoid stalls

when the workload intends to fetch data from the cache memory. Furthermore, Zhang and

Chang (2014) used dynamic con�guration CPU frequency to save CPU power. This guides

the system to switch the CPU frequency mode into a higher frequency rate when intensive

CPU usage is indicated and vice versa. In addition, the program phase has been utilised

in performance simulation tools to reduce the simulation time for benchmarks. This is

made possible by identifying the sections of code which have similar activities and can

be representative of the entire benchmark. Furthermore, the notion of a program phase

has been utilised in modern industrial processes such as chemical and biological industries.

Such industry systems rely on batch processes to generate products. Consequently, it is

recommended that these batch processes be monitored in order to ensure the products' safety,

consistency, and reliability. Zhang et al. (2017) used program phase to capture information

about faulty cases in the system and feed machine learning algorithms to classify the normal

and faulty cases.

74 Designing and Implementing the Framework (TrapMP)

4.3.2 Program Phase De�nition

In the computational environment, the total computation of any program can be divided

into a set of intervals. Each interval is a slice of the program's execution. A set of intervals

is composed to form a phase. The phase can occur multiple times within the program's

execution. The transactions between two consecutive phases is called phase change Sherwood

et al. (2003a).

Program execution behaviours vary from program to program including large-scale ones

(Lau et al., 2005). Thus, Dhodapkar and Smith (2003) categorised program phases into stable

phase and phase changes. Stable phases are indicated if two or more phases have exactly

similar activities, otherwise phase changes are indicated. The presence of phase changes

indicates that the phase has been incurred with computational noise. Furthermore, phase

detection relies on the nature of a program. The program may be a memory transactions

or instruction stream Ding et al. (2006); Sherwood et al. (2003a). In addition, in some

circumstances, it is hard to distinguish phase transition; however, selecting relevant events

has a positive impact on phase detection by signalling the transactions between phases Ding

et al. (2006).

4.3.3 Malicious Loop Phase Modelling

Recall that the main part of aFLUSH+RELOAD attack program body is a malicious loop

(ML), which steals secret key in AES; inside theML, the two consecutive tasks are executed,

�ush a targeted memory addresses, which are the range of the memory addresses in which

the AES look-up table is stored, using cl�ush instruction and are followed by access to the

�ushed address continuously. Thus, in theML structure, each phase has a set of intervals of

similar execution activities. The activities are the consumption of the hardware resources

such as the L1, L2 and LLC caches. Anyclflush instruction causes an equal number of

cache misses at each hierarchical cache level, when the next access is achieved. As L1 and

L2 are private per core, high frequency context switches have more in�uences on L1 and

L2 misses than LLC. This leads to the visualisation of ML phases by noting that LLC cache

misses have clear phase transactions between two adjacent (or neighbouring) phases. Figure

4.1 depicts the complete program phase of Flush+Reload from start to end in user space by

capturing E1 and E2; and in this case the Flush+Reload program runs for a short period of

time for the presentation purpose. However, when utilising Flush+Reload in real systems,

the loop boundary is much longer in order to retrieve the entire key bits (as described by

Irazoqui et al. (2015)). Figure 4.1 - (a) represents LLC cache misses in a more organised way

4.4 Threat Model and Assumptions 75

than for Figure 4.1 - (b) which is E2. To gain insight into a short period of the Flush+Reload

execution in Figure 4.1 - (a), Figure 4.2 magni�es 100 samples out of 4000, in which the

phase transactions between every two consequent phases can clearly be seen. Furthermore,

choosing a proper sample duration allows pro�ling to be synchronised with the ML. This

feature is useful in the proposed framework because the observation of ML jobs plays a

signi�cant role in detection and identi�cation, so it is crucial to make the ML loop iteration

activities as distinct as possible from other workload activities.

However, the phases of a program are decomposed into sub-phases in execution-time.

Recall that each task of the program is fragmented into jobs, represented (or visualised)

in sub-phases, and shuf�ed with jobs of other programs, so that the jobs are queued by

scheduler for execution; and the task scheduler fairly distributes them across online processor

cores. Each of such sub-phases appears in between other sub-phases of other workloads

in user space. Figure 4.19 shows the sub-phases of the Flush+Reload program which are

distributed across other sub-phases of other programs in the same processor core's execution

timeline (the execution time is sliced for the mixture of jobs of running programs in user

space). The sub-phases of the ML can be recognised across sub-phases of other programs,

but the points that indicate the phase transition are hard to capture. HPCs can virtualise

sub-phase transactions between two different sub-phases of two independent programs by

relying on the ML behaviour based on their execution attributes. This transaction can be

used to extract the ML activities across existing workloads in the computational environment.

However, de�ning sub-phases is not an easy task in heterogeneous workload due to changes

in program behaviours during run time which are leveraged by dynamic hardware adoption

and con�guration, but selecting the most relevant and ef�cient event to characterise ML leads

to distinct ML sub-phases across other workloads.

4.4 Threat Model and Assumptions

This section illustrates the potential Flush+Reload attack on microprocessor caches. The at-

tacker exploits hardware and OS vulnerabilities by utilising intentional hardware contentions

with a victim's processes, while both the attacker and victim are synchronised, in shared

environments in which hardware resources, such as CPU caches, are fairly shared across

running applications in both native and cloud systems. The attacker and victim use an AES

algorithm to encrypt plain text. An AES algorithm is implemented incrypto.so , which is a

shared library in an OpenSSL package and it is installed in the host OS Ubuntu 14.04. The

attackers can be a malicious program in the host OS or VM in the guest OS. The attacker

76 Designing and Implementing the Framework (TrapMP)

Fig. 4.1 Signature of the attacker program in the native system shows the behaviour of the
Flush+Reload program and how it interacts with underlying hardware during its execution

Fig. 4.2 Signature of the attacker program in the native system shows the behaviour of the
Flush+Reload program and how it interacts with underlying hardware during its execution
and transparently provides interfaces to access HPCs. It is assumed that no malicious bodies
have access to the PHCs to modify settings and distort the observations.

4.5 The Framework Approach 77

analyses the hardware cache contentions to deduce the AES secret keys. More details about

the attack thread are given in Section 3.3. Moreover, more than one Flush+Reload attack is

running concurrently in the system. Besides, it is assumed that the host OS is trusted.

4.5 The Framework Approach

This section introduces the key components and the main idea of the proposed framework

in this thesis, and its in�uences on the system performance. As has been mentioned in

the previous section, side channel attacks make use of a malicious loop to complete the

observation task by generating intentional contentions synchronously with the victim on the

CPU cache, particularly the LLC. The contentions are the primary source for the attackers

to discover information of interest such as the memory transactions of secret elements. On

the other hand, most attackers are not aware on their unintentional contentions. Figure 4.1

depicts the attack pattern which is produced from unintentional memory contentions. It is

worth paying attention to any ongoing ML in the system. The attack activities in Figure

4.1 are presented in the best-case scenario, in which the only attacker program is running

on a speci�c processor core from the beginning of its execution to the completion. But, in

real-time the scheduler time is sliced for all running programs in the system, and they are

executed by the CPU in an out of control manner. Thus, it is dif�cult to distinguish such

malicious activities among concurrent programs. For this reason, program phase detection

mechanisms have been used to ef�ciently construct the attack activities, which are sliced

and distributed across processor cores, by exploiting the ef�cient utilisation of the HPCs to

investigate the ML activities.

Besides this, the proposed detection system in this study performs detection �rst then

identi�cation. In detection, a supervised machine learning approach is utilised in user-space,

whereas in the identi�cation phase, the tasks are deployed in kernel-space. The computational

cost in user-space is cheaper than that in kernel-space, because the program executions in

kernel-space have higher priority than in user-space, and most of the kernel tasks are interrupt-

based. Interrupts incur high performance overheads in the system, because interrupt routines

have a higher priority than tasks in user-space in utilising hardware resources. This leads to

the system performing a context switch with every interrupt routine call. In a case where

the identi�cation has a high number of False Negative cases, a high number of interrupts

will be triggered and adversely affect the performance overheads in the system. As a result,

ef�cient classi�cation models are deployed in user-land �rst to avoid False Negative results.

A message will be sent to the identi�cation phase only when attack activities have been

78 Designing and Implementing the Framework (TrapMP)

found. In this case, the interrupt routines related to the identi�cations will be triggered only

when the attack(s) are detected. It is therefore essential that the classi�cation model should

be sensitive to allow for successful detection of the attack. For this reason, program phase

detection mechanisms have been used to ef�ciently identify the ML loop repetitions and

apply a sum of aggregation function to bound the ML's execution attributes in one data

point in the data-set before feeding them to the classi�cation algorithms. Consequently, the

program phase supports the classi�er to be more reliable and robust in detecting the ML

iterations.

4.6 Challenges

This section describes the challenges which are addressed in the framework.

Accuracy Accurate side channel attack detection systems must detect side channel attacks

with high accuracy. Recent research (Alam et al., 2017; Kulah et al., 2018; Payer, 2016) has

suggested machine learning as a good way to detect side channel attacks with high accuracy

and very low false positive rates, but the proposed methods rely on synchronisations, in this

case, factors like CPU workloads and dynamic hardware con�gurations (Allaf et al., 2017;

Briongos et al., 2017), and smart attacks (Del Pozo et al., 2015) have a negative impact on the

accuracy. Notwithstanding, the proposed detection system in this chapter does not rely on the

synchronisation approach, instead raw data, which is collected at processor core level, have

been used and extract the attack activities by utilising program phase detection mechanisms,

which contribute to detection ef�ciency and reliability, to instruct such activities.

Reliability , furthermore, (Payer, 2016) relies on perf in detection, in monitoring all processes

in the system by exploiting a proc �le system, which is used by the perf tool. On the other

hand, Zhang et al. (2016a) monitor suspected malicious processes only. In both cases, the

attackers can escape the monitoring process. In contrast, the proposed detection system does

not rely on proc nor on monitoring only suspected processes; instead, every single program

execution activity at the processor core level will be captured and inspected to be checked for

being malicious or not. At this level of observation, no process activities are able to escape

observation, because there is an automatic data collection mechanism.

Identi�cation is a separate process in the detection system. Recently, detection work has

focused on detecting side channel attacks without identifying the attacker. Recent works

(Gulmezoglu et al., 2017; Payer, 2016) proposed detection techniques but failed to identify

which processes or VMs have achieved side channel attacks. However, cloud providers are

4.7 The Framework Design (TrapMP) 79

Fig. 4.3 An overview of the proposed framework (TrapMP)

keen to know attackers' identities. The proposed work in this chapter can detect multiple

attacks in the system and identify the attacker.

4.7 The Framework Design (TrapMP)

TrapMP is a trapping method for capturing Malicious Processes (MP) at the processor core

level. The TrapMP is composed of two parts: the detection and identi�cation phases. Both

phases rely on the usage of HPCs to support their models in detection and identi�cation

tasks. The detection model is responsible for detecting ML activities in the system, whereas

the identi�cation model is responsible for identifying the owner of the ML program. They

request information from the kernel module about the state of processor cores, because both

the detection and identi�cation models run in user space; and programs in user space have no

access to HPCs; the details are given in Section 3.2.3. Figure 4.3 illustrates the high level of

the framework, in which the main components are shown, along with their hardware usages

and their communications. The yellow notations represent the whole process in chronological

order.

1. Detection Phase:In this phase, the detection model is responsible for detecting side

channel attacks, namely Flush+Reload in the system. The model utilises supervised

80 Designing and Implementing the Framework (TrapMP)

machine learning algorithms to classify the attack activities which are achieved by the

attacker program in user space. The detection model continuously observes program

execution attributes on active processor cores from any ML activities.1 The Detection

Agent (DA) sets up the communication channels with the Event Recorder Agent (ERA)

in kernel space to request S samples per processor core.2 Then DA performs

prepossessing of raw data by applying shift and aggregation mean function to combine

n of consequent samples to capture ML sub-phases2. 3 The DA feeds the new data-

sets to the classi�er to extract the attacks pattern.4 The classi�er sends back the

results to the DA.5 The DA sends an alert to the identi�cation phase if attack activities

have been detected.

2. Identi�cation Phase:

Identi�cation Phase: is responsible to identify the attackers by setting up a trap routine

to redirect the malicious program execution path to an interrupt routine. In the cloud

settings, the framework is capable of trapping the malicious VMs and identifying them

as having the same cost as the native system.6 The Process Identi�er Agent (PIA)

requests the Core Inspector Agent (CIA) to inspect any program execution attributes

related to the ML execution attributes. This is done by settings and initialising HPC

counters to investigate the state of each processor core.7 If the values of the PMC

counters match the attack patterns, which relies on the statistical analysis model, then

the CIA will trigger an interrupt to suspend the MP and yield the necessary information

about the MP.8 The CIA reports back details about the identi�cation of the ML to

the PIA, Finally, the PIA reports back on the identity of the malicious processes or

VMs to the admin users.

4.8 Experiment Setup

Table 4.1 shows the hardware and software speci�cations for the experiments in this chapter.

4.9 Benchmark

Benchmark suites of programs are given by communities and companies with agreements

for them to be representatives and assess the relative performance of a system. They measure

performance of a piece of code, an application or a system. The Standard Performance

2sub-phase is described in section 4.3

4.10 Data Collection 81

Type Speci�cation

Hardware
Machine HP Proliant DL360G7
Microprocessor Intel Xeon X5650 2.66GHz
Main Memeory (RAM) 16GB

Software

OS Ubuntu 14.04
Visualisation Software Kernel Virtual Machine (KVM)
Benchmark SPEC cpu2006 suits benchmark
Targeted application AES in OpenSSL implementation

Table 4.1 Hardware and software speci�cations

Evaluation Corporation (SPEC) CPU2006 Benchmark suite (Henning, 2006) comprises

29 programs each representing a speci�c program type. For example, bzip2 represents

compression programs and GCC represents compiler applications. SPEC CPU2006 is mainly

used to evaluate performance for the new generation of computing systems and publish

them3. However, it has been widely used in program phase problems such as detecting their

phases in the computational environment (Sandberg et al., 2013; Sherwood et al., 2003b;

Zhang and Chang, 2014) and evaluating energy ef�ciency (Skrenes and Williamson, 2016).

Furthermore, it has been utilised in security domains. For instance, SPEC CPU2006 is used

to measure the accuracy of side channel attack detection systems Allaf et al. (2017) and

malware detection systems Malone et al. (2011). In this study, the SPEC CPU2006 suite has

used for testing the accuracy of detecting and identifying the attacker, and measuring the

incurred performance overhead by the proposed framework for the host OS.

4.10 Data Collection

In the experiment settings of this chapter, the data collection relies on HPCs to pro�le the

program execution attributes per processor core based on the shared execution time line

among processes in the system. As typical modern microprocessors have seven counters

to record the current state of each processor core, seven features of the program execution

attributes can be captured concurrently. The CPU of the machine which is used in the

experiments has seven PMC to record the processor core state. Thus, only seven events

are used to record memory transactions, stall and the number of cycles including three

�xed function counters and four programmable counters which are listed in Table 4.2. As

the PMC registers are auto counters, the duration is needed to indicate for how long the

registers holds the counting. This interval is very critical because the TrapMP wants to

3https://www.spec.org/cpu2006/results/

82 Designing and Implementing the Framework (TrapMP)

extract individual iterations of ML. The length of time taken to complete each iteration in

ML in a Flush+Reload attack is approximately� 0:02ms. A kernel module is implemented

to provide an interface between TrapMP and the MPC registers. As TrapMP is composed of

two phases – detection and identi�cation phases – each has different settings for collecting

data. In the detection phase, the number of samples are much more than in the identi�cation

phase ranging from 1000 to 4000 samples for detection and 5-20 samples for identi�cation.

The detection phase continuously requires data, but the identi�cation phase needs data when

it is informed that an attack has occurred in the system. Furthermore, to collect only program

execution activities in user-land, the OS and kernel execution activities will be excluded in

the counting by setting the bit number 16th for MSR registers to 1 (for more details on how

to set up PMC registers refer to Section 3.2.3.4).

PMCs Annotation Events

Programmable

E1 LLC Misses
E2 L2_RQSTS.ALL_CODE_RD
E3 L2_RQSTS.DEMAND_DATA_RD_HIT
E4 L2_RQSTS.ALL_DEMAND_DATA_RD

Fixed
E5 Inst_Retired.Any
E6 CPU_CLK_UNHALTED.CORE
E7 CPU_CLK_UNHALTED.REF_TSC

Table 4.2 Relevant events to side channel attack

The data are collected under different scenarios, for the purpose of labelling classes

(normal and attack) of the data-set; the selected programs for the experiments need to be run

alone in user-land to recognise their patterns. The target application in the experiments for

this chapter is the Flush+Reload attack program. Flush+Reload attack programs have been

run and assigned to a speci�c processor core by using af�nity functionsset

flush_reload -p 2 .

4.10.1 Data Labelling

The collected data need to be labelled before feeding them to the classi�cation algorithms.

In this study, binary classi�cation is employed to classify malicious and benign behaviours.

All workloads in user space are considered benign except the side channel attack program

activities which are classi�ed as malicious behaviour. To distinguish malicious behaviour, the

Flush+Reload program is run multiple times alone in user space to ensure that the pro�ling

records only the Flush+Reload program. Moreover, thetaskset -c command is used to

4.10 Data Collection 83

Algorithm 1 Data Collection

1: procedure DATA_COLLECTION()
2: setevents(PMCs)
3: int P;C;S;d
4: samples[P;C;S]
5: for each processorp in P do
6: for each corec in C do
7: for eachs in Sdo
8: reset(PMCs)
9: wait(d)

10: samples[p;c;s] = read(PMCs)
11: end for
12: end for
13: end for
14: send(samples)
15: end procedure

Algorithm 2 Detection Algorithm

1: procedure DETECTION()
2: while Truedo
3: recv(samples)
4: temp= aggregation(samples)
5: alarm= classi f ier(temp)
6: if alarm then
7: signal()
8: end if
9: end while

10: end procedure

84 Designing and Implementing the Framework (TrapMP)

pin the Flush+Reload program to a speci�c processor core and request agent to monitor the

speci�ed processor core.

4.11 Feature Selection and Thresholds

This section describes how to choose program execution attributes to identify the Flush+Reload

attack activities in RTS by utilising HPCs. Further, selecting the most relevant events toML

has ef�ciently affect in detecting and identifying the attack activities.

In this study, the main data collection source is HPCs which is available in modern CPUs.

In a typical Intel microprocessor, HPCs support monitoring of hundreds of CPU-related

events. These events characterise program execution behaviours. However, these events

are not equally bene�cial to address a speci�c problem. For instance, some of the events

might visualise the Flush+Reload execution attribute, such as L1, L2 and LLC misses,

which are more sensible than other events as shown in Figure 4.1, LLC clearly present the

phase transaction between every two consecutive iteration in ML. They therefore need to be

examined to �nd the most ef�cient events which offer better solutions to the problems. Recent

research Alam et al. (2017); Briongos et al. (2017); Zhang et al. (2016a) have used machine

learning algorithms to choose the most ef�cient events to support detection models, but in this

study, the events are chosen relying on the nature of the attack programs, particularly ML in

which the L1, L2 and LLC cache misses are equally be triggered, and the window size, which

indicate the interval that the speci�ed events need to be counted. Therefore, in the following

subsections, Descriptive Statistic Functions (DS) are used to analyse the run-time execution

behaviour of the attack program to determine the thresholds and relationship between the

selected events which describe of the program execution attributes.

4.11.1 L1, L2 and LLC Misses Are the Best Features to describeML

activities by Flush+Reload Attack programs

Feature selection in detecting side channel attacks at processor core level is critical because in

RTS it is hard to predict the possible workloads; and get the same observation of a program's

execution activities due to randomness of resource assignments across processes by OS

scheduler. Consequently, it is crucial to �nd out events which virtualises the attack precisely

and less affected by those problems.

In this study we focus on the ML inside Flush+Reload program, which is the core part of

the program that ef�ciently explore the vulnerabilities. Thus, the main task of each iteration

4.11 Feature Selection and Thresholds 85

in ML is composed ofclflush instruction and followed bymovinstruction. Theclflush

instruction removes the data from the hierarchical caches (L1, L2 and LLC) at a speci�c

memory address, whereas themovinstruction then accesses the �ushed memory address from

main memory. The access to the �ushed memory address requiresn misses for each cache

level. So, we assume then misses of (L1, L2 and LLC) will be occurred while the jobs of

ML is assigned to one of the active processor core. Consequently, a very strong co-relation

among L1, L2 and LLC caches can be noticed. This is the key intuition in the proposed

framework to detect and identify the attacker at processor core level observations.

However,clflush might be used by the operating system's Memory Management Unit

(MMU) when MMU is not sure what to do with dirty cache lines, OS usesclflush . This

makes it possible to incur noise in the observations. But, Section 4.10 addresses this problem

and discusses ways of excluding the OS activities. Furthermore, noise may also interfere

with observations ifclflush is used in user space by another program, in this case, causing

clflush instructions that were not initiated by the attack program to be visible in the

observations. It is, however, possible to identify the malicious loop with great accuracy

because of one of its particular characteristics: its repetition of not less than 25000 iterations,

which being the minimum number of operations required to retrieve every bit making up the

whole key in native systems (Irazoqui et al., 2015).

4.11.2 Descriptive Statistics to Describe Program Executions

Descriptive statistics are used to summarise experimentally generated data-sets for use

in feature selection and threshold identi�cations. Consequently, this section introduces

descriptive statistics as a mathematical tool to compare the execution attributes of the attack

program and SPEC workloads to show their low-level activities in �ne-grained details and

to show how the DS supports the detection and identi�cation models by identifying the

thresholds and relationship between features in the framework.

4.11.2.1 Descriptive Statistics

The main uses of descriptive statistics are to describe data-sets' central tendency, variability

and distribution. A data-set's tendency is found using mean and median, while the distribu-

tion's variability and degree of skew are measured using min, max, variance and standard

deviation. A comparison of the program execution attributes' statistical outputs allows us to

determine the program's degree of uniqueness during program executions in real-time sys-

tems. Each statistical property has both strengths and weaknesses. As an example, the outlier

86 Designing and Implementing the Framework (TrapMP)

is the commonest descriptive statistics problem. It has negative impact on measurements,

especially median and variance properties. The use to which descriptive statistics and their

errors are put depends on the nature of the case study. This study shows not all descriptive

statistics properties to be equally useful in the analysis of program execution attributes, and

so different properties are used by different features. Mean and standard deviation are mainly

used and they can be represented mathematically as follows:

dF =

s
å F

f = 1å N
n= 1(Xf ;n � X̄)2

N
(4.1)

When:

dF = Standard deviation of featuref

Xf ;n = ith sample inf th feature

X̄ = the mean ofXf ;i

F = number of features

N = number of samples

To get mean of each featurēX

X̄ =
1
N

F

å
f = 1

N

å
i= 1

Xf ;i (4.2)

The features are analysed individually to extract program execution attributes in both

native and cloud systems, and this is where descriptive statistics are useful. The next section

analyses the program execution attributes using descriptive statistics tools.

4.11.3 De�ning Thresholds

This section illustrates selection of candidate features and thresholds as parameters in the

detection and identi�cation model to contain the attacker program, and �eshes out the

illustration using Descriptive Statistics to analyse program execution attributes.

4.11.3.1 Distribution

Section 4.4 showed that (L1 and LLC) cache misses are the optimal events describing

Flush+Reload activities, particularly ML. Ten experiments were conducted each with 1,000

samples and only the attack program was running, and it was pinned to a speci�c processor

core. The distribution of L2 and LLC cache misses of the attack in native system is shown in

Figure 4.5, where the area beneath the red line shows the LLC misses distribution and the

4.11 Feature Selection and Thresholds 87

Fig. 4.4 Is the different L3 and L1 cache misses which is considered as noise

Fig. 4.5 L1 and L3 cache misses distribution of the attacker's program in cloud systems

area under the green line is L1 cache misses distribution. They are almost congruent with

each other, showing that they are issuing almost the same cache miss rates.

As shown in Figure 4.5, LLC is still constant when the attack program runs with SPEC

workloads, but there is a slight change in L2 cache misses. The workload variation is shown

in Figure 4.5 (a), where the area inside the red line is the original cache misses, and the area

inside the green line represents noise �ltered out byE2 event.

However, turning to cloud systems, Figure 4.5 (b) shows poor overlap between L1 and

LLC, and this is the result of noise causing misses in L1 and L2 cache because of the VM's

extra translation layer. As already discussed, theL2_RQSTS:DEMAND_DATA_RD_HIT

event can remove the noise. In Figure 4.5(b), the area under the green line shows the noise

from L1 cache misses penalty and the area under the red line is the actual L2 and LLC cache

misses penalty.

88 Designing and Implementing the Framework (TrapMP)

4.11.3.2 Program Execution Instability - Tendency

Due to the runtime dynamic optimisation system, the OS utilisescl f lush instruction to

remove stale translation from the cache Bala et al. (2011). The purpose of the tendency is to

address the variation of the program behaviour in real time systems.

Understanding program behaviour is at the foundation of computer architecture and

program optimization. Many programs have wildly different behaviour on even the very

largest of scales (over the complete execution of the program). During one part of execution

a program may be completely memory bound while in another it may always be stalling on

branch mispredictions. Due to this time-varying behaviour of programs.

In pro�ling, the most obvious obstacle is the instability of run-time program executions,

which varies between experiments even though the con�guration is the same. Sherwood

et al. Sherwood et al. (2003b) investigated that the program behaviour can change many

time. For instance, some programs in real systems are stable , but some are not such as in

SPEC CPU2006 bizp2 has more stable program phases than gcc (Sherwood et al., 2003a).

This can mean missing an attack program's real-time activities when attempting to extract

the execution attributes of the attack program from the observed data. Tendency is the

way to overcome this problem. Twenty experiments were conducted to show possible LLC

cache miss patterns. LLC was chosen for reasons set out in section 4.11.3.1: LLC does not

change with changing workloads. A variation was seen from run to run, and the problem was

addressed using tendency. Failure to handle unsuitability properly can reduce the likelihood

of detecting malicious processes, because patterns that take time to present themselves need

the matching algorithm to wait until the pattern is seen. Failure to handle unsuitability

properly can reduce the likelihood of detecting malicious processes, because patterns that

take time to present themselves need the matching algorithm to wait until the pattern is seen.

Figure 4.6 shows a range of frequencies for LLC cache misses from 9 to 22 in this setting.

These �gures were collected from twenty experiments sorted into three groups (G1, G2 and

G3) as shown in Figure 4.6. Each pattern (G1, G2 or G3) occurs whenever the experiment is

run. Each group has a range of �gures indicating that they can be obtained from the counters

during the experiment. In this experiment,G1 occurs more often thanG2 andG3 – but that

should not be taken as indicating that this always happens. It can also be seen that each group

comprises three or four �gures, one of which is a candidate for the highest frequency. Group

G1 has four �gures in the range 11, 12, 13 and 14. The highest in the group is 13, meaning

that 13 is more likely than the others to be the one that occurs when the pattern is captured.

4.11 Feature Selection and Thresholds 89

Fig. 4.6 L1 and L3 cache misses tendency of the attacker's program

4.11.3.3 Comparison of Feature Variability

In the identi�cation phase, the matching algorithm looks for a feature for which the variation

is as close to zero as possible to form the starting point for checking for an attacker program's

presence on a processor core. Variability is measured using Standard Deviation (STD)

in order to �nd the events in the attack program with the least deviation across different

workloads.

Native Systems:In Table 4.3, the STD column shows the STD of four programmable

counters, counting (L1 Instruction hit, L1 cache misses, L2 cache misses and LLC cache

misses). As will be seen, the lowest STD (� 0.25) belongs to L3 cache misses of the attack

program running alone in a native system. Row FR+SPEC shows the events under four SPEC

applications. Except for a slight increase in L2 cache misses, the data shows no signi�cant

variances.

Cloud Systems:In Table 4.4, column STD gives the STD of four programmable counters:

L1 Instruction hit, L1 cache misses, L2 cache misses and LLC cache misses. The lowest

STD (� 0.25) was for LLC cache misses of the attack program running in a cloud system.

When the attack program runs in cloud systems together with SPEC benchmarks, LLC has

the lowest STD at 2.

In the Cloud settings, the lowest STD is forCPU_CLK_UNHALTED.REF_TSCand the

highest is forINST_RETIRED:ANY. The STD of �xed counters in both native and Cloud

settings are might higher than for programmable counters, and so the identi�cation phase

cannot rely for detection on �xed counters.

90 Designing and Implementing the Framework (TrapMP)

Programs Events
Statistics

Mean STD Min Max

F
R

on
ly E1 0.036524 0.250817 0 11

E2 15.166787 3.018877 11 32
E3 0.008996 0.631708 0 47
E4 15.130263 3.0017 11 22

F
R

+
S

P
E

C E1 0.036524 0.250817 0 11
E2 15.166787 3.018877 11 32
E3 0.008996 0.631708 0 47
E4 15.130263 3.0017 11 22

Table 4.3 Describes the necessary statistics to support statistical analysis to �nd the best
features and thresholds. This statistic is the key for process identi�cation. The data is
collected in a native system and outliers are removed

Programs Events
Statistics

Mean STD Min Max

C
lo

ud

E1 1 2 3 4
E2 23.61 10.93 11 130
E3 3.88 14.79 0 252
E4 16.92 2.90 10 22

Table 4.4 Describes the necessary statistics to support statistical analysis to �nd the best
features and thresholds. This statistic is the key for process identi�cation. The data is
collected in cloud system and outliers have been removed from the data

In summary, this analysis shows LLC and L2 misses to be the two candidates that can

be used in the matching algorithm, because their values are identical except when SPEC

applications also run, in which case L2 changes with a very low variance. Using L2 hit

allows this variance to be �ltered out from L2 misses.

4.11.3.4 Min and Max

The thresholds of �xed counters are found using Min and Max properties. Although pro�ling

results suggest that this range can be inferred from other workloads, the logical approach

is to use the �xed counter thresholds after four programmable counters have been checked.

Figures 4.7 shows the ranges of three �xed counters using Min and Max priorities in native

and cloud system respectively. Changing the workload changes the range.

4.12 Detection Phase 91

Programs Events
Statistics

Mean STD Min Max

Native
E5 20872 5751.47 1200 36939
E6 18608 4607.69 2107 29894
E7 18594 4613.49 2124 29878

Cloud
E5 29907 5751.47 1500 36939
E6 26567 4607.69 2107 49894
E7 26586 4613.49 2124 49878

Table 4.5 Describes the necessary statistics to support statistical analysis to �nd the best
features and thresholds. This statistic is the key for process identi�cation. The data is
collected from native and cloud systems and outliers have been removed from the data

Fig. 4.7 Min and Max of each �xed counters of attacker program in native system

4.12 Detection Phase

This section describes the detection phase of the framework. In this section, the detection

models are described and the machine learning algorithms are utilised with the comparison

to three classi�cation techniques.

4.12.1 Moving Window Aggregation (MWA)

The aggregation mean function is employed to �nd the related samples which belong to

a single job in ML. As a scheduler cannot be controlled in terms of assigning jobs to the

online processor cores and the duration of the assignments, the default is to guess how many

samples belong to a job and for how long a processor core holds the job. Consequently,

giving raw data to the machine learning algorithms will negatively impact on the performance

of the classi�ers in detecting side channel attacks. Thus, we leveraged the MWA algorithm.

92 Designing and Implementing the Framework (TrapMP)

Fig. 4.8 Aggregation and �ve shifts of the data-set.shi f t5 represents the best aggregation
which captures the whole samples of one of theML jobs, which is counted as an attack
activity

To construct the phases of the ML by �nding the set of consequent samples in execution time,

which belong to the ML jobs.

MWA is the process of partitioning the data-setD which hasN samples withF features

into subsets̄D. Each subset contains the consequentn samples, whenn � N, andF features;

and averages them to produce one sample which represents oneML phase. As a result, a

new data-set̄Di will be generated with the length of
n
N

samples. This is to transform each

the ML phasesn into one sample and this will be classi�ed as attack activities. Still it is

not guaranteed that the whole body of the phase will be captured, because there might be

a sample from the neighbour jobs of other workloads which will interfere with the ML

phases. To overcome this problem, the original data-set will be shiftedn times and the

same procedure split and the mean function for each subset will be repeated to generaten of

D̄ = f D̄1; D̄2; ::; D̄ng, wheren is also the threshold which indicates less than the maximum

length of the ML samples which might appear in each ML phase in real-time. The whole data-

set will be given to the classi�er to allow more chance to detect any potential ML activities.

The MWA algorithm provides reliability and robustness in the detection system, because

it tries to extract and capture each ML phase by combining the chronological sequence of

samples which belong to each ML job in execution-time.

Figure 4.8 illustrates 10 samples of the original data-set withFi representing LLC cache

misses whenF = f F1;F2;F3; :::;Ff g fi 2 F. The same operation will be applied to each

Fi+ 1 when i= f 1;2; :::; f g. This �gure consists of �ve sub-�gures each representing one

round of the shift to generaten newD̄i. The single column on the left-hand side represents

the mean function ofn samples, whenn = 5 in this example. With these execution settings,

the LLC cache miss is equal to 14; more details are given in the previous section on how to

choose the LLC cache miss. Thus, the average of n samples should be 14. Inshi f t5 the �ve

4.12 Detection Phase 93

Fig. 4.9 Detection model overview

green samples are aggregated and averaged to 14. Thus, 14 represents one of the ML phases

in real-time.

4.12.2 Detection Model Overview

Figure 4.9 illustrates the detection systems, of which the general concept is described in this

section. Step1 : the detection system communicates with the Event Recorder Agent (ERA)

for the collection of data from the PMC counters. The ERA is a model-based implementation

because the PMC counters can only be written to with the kernel's permission. The ERA

pro�les all the jobs which are currently assigned to the online processor cores as raw data.

Within a loop inside ERA, the samples with a speci�c interval will be recorded. The duration

of the loop is related to a possibility that the attacker cannot escape observation. For instance,

if the attacker requires approximately one minute, as is the case in (Irazoqui et al., 2014), the

ERA starts pro�ling at half the time of the required time which the attackers need to retrieve

the whole secret key and feeds this to the DA for classi�cation. Step2 takes place inside the

DA; the off-line data need to be prepared by applying the MWA 4.12.1 algorithm aggregated

with average function and then labelled relying on the thresholds, which are indicated in

Section 4.11.3. After labelling, the data-set will be split into train and test data-sets. Step3

the training data-set is then fed to the machine learning algorithms including (k-NN, C4.5 or

random forest) to build the classi�er4 . Step 5 the online data will be collected again. Step

6 then the new data are prepared by applying the MWA algorithm, but without labelling

them. Step7 the classi�ers predict the unseen samples to detect any attack activities in the

system.

94 Designing and Implementing the Framework (TrapMP)

Algorithm 3 Detection Algorithm

1: procedure DETECTION()
2: while Truedo
3: recv(samples)
4: temp= aggregation(samples)
5: alarm= classi f ier(temp)
6: if alarm then
7: send_signal()
8: end if
9: end while

10: end procedure

4.12.3 Methodology

In the previous section, synchronisation-based detection of side channel attacks was con-

ducted by comparing three machine learning algorithms PCANN, k-NN and Decision Tree

algorithms in which the decision tree outperformed the k-NN and PCANN under various

workloads, light and heavy, to notice how the workloads in�uence the classi�er's performance

in terms of detecting side channel attacks. In this chapter, the side channel attack program

will be monitored at the processor core level without the detection being synchronised with

attacker programs. In this approach, three different supervised machine learning algorithms

have been used by considering the single tree algorithm C4.5, see Section 3.4.4, light weight

algorithm k-NN, see Section 3.4.3, and random forest, which will be described in detail in

conjunction with the limitation of single tree algorithms in this section.

In the previous chapter, we investigated how Decision Tree algorithms outperformed

other algorithms. However, Decision Tree (DT) algorithms have limitations in terms of

accuracy and ef�ciency like any learning algorithms. The common problems in Decision

Tree algorithms are well known as relating to over-�tting and under-�tting, which are

described in Section 3.4.0.2. With over�tting, the classi�er is trained very well on the

training data-set, but cannot be generalised to the testing data-set. This means that Decision

Tree algorithms are sensitive to the speci�c data-set on which they are trained on, but fail for

a testing data-set. This is because the algorithm takes into account every data point including

outliers in the training data-set as shown in Figure 4.10. Consequently, the classi�er is

only poorly generalised to the new samples. In contrast, under-�tting is missing important

structural information about the sample space due to insuf�cient training samples. Therefore,

Breiman (1996b) decomposed the over-�tting error into bias and variance to overcome such

problems. Single tree-based algorithms have low bias and high variance. High variance

4.12 Detection Phase 95

Fig. 4.10 Over-�tting problem on training data-set

affects detection accuracy negatively. However, constraints (e.g. length of the tree) can be

used to optimise the tree model accuracy, but single tree predictors suffer from generalisation

problems.

As a result, Breiman (1996a) introduced ensemble methods to avoid the variance problem

by constructing many prediction models and training them with subsets, which are produced

by splitting data points in the original data-set, and combining their decisions to improve

accuracy and robustness over the prediction of an individual model. Ensemble methods are

mainly categorised into bagging, which is based on randomisation, and boosting techniques

(Geurts and Louppe, 2011). In spite of the fact that the boosting technique has gained the

attention of researchers and has been applied in various domains successfully (Sayadi et al.,

2018), the focus in this study is on the bagging technique.

Bagging (short for Bootstrap aggregating) was introduced by Breiman (1996a) is an

ensemble learning technique to decrease the variance of a predictor by bootstrapping samples

with replacements from the original data-set to train prediction models of any supervised ma-

chine learning algorithms and aggregating their results to select the best predictor. Algorithm

4 explains the steps of a typical bagging algorithm with minimum requirements.

The bagging algorithm, �rstly, enrols a constructive loop to generateNL subsets in a

random space (choosing randomly from replacements) from the original data-setD and

learner algorithmLA of the same algorithm. Secondly, after generating a vector ofLA, the

aggregation function selects the best learnerCbest from theLA. Since Bagging is utilised in

classi�cation and regression problems, the aggregation Max function is used for classi�cation

problems to select the best learner who has the most votes among internal predictors; thus,

aggregation is calculated in Equation 4.3, whereas, the aggregation Mean function is used for

regression problems to average the results of the learnersL; thus, aggregation is calculated in

Equation 4.4. The focus in this chapter is on the classi�cation problem.

96 Designing and Implementing the Framework (TrapMP)

Algorithm 4 Bagging Algorithm

1: procedure BAGGING_CLASSIFIER(LA,D,NL)
2: LA Learner Algorithm
3: D Original Data-set
4: NL Number of learners
5: Cbest Final ensemble learners
6: for i=1,2,...,NLdo
7: Si = BootstrappingSample(D)
8: Li = LA(Si)
9: end for

10: Cbest(x) = MaxAgry
NL

å
i= 1

Li(x;y)

11: end procedure

Cbest(x) = MaxAgry
NL

å
i= 1

Li(x;y) (4.3)

Cbest(x) =
1

NL

NL

å
i= 1

Li(x;y) (4.4)

Random forest is the implementation of the ensemble concept by using a bagging tech-

nique to construct a collection of Decision Trees. Random forest reduces over-�tting, which

is generated by single tree algorithms, by utilising bagging (Barandiaran, 1998) technique.

The Bagging technique in the random forest algorithm, uses a subspace randomisation

scheme to re-sample, with replacements, the training subsets which are used to grow new

individual trees. In the random forest algorithm, the base models are tree structured models.

The tree models in the forest can be generated by any Tree algorithms such as CART, C4.5

or ID3.

Breiman (2001), for the �rst time, introduced random forest to decrease variance, which

is generated by a single tree-based predictor, by constructing many internal tree predictors

on CART algorithm in the forest, each of which is trained on an independent random sample

derived from the original data-set with replacements. Furthermore, each random sample is

composed of random features to increase the chance of contributing the maximum number

of features in the splitting processes, which is also called diversity. Algorithm 5 illustrates

the process of the random forest algorithm for classi�cation problems.

4.12 Detection Phase 97

Algorithm 5 Random Forest Algorithm

1: procedure BAGGING_CLASSIFIER(TLA,D,NL)
2: TLATree Learner Algorithm
3: D Original Data-set
4:

5: NL Number of learners
6: TCbest Final tree classi�er
7: for i=1,2,...,NLdo
8: Si = BootstrappingSample(D)
9: TCi = TL(Si)

10: end for

11: TCbest(x) = MaxAgry
NL

å
i= 1

(TCi(x;y)

12: end procedure

Firstly, the algorithm enrols a constructive loop to generate a vector of bootstrap samples

Sfrom the original data-setD. Each bootstrap sample is denoted asSi. The tree algorithm

(CART) is used to grow a vector of tree classi�ersTC on theSi bootstrap sample. EachSi is

composed of a subset of features which are randomly chosen from the data-setf � F, where

F is the full set of the features in the original data-set. Then the new tree nodes split on the

best features inf rather thanF. Secondly, after generating a vector ofTC, the aggregation

function selects the best tree classi�erTCbest from theTC. Aggregation Max function is

used to select the best tree classi�er which has the most votes among internal predictors.

Class imbalance in binary classi�cation occurs when the majority of class instances

(normal activities) outnumbers the minority class instances (attack activities). Previous

research has shown that the negative impact of imbalanced problem is present in real-world

classi�cation problems (Galar et al., 2012; Li, 2007; Nikulin et al., 2009; Rokach, 2016),

particularly in malware studies (Zhang et al., 2016b). Furthermore, for the collected data

in the experiments for this chapter, the attacker's ML activities have a lower number of

instances than normal workloads activities, which is of interest from the point of view of

the learning task. This will lead the classi�cation model to have a negative impact on the

classi�cation accuracy of unseen data.

Standard machine learning techniques may be leveraged by the majority class and ignored

by the minority class in prediction (Rokach, 2016). This means that the minority classes

are ignored to contribute to the classi�cation task. To overcome this problem, Cieslak and

Chawla (2008) suggested the use of a base induction single tree algorithm by splitting the

criteria in tree algorithms. Furthermore, creating synthetic data-sets is another solution for the

98 Designing and Implementing the Framework (TrapMP)

classi�cation problems in imbalanced data-sets. Under-sampling in data-sets reduces the size

of the majority of data classes (Japkowicz, 2000), whereas in over-sampling of data-sets, the

minority class(es) instances are increased Chawla et al. (2002). On the other hand, Li (2007)

used the Bagging technique to resolve an imbalanced data-set without creating synthetic data

or making changes to the existing classi�cation systems.

Random forest has many applications for balanced and imbalanced data-sets. It has

received a lot of attention from researchers in imbalanced data-sets because random forest

encourages diversity (Nikulin et al., 2009). This was achieved by introducing an ensemble

approach to the base algorithm by replacing a new splitting criterion and producing many

tree classi�ers instead of one tree to make a decision (e.g. ensemble approach). A decision as

a whole can be used to mitigate the classi�cation in an imbalanced data-set. This approach

works by creating a forest of tree classi�ers where each individual classi�er is trained using

a balanced subset, where all minority classes are included with randomly chosen majority

classes. The reason for using ensemble methods is to imbalance data-sets (Rokach, 2016).

4.12.4 Experimental Design

The design of the experiments in this chapter can be summarised in two phases. In the

�rst phase, the data collection is performed in native and cloud systems with ten-fold cross

validation (CV) executed for each. In each CV, a new data-set is constructed from different

data points from the original data-sets then the new data-set is divided into 70% training and

30% testing data so that all data points contribute to the model building stage.

In the second phase, three different machine learning algorithm techniques have been used

including a single tree algorithm C.45, a light weight algorithm k-NN and a random forest

bagging algorithm. With each CV iteration, the new training data-set is fed to each algorithm

to build a classi�er and then the new testing data-set is used to evaluate the classi�er.

4.12.5 Experimental Results and Analysis

In this section, the results of the experiments are shown for each Decision Tree C4.5, k-NN

and random forest algorithm and they are visualised by utilising ROC Area Under Curve

(AUC). The �gures in this section depict the performance of classi�ers in discriminating

between two process activities which are normal and attack.

In ROC-AUC �gures, the classi�ers' outputs are represented as ROC curves. Each ROC

represents recall (sensitivity) against speci�city at incremental thresholds between zero and

one across 10 folds when the same data-set is randomly shuf�ed, resulting in each fold

4.12 Detection Phase 99

having a different spread of data. The Y axis plots the classi�er outputs' True Positives Rates

(recall) and the X axis plots False Positive Rates (speci�city). Each fold is an individual

ROC and is represented by a light blue line which is detection quality. The solid blue line is

the mean of 10 classi�ers. The ideal representation is when the ROC curves have x=0 and

y=1. This indicates that the classi�ers classify normal and attack classes in unseen samples

100% of the time.

When the classi�er has predicted unseen data-sets, its accuracy is evaluated to test

how ef�cient it is at extracting Flush+Reload activities. The two characteristics, recall and

speci�city, are plotted along a ROC curve. The ROC was put forward by Bradley (1997);

Fawcett (2006) to enable performance metrics via a predictive model by drawing line graphs

connecting recall and speci�city. A point on the curve will signify a ratio between 0 and 1.

Since the halfway point on this curve represents a random guess, the diagonal connects the

points (0.5,0.5). Anything above that diagonal will be more accurate than a random guess,

and the actual position enables its accuracy to be characterised on a continuum from good to

excellent, with the very best performance closest to the top right corner. Anything below the

diagonal is likely to be even less accurate than a random guess.

4.12.5.1 k-NN Results

Figure 4.11 and 4.12 show the ROC metric that evaluates the k-NN classi�ers' ability to

detect the ML activities among normal workloads in the host system in both native and cloud

settings respectively. Success in observing program execution attributes and classifying

processes as malicious or benign, as a measure of the risk of existing side channel attack in

the system, is shown as being estimated by the AUC of ROC. The model identi�es the ML

in a native system with very high accuracy (AUC=0.99 for an average of 10 folds, with a

zero-con�dence interval) Figure 4.11. In the cloud, however, the same algorithm is trained on

a data-set that captured the fact that VM activities were less accurate at predicting malicious

activities from among other workloads (AUC=0.96, con�dence interval=0.02) Figure 4.12.

The classi�er is therefore 3% less ef�cient at identifying malicious loop activities in the

cloud than in a native system.

Recall, Flush+Reload frequently repeats the same task, which is organised by executing

the cl�ush instruction to a speci�c memory address of interest and then executing mov to the

same address. When it receives the memory address from which to read the contents, mov

must retrieve them from memory pages because the previous cl�ush rendered the contents

in hierarchical cache memory at that address, and invalid contents are updated from main

memory leading to a sequence of hardware events. Cache misses at L1, L2 and LLC are the

100 Designing and Implementing the Framework (TrapMP)

Fig. 4.11 ROC-AUC for k-NN algorithm in the native system

Fig. 4.12 ROC-AUC for k-NN algorithm in the cloud system

4.12 Detection Phase 101

events selected, as executing two consecutive instructions produces an equal number of L1,

L2 and LLC cache misses. This sets the attack program apart from other workloads as shown

in the SPEC benchmark suite which includes two integer applications (bzip2 and gcc) and

two �oating applications (bwaves and dealII). It is this particularity that enables the k-NN

algorithm to build a model identifying the malicious loop in the computational environment

with high accuracy. The AMW corroborate the classi�er's reliability by slicing the data-set

into a sequence of windows of equal size to be searched for phases of the ML. The ML is

then seen to be repeating the same task of �ushing speci�c memory address.

The results in Figure 4.11 and 4.12 demonstrate the ability of the k-NN algorithm which

builds a classi�er that is very accurate in identifyingML activities used by the Flush+Reload

attack in both native and cloud systems. k-NN is a distance-based algorithm using the search

engine to perform classi�cation by �nding the closest samples in the data-set. When theML

is achieved, the three features (L1, L2 and LLC) have the shortest distance, which is zero in

native systems. In cloud systems, on the other hand, the noise in L1 and L2 caches slightly

reduces the classi�er's accuracy.

Another advantage found in these results is that the pro�ling can record native and

cloud-based activities for the same cost. The same classi�er does not require training with

different data-sets, and the same data-set can be used to train the classi�er to detect malicious

processes which are either belong to native or VM process but there will be a 3% degradation

in the classi�er's accuracy in cloud settings due to the noise.

4.12.5.2 Single Tree C4.5 Results

Figure 4.13 is the ROC metric to evaluate the quality of the single tree classi�er in detecting

ML activities among normal workloads in the host system. The �gure represents the tree

classi�er's ability to observe program execution attributes and classify the online workloads

into malicious and normal activities to measure the risk of existing side channel attack in the

system as estimated by ROC-AUC. The model can classify the implicit ML activities inside

the Flush+Reload program with accuracy (AUC=0.99 for an average of 10 folds, with a

zero con�dencezero-con�dence interval) in a native system. However, the same algorithm is

trained on a data-set which captures the VM activities in a system in which the cloud system

is installed in the host OS. The classi�er has a lower ability to predict malicious activities

among other workloads in the same setting as the native system (AUC=0.89, con�dence

interval=0.1); the classi�er extracts the ML activities with 1% less ef�cient when identifying

the ML activities in the cloud than in native systems. This is because the noise was incurred to

L1 and L2 cache memories and the cache misses were increased. This is due to the additional

102 Designing and Implementing the Framework (TrapMP)

Fig. 4.13 ROC-AUC for single tree algorithm (C4.5) in a native system

translation layer in the Infrastructure as a Service (IaaS) setting in which the hypervisor hides

this layer for security reasons across VMs.

The results in 4.13 and 4.14 depict the performance of the C4.5 algorithm in detecting

ML activities in the computational environments for both native and cloud workloads. C4.5

grows a tree model to extract the ML activity patterns among various workloads in the

system. As can be seen in Figures 4.13 and 4.14, the tree model performance decreases by

1% in the cloud system. This is because C4.5 produces a single tree classi�er to predict

unseen data points from new data-sets which have failed to contribute relevant features and

all samples to support diversity. This leads to both problems of under-�tting and over-�tting.

For over-�tting, the model is affected by instability in the execution as mentioned in Section

4.11.3.2. During the side channel program execution, the number of cache misses varies.

There might be different ranges of ML execution attributes in training and testing sets. As a

result of this, the model can classify very effectively in training but fails for the testing data

because the data points in the testing set are not the same as for the training set. Furthermore,

in imbalanced data-sets, there is no chance to contribute all data points to the training data-set.

However, CV has been used to shuf�e the original data-set when the new data-set is created.

This is because the model is built on the training set, and new data points might be introduced

to the model, and it would be dif�cult to recognise them.

4.12 Detection Phase 103

Fig. 4.14 ROC-AUC for single tree algorithm (C4.5) in a cloud system

4.12.5.3 Bagging-Random Forest Results

Figures 4.15 and 4.16 show the ROC metric that evaluates the random-forest classi�er's

ability to detect the ML activities among normal workloads in the host system in both native

and cloud settings respectively. Success in observing program execution attributes and

classifying processes as malicious or benign as a measure of the risk of existing side channel

attack in the system is shown as estimated by the AUC of ROC. The model identi�es ML

in a native system with very high accuracy (AUC=0.99 for an average of 10 folds, with a

zero con�dence interval) 4.15. In the cloud, however, the same algorithm, when trained on

a data-set that captured VM activities, was less accurate at predicting malicious activities

from among other workloads (AUC=0.99, con�dence interval=0.01), as shown in Figure

4.16. The classi�er therefore has the same ef�ciency at identifying malicious loop activities

in native and cloud systems. The noise incurred by L1 and L2 cache memories, which

arises from the additional translation layer imposed by Infrastructure as a Service (IaaS),

has less impact in the random forest model as compared with C4.5 and k-NN. However,

the results in Figures 4.12 and 4.14 show that the instability in program execution has a

negative impact on the classi�er's performance. However, random forest outperformed for

single Decision Tree C4.5 and k-NN. This is because random forest utilises a bootstrapping

technique 4.12.3 in which all data points in the data-set are involved in model building,

104 Designing and Implementing the Framework (TrapMP)

Fig. 4.15 ROC-AUC for bagging algorithm (random forest) in a native system

particularly in the imbalanced data-set. Random forest tries to generate implicit balanced

data-sets by bootstrapping the original data-sets; in each data-set, the minor class (attack

class) is always placed �rst, followed by the major class for both training and testing sets, in

which case the model is well-trained on the training and testing sets to eliminate under-�tting

problems.

4.12.6 Performance

This section reports on the performance overhead which is generated by the detection model.

In this experiment, the SPEC CPU2006 benchmark was running for about 13 hours with and

without the detection model. The detection model was running in user space and continuously

communicating with the Event Record Agent (ERA) to collect data and feed the detection

model for malicious activities. Figures 4.17 and 4.18 depict the host OS performance with

and without the detection model respectively. The results suggest that the detection model

has a very low impact on the performance of the host system; even in the worst case, the

performance overhead is within 0.03.

4.12 Detection Phase 105

Fig. 4.16 ROC-AUC for bagging algorithm (random forest) in a cloud system

Fig. 4.17 The performance overhead without the detection model using SPEC 2006 bench-
mark

106 Designing and Implementing the Framework (TrapMP)

Fig. 4.18 The performance overhead while the detection model is running and SPEC 2006
benchmark

4.12.7 Discussion

In this chapter, we have reported on experiment results re�ecting on issues which have

an impact on the performance of detection and its robustness in detecting side channel

attacks in both native and cloud systems. Our solution is based on three different supervised

machine learning techniques and chooses the best algorithm for the detection model. The

results suggest that the random forest method can be competitive in detecting side channel

attacks. However, feature selection is the core of the detection phase in terms of extracting

Flush+Reload attack activities in the computational environment 4.11. This is due to the fact

that the detection task is not an easy task due to pro�ling program execution at the processor

core level, in which every single memory transaction will be recorded without knowing the

process id PID of the achieved transactions and the duration of the transactions, which means

that there is no information about the transactions. Thus, selecting the features which are

strongly relevant to the attack activities is essential. Based on the results in Section 4.11,

we found that L1, L2 and LLC cache misses have a linear relationship, which supports the

detection model to achieve feature extraction with high performance as shown in Section

4.12.5.

In the previous chapter, a synchronisation-based detection of side channel attacks is

4.13 Identi�cation Phase 107

conducted by comparing three machine learning algorithms PCANN, k-NN and decision tree

algorithms in which decision tree outperformed k-NN and PCANN under various workloads,

light and heavy. It can be noticed how the workloads in�uence the classi�er's performance

in detecting side channel attacks. The result showed that complex workloads have a negative

impact on classifying side channel attacks.

Regarding robustness, the pro�ling mechanism is not able to recognise the phases of the

ML; instead, it is an auto mechanism to capture the program execution attributes. Thus, the

MWA algorithm is used to extract the phases of the ML by aggregating the samples of a

phase and then moving the entire data-set to inspect any possibilities of ML phases, which

are attack activities. Because the processor core pro�ling is an auto mechanism which does

not rely on any means to get information about the processes during their assignment to the

processor cores and there is no prior information about processes during their assignment to

processor cores. Consequently, the identi�cation mechanism is used to acquire the identity

of the attacker. Another bene�t of this approach is that the monitoring of program execution

activities for native and cloud processes use the same process. This is because native and VM

processes are executed concurrently using the same hardware resources (e.g. CPU), unless,

in IaaS setting, there is an additional layer in hypervisor which translates virtual addresses

into physical addresses. This results to additional noise to the pro�ling. Thus, the same

analysis is used for activities in both native and cloud systems with a slight degradation in

the cloud system due to an extra translation layer in hypervisor in cloud systems.

Furthermore, the detection models can identify more than one potential Flush+Reload

attack in the system without having any effect on detection accuracy because multiple attacks

are independently acting in the system and they never overlap or interfere each other. Thus,

they are monitored independently.

Besides this, the identi�cation phase relies on an interrupt and the identi�cation model is

executed only if the detection model detects an attack in the system. Consequently, any mis-

classi�cation will cause interrupts. The more interrupts, the more signi�cant the performance

overhead which is generated in the system. Thus, it is essential that the classi�cation model

be sensitive to correctly detect potential attacks.

4.13 Identi�cation Phase

This section describes the necessary background for implementing matching algorithm

6,which demonstrates how the identi�cation model inspects every single memory transaction

108 Designing and Implementing the Framework (TrapMP)

in real time and how to change the execution path of the malicious program to interrupt

handler when such malicious activities are detected.

4.13.1 Interrupt

An interrupt is an event caused by software interaction with a hardware device. Events may

be received as signals by the CPU when they need its attention. The OS will ignore some

events, but others cause the OS to handle them immediately; the routine that handles this

is called an interrupt handler. Each interrupt handler is designed to respond to a particular

event, and falls into one of two categories; hardware interrupts and software interrupts.

1. Hardware Interrupts: used to provide communication between such hardware de-

vices as mouse, hard disk, keyboard, and the CPU; purposes may, for example, include

advising the operating system of an operation's completion. Alternatively, by sending

a signal after reading data from the hard disk, a network interface card tells the CPU

about hardware faults. Hardware interrupts are asynchronous and can occur at any

time.

A device is useless without an operating system and kernel. Different types of devices

are connected to the central CPU and each device has different characteristics for

service provision. A device's performance may be fast or slow, and interrupts enable

their use to be properly organised in response to CPU requests.

2. Software interrupts synchronous with program execution, and falling into three types:

Traps raised by user programs to invoke a system call through the operating system.

As an example, a user who wishes to print characters on the screen will cause the

program to make system calls on the OS, which then displays the character string and

hides the details.

Exceptionsare events generated automatically by the CPU when improperly manipu-

lating instructions. Exceptions are of two types. First, there are Faults (such as page

faults) which the CPU can �x (“recover”). Second, Aborts which are irrecoverable

by the CPU. Division by zero would be an example. If this exception occurs in the

program, the program will terminate because the operating system cannot recover from

such a division.

Every CPU in a multi-CPU system has its own dedicated interrupt (INT) pins to receive

interrupt signals from external devices. Each hardware device also has a dedicated Interrupt

4.13 Identi�cation Phase 109

Request (IRQ). When a device needs to communicate with the CPU, it sends the CPU an

interrupt signal through the INT. There are more IRQs in the system than INTs on the CPU,

and so the interrupt signals are not transmitted to the CPU immediately but are subject to a

Programmable Interrupt Controller (PIC) which organises and prioritises communications

requests. The controller sends and responds to requests between speci�ed devices and the

CPU. Having been designed for legacy systems, the PIC is limited in the number of devices it

can handle and therefore incompatible with multiprocessor systems. Modern multiprocessor

systems, with which the PIC was not compatible, instead use Advanced Programmable

Interrupt Controller (APIC) which can handle simultaneous multiple interrupt signals across

CPU cores. APIC comprises two components: Input/Output APIC (IOAPIC); and Local

APIC (LAPIC). Every CPU core has a LAPIC of its own and a motherboard that typically

comprises at least one IOAPIC receiving interrupt signals from external devices before

distributing them between or across CPU core LAPICs. When an external device such

as a keyboard requests an interrupt through IOAPIC, which routes external interrupts to

LAPIC and is integrated with LAPICs, it distributes and prioritises the interrupts among

CPU cores. They communicate by way of Interrupt Messages and Inter-Process Interrupts

(IPI) to distribute interrupts between processors.

The operating system deals with an interrupt either as a masked interrupt or a Non-

Maskable Interrupts (NMI). Receipt of a masked interrupt causes the OS to ignore the

interrupt, which is in effect disabled. A non-maskable interrupt, on the other hand, demands

immediate handling by the OS. A non-maskable interrupt will usually occur only in the event

of a critical hardware fault that will cause a system crash. NMI is generally the method of

diagnosing such faults.

4.13.2 Identi�cation Model

Figure 4.3 depicts the whole process of detection and identi�cation. From step 5, the Process

Identi�er Agent (PIA) is the entry point for identi�cation. Let's assume that the identi�cation

model has received a message from the detection model. PIA acknowledges the Core

Inspector Agent (CIA) to initialise the Trapping procedure. The CIA is a kernel module

which is driver-based and where the trapping procedure listens to an incoming message

from the PIA. The CIA starts to con�gure PMCs and initialises parameters including the

thresholds, which are obtained by statistical functions in Section 4.11. As it receives the

message, the trapping procedure initialises a loopfor_each_online_cpu(cpu) to examine

the online processor cores. This function returns a cpu parameter used by the functionmsr

110 Designing and Implementing the Framework (TrapMP)

to con�rm that the function reads and it is then pinned to the speci�c processor core. This

is done because, without usingwrmsr_safe_on_cpu(unsigned int cpu, u32 msr_no,

u32 l, u32 h) , there is no guarantee merely from usingrdmsr andwrmsr instructions

that the targeted processor core will be read. The CIA then examines each processor core

individually to �nd the core serving the attack program.

Algorithm 6 Identi�cation Algorithm

1: procedure IDENTIFICATION()
2: threshold; phase;counter
3: for each core:pc in PC do
4: obs= read(PMC)
5: if (obssatis�edthresholds) then
6: counter++
7: if counter> phasethen
8: /* ML is identified, the PMC counters are set to -1 to
9: and suspend the MP trigger the interrupt so that

10: direct the execution to the interrupt handler */
11: modi f y_PMC(PMC= � 1)
12: end if
13: end if
14: end for
15: end procedure

A vector of PMC variablevPMC[pc] is created, whenpc= the number of PMC, to store

PMC counter values. In the inner loop of the identi�cation algorithm 6, in the �rst iteration,

the values of PMCs are stored intovMPC0. In the other iterations, the new captured PMC

is averaged with thevPMCcontent. Until the counter reaches the length of thephase. The

phasevariable indicates the minimum length of samples which might occur within one job.

If, say, the number of samples is �ve then the loop inside the identi�cation procedure takes

�ve samples and checks the attack pattern by using the threshold parameters discussed in

Sections 4.11.2.1; if there is no match between thevPMC and the attack thresholds, the

loop resetsvPMC and continues checking. If, on the other hand, thevPMC values and

the threshold match, this is the process that is causing the attack and the PMC counters

are immediately reset to -1, which is explained in details in Section 3.2.3, to force a PMC

over�ow using the current process core. Recall, PMC interrupt is enabled (see Section

4.13.1). The PMC counter over�ow causes the OS to suspend the current process assigned to

the current processor core and hands control to the Trapping interrupt handler. Inside the

Trapping interrupt handler, information about the suspended processor core is taken from the

4.13 Identi�cation Phase 111

Processor Control Block (PCB) and passed back to PIA, which will now have the identity of

the malicious process and can take necessary action to �nd its owner.

4.13.3 Identi�cation Phase Evaluation

This section discusses and evaluates the results obtained from the experiments. To evaluate

the identi�cation, three experiments are conducted in which the only difference is the pro�ling

settings. What is changed is the number of samples {5, 10, 20} taken by the trapping task.

The number of samples is critical to identi�cation, because more than the threshold causes

the identi�cation model to miss the attacker; or less than the threshold for the identi�cation

model leads to the generation of a False Negative (FN) (detecting normal activities as attack

activities) due to inferring non-attack samples.

Figure 4.19 shows pro�ling with 1000 samples for each native and cloud Flush+Reload

program. The duration of Flush+Reload program jobs running in native and cloud are

different. The time quantum for the cloud-based jobs is longer than for the native ones. This

duration has an impact on identifying the malicious process activities, which are denoted

in the red and blue horizontal lines. Green boundaries show correct detection of the attack

program by the algorithm; red boundaries show a failure to capture the attack program. The

boundaries are not equal due to the soft scheduler, in which there is �exibility for the jobs to

be completed. By relying on the analysis in Section 4.11.2.1, we can de�ne the minimum

and maximum required time to complete a job. Figure 4.19 shows the difference between the

quanta for native and cloud jobs. Sub-�gure (a) shows the scheduler for real-time executions

in user space for a native system. Sub-�gure (b) shows the scheduler for real-time execution

of VM and host real time programs in user space. The VM job has a larger quantum than

the native-based jobs. This is because recent work shows that the time quantum for jobs for

VM processes is longer than for jobs in a native system for performance purposes. Thus,

the identi�cation model has more con�dence in detecting malicious VM than a native-based

malicious program.

The best attack scenarios for a native Flush+Reload attack are when the identi�cation

model starts at the same time as the jobs of the ML are assigned to the processor core and

start executing. In less likely attack scenarios, the identi�cation model starts in the middle of

the jobs and, in this case, the activities of other workloads will interfere with the observations

and fail in matching.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Research Aim and Objectives
	1.4 Chapter Outlines

	2 Background and Related Work
	2.1 Background
	2.1.1 Data State and Vulnerabilities
	2.1.1.1 Data-At-Rest
	2.1.1.2 Data-in-motion
	2.1.1.3 Data-in-Use (DIU)

	2.2 Core Technology Vulnerabilities in Cloud Systems
	2.2.1 Web Technology
	2.2.2 Virtualization Technology
	2.2.3 Cryptography

	2.3 Side-channel Attacks
	2.4 Side Channel Attacks in Two Decades
	2.4.1 Targeted Data Types
	2.4.1.1 Cryptographic Keys
	2.4.1.2 Files

	2.4.2 Source of Leakage
	2.4.2.1 CPU Architecture
	2.4.2.2 Main Memory
	2.4.2.3 Timing
	2.4.2.4 CPU Power Consumption
	2.4.2.5 Page Sharing
	2.4.2.6 Shared Library
	2.4.2.7 Kernel Address Space Layout Randomisation

	2.4.3 Types of Channel attacks
	2.4.3.1 Covert-Channel Attacks

	2.5 Related Work
	2.5.1 Mitigation Techniques
	2.5.1.1 OS level
	2.5.1.2 Application level
	2.5.1.3 Hardware level

	2.5.2 Profiling-Based Detection Systems
	2.5.3 Summary

	2.6 Limitations of Existing Works or Summary and Research Gaps

	3 Preliminaries - Synchronous Trace-based Detection
	3.1 Introduction
	3.2 Background
	3.2.1 CPU Architecture and Components
	3.2.2 Performance Measurement Tools
	3.2.3 High Performance Counters (HPC)
	3.2.3.1 Events:
	3.2.3.2 Model Specific Registers
	3.2.3.3 Performance Event Select Registers
	3.2.3.4 Hardware Performance Counters Setup

	3.3 Threat Model
	3.4 Methodologies
	3.4.0.1 Classification and regression or prediction
	3.4.0.2 Bias and Variance

	3.4.1 Principal Component Analysis (PCA)
	3.4.2 Neural Network (NN)
	3.4.3 K Nearest Neighbour (k-NN)
	3.4.4 Tree Algorithms

	3.5 Model Evaluation Metrics
	3.5.1 Confusion Matrix
	3.5.2 Evaluation Metrics
	3.5.3 Receiver Operating Characteristic (ROC) curve
	3.5.4 Cross-Validation

	3.6 Synchronous Trace-based Detection
	3.6.1 Hardware and Software Specifications
	3.6.2 Experiment
	3.6.3 Result Analysis and Discussion

	4 Designing and Implementing the Framework (TrapMP)
	4.1 Motivation
	4.2 Components of Computational Environment
	4.2.1 Multi-core Platforms
	4.2.2 Multi-tasking (Model) Systems
	4.2.3 Real-time Scheduling

	4.3 Program Phase
	4.3.1 Program Phase Utilisation
	4.3.2 Program Phase Definition
	4.3.3 Malicious Loop Phase Modelling

	4.4 Threat Model and Assumptions
	4.5 The Framework Approach
	4.6 Challenges
	4.7 The Framework Design (TrapMP)
	4.8 Experiment Setup
	4.9 Benchmark
	4.10 Data Collection
	4.10.1 Data Labelling

	4.11 Feature Selection and Thresholds
	4.11.1 L1, L2 and LLC Misses Are the Best Features to describe ML activities by Flush+Reload Attack programs
	4.11.2 Descriptive Statistics to Describe Program Executions
	4.11.2.1 Descriptive Statistics

	4.11.3 Defining Thresholds
	4.11.3.1 Distribution
	4.11.3.2 Program Execution Instability - Tendency
	4.11.3.3 Comparison of Feature Variability
	4.11.3.4 Min and Max

	4.12 Detection Phase
	4.12.1 Moving Window Aggregation (MWA)
	4.12.2 Detection Model Overview
	4.12.3 Methodology
	4.12.4 Experimental Design
	4.12.5 Experimental Results and Analysis
	4.12.5.1 k-NN Results
	4.12.5.2 Single Tree C4.5 Results
	4.12.5.3 Bagging-Random Forest Results

	4.12.6 Performance
	4.12.7 Discussion

	4.13 Identification Phase
	4.13.1 Interrupt
	4.13.2 Identification Model
	4.13.3 Identification Phase Evaluation

	4.14 Discussion

	5 Conclusions And Future Work
	5.1 Conclusions
	5.1.1 Research Summary
	5.1.2 Contribution to knowledge

	5.2 Limitations
	5.3 Future Work

	References

