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Abstract

In this thesis I present two main projects, based on the application of different nonlinear
approximation schemes in relativistic cosmology. The first project comprises effects
on the matter distribution on very large scales sourced by the nonlinearity of General
Relativity, while the second project examines a weak lensing analysis considering all
scales.

In the first project, the results of which were published in [55], we used two
different approximation schemes, the gradient expansion and standard perturbation
theory, to examine the effects the nonlinear nature of General Relativity (GR) has on the
density field allowing primordial non-Gaussianity in the inital conditions. The gradient
expansion restricts the computations to very large scales, where the gradients of the
metric perturbations are significantly smaller than their time derivatives. In this work,
we neglect contributions of the order O

(
∇4) in the gradient expansion. We show that

at order O(3) and O(4) in standard perturbation theory the intrinsic nonlinearity of GR
produces a mixing of the primordial non-Gaussianity in the density contrast. The main
result of this project is that at higher orders due to the nonliearity of GR a mixing of
fNL, gNL, and hNL occurs in the density field.

In the second project, of which the results will be published in the paper [54], we
computed the convergence and the shear up to higher orders using the post-Friedmann
approximation scheme. This approximation scheme is especially beneficial for the
subject of weak lensing due to its validity on all scales. In weak lensing, we inte-
grate along the line of sight and thereby couple large scales to small scales. The
post-Friedmann approximation is a post-Newtonian-type approximation scheme in a
cosmological setting that combines both the fully nonlinear Newtonian dynamics on
small scales and the relativistic perturbations on large scales. It comprises scalar, vector,
and tensor perturbations, whereas the lowest order of the vector perturbation is sourced
by Newtonian quantities, yet its effects are purely relativistic. The vector potential does
not influence matter dynamics but affects the photon geodesic and therefore the weak
lensing analysis. We present the convergence and shear projected on a spherical screen
space, which allows us to go beyond the thin-lens or small-angle approximation, in



vi

terms of the redshift z up to the order O
(

1
c4

)
. The main reason for the investigation

was to have a formalism for the weak lensing analysis that includes the effect of the
gravimagnetic potential on nonlinear scales. It was shown in [33] that the magnitude of
this vector potential is small but not negligible on nonlinear scales. Hence, the main
result of this project is the computation of the convergence and shear up to higher orders
using a formalism that includes the gravimagnetic potential and is valid on all scales
including nonlinear, small scales. In particular, we show the contribution of the vector
potential to the convergence and shear.
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Chapter 1

Introduction

The aim of Cosmology is to understand the evolution of our universe. The scientific
theory contemplates the study of the structure formation on large scales of the observable
regions of the universe and connects it to the local physical dynamics.

Observations from the very large scales or very early times to the smallest scales
like the solar system indicate that the universe evolved from a homogeneous and
isotropic matter distribution to structures such as galaxies clusters and voids. In order
to study evolution of the structure formation, we need to establish scientific models
and mathematical tools to describe them. When we look at the largest scales, on
which the universe is homogeneous and isotropic, the observations are matched best
by the Friedmann-Lemaitre-Robertson-Walker model (FLRW) (see section 1.3.1) with
general relativistic dynamics (see section 1.1). Going to smaller scales, fluctuations
arise in the matter distributions, which are believed to cause the structure formation we
observe today via gravitational collapse. It is standard to describe these fluctuations
with the use of perturbation theory (see section 2.1). If however, we look a small
enough scales, the standard perturbative description breaks down and it is standard
to use fully non-linear Newtonian dynamics e.g. N-body simulations. Yet there are
approximation schemes that aim to unite the perturbative approaches on large scales
with the Newtonian descriptions on small scales. One of these approximation schemes
is the post-Friedmann approximation scheme [80], which will be summarised in this
thesis in section 2.4.

In this thesis, I will explore the use of different approximation schemes in cosmology,
applicable on different scales. We will focus on relativistic and higher order effects and
will present the works on fNL −gNL mixing at higher orders in the density contrast [55]
(see chapter 3) and on the weak lensing analysis with a post-Friedmann approximation
scheme [54] (see chapter 4).
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The outline of the thesis is the following: in this chapter, chapter 2, we give a
general overview of General Relativity (GR) and the topics of cosmology that will
be dealt with later in the thesis. In chapter 3, we introduce different relativistic ap-
proximation schemes and perturbation theory. Furthermore, we discuss the theory of
gauge transformations and specific gauges. Subsequently, I introduce the three different
approximation schemes used in the latter chapters, namely standard perturbation theory,
the gradient expansion, and the post-Friedmann approximation scheme. Chapter 3 and
4 are dedicated to the two main projects of my PhD study. The first of the two projects
investigates relativistic effects on very large scales. Using the gradient expansion and
standard perturbation theory, we can show that on very large scales, the intrinsic non-
linearity of General Relativity affects the Gaussianity of matter density distribution by
generating a mixing of fNL and gNL at higher orders. In chapter 4, I present the current
work based on [54], where we provide a full-sky, all scales weak-lensing analysis valid
in the fully non-linear regime of structure formation using the post-Friedmann approach.
In the conclusion I will summarise the work of this thesis and will discuss the results
and future directions.

1.1 General Relativity

General Relativity (GR) is a theory of gravitation, in which gravity is described by
geometric properties of the space-time. Based on the universality of free fall, i.e.
all bodies fall precisely in the same way in a gravitational field, and the equivalence
principle1, GR connects the magnitude of the gravitational field to the curvature of the
space-time. The Einstein field equations (EFE) relate the curvature to the source of
gravitation and the geodesic equation dictates how bodies fall. Subsequently, a self-
consistent interpretation of the geometric properties of gravitational fields concludes
that the space-time is the gravitational field.

1.1.1 Differential geometry

The theory of GR portrays gravitation as a geometrical property. In order to formulate
gravity in terms of geometrical concepts, in this subsection I will introduce aspects of
differential geometry and derive the field and geodesic equations of GR in the following
subsection. I will follow the work of [111, 97, 91, 90].

1or in a gravitational field, there exists a local inertial system (LIS) in every neighbourhood of an
event in space-time. In this LIS, the laws of special relativity hold and there exists a choice of local
coordinates such that the gravitational field is canceled out.
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Via the equivalence principle we can deduce that we can locally establish the theory
of special relativity (SR). In SR it is assumed that the theory is true globally. In GR, on
the other hand, this assumption cannot be made. Therefore, we introduce the concept
of manifolds, which is a collection of subsets that are homeomorphic to R4 that are
smoothly connected. On each open set, we can impose a coordinate system, on which
we can establish a LIS. I will now introduce the quantities of differential geometry that
we need for the formulation of GR in the next subsection.

Definition 1.1.1. A n-dimensional, real manifold M is a topological space 2 that is a
collection of subsets {Oα} of which each is homeomorphic to Rn.

Definition 1.1.2. A coordinate system or chart is a map ψα : Oα →Uα with Uα is an
open subset of R4.

Next we need to define the notion of differentiability of the charts on the manifold.
Therefore, we introduce a differential structure:

Definition 1.1.3. A differential manifold M is a n-dimensional manifold with a globally
defined differential structure: let A = {Uα ,ψα} : M =

⋃
α Uα ,ψα : Uα → Oα ⊂ Rn be

an atlas A of charts ψ . If Uα ∩Uβ ̸= /0, then ψα ◦ψ
−1
β

: ψα

(
Uα ∩Uβ

)
→ψβ

(
Uα ∩Uβ

)
is a differentiable map (diffeomorphism).

Definition 1.1.4. Let F denote the collection of C ∞ functions from M into R. A
tangent vector v at point p ∈ M is defined as a map v : F → R which is linear and
obeys the Leibnitz rule.

The tangent vectors v in a point p span the tangent vector space Tp with dim TP = n.

Definition 1.1.5. Let ψ : O → U ⊂ Rn be a chart with p ∈ O and let f ∈ F . The
basis

{
Xβ

}
of TP defined as Xβ : F → R with Xβ ( f ) = ∂

∂xβ

(
f ◦ψ−1)∣∣

ψ(p) is called
coordinate basis.

The coordinate basis is dependent on the choice of the chart ψ . It can be expressed
in terms of the partial derivative in all possible directions

{
∂/∂xi|P

}
. To change

coordinates, and therefore chart, it follows that ∂

∂xν = ∂ x̂µ

∂xν

∂

∂ x̂µ .

Definition 1.1.6. A Cotangent space in P is the dual space TP∗ of the tangent space TP.
It’s basis is the dual coordinate basis: {dxµ |P} : dxµ ∂

∂xν = δ
µ

ν .

2second countable Hausdorff space
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If we want to define a (covariant) derivative for tensor fields, we need to establish
an preferred isomophism (parallel transport) between the tangent space of any nearby
two points. Only then the difference of a tensor evaluated at two different points can be
invariantly formulated. An affine manifold is a (differentiable) manifold equipped with
a connection L that connects nearby tangent spaces and thereby provides the topological
requirement to define a covariant derivative of tensor fields:

Definition 1.1.7. The covariant derivative ∇ of a tensor field T on an affine manifold
M is a map ∇ : type(p,q)→ type(p,q+1)3 satisfying the following three properties:
linearity, ∇ f = d f for a scalar function f , and the Leibnitz rule.

When we translate Definition 1.1.7 into index notation and apply it to a tensor field
T of type(p,q) we obtain

∇ζ T α1...αp
β1...βq

= T α1...αp
β1...βq,ζ

+Lα1
κζ

T κα2...αp
β1...βq

+ · · ·−Lκ

β1ζ
T α1...αp

κβ2...βq
− . . .

(1.1)

A covariant derivative along a curve which is parametrised by the affine parameter λ is
denoted by the absolute derivative and is defined as

D
dλ

=
dxµ

dλ
∇µ . (1.2)

If the absolute derivative of an arbitrary tensor field vanishes, it is referred to as parallel

transport4. By virtue of the definition of the parallel transport and its path dependence,
an expression for the curvature can be established. Let vµ be a vector field and p a point
on an affine manifold M. We create a small closed loop on which we parallel transport
the vector vµ . vµ

p refers to the initial vector and vµ

∇
to the transported vector. If the two

vectors vµ
p and vµ

∇
do not align at point p, the "defect" in the alignment corresponds to

the curvature of the manifold:

(
∇α∇β −∇β ∇α

)
vµ = Rµ

ναβ
vν (1.3)

with the Riemann tensor Rν

µαβ

Rν

µαβ
= Lν

µβ ,α −Lν

µα,β +Lν
καLκ

µβ
−Lν

κβ
Lκ

µα . (1.4)

Furthermore, one defines a metric on the manifold that is parallel transported.
3a tensor field in P of type(p,q) is a multilinear map TP ∗×TP ∗×·· ·×TP∗︸ ︷︷ ︸

q

×TP × . . .TP ×TP︸ ︷︷ ︸
p

→ R

4which denotes the preferred isomorphism mentioned above
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In order to identify the symmetry group of a tensor field, we introduce the Lie-
derivative: a tensor field T at point P ∈ M is carried along to the point P̄ ∈ M . The
difference between the tensor field T carried along the flow of a vector field v from
point P to P̄ and the original tensor field T at P̄ with P → P̄ denoting a infinitesimal
transformation is regarded as the Lie derivative.

Definition 1.1.8. Let M be a manifold and let φt be a one-parameter group of dif-
feomorphism and v the vector field generated by φt . φ∗

t denotes the pullback5 of φt ,
then

LvT a1...ak
b1...bl

≡ lim
t→0

(
φ∗
−tT

a1...ak
b1...bl

−T a1...ak
b1...bl

t

)
. (1.5)

defines the Lie-derivative.

Definition 1.1.9. A pseudo-Riemannian manifold (M,g) is an n-dimensional manifold
with a symmetric, covariant tensor field gαβ (metric), which does not need to be positive
definit. In any tangent space TP, the metric defines a nondegenerate biliniear form g

(inner product).

The inner product defines an isomorphism TP → T ∗
P : v 7→ g( . ,v) ≡ v∗, which in

index notation reads vµ = gµνvν .

Definition 1.1.10. A Lorentzian manifold is a pseudo-Riemannian manifold with the
signature of the metric being diag(−1,1, . . . ,1).

The fundamental theorem of Riemannian geometry states that there is a unique
torsion-free metric connection Γ with ∇αgβγ = 0. Γ is referred to as the Christoffel

symbol (or Levi-Civita connection) and takes the form

Γ
µ

νγ ≡
1
2

gµκ
(
gκν ,γ +gκγ,ν −gνγ,κ

)
. (1.6)

In this subsection, we introduced the quantities of differential geometry that we will
need to construct the theory of GR. In order to formulate a field theory, field equations
and an equation of motion, which determines how a test particle moves if subject to
the field, are needed. In GR, these equations are the Einstein field equations and the
geodesic equation. We will derive both in the next subsection.

5The pullback of a map is defined as follows: let φ : M → N with M , and N being manifolds
and let f : N → R. The vector field v ∈VP is the tangent field at point P. Then φ ∗

t : VP → Vφ(P) with
(φ ∗v)( f ) = v( f ◦φ).
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1.1.2 Einstein field equations and geodesic equation

We describe the space-time with a four dimensional, real Lorentzian manifold (M,g)

with a corresponding four-dimensional metric tensor gαβ
6, with which we define the

distance between two events with the line element ds =
√

gαβ dxαdxβ . The geodesic
equation describes the trajectory of a test particle within a gravitational field and can
be derived using calculus of variation to extremise the length ds of curves C between
two events. We choose the curves C to be parametrised by the affine parameter λ 7 and
obtain

−
∫
C

ds =−S [xµ(λ )] =−
∫

λ2

λ1

L (xµ , ẋµ)dλ = min (1.7)

⇔ δS
δxα

= 0 (1.8)

⇔ ẍµ +Γ
µ

νγ ẋν ẋγ = 0 (1.9)

with the tangent vector field dxα

dλ
= ẋα , the Lagrangian8 Equally, the geodesic equation

(1.9) can be defined as a curve whose tangent vector is parallel transported along itself:

D
dλ

ẋν ≡ ẋµ
∇µ ẋν = ẋµ ẋν

;µ = 0. (1.10)

Equations (1.9) or (1.10) can be written as D2xµ

dλ 2 = 0 as well, which reflects covariantly
the fact that in GR a body in free fall is not subject to acceleration.

In order to derive the EFE, we need to introduce two quantities connected to the
Riemann tensor Rα

βγδ
: if we take the trace of the Riemann tensor, we obtain the Ricci

tensor Rµν

Rµν ≡ Rα
µνα . (1.11)

The trace of the Ricci tensor yields the Ricci scalar R

R ≡ gαβ Rαβ . (1.12)

6We will use the metric signature (-,+,+,+). Greek indices run from 0 to 3, whereas Latin indices run
from 1 to 3. We denote the Minkowski metric as ηαβ = diag(−1,1,1,1)

7We choose λ ∝ s. It follows that dL
dλ

= 0.
8This is the Langrangian for timelike and spacelike geodesics, because the line element and therefore

the Lagrangian mentioned above vanishes. Hence, we cannot chose λ ∝ s anymore because s = 0 for
null geodesics. For null geodesics the Lagrangian Lnull =

1
2 gµν ẋµ ẋν leads to the geodesic equation, if

one performs the calculus of variation.
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Futhermore, the Riemann tensor Rν

µαβ
satisfies the Bianchi identity

Rν

µαβ ;κ +Rν

µκα;β +Rν

µβκ;α = 0. (1.13)

If we contract the Bianchi identity by δ ν
α and gµβ , we obtain the divergence of the

Einstein tensor Gαβ :

Gβ

κ;β = 0 with Gµν ≡ Rµν −
1
2

gµνR. (1.14)

In the theory of special relativity, the conservation of energy and momentum is given
by the property that the energy-momentum tensor Tµν is divergence-free. The simplest
covariant generalisation would be

T µν

;ν = 0. (1.15)

However, it can no longer be seen as a global conservation equation, because we cannot
consider the gravitational field as a part of a closed system: gravitational tidal forces
can influence local densities. If however, we look at a region small enough for the
influence of tidal forces to be small or negligible, the energy and momentum of the fluid
is approximately conserved9.

On the basis of the principle of minimal gravitational coupling, the Einstein field
equations (EFE) combine (1.14) and (1.15) to10

Gµν =−κTµν (1.16)

with κ = 8π
G
c4 . Equally, the EFE can be derived via the calculus of variation from the

Einstein-Hilbert action

S =
1

2κ

∫
R
√
−g d4x. (1.17)

The EFE (1.16) relate the curvature of the space-time on the l.h.s to the energy and
momentum of the source on the r.h.s.. The Einstein tensor Gµν on the l.h.s. of (1.16)

9Let uµ
o be the four-velocity field of a family of observers. For (1.15) to satisfy a conservation

equation, we need ∇(µ uo ν) = 0 such that ∇α

(
T α

β
uβ

o

)
= 0. In curved space-time, there is in general not

a vector field satisfying uµ
o uoµ = −1 and ∇(µ uo ν) = 0. But on a small enough region, one can find a

∇(µ uo ν) ≈ 0 and therefore conclude that the energy and momentum of a fluid is approximately conserved
as measured by the observers.

10Note that in the convention of the Riemann tensor (1.4) used in this work leads to a minus sign on
the l.h.s. in the EFE (1.16).
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depends on derivatives of the metric gµν up to second. Furthermore, it is highly
nonlinear in the metric gµν . Therefore, the EFE can be seen as a set of coupled,
nonlinear, second order partial differential equations for the components of the metric
gµν .

Both sides of (1.16) comprise a symmetric "2-index" tensor. Therefore, the EFE
are 10 independent equations, because the symmetric property of the tensors reduces
the number of independent equations from 16 to 10. However, the Bianchi-identity
(1.13) represents 4 further constraints on the Ricci tensor and reduces the number of
independent equations to 6. The metric tensor on the other hand is a symmetric rank-2
tensor with 10 unkown functions. The remaining 4 degrees of freedom correspond to
choice of coordinates.

1.2 Cosmology

The scientific theory of cosmology comprises the structure formation on large scales and
its evolution. However, our observations are limited to the past light cone. Even if we
can measure observables up to a high accuracy, we need to impose assumptions about
the structure of the universe beyond the light cone in order to formulate a cosmological
model. For example, we observe that on a spatial avarage over a big enough region
the universe is isotropic. In combination with the Copernican principle that we are not
privileged observers, this empirical observation leads to the cosmological principle,
which states that the universe is homogeneous and isotropic on large enough scales.

1.2.1 The cosmological principle

The cosmological principle claims that on large enough scales the universe is spatially
homogeneous and isotropic (in every point). Spatial homogeneity means that the spatial
universe looks the same from any point of view at a given cosmological time: there
exists a one-parameter family of spatial hypersurfaces Σt with M =

⋃
t Σt , Σt1 ∩Σt2 = /0

for t1 ̸= t2, such that there exists for every t and arbitrary points P, ∈ Σt an isometry
between P and Q. Spatial isotropy in every point is defined such that there exists a
congruence of timelike lines with the following properties: let P be an arbitrary point
and uP its tangent vector of the line in the congruence crossing the point P and let s1

and s2 two unit vectors in the tangent space TP and orthogonal to uP. Then there exists
a isometry, which maintains P and uP, but transforms s1 into s2

11.

11Isotropy in every point implies homogeneity.
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Figure 1.1 The anisotropies of the CMB as observed by ESA’s Planck mission. (Copy-
right: ESA/Planck Collaboration)

1.2.2 Observational evidence

Our observations with telescopes, probes, and other instruments aim to detect electro-
magnetic radiation, neutrinos, and gravitational waves to learn about the distribution of
matter in the universe. Electromagnetic radiation and gravitational waves travel at the
speed of light, thus we can only observe the universe on the past light cone.

Hubble’s observations of the redshift of spectral lines of distant galaxies and subse-
quently his formulation of the Hubble law showed that the universe is not as previously
assumed static but expanding. Furthermore, the observation of the distribution of radio
sources and the discovery of the cosmic microwave background (CMB) gave evidence
to the assumption that the universe was evolving as it expands. The study of supernovae
of type Ia at higher redshifts showed that the expansion rate is slower at higher redshifts
than at lower redshifts. Hence, the universe is not only expanding but the expansion is
accelerated.

The CMB - a electromagnetic radiation with a black body spectrum - is a remnant
from the very early universe. It’s discovery provides inter alia evidence for big bang cos-
mology models. The CMB has a remarkable high degree of isotropy with temperature
fluctuations of order |∆T/T |≲ 10−5. These temperature fluctuations indicate density
fluctuations on very large scales.
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There have been numerous successful test of GR in laboratories and within our solar
system. When it comes to extrapolate the theory to scales beyond our solar system, we
encounter discrepancies between the observations and the theory. For example, we can
directly observe luminous baryonic matter but indirect measurements of the amount of
matter (e.g. rotation curves of galaxies, gravitational lensing) suggests that the luminous
baryonic matter is only a fraction of all the matter there is. In order to explain this bias
in accordance with the theory of GR a new kind of matter, dark matter, which neither
absorbs nor emits electromagnetic radiation, has been postulated. Another example of
observations deviating from the theory is the accelerated expansion rate of the universe.
As mentioned before, observations showed that the universe’s expansion is accelerating.
In order to agree with the predictions of GR, it is convenient to add a constant Λ to the
source terms of the EFE (1.16). Λ is regarded as the cosmological constant or as the
simplest form of dark energy.

1.3 Cosmological applications of GR

If we want to build a cosmological model based on GR, it must agree with the observa-
tions such as isotropy and homogeneity on the largest scales. The standard approach is
a perturbative approximations with an isotropic and homogeneous background. In the
EFE (1.16), the metric and its derivatives are connected to the energy-momentum tensor.
So far we haven’t discussed the components of the energy-momentum tensor and how
to mathematically represent the matter. Our cosmological analysis is dependent on
the scales we look at and the size of scale we average over. With the cosmological
principle stating that the universe is homogeneous and isotropic at very large scales,
we encounter a hierarchy of different scales with different descriptions from very large
to very small ones. As for the description of matter, for very large scales to smaller
scales, it is standard to use fluid description. This description holds as long as the
matter dynamics can be describes as a congruence of fluid lines, thus with a 4-velocity
uµ . For the range of scales, in which the averaging scale is large enough such that
fluctuations are smoothed out, the fluid approximation is valid. It breaks down once the
averaged scale is small enough compared to the averaged density ρ such that the effect
of individual particles on the density measurement cannot be smoothed by averaging.
Mathematically, this means that the fluid cannot be described with one 4-velocity uµ

anymore and the fluid lines no longer form a congruence but cross each other.
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1.3.1 FLRW models

The Friedmann-Lemaitre-Robertson-Walker models (FLRW) are models of constant
spatial curvature that are exactly spatially homogeneous and isotropic. The metric of
the FLRW models is

ds2 =−dt2 +a(t)2
[

dr2

1− kr2 + r2 (dθ
2 + sin2

θdφ
2)] . (1.18)

k =−1,0,1 corresponds to negative, none, or positive curvature, respectively. A positive
or negative value for k denotes a closed or open universe, respectively. Whereas k = 0
translates into a flat universe. The function a(t) is solely dependent on the time t as any
spatial dependency would breach the spatial isotropy and homogeneity. It increases or
decreases the spatial line element with time. Hence, the coordinate r corresponds to
a comoving distance within the increase or decrease of distances caused by a(t). The
time t is regarded as the cosmic time. It is convenient to introduce the confromal time τ

with dt = a(t)dτ . Consequently, the line element (1.18) changes to

ds2 = a(τ)2
[
−dτ

2 +
dr2

1− kr2 + r2 (dθ
2 + sin2

θdφ
2)] . (1.19)

ΛCDM model:

The Λ cold dark matter (ΛCDM) model is regarded as the standard model of cosmology.
It is a FLRW model with two main components: the cosmological constant Λ, which is
the simplest form of dark energy, and a pressureless cold dark matter.

More in general, the EFE (1.16) with Λ are

Gαβ =−κTαβ +Λgαβ . (1.20)

We assumes scales in which a perfect fluid description for the averaged matter is valid.
The energy-momentum tensor for a perfect fluid takes the form

T αβ =
(

ρ +
p
c2

)
uαuβ + pgαβ (1.21)

with ρ being the mass-energy density and p the hydrostatic pressure. Due to the
cosmological principle, both ρ and p are only dependent on the time t. If we substitute
(1.18) and (1.21) into (1.20), we obtain

G0
0 =3

ȧ2 + k
a2 = κρ +Λ (1.22)
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Gi
i =−2

ä
a
− ȧ2 + k

a2 = κ p−Λ (1.23)

We introduce the Hubble expansion scalar H ≡ ȧ/a and (2.100) becomes the first

Friedmann equation

3H2 +3
k
a2 = κρ +Λ. (1.24)

Both (2.100) and (1.23) combined yield the second Friedmann equation

Ḣ +H2 =−κ

6

(
ρ +

3p
c2

)
+

Λc2

3
. (1.25)

The energy conservation equation (1.15) reduced to

ρ̇ +3H (ρ +P) = 0. (1.26)

The first and second Friedmann equations (1.24) and (1.25), and the energy conversation
equation (1.26) are not independent: taking the derivative of (1.24) and substituting
(1.25) yields after some rearranging (1.26). Equivalently, (1.24) is a first integral of
(1.25) with (1.26).

Thus, we have only two independent equations for three unknowns, which are the
scale factor a(t), the energy density ρ(t), and the pressure p(t). Therefore, another
equation is needed to solve the system of differential equations: the equation of state

relates the pressure to the energy density and in cosmology the simplest used is

P = wρ. (1.27)

E.g. for radiation, we obtain w = 1/3 and for preassureless fluid w = 0.
If we use the conformal time τ instead of the cosmic time t, the Friedmann equations

(1.24) and (1.25) and the energy conservation equation (1.26) become

H 2 =
κ

3
ρa2 − k+

Λ

3
a2, (1.28)

H ′ =− κ

6
a2 (ρ +3P)+

Λ

3
a2, (1.29)

ρ
′+3H (ρ +P) = 0 (1.30)

with the prime denoting the derivative w.r.t. the conformal time τ and H = a′/a.
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1.3.2 Kinematics and dynamics in cosmology

On scales where the fluid description is valid, we can identify a 4-velocity uµ corre-
sponding to the matter flow. This indicates a preferred velocity and thus a preferred rest
frame. Let us consider a family of time-like geodesics corresponding to fundamental
observers12. Each world line has the tangent vector uµ . We can (locally) decompose
the space-time into a 3-dimensional local hyperspace Ht that is orthogonal to uµ and
into uµ . The projection tensors along or perpendicular to the tangent vector uµ read

U µ

ν =−uµuν and hµν = gµν +uµuν . (1.31)

We are interested in how the flow changes. Therefore, we split the covariant derivative
of uµ into

∇µuν =−uµ u̇ν +
1
3

Θhµν +σµν +ωµν . (1.32)

Θ = ∇µuµ represents the increase or decrease in size and is regarded as expansion. σµν

is the traceless symmetric part of the ∇µuν and represents the shear. The antisymmetric
part ωµν is called vorticity and denotes the rotation of the fluid.

The Raychaudhuri equation denotes the evolution equation for the expansion Θ:

Θ̇ =−1
3

Θ
2 + u̇µ u̇µ +2

(
ω

2 −σ
2)+ ∇̄µ u̇µ −Rµνuµuν , (1.33)

where ω =
√

1
2ωµνωµν and σ =

√
1
2σµνσ µν are the amplitudes of the vorticity and

shear, respectively. The covariant derivative ∇̄µ denotes the derivative projected on the
hypersurface Σt .

If the vorticity ω vanishes, then hµν is effectively the metric of the 3-dimensional
hypersurface Σt orthogonal to uµ , i.e. all local subspaces Ht merge to form Σt .

1.3.3 Inhomogeneous universe

The homogeneous and isotropic FLRW-models give a very good description of the
averaged universe on very large scales. If we look at smaller scales, however, structures
such as galaxies, galaxy clusters, voids, ... provide small over- and under-densities
and therefore sligthly break the homogeneity and isotropy. As long as the deviation
in the density is small, it is an apt description of the over- and under-densities to use
a perturbative approach. We split quantities into their FLRW background value and a

12comoving with the fluid flow
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perturbation,

Q(t,xµ) = Q̄(t)+δQ
(
t,xi) . (1.34)

The bar denotes the background contribution. Because the background is spatially
homogeneous and isotropic, the quantity Q̄ can only be dependent on the time t. The
perturbation δQ however can be dependent t and xi. Mathematically, in equation (1.34)
the background quantity Q̄(t) and the physical quantity Q(t,xµ) are quantities from
different manifolds. Hence, we need to define a map between the manifolds. There are
different maps from different points on the background manifold to the same point on
the physical manifold. By choosing a specific map, we choose a gauge. If we change
map, we are changing the gauge. In section 2.1 we provide a detailed discussion about
perturbation theory and gauges.

1.3.4 The redshift z

Hubble’s observations on the distance of other galaxies and eventually the formulation of
Hubble’s law are considered the beginning of modern cosmology. Hubble’s observations
displayed that the wavelength of the radiation submitted by a galaxy was lengthened and
therefore appeared "reddened". This lead to the conclusion that the emitted radiation is
experiencing a Doppler shift and as a consequence that the observed objects are moving
away from the observer. The redshift z denotes the ratio of the emitted and observed
wavelength of a light ray:

z ≡ λO −λe

λe
⇔ 1+ z =

λO

λe
, (1.35)

where λO refers to the wavelenth measured at the observer O and λe to the wavelength
emitted at the source [46].

For FLRW models, the relation (1.35) simplifies to

1+ z =
a(tO)
a(te)

(1.36)

with tO and te being the time of observation and the time of emission, respectively.
Equation (1.36) relates the physical time t to the redshift z. The physical time t is not a
measurable quantity, but the redshift z is. In chapter 4, we therefore find it convenient
to perform a change of the x0 coordinate and display quantities in terms of the redshift z

instead of the conformal time τ .
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1.4 Weak gravitational lensing

Gravitational lensing is a general-relativistic effect that distorts images of galaxies.
It follows from the equivalence principle that light is bent by gravitational masses,
which consequently distorts the galaxy images along the line of sight. While strong
gravitational lensing leads to visible distortions such as arc-like images of galaxies, weak
gravitational lensing causes distortions small enough that they can only be detected
statistically. This effect is regarded as the cosmic shear [20, 61, 82] and has been
first detected in the early 2000 [7, 62, 108, 116]. In this thesis, I will focus on weak
gravitational lensing. In chapter 4, we investigate relativistic effects in weak lensing
using the post-Friedmann approach, which is a post-Newtonian like approximation
scheme. Chapter 4 is based on the paper in preparation [54]. The statistical analysis
of weak lensing reveals distortions alignements referring to the matter distribution in
the universe. With a detailed map of the distribution of matter we may be able to to
constrain modified gravity or the equation of state of dark energy. Furthermore, weak
lensing promises to be a valuable tool to test GR on large scales.

As mentioned before this effect can only be measured statistically. The distortion is
small enough that it is impossible to detect the lensing effect on a single object without
the knowledge of the unlensed image. But if we take a sample of multiple galaxies into
account, we are able to detect a deviation from the mean value of shape, orientation, and
magnitude on the galaxy images. The different types of alterations of the galaxy images
are categorised as convergence κ , shear γ , and rotation ω . The convergence κ refers to
the increase or decrease in size leaving the shape of the galaxy unchanged. The shear γ

alters the shape of the image while the rotation ω rotates the images without changing
the size or shape. It is convenient to introduce the reduced shear g which refers to
a change in the shape of the image without changing the size. In the mathematical
analysis, the convergence κ , the shear γ , and the rotation ω are the components of the
irreducible decomposition of the Jacobi map Da

b, which is a 2×2 matrix. A detailed
derivation of Da

b, where we start with the geodesic deviation equation and eventually
derive the Sachs equation involving Da

b, can be found in chapter 4 in section 4.2.
Let us assume two neighbouring geodesics xµ(λ ) and yµ(λ ) with xµ(λ ) = yµ(λ )+

ξ µ . The Jacobi map Da
b connects the vectorial angle between two neighbouring

geodesics at the observer θ a
O to the deviation vector ξ a, which has been projected onto

the spatial 2D surface orthogonal to the spatial tangent vector of the geodesic:

ξ
a
n = Da

bθ
b
O. (1.37)
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See also (4.5) in chapter 4 section 4.2. We decompose Da
b in the following way:

Dab =
1
2
Dc

cδab +

(
D(ab)−

1
2
Dc

cδab

)
+D[ab] (1.38)

=(1−κ)

(
1 0
0 1

)
+

(
−γ1 −γ2

−γ2 γ1

)
+

(
0 −ω

ω 0

)
(1.39)

with the round and box brackets denoting the symmetrisation and antisymmetrisation
of Dab, respectively. The first, second, and third term on the r.h.s. of equation (1.38)
refers to the convergence κ , the shear γ , and the rotation ω , respectively, in (1.39). In
chapter 4 we compute the convergence κ , the shear γ , and the rotation ω using the
post-Friedmann approximation scheme.



Chapter 2

Relativistic approximations schemes in
cosmology

The homogeneous and isotropic FLRW models describe the universe very well on large
enough scales. If, however, we go to smaller scales, spatial inhomoegneities such as
galaxy clusters and voids arise. Due to the complexity of the EFE, there are few exact
solution for a spatially inhomogeneous universe and these are in any case not realistic.
Therefore, for scales where the density fluctuations are small but not negligible, it is
convenient to use a perturbative approach to describe the complex distribution of matter
and energy, and find approximate solutions for the EFE. The concept of the perturbative
approach is to consider a homogeneous background model on which we introduce
perturbations to describe an inhomogeneous universe.

2.1 Perturbation theory

In this section, I will review perturbation theory and gauge transformations [76, 29, 64,
8, 75].

2.1.1 Background and Inhomogeneities

We split space-time into a background, which is a FRLW metric, and perturbations. The
FLRW-metric reads

ds2 =−dt2 +a2(t)
(

dr2

1− kr2 + r2dΩ
2
)
= a2(τ)

(
−dτ

2 +
dr2

1− kr2 + r2dΩ
2
)
, (2.1)

where τ denotes the conformal time. It is a homogeneous and isotropic solution of
the Einstein-field-equations incorporating the expansion of the Universe described by
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the scale factor a(t) and the expansion rate H = ȧ
a . It is assumed that it approximately

describes our observable Universe on large enough scales. By introducing inhomo-
geneities we may get an understanding of the formation and evolution on large scales.
The factor k can take on the values k =±1, 0 and indicates the spatial curvature. k =−1,
k = 0, and k =+1 denote a hyperbolic, flat, and spherical spacetime, respectively. In
this work, we assume k = 0.

We will denote quantities that refer to the background with a bar. Due to the
spatial homogeneity and isotropy of the background, quantities corresponding to the
background are solely depending on the cosmic time. The inhomogeneities are small
deviations from the FLRW-metric with which physical quantities are described. For
example, the perturbed density reads ρ(τ,xi) = ρ̄(τ)+δρ(τ,xi) with ρ̄ denoting the
background density and δρ being the perturbation. It is convenient to introduce the den-
sity contrast δ , which is a combination of the density perturbation and the background
density: ρ(τ,xi) = ρ̄(τ)

(
1+δ (τ,xi)

)
.

We can split any tensorial quantity into a background and a perturbation:

T
(
τ,xi)= T̄(τ)+δT

(
τ,xi) , (2.2)

where T̄ and δT denote the part corresponding to the background and inhomogeneities,
respectively.
The perturbation can be expanded as a power series [76]

δT =
∞

∑
n=1

εn

n!
δTn. (2.3)

Furthermore, we perform a standard (3+1) split, in which the space-time is decomposed
into spatial hypersurfaces of constant time orthogonal to a timelike vector. Thereby,
we are able to split any quantity into scalar and vector, or scalar, vector, and tensor
components. The perturbed metric gµν = ḡµν +δgµν reads

ds2 = a2(τ)
[
−(1+2φ)dτ

2 +Bidxidτ +(δi j +2Ci j)dxidx j] (2.4)

with

Bi = B,i −Si with and Si
,i = 0, (2.5)

and Ci j =−ψδi j +E,i j +F(i, j)+
1
2

hi j, (2.6)

with hi j
,i = 0, and hi

i = 0. (2.7)
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φ , B, ψ , and E are scalar metric perturbations, Si, Fi vector perturbations and hi j are
tensor perturbations. As mentioned before, the metric tensor comprises 10 independent
functions, which are distributed in the following way: the tensor perturbation hi j is a
symmetric, transverse, and traceless tensor and has therefore 2 independent compo-
nents1. The vector potentials Fi and Si are both divergence-free and have therefore 4
independent components in total2. Then, there are the four remaining scalar potentials
φ , B, ψ , and E. Thus, in total we have 10 independent functions, which matches the
amount of components of the metric gµν .

In the Introduction we discussed a (local) decomposition of space-time into 3
dimensional subspace Ht orthogonal to a time-like vector field uµ . Here we will use
the (3+1) split, where we define a unit time-like vector field, which is orthogonal to the
constant τ-slices:

nµ ∝
∂τ

∂xµ
. (2.8)

For the FLRW background, nµ coincides with the 4-velocity of matter, usually denotes
as uα .
Taking the covariant derivative of nµ yields

nµ:ν =
1
3

θ̂ P̂µν + σ̂µν − âµnν , (2.9)

where nµ has been decomposed into the expansion rate θ̂ = nµ

:µ , the projection tensor
P̂µν = gµν +nµnν , the shear σ̂µν = 1

2 P̂ α
µ P̂ β

ν

(
nα:β +nβ :α

)
− 1

3 θ̂ P̂µν , and the accelera-
tion âµ = nµ:νnν . By construction, nα is hypersurface orthogonal and so is vorticity
free. In the background, we have θ̂ = 3H. Note that the hatted quantities are defined via
the vector field nµ . It is also possible to define these quantities, e.g. a expansion rate θ ,
using the matter four-velocity uµ as was discussed in the Introduction in equation (1.32).
In the case of a vanishing vorticity, the projection tensor becomes the 3 dimensional
metric of the slice. Then, the extrinsic curvature is given by the Lie derivative of the
projection tensor P̂µν along the vector field nµ :

Kµν =
1
2
LnP̂µν = P̂ λ

ν nµ;λ =
1
3

θ̂ P̂µν + σ̂µν . (2.10)

2.1.2 Gauge Transformations

In the perturbative approach, we assume that our physical, inhomogeneous universe
can be split into a fictitious background space-time and perturbations. Thus, in order

1hi j: 9 components - 3 (symmetric) - 3 (transverse) - 1 ( trace-less)=2
2vector potentials Fi and Si: 2 × 3 components - (1+1)(divergence-free)=4
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to define perturbations, we need to choose a correspondence between the background
and the physical universe. In terms of differential geometry, we have two manifolds,
the idealised background and the physical space-time, which are connected by the
chosen correspondence. A point on the physical space-time manifold can be connected
to different points on the background manifold via different correspondences. Each
correspondence refers to a gauge. If we want to change from one correspondence to
another, we perform a gauge transformation.

“A gauge transformation induces a coordinate transformation in the physical space-
time, but it also changes the point in the background space-time corresponding to a
given point in the physical space-time” ([8], p. 1882)

p

w

q
M̄

Mε
φε

ψε
Φε

Figure 2.1 The gauge transformation Φε = φ−ε ◦ψε .

Let us assume that M̄ de-
notes a 4-manifold representing
the FLRW-background and Mε

4-manifolds representing ε per-
turbed space-times. The mani-
fold Mε is associated with the
physical, inhomogeneous space-
time.

Let the points p ∈ M̄ and
q ∈ Mε . We choose a vector field X , which generates a one-parameter group of
diffeomorphisms φε : R×M̄ → Mε . Thus, the correspondence φε links the point p

with q. Furthermore, we assign to q and p the same coordinates xµ . If, however, we
choose a different vector field Y (generating a diffeomorphism ψε : M̄ → Mε ), the
point q will be identified with another point w ∈ M̄ . The gauge transformation Φε

denotes the change from X to Y (Φε = φ−ε ◦ψε ), and thereby the transformation from
p to w, leaving q unchanged.

There are two different approaches to gauge transformations. The procedure men-
tioned above is regarded as the active approach. The passive approach compares
tensorial quantities in two different coordinate systems by evaluating these quantities at
the same point in the background, e.g. w.

The gauge transformation of any tensorial quantity T is given by

T̃ = Φ∗εT = (φ−ε ◦ψε)∗T = ψ∗ε ◦φ∗−εT = eεLψY e−εLφX T, (2.11)

which can be expressed using the Baker-Hausdorff formula (X and Y do, in general,
not commute) as Φ∗εT = exp

(
∑

∞
n=1

εn

n! Lξn

)
T with ξ1 = Y −X , ξ2 = [X ,Y ] , . . . and
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with vector fields ξ
µ
n being functions of X and Y . Hence, we can express the gauge

transforation (2.11) for an arbitrary tensorial quantity T as

T̃ (w) = exp

(
∞

∑
n=1

εn

n!
Lξn

)
T (p) (2.12)

with exp
(

∑
∞
n=1

εn

n! Lξn

)
= 1+∑

∞
n=1

εn

n! Lξn +
1
2 ∑

∞
n=1 ∑

∞
m=1

εn

n!
εm

m! LξnLξm + . . . .
Equation (2.12) is the (active) gauge transformation with ξn generators. We specify

the vector field as ξ µ =
(
α,β ,i + γ i). Thus, the choice of α determines the time slicing,

and β and γ i the threading. We relate two coordinate systems xµ and x̃µ under an
infinitesimal transformation via (2.12) and obtain:3

x̃µ(w) =e∑
∞
n=1

εn
n! ξ (n)ν ∂

∂xν |pxµ(p) (2.13)

=xµ(p)+ εξ
(1)µ(p)+

1
2

ε
2
[
ξ
(2)µ(p)+ξ

(1)µ
,ν(x

λ (p))ξ (1)ν(xλ (p))
]
+ . . .

(2.14)

In the passive approach, we choose x̃µ(w) = xµ(p). Via (2.14), we obtain

x̃µ(w) =xµ(p) (2.15)

=xµ(w)− εξ
(1)µ(xν(p))︸ ︷︷ ︸

ε(ξ (1)µ (xν (w))−εξ (1)ν (xλ p))

−1
2

ε
2
[
ξ
(2)µ(p)+ξ

(1)µ
,ν(x

λ (p))ξ (1)ν(xλ (p))
]
+ . . .

(2.16)

=xµ(w)− εξ
(1)µ(w)− ε

2 1
2

[
ξ
(2)µ(w)−ξ

(1)µ
,ν(x

λ (w))ξ (1)ν(xλ (w))
]
+ . . .

(2.17)

evaluated on the same point w. In practice this results in the gauge transformation
formula for the perturbation of tensors.

For example the density ρ(xµ) is a scalar and therefore invariant under coordi-
nate transformations, i.e. ρ̃ (x̃µ) = ρ (xµ). However, it is not invariant under a gauge
transformation. At first order, we have x̃µ = xµ −ξ (1)µ (see (2.17)) and, thus,

ρ̃ (x̃µ) =ρ (xµ) (2.18)

=ρ̃ (xµ −ξ
µ) (2.19)

=ρ̃ (xµ)− ρ̃,λ ξ
λ (2.20)

3Note that the Lie-derivative on a scalar quantity is Lξn = ξ ν
n

∂

∂xν and that ξ
µ
n = ξ (n)µ
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= ˜̄ρ +δ ρ̃
(1)− ρ̄

′
α
(1) (2.21)

=ρ̄ +δρ
(1) (2.22)

⇒ δ ρ̃
(1) =δρ

(1)+ ρ̄
′
α
(1) (2.23)

with ˜̄ρ (xµ) = ρ̄ (xµ).
There are several ways to deal with the coordinate dependence of perturbations

regarding gauge transformations. One of which is to define gauge-invariant perturbations
as combinations of gauge-dependent components, e.g. the Bardeen potentials [8].
Another possibility, referred to as gauge fixing, is to use the freedom to choose the
functions α , β , and γ i such that for example two scalar perturbations and one vector
perturbation of the metric perturbations equal zero. A third possibility is to directly use
the covariant perturbations, i.e. tensors that vanish in the background and are therefore
gauge invariant (see Stewart-Walker Lemma in [99]).

2.1.3 Gauges

Throughout this work, we will mostly use the synchronous-comoving gauge in chapter
3 and the Poisson gauge in chapter 4. In this subsection, we will introduce both gauges
up to first order. First, we impose the gauge condition and then we choose α , β , and γ i

accordingly.

Poisson Gauge

In this gauge, we wish to eliminate the shear term σ in eq. (2.9), thus we have to
choose α so that the shear of the normal nµ in this gauge σ̃ equals zero. The second
condition is to choose β1 such that the coordinate system is orthogonal (B̃1 = 0, and,
hence, Ẽ1 = 0). 4

Hence, the scalar metric perturbations transform from a arbitrary gauge to the longitudi-
nal gauge (quantities with tilde and subscript l) as follows

φ̃1l = φ1 +H (B1 −E ′
1)+(B1 −E ′

1)
′, (2.24)

ψ̃1l = ψ1 −H (B1 −E ′
1) (2.25)

4The gauge transformation behaviour of σ , E, and B is σ̃1 = σ1 +α1, Ẽ1 = E1 + β1, and B̃1 =
B1 −α1 +β ′

1, respectively. Further, σ1 = E ′
1 −B1. We choose α1 =−σ1 =−E ′

1 +B1 and β1 =−E1.
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Note that (2.24) and (2.25) coincide with the gauge invariant Bardeen potentials. The
other scalar perturbations read

δ ρ̃1l = δρ +ρ
′
0
(
B1 −E ′

1
)

(2.26)

ṽ1l = v1 +E ′
1 (2.27)

Synchronous Gauges

The synchronous gauge requires φ̃ = B̃i = 0.
Thus, for first order we obtain

α1s =−1
a

(∫
aφ1dτ −C1α (xa)

)
, (2.28)

β1s =
∫

(α1s −B1)dτ +C1β (x
a) , (2.29)

γ
i
1s =

∫
Si

1dτ +Ciγ i

1 (xa) . (2.30)

The scalar perturbations become

ψ̃1s = ψ +1+
H

a

(∫
aφ +1dτ −C(xi)

)
(2.31)

σ̃1s = σ1 +α1 −B1 (2.32)

δ ρ̃1s = δρ1 −
ρ ′

0
a

(∫
aφ1dτ −C1(xi)

)
(2.33)

ṽ1 = v1s +B1 −α1 (2.34)

Through the integration constants, we obtain an additional gauge freedom that needs to
be fixed by assuming initial conditions, e.g. that the initial velocity of cold dark matter
equals zero.

2.2 Standard Perturbation Theory

In this section we will follow the work of [18, 46, 85, 76, 64]. Previously, we have
argued that we are looking at scales at which the fluid description is an appropriate
approximation. The scales we look at with SPT are well within fluid description validity.
In SPT, we assume that the perturbations are very small, e.g. δ ≪ ρ̄ . These small
deviations from the homogeneous and isotropic background determine the growth
of structure through gravitational collapse and eventually lead to the inhomogeneous
structure we observe on smaller scales. In SPT, we perturb the following quantities: the
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metric potentials φ , ψ , B, E, Si, Fi, hi j, the velocity uµ , the density ρ , and the pressure
P. In this thesis, we will only consider pressureless fluid such as dust and we will
therefore set P = 0 from now on.

2.2.1 The metric

The general line element using conformal time τ with the metric perturbations men-
tioned above reads

ds2 = a2(τ)
{
−(1+2φ)dτ

2 +Bidτdxi +
[
(1−2ψ)δi j +2E,i j +2F(i, j)+hi j

]
dxidx j} .

(2.35)

Within the regime of validity of SPT, perturbations are assumed to be very small. We
split each quantity into different orders, whereby each order is sourced by the previous
one. So is for example the second order of a quantity A sourced by the square of its
first order contributions (A(1))2 and other quantities. It follows that A(1) > A(2) and

∑
∞
n=1 A(n) = δA.

The metric perturbations up to second order read [76]

δg00 =−2a2
φ =−2a2

(
φ
(1)+

1
2

φ
(2)+ . . .

)
(2.36)

δg0i =a2 (B,i +Si) = a2
(

B(1)
,i +

1
2

B(2)
,i +S(1)i +

1
2

S(2)i + . . .

)
(2.37)

δgi j =a2
(
−ψδi j +E,i j +F(i, j)+

1
2

hi j

)
(2.38)

=a2
[
−
(

ψ
(1)+

1
2

ψ
(2)
)

δi j +E(1)
,i j +

1
2

E(2)
,i j +F(1)

(i, j)+
1
2

F(2)
(i, j)+

1
2

h(1)i j +
1
4

h(2)i j + . . .

]
(2.39)

Via gαβ gβγ = δ α
γ we can compute the contravariant metric tensor up to second order

[76]:

δg00 =−a−2
[
1−2φ

(1)−φ
(2)+4φ

(1)2 −B(1)
k B(1)k

]
, (2.40)

δg0i =a−2
[

B(1)i +
1
2

B(2)i −2φ
(1)B(1)i −2B(1)

k C(1)ki
]
, (2.41)

δgi j =a−2
[
δ

i j
(

1+2ψ
(1)−ψ

(2)+4ψ
(1)2
)
−2E(1),i j −E(2),i j +4E(1),ikE(1), j

,k +

−F(1)(i, j)−F(2)(i, j)+4F(1)(i,k)F(1)
(k,m)

δ
m j −h(1)i j − 1

2
h(2)i j +h(1)ikh(1) j

k +

−8ψ
(1)E(1),i j −8ψ

(1)F(1)(i, j)−4ψ
(1)h(1)i j +8E(1),ikF(1)

(k,m)
δ

m j +4E(1),ikh j
k+
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+4F(1)(i,k)h j
k −B(1)iB(1) j

]
. (2.42)

The 4-veloctiy of matter uµ is a perturbed quantity and via the constraint uµuµ =−1
we can compute both co- and contravariant components [76]:

u0 =
1
a

[
1−φ

(1)− 1
2

φ
(2)+

3
2

φ
(1)2 +

1
2

v(1)k v(1)k + v(1)k B(1)k
]

(2.43)

ui =
1
a

(
v(1)i +

1
2

v(2)i
)

(2.44)

u0 =−a
[

1+φ
(1)+

1
2

φ
(2)− 1

2
φ
(1)2 +

1
2

v(1)k v(1)k
]

(2.45)

ui =a
[

v(1)i +B(1)
i +

1
2

(
v(2)i +B(2)

i

)
−φ

(1)B(1)
i −2ψ

(1)
ik v(1)k +2E(1)

,ik v(1)k+ (2.46)

+2F(1)
(i,k)v

(1)k +h(1)ik v(1)k
]
. (2.47)

Next we turn to the energy-momentum tensor Tµν of a single fluid5 which is defined as

Tµν =(ρ +P)uµuν +Pgµν +πµν , (2.48)

where πµν is the anisotropic stess tensor. In the next chapters, we will only consider
pressureless, irrotational fluids. Therefore, we will set in this section the pressure P and
the anisotropic stress tensor πµν to zero. For a full analysis see [76, 64]. It is standard to
introduce the density contrast δ with ρ = ρ̄ (1+δ ). Here we will use for the derivation
of the EFE in SPT with

ρ =ρ̄ +ρ
(1)+

1
2

ρ
(2). (2.49)

Via T µ

ν uν =−ρuµ we can compute the perturbations of the EM tensor Tµν :

T 0
0 =− ρ̄ −ρ

(1)− 1
2

ρ
(2)− ρ̄v(1)k

(
v(1)k +B(1)k

)
(2.50)

T 0
i =ρ̄

(
v(1)i +B(1)

i

)
+

1
2

ρ̄

[
v(2)i +B(2)

i +4v(1)i

(
−ψ

(1)
δik +E(1)

,ik +F(1)
(i,k)+

1
2

h(1)ik

)
+

−2φ
(1)
(

v(1)i +2B(1)
i

)]
+ρ

(1)
(

v(1)i +B(1)
i

)
, (2.51)

T i
j =ρ̄v(1)i

(
v(1)j +B(1)

j

)
. (2.52)

5Note that we previously considers the EMT of a perfect fluid and thus πµν = 0
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2.2.2 The Einstein field equations

With the metric perturbations (2.36) - (2.42) and the perturbed energy-momentum tensor
(2.50) - (2.52) we can formulate the EFE. Here we present the field equations in Poisson
gauge6 only up to first order (only scalar perturbations)[76]:

G0
0 +Λ =−κT 0

0 : (2.53)

H2 +
2
3

∇2ψ(1)

a2 +2Hψ̇
(1)−2H2

φ
(1) =−1

3
κ

(
ρ̄ +ρ

(1)
)
+

1
3

Λ, (2.54)

G j
i +Λ =−κT j

i : (2.55)

1
a2

(
φ
(1)−ψ

(1)
), j

,i
+δ

j
i

[
3H2 +2Ḣ − 1

a2 ∇
2
(

φ
(1)−ψ

(1)
)
+

−2H
(

φ̇
(1)+3Hψ̇

(1)
)
−
(
4Ḣ +2H2)

φ
(1)+2ψ̈

(1)
]
= 0. (2.56)

2.3 Gradient expansion

The gradient expansion is an approximation in which we expand in terms of spatial
gradients. It is valid on scales where the spatial gradient is small compared to the time
derivative [35, 93, 41, 88, 27].

We choose synchronous comoving coordinates and denote the metric as

ds2 =−dt2 + γi j(t,xi)dxidx j. (2.57)

In a spatially homogeneous and isotropic space-time, γi j would be a function of the
time t and a2 = γ1/3 with γ = det(γi j) and γ̇i j ∼ Hγi j. Let us assume that at each point
we can define a local scale factor â for which we define a local pseudo-Hubble time
Ĥ−1 with â2 ≡ γ̂1/3 and Ĥ ≡ ˙̂a/â. Then, the time derivative of the spatial metric yields
˙̂γi j ∼ Ĥγi j, where the pseudo-Hubble time denotes the characteristic time period in
which the metric evolves at each point. The spatial derivative of the spatial metric γ̂i j

denotes the comoving length L̂ at which the metric varies with

γ̂i j,k ∼ L̂−1
γ̂i j. (2.58)

6We want to compare the result to the post-Friedmann approach in the latter subsection. In this work,
we only consider the post-Friedmann approximation in Poisson gauge
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We now assume that there exists a reference frame, in which all spatial gradients are
very small compared to the time derivative:

1
â

γ̂i j,k ≪ ˙̂γi j. (2.59)

It follows that7

âL̂ ≫ Ĥ−1. (2.60)

Thus, the scales at which the spatial metric varies is much bigger than the (pseudo-
)Hubble radius. This approximation is regarded as the long wavelength approximation.
Solving the EFE while neglecting the spatial derivatives offers a possibility to compute
the dynamics on scales beyond the Hubble radius. The gradient expansion uses the
long wavelength approximation as the first order in its expansion. The EFE are solved
iteratively and the order of the expansion is determined by the order of spatial gradients
while the condition (2.59) holds.

2.3.1 The Einstein field equations with the gradient expansion

In order to solve the EFE we need to determine the EMT. As mentioned before, the gradi-
ent expansion is well within the scales where the fluid description is valid. Furthermore,
we assume a pressureless fluid such as dust. Then, the EMT becomes

Tµν = ρuµuν . (2.61)

The EFE using (2.57) and (2.61) yield [35]:

Ri
γij j +

1
2
√

γ

∂

∂ t

(√
γKi

j
)
=

2K̇ +Kl
kKk

l
−4−8ukuk

[
2uiu j +δ

i
j
]

(2.62)

κρ =
2K̇ +Kl

kKk
l

−2−4ukuk
(2.63)

κρui =− 1

2
√

1+ukuk

(
K j

i; j −K,i

)
(2.64)

7Note that the comoving Hubble radius 1/(Ha) varies with time and therefore this assumtion is not
valid at all times.
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Choosing a synchronous comoving frame, the extrinsic curvature tensor Ki j coincides
with the time derivative of the spatial metrix γi j

8. The scalar K denotes the trace of the
extrinsic curvature K = Ki

i.
At first order, we neglect the spatial Ricci tensor Ri

γij j because its components are
of second order in the gradients. Equation (2.64) shows that the velocity ui is at least
a first order quantity in the gradient expansion and we can therefore neglect all terms
involving the product uiu j. The traceless part of equation (2.62) becomes

1
2
√

γ

∂

∂ t

[
√

γ

(
Ki

j −
1
3

Kδ
i
j

)]
= 0. (2.65)

We integrate equation (2.65) and obtain

Ki
j =

1
3

Kδ
i
j +

1
√

γ
Si

j (2.66)

with Si
j being a time-independent, traceless tensor, which denotes a local anisotropy.

Following [35], we define a function A with A = γ1/3. The scalar K becomes K = 3Ȧ/A

and we can formulate an evolution equation for A by taking the trace of (2.62) at first
order:

δ
j
i
1
2

A−3/2 ∂

∂ t

(
A3/2Ki

j

)
=−

[
6

∂

∂ t
Ȧ
A
+3
(

Ȧ
A

)2

+A−3S2

]
1
4

(2.67)

3
(

Ȧ
A

)2

+2
∂

∂ t
Ȧ
A
=−6

∂

∂ t
Ȧ
A
−3
(

Ȧ
A

)2

−A−3S2 (2.68)

0 =8
∂

∂ t
Ȧ
A
+6
(

Ȧ
A

)2

+A−3S2 (2.69)

with Si
jS

j
i = S2.

At sufficiently late times or equally sufficiently large scales, the local anisotropy is
assumed to be negligible or very small. Thus, in equation (2.66) the first term on the
r.h.s. will always dominate over the second term and we will therefore assume Si

j ≈ 0.
With this assumption equation (2.66) yields

Ki
j =

1
3

Kδ
i
j =

Ȧ
A

δ
i
j (2.70)

⇒ γi j =Awi j, (2.71)

8The extrinsic curvature Kµν is defined via the Lie derivative along the unit normal vector nµ ,
which coincides with the 4-velocity uµ in the synchronous comoving gauge: Kµν ≡ 1

2Lnhµν with
hµν = gµν −nµ nν .
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where wi j is a time-independent.
For the first order in the gradient expansion, we can solve (2.69) and obtain:

A(t)(1) = t4/3. (2.72)

At this order, the energy density and the peculiar velocity yield

ρ
(1) =

4
3t2 , and u(1)i = 0. (2.73)

The next step is to solve the EFE (2.62), (2.63), and (2.64) iteratively with

γi j = γ
(1)
i j + γ

(3)
i j + . . . . (2.74)

The solution of any order n can be written as

γi j = t4/3

[
wi j +

n

∑
p=1

t−p 2
3C(p)

i j

]
(2.75)

with C(p)
i j being a spatial tensors of order O

(
∇2p).

In summary, the gradient expansion is an approximation scheme with a space-time
as background (or zeroth order), where the spatial gradients are zero. This is e.g. a
homogenous and isotropic FLRW space–time. The order of non-zero spatial gradients
refers to the magnitude of anisotropy in a space-time.

2.4 Post-Friedmann approximation scheme

The post-Friedmann (PF) formalism is a post-Minkowskian (weak field) type approx-
imation scheme in a cosmological setting [80]. The aim of the formalism is to unite
perturbative schemes of all cosmological scales, from small scales, where the dynamics
are well approximated by Newtonian approximations, to the largest scales, at which
relativistic effects are taken into account. We expand in inverse powers of the speed
of light c and assume a ΛCDM background and a fluid description for matter. When
linearised, this formalism recovers the linear general-relativistic perturbation theory and
can therefore be used to describe structure-formation on very large scales. At leading
order, however, the post-Friedmann formalism yields nonlinear Newtonian physics. In
the Newtonian regime, when derived consistently from the Einstein field equations, one
recovers a metric vector potential additionally to the Newtonian scalar potentials. It is
sourced by Newtonian quantities and has been computed from N-body simulations in
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[103]. The PF formalism differs from post-Newtonian approximation schemes [86] in
two ways: firstly, we choose a ΛCDM background instead of a Minkowski background,
and secondly, the only the peculiar velocities are assumed to be small. The latter
assumption ensures that the approach is valid on larger scales. Other cosmological
applications of a post-Minkowskian type approximations are e.g. [2, 94, 53].

In this thesis, we look at effects derived from the vector potential such as grav-
imagnetic effects. Examples in other contexts are the geodesic precession and the
Thirring-Lense effect (frame-dragging). The latter effect has been measured in the Solar
System by Gravity Probe B [48]. The main incentives in developing this formalism
are applications such as the calculation of the vector potential and the extension of
Newtonian approximations to include relativistic effects.

2.4.1 The metric

The metric of the PF formalism in the Poisson gauge reads [80]

g00 =− e−
2UN
c2 − 4UP

c4 +O

(
1
c6

)
, (2.76)

=−
[

1− 2UN

c2 +
1
c4

(
2U2

N −4UP
)]

+O

(
1
c6

)
(2.77)

g0i =− a
c3 BN

i − a
c5 BP

i +O

(
1
c7

)
, (2.78)

gi j =e
2VN
c2 +

4VP
c4 δi j +

1
c4 hi j +O

(
1
c6

)
(2.79)

=a2
[(

1+
2VN

c2 +
1
c4

(
2V 2

N +4VP
))

δi j +
1
c4 hi j

]
+O

(
1
c6

)
. (2.80)

The subscripts N and P of the metric potentials refer to Newtonian and post-Friedmann
contributions, respectively. In Poisson gauge, the vector fields BN

i and BP
i are diver-

genceless and the tensor field hi j is transverse and trace-free. If we compare the metric
(2.77) - (2.80) to the metric in SPT (2.36) - (2.39) we see that the first two orders of SPT
correspond to the orders up to O

(
1
c5

)
in the PF representation. In particular, the PF

orders O
(

1
c2

)
and O

(
1
c3

)
to some extend correspond to the first order in SPT, while

the order O
(

1
c4

)
and O

(
1
c5

)
to the second order in SPT. Furthermore, we see that the

tensor perturbation hi j occurs only at higher orders in the PF approximation, while in
SPT the tensor modes contribute to all orders. The contravariant expression for the
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metric (2.77) - (2.80) can be derived using gµνgνκ = δ κ
µ :

g0νgν0 =g00g00 +g0igi0 = 1 (2.81)

=− e−
2UN
c2 − 4UP

c4 g00 +
[
− a

c3 BN
i − a

c5 BP
i

]
g0i = 1 (2.82)

⇒ g00 =− e
2UN
c2 +

4UP
c4 + · · ·+ 1

c6 BN
i BNi + · · ·=−e

2UN
c2 +

4UP
c4 +O

(
1
c5

)
(2.83)

g0i =
a
c3 BN

i +
a
c5 BP

i +O

(
1
c6

)
and (2.84)

giµgµ j =gi0g0 j +gikgk j = δ
j

i (2.85)

1
c6 BN

i BN j + · · ·+
(

e
2VN
c2 +

4VP
c4 δi j +

1
c4 hi j

)
g jk = δ

j
i (2.86)

⇒ gi j =e−
2VN
c2 − 4VP

c4 δ
i j − 1

c4 hi j +O

(
1
c5

)
(2.87)

Note that in comparison with the contravariant metric using SPT (2.40) - (2.42), we
see that there are no vector contributions in the contravariant metric up to the order
considered in this work. Because the vector field BN

i is of order O
(

1
c3

)
and we only

consider perturbations up to order O
(

1
c4

)
, any squared term of the vector potential will

be neglected. In SPT on the other hand, the vector and tensor potential have first order
contributions and therefore any squared term will contribute to the second order.

Validity on All Scales

The PF formalism is an approximation scheme that is valid on both small and large
scales. It differs from traditional post-Newtonian (PN) approximations in the following
way: the PN formalism is derived from the post-Minkowski approximation with the
assumption that velocities are small v/c ≪ 1 [115, 87]. The PF approximation has a
FLRW background instead of a Minkowskian and only peculiar velocities are assumed
to be small vp/c ≪ 1. The latter assumption does not restrict the validity of the
approximation to small scales: let us assume that xi are comoving, spatial coordinates,
then the physical coordinate of a fluid element is ri = axi. The time derivative of ri

yields ṙi = Hri + vi, which is the sum the Hubble flow and the deviation from it, i.e.
the peculiar velocity. If we assume that |ṙi| ≪ c, our approach would only be valid on
scales much smaller than the Hubble horizon. However, if we only assume that vi

p ≪ c,
we are not restricted to specific scales.
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2.4.2 Einstein field equations

In order to formulate the EFE, we introduce and compute the 4-velocity uµ and the
EM tensor T µν [80]. Note that in the previous chapters we have set c = 1. In the PF
approach, we expand in terms of the inverse of the speed of light c and therefore will
not set c equals to one. Furthermore, every derivative w.r.t. the physical time t or the
conformal time τ will add a factor of 1/c:

d
dx0 =

d
cdτ

with x0 = cτ. (2.88)

The 4-velocity uµ is defined as

uµ ≡ dxµ

cdτ
. (2.89)

We can express the spatial part of (2.89) in terms of u0 via

ui =
dxi

cdt
dt
dτ

=
vi

ca
u0 (2.90)

with vi ≡ adxi

dt being the physical peculiar velocity. With gµνuµuν =−1 we obtain the
remaining co- and contravariant components of the 4-velocity as follows [80]:

u0 =1+
1
c2

(
UN +

1
2

v2
)
+

1
c4

(
1
2
+2UP + v2VN +

3
2

v2UN +
3
8

v4 −BN
i vi
)

(2.91)

ui =
avi

c
+

a
c3

(
−BN

i + viUN +2viVN +
1
2

viv2
)

(2.92)

u0 =−1+
1
c2

(
UN − 1

2
v2
)
+

1
c4

(
2UP −

1
2

U2
N − 1

2
v2UN − v2VN − 3

8
v4
)
. (2.93)

Analogously to subsection 2.2 we compute the components of the EM tensor assuming
a pressureless, irrotational fluid with T µ

ν = c2ρuµuν [80]:

T 0
0 =− c2

ρ −ρv2 − 1
c2 ρ

(
4WNv2 −BN

i vi + v4) , (2.94)

T 0
i =cρavi +

1
c

ρa
[
vi
(
v2 +4WN

)
−BN

i
]
, (2.95)

T i
0 =− c

1
a

ρvi − 1
ca

ρv2vi, (2.96)

T i
j =ρviv j +

1
c2 ρ

[
viv j

(
v2 +4WN

)
− viBN

j
]
, (2.97)

T µ

µ =−ρc2 (2.98)
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with WN ≡ 1
2 (UN +VN).

With the expressions (2.94) - (2.98) for the EM tensor and the metric (2.77) - (2.80)
we can formulate the EFE up to order O

(
1
c4

)
[80]:

G0
0 +Λ =−κT 0

0 : (2.99)

1
c2

(
3H2 −2

∇2VN

a2

)
+

1
c4

(
6HV̇N +6H2UN − 4

a2 ∇
2VP +

2
a2 ∇

2V 2
N − 5

a2V ,i
NVN,i

)
=− 1

c2 κρ − 1
c4 κρv2 +Λ, (2.100)

G j
i +Λ =−κT j

i : (2.101)

1
c2

{
1
a2 (VN −UN)

, j
,i +δ

j
i

[
3H2 +2Ḣ − 1

a2 ∇
2 (VN −UN)

]}
+

1
c4

{
−1

a
H
(

BN, j
i +BN j

i

)
+

− 1
2a

(
ḂN, j

i + ḂN j
i

)
− 2

a2U , j
P,i +

2
a2V , j

P,i +
1
a2UN,iU

, j
N − 1

a2VN,iV
, j

N +
2
a2UN(,iV

, j)
N +

− 2
a2VN (VN −UN)

, j
,i +δ

j
i
[
2HU̇N +

(
4Ḣ +2H2)UN +6HV̇N +2V̈N+

− 2
a2 ∇

2UP −
2
a2 ∇

2VP −
1
a2UN,kU

,k
N +

2
a2VN∇

2 (VN −UN)

]
+

1
2a2 ∇

2h j
i

}
= Λδ

j
i +

1
c4 κρviv j, (2.102)

G0
i +Λ =−κT 0

i : (2.103)

1
c3

(
− 1

2a
∇

2BN
i +2HUN,i +2V̇N,i

)
=− 1

c3 κρavi. (2.104)

If we compare (2.100) with the 00-component of the EFE (2.54) using SPT, one can
see that terms of first order SPT can be found in order O

(
1
c2

)
and O

(
1
c4

)
in the

PF approximation. This follows from the additional factor 1/c that stems from time
derivatives, which affects the order in the PF approximation.In the PF approximation
the peculiar velocity and the density contrast are not perturbative quantities compared
to SPT. Yet, via (2.90) the peculiar velocity is often accompanied by a factor 1/c.
Newtonian regime: at leading order, the Einstein Field Equations yield the standard
equations of Newtonian cosmology [80]. One obtains the Poisson equation as well as
constraint equations demanding VN =UN from the leading order of equation (2.102).
However, the EFE involving G0

i also has leading order contributions, which determine
the frame-dragging potential BN

i . It follows that BN
i is sourced by the purely Newtonian

quantities ρ̄vi.
Relativistic regime: we define “resummed variables” φ = −

(
UN + 2

c2UP

)
and ψ =

−
(

VN + 2
c2VP

)
. When one linearise the EFE substituting the resummed variables, we
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recover the first order of standard relativistic perturbation theory. For more details, see
[80].

The validity on all scales is especially beneficial for the analysis of weak gravita-
tional lensing (WL): we integrate along the line of sight from large to small scales. If
e.g. two galaxies are far apart but almost aligned w.r.t. the line of sight, we can compute
the correlation for the convergence and shear with the PF formalism.



Chapter 3

fNL−gNL mixing in the matter density
field at higher orders

3.1 Introduction

The aim of this chapter is to present my work based on the published paper [55]
on non-Gaussianity at higher orders. Non-Gaussianity of primordial fluctuations, a
residue from the inflationary era, is a powerful probe of the dynamics of the very
early universe. The bispectrum of the cosmic microwave background radiation (CMB)
provides the statistical measure for non-Gaussianity and insights into the conditions
in the inflationary universe [10, 112, 66, 34]. Recently, high precision measurements
with the Planck satellite were able to further constraint the value of the local type
non-Gaussianity fNL [3]. In upcoming galaxy surveys, primordial non- Gaussianity
will be probed thanks to its scale-dependence on large scales [38], where however it is
important to consider relativistic effects [24].

However, even with Gaussian primordial density fluctuations, the intrinsic nonlinear-
ity of General Relativity produces non-Gaussian contributions in the matter density field
[27, 78, 18, 13, 11]. In particular [26, 109] show how this effective non-Gaussianity
and primordial non-Gaussianity add to the evolution of the density field up to second
order. There have been recent discussions on the topic whether and how this effective
non-Gaussianity contributes to the galaxy bias [12, 37, 40, 42]; however, in this chapter
we restrict our attention to the underlying matter density field.

We use the gradient expansion approximation scheme, also known as long-wavelength
approximation [70, 104, 71, 93, 41, 32, 88, 27], to investigate non-Gaussian contribu-
tion in the density field at very large scales, up to fourth order in standard perturbation
theory, in the context of standard ΛCDM cosmology. Thus, we focus on scales large
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enough to neglect spatial gradients in comparison to the time derivatives. We discuss the
contributions derived solely from the nonlinear nature of General Relativity as well as
primordial non-Gaussianity up to fourth order. To describe collisionless matter, CDM,
we consider a pressureless irrotational dust flow in synchronous-comoving gauge.

The outline of the chapter is as follows: in section 3.2, we summarise the essential
exact equations that are needed in the following sections to study the nonlinear evolution
of the density contrast. In later sections, we perturb and expand these equations, i.e.
the exact continuity equation for the density contrast, the exact Raychaudhuri equation
for the expansion scalar, and the exact energy constraint that links density contrast and
expansion scalar to the spatial curvature. In general these equations are then nonlinearly
coupled to the equations for the shear of the matter flow and for the Weyl tensor [47],
but in the approximation used in this thesis these three equations are all is needed, at
any perturbative order and at large scales, as we are going to show.

Section 3.3 is dedicated to the gradient expansion. We omit any quantities of order
higher than O(∇2). By splitting scales into long (superhorizon) and short, we can safely
approximate the local evolution as that of a separate (homogeneous) universe with its
own background density and curvature. This is commonly regarded as the separate
universe conjecture. We find that within this approximation, the metric reduces to a
conformally flat metric with an effective scale factor constructed from the scale factor a

and the metric perturbation ζ . Within the approximation of the gradient expansion, the
quantities still contain all orders from standard perturbation theory (SPT).

However, in section 3.4 we contrast the results of section 3.3 with SPT and study
the first and second order of the evolution equations. Thereby, we find that the first
order equations of SPT coincide with the equations obtained in the approximation of
the gradient expansion.

In section 3.5, we express the density contrast in terms of a series expansion
and compute all orders up to order O(4) in SPT. In addition, we add non-Gaussian
contributions up to fourth order in the initial conditions to examine the evolution of
non-Gaussian contributions reflecting on possible inflationary scenarios.

In the section 3.6 and 3.7 we relate the first order curvature perturbation ζ (1) to
the Poisson gauge metric potentials in order to subsequently compare our results to
Newtonian dynamics.
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3.2 Evolution equation for the density contrast δ

In this section we will provide the basis for deriving the evolution equations for the
density contrast using the Einstein field equations, the deformation tensor, and the
continuity equation for the density contrast.

A general cosmological line element can be written as

ds2 = a2(η)
[
−(1+2φ)dη

2 +2ωidηdxi + γi jdxidx j] , (3.1)

where η is the conformal time, a(η) the scale factor and γi j is the conformal spatial
metric.
From now on, we will use the synchronous-comoving gauge, so that φ = ωi = 0 [67]
(see subsections 3.6 and 3.7 for relations to other gauges).

We consider a pressureless, irrotational fluid and comoving observers with four-
velocity uµ = (−a,0,0,0). Thus, the four-velocity uµ of the fluid and of the observers
coincides with the normal nµ of constant time hypersurfaces. Using uµ we can covari-
antly define kinematical quantities, following the covariant fluid approach [45, 47, 46];
the projection tensor hµ

ν coincides with the spatial metric hµ

ν ≡ gµ

ν +uµuν in the constant
time hypersurfaces.

The deformation tensor of the fluid is defined as

ϑ
µ

ν ≡ auµ

;ν −H hµ

ν , (3.2)

where H = a′/a is the conformal Hubble scalar, the prime indicates conformal time
derivative, and the isotropic background expansion 3H has been subtracted1. Then, the
trace ϑ = ϑ

µ

µ of the deformation tensor denotes the inhomogeneous volume expansion
and the traceless part represents the matter shear tensor.

Due to our synchronous-comoving gauge choice, with uµ = nν , the deformation
tensor is purely spatial and coincides with the negative of the extrinsic curvature Ki

j of
the conformal spatial metric γi j, which can be expressed as follows [111]:

ϑ
i
j =−Ki

j ≡
1
2

γ
ik

γ
′
k j. (3.3)

1In the Introduction in eq. (1.32) we introduced the deformation tensor without subtracting the
background.
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The matter density field is characterised by a background part ρ̄ and a density contrast
δ , as in equation (3.2) for the deformation tensor,

ρ(x,η) = ρ̄(η)+δρ(x,η) = ρ̄(η)(1+δ (x,η)) . (3.4)

Using (3.4), the energy conservation equation uαT αβ

;β = 0 gives the continuity equation
for the density contrast:

δ
′+(1+δ )ϑ = 0. (3.5)

The evolution equation for the expansion, ϑ , is given by the Raychaudhuri equation
(1.33), which reads in terms of ϑ :

ϑ
′+H ϑ +ϑ

i
jϑ

j
i +4πGa2

ρ̄δ = 0. (3.6)

Furthermore, via (3.3) one obtains the energy constraint [111, 46]:

ϑ
2 −ϑ

i
jϑ

j
i +4H ϑ +R = 16πGa2

ρ̄δ , (3.7)

where R refers to the purely spatial Ricci scalar of the conformal spatial metric γi j. This
is the 00 component of the Einstein field equations in the synchronous-comoving gauge.

Both in equation (3.6) and (3.7), the term ϑ i
jϑ

j
i couples these equations to the

evolution equations of the shear and the Weyl tensor [45, 47, 46]. However, in the
approximation used in the following, we only need the equations above.

3.3 The gradient expansion

In order to compute the Ricci scalar in the gradient expansion, we first consider a more
general spatial metric gi j = a2e2ζ γ̌i j = a2e2ζ

(
δi j + α̌i j

)
with α̌i j = ∂i∂ jα̌ for scalar

perturbations. It follows that any contribution from Ěi j from (2.6) to the spatial Ricci
scalar is of order O

(
∇4) and, therefore, it can be neglected in the gradient expansion.

This is easily seen as follows. If two metric are related by a conformal transformation
with conformal factor e2ζ , γi j = e2ζ γ̌i j, then their Ricci scalars are related by [111]:

R = e−2ζ

[
−4∇

2
ζ −2(∇ζ )2 + Ř

]
, (3.8)

where Ř = Ř(γ̌i j). Ř expressed in terms of the metric γ̌i j reads

Ř =
(

γ̌
i j

γ̌
kl − γ̌

ik
γ̌

jl
)

γ̌i j,kl+
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+ γ̌i j,kγ̌ab,c

(
1
2

γ̌
ia

γ̌
jc

γ̌
kb − 3

4
γ̌

ia
γ̌

jb
γ̌

kc + γ̌
ia

γ̌
jk

γ̌
bc +

1
4

γ̌
i j

γ̌
ab

γ̌
kc − γ̌

i j
γ̌

ac
γ̌

kb
)
.

(3.9)

At order O
(
∇2), we obtain Ř = 0 given that α̌i j is of order O

(
∇2). The order O

(
∇4)

is the first order, at which we obtain non-zero contributions to the spatial Ricci scalar:

Ř
(
∇

4)=(δ
i j

δ
kl −δ

ik
δ

jl
)

α̌i j,kl+

+α̌i j,kα̌ab,c

(
1
2

δ
ia

δ
jc

δ
kb − 3

4
δ

ia
δ

jb
δ

kc +δ
ia

δ
jk

δ
bc +

1
4

δ
i j

δ
ab

δ
kc −δ

i j
δ

ac
δ

kb
)
.

(3.10)

In this work, we will only consider quantities up to order O
(
∇2). Therefore, we choose

the following representation of the spatial metric:

gi j = a2
γi j = a2e2ζ

δi j, (3.11)

where ζ denotes the primordial curvature perturbation. This variable is customarily
used to to deal with primordial non-Gaussianity from inflation [112] (see subsection
3.6 for a first-order gauge-invariant treatment). Furthermore, we only consider scalar
perturbations.

In the standard model of cosmology, ΛCDM, it is assumed that inflation imposes the
initial condition in the very early universe. For scalar perturbations, initial conditions
are given by the primordial curvature perturbation ζ . This is convenient, because ζ

remains constant after inflation ends and is almost scale-invariant [73]. By performing
a gradient expansion up to second order, we focus on scales large enough that the
spatial gradients are small compared to time derivatives and terms of order higher
than O(∇2) are negligible, where ∇ is the spatial gradient in comoving coordinates
[70, 104, 71, 93, 41, 32, 88, 27]. In this approximation, one finds that

δ ∼ ϑ ∼ R ∼ ∇
2. (3.12)

Consequently, the continuity equation (3.5) and the energy constraint (3.7) become

δ
′+ϑ = O(∇4) (3.13)

and
4H ϑ +R = 16πGa2

ρ̄δ +O(∇4). (3.14)
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Note that we have not perturbed any quantity in the conventional sense. Thus, from
the point of view of the standard perturbative approach R, δ , and ϑ are nonlinear and
contain all orders (at large scales).
We now combine (3.13) and (3.14) and, thereby, formulate an evolution equation for
the density contrast:

4H δ
′−R = 16πGa2

ρ̄δ . (3.15)

R remains constant, i.e. it is a conserved quantity in this large-scale approximation. This
can easily be seen by taking the time derivative of (3.14) and combining the result with
the Raychaudhuri equation (3.6), which reads

ϑ
′+H ϑ +4πGa2

ρ̄δ = 0. (3.16)

within the gradient expansion up to O
(
∇2).

The crucial feature of the above equations is that they take the same form as the
first order equations in the standard perturbative approach (cf. section 3.4 and [26]).
Therefore, the evolution equation (3.15) and its solution are formally equivalent to the
first order evolution equation and solution, respectively. In the standard perturbation
framework, the first order Ricci scalar2, R(1), is conserved. At second order, R(2)

comprises a time dependent and a conserved part. In the gradient expansion, we only
need to take the conserved contribution of each order i of R(i) into account as the
time-dependent part is of order O

(
∇4).

At leading order on large scales, we can safely approximate the spatial metric as
γ̌i j ≃ δi j, because non-flat contributions to γ̌i j are higher order in the gradient expansion
as shown in (3.10). Hence, in this approximation the spatial metric (3.11) is conformally
flat, with the conformal factor a2e2ζ ; this conformal factor can be seen as an effective
scale factor in the separate universe approach [68, 37, 113]. Given the conformal
flatness of the spatial metric, the Ricci scalar is a nonlinear function solely of the
curvature perturbation ζ and takes on the form [111, 26, 27]

R = e−2ζ

[
−4∇

2
ζ −2(∇ζ )2

]
. (3.17)

Performing a series expansion of the exponential, (3.17) yields

R =
∞

∑
n=0

(−2ζ )n

n!

[
−4∇

2
ζ −2(∇ζ )2

]
2In order to distinguish between the different approximation schemes, we refer with R(i) to the order i

of R in the standard perturbative approach.
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=−4∇
2
ζ −

∞

∑
n=1

(−2ζ )n

n!
4∇

2
ζ −

∞

∑
n=0

(−2ζ )n

n!
2(∇ζ )2

=−4∇
2
ζ +

∞

∑
n=0

(−2)n+1

(n+1)!

[
−4ζ ∇

2
ζ +(n+1)(∇ζ )2

]
ζ

n. (3.18)

As we shall see in section 3.5 this can be used to represent R up to any desired perturba-
tive order in ζ .

3.4 Contrasting with the standard perturbative approach

So far we have used a gradient expansion, keeping the leading order, rather than applying
the standard perturbative expansion to quantities representing inhomogeneities. We now
clarify the relationship between the two approaches. [26, 27]

In the standard perturbative expansion, combining the first-order parts of (3.5) and
(3.7), one obtains the following evolution equation for the density contrast:

4H δ
(1)′+6H 2

Ωmδ
(1)−R(1) = 0, (3.19)

with
R(1)′ = 0 (3.20)

and Ωm = 8πGa2ρ̄/3H 2. Equation (3.19) has exactly the same form of the evolution
equation (3.15) obtained in the gradient expansion. Because R(1) is constant at first
order, equation (3.19) is a first integral of the well known second-order homogeneous
differential equation for δ (1):

δ
(1)′′+H δ

(1)′− 3
2

Ωmδ
(1) = 0. (3.21)

The advantage of this fluid-flow approach to relativistic perturbations in the comoving-
synchronous gauge is twofold. It is as close as possible to Newtonian perturbation theory
(where equation (3.21) is exactly the same), with metric perturbations as secondary
variables that can be expressed in terms of the density contrast and the curvature and
expansion perturbations. Solving equation (3.19) directly shows that the well known
decaying mode D− and the growing mode D+ of the solution of (3.21) correspond to
the homogeneous solution of (3.19) and the particular solution sourced by the curvature
perturbation R(1), respectively:

D−+
3
2
H ΩmD− = 0 and (3.22)
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C(x)
(

H D′
++

3
2
H 2

ΩmD+

)
− 1

4
R(1) = 0 (3.23)

with

δ
(1) (η ,x) =C+(x)D+(η)+C−(x)D−(η). (3.24)

Analogously to equation (3.19), we obtain the following for second order combining
(3.5) and (3.7):

4H δ
(2)′+6H 2

Ωmδ
(2)−R(2) = 2ϑ

(1)2 −2ϑ
(1)i
j ϑ

(1) j
i −8H δ

(1)
ϑ
(1). (3.25)

and [26]

R(2)′ =−4ϑ
(1)i

j R(1) j
i = 2

[
∂

i
∂ jα̌

(1)′
∂

j
∂iζ

(1)−∇
2
α̌
(1)′

∇
2
ζ
(1)
]

(3.26)

with gi j = a2e2ζ γ̂i j = a2e2ζ
(
δi j + α̌,i j

)3.
By nature of the perturbative expansion, these second-order equations are sourced

by squared first order terms. Given the equivalence of the left-hand side of the systems
of equations (3.19)-(3.20) and (3.25)-(3.26), it was shown in [26] that these equations
are conveniently solved by splitting δ (2) and R(2) into two parts:

δ
(2) = δ

(2)
h +δ

(2)
p , R(2) = R(2)

h +R(2)
p , (3.27)

where δ
(2)
h and R(2)

h are the solutions of the homogeneous parts of (3.25)-(3.26) and
δ
(2)
p and R(2)

p are the particular solutions sourced by the squared first-order terms. In
particular, R(2)

h is time-independent as R(1) is.
Note that

δ
(1) ∼ ϑ

(1) ∼ R(1) ∼ ∇
2, (3.28)

and this holds true for δ
(2)
h , ϑ

(2)
h , and R(2)

h , while it is clear from (3.25)-(3.26) that

δ
(2)
p ∼ ϑ

(2)
p ∼ R(2)

p ∼ ∇
4. (3.29)

Iterating the procedure at higher orders, it follows that at any order i,

δ
(i)
h ∼ ϑ

(i)
h ∼ R(i)

h ∼ ∇
2. (3.30)

3Note that at order O
(
∇2
)

in the gradient expansion γ̂i j ≈ δi j and therefore α̌,i j is negligible.
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Therefore, comparing with the equations in the previous section, it should be clear that
the leading ∼ ∇2 order in the gradient expansion is equivalent to the homogeneous
solution of standard perturbation theory at all orders.

In particular, we can now assume that the Ricci scalar at higher orders can be split
into a time-dependent part R(i)

p and a time-independent part R(i)
h . Thus, the gradient

expansion offers a unique possibility to compute the homogeneous solution of the
evolution equation of δ at higher orders.

3.5 Third and fourth order

3.5.1 Growing mode solution in the large scale limit

Because the evolution equation in the gradient expansion (3.15) formally coincides
with the evolution equation for the density contrast (3.19) at first order, the solution
is formally the same. Thus, we solve for the density contrast δ using the same ansatz
(3.24) as we used for the first-order solution. For the growing part of the density contrast
sourced by the curvature perturbation we have

δ = D+(η)C(x). (3.31)

Furthermore, the decaying mode D− is negligible in the matter dominated era. As
long as this is well represented by the Einstein-de Sitter model, the growing mode is
proportional to the scale factor a(η) (see e.g. [18]).

Within the regime of the gradient expansion, the function C(x) is related to the Ricci
scalar by [27, 26]

C(x) =
R

10H 2
IND+IN

, (3.32)

where the subscript “IN” refers to the evaluation at the time ηIN early in the matter-
dominated era.

3.5.2 First, second, third and fourth order solution

The calculations in this subsection are my responsibility.
Following the scheme outlined of Section 3.4, we now compute the homogeneous

solution for the second, third, and fourth order density contrast, adding primordial
non-Gaussianity to our initial conditions.
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We expand ζ in terms of a Gaussian random field ζ (1) [79, 72]:

ζ = ζ
(1)+

3
5

fNL

(
ζ
(1)2 −⟨ζ (1)2⟩

)
+

9
25

gNLζ
(1)3 +

27
125

hNL

(
ζ
(1)4 −⟨ζ (1)4⟩

)
+ . . . .

(3.33)
where fNL, gNL, and hNL denote the non-Gaussian deviations at different orders.

Now we substitute (3.33) into the series expansion for the spatial Ricci scalar (3.18).
For n = 0 (3.18) yields the second order expansion of R [26]. For n = 2, we obtain the
spatial Ricci scalar R up to the fourth perturbative order:

R ≃−4∇
2
ζ +(−2)

[
(∇ζ )2 −4ζ ∇

2
ζ

]
+

4
2

[
2(∇ζ )2 −4ζ ∇

2
ζ

]
ζ−

− 4
3

[
3ζ

2 (∇ζ )2 −4ζ
3
∇

2
ζ

]
+ . . . (3.34)

=−4∇
2
ζ
(1)+

(
∇ζ

(1)
)2
[
−2− 24

5
fNL

]
+ζ

(1)
∇

2
ζ
(1)
[
−24

5
fNL +8

]
+

+ζ
(1)
(

∇ζ
(1)
)2
[

216
25

gNL +
24
5

fNL +4
]
+ζ

(1)2
∇

2
ζ
(1)
[
−108

25
gNL −8+

48
5

fNL

]
+

+ζ
(1)2
(

∇ζ
(1)
)2
[
−1296

125
hNL +

324
125

gNL +
72
25

f 2
NL +

12
5

fNL −4
]
+

+ζ
(1)3

∇
2
ζ
(1)
[
−432

125
hNL +

288
25

gNL +
144
25

f 2
NL −

96
5

fNL +
16
3

]
+ . . . (3.35)

We expand δ up to fourth order

δ = δ
(1)+

1
2

δ
(2)+

1
6

δ
(3)+

1
24

δ
(4)+ . . . (3.36)

and substituting (3.35) into (3.31) yields for each order

δ
(1)
h =D+(η)

1
10H 2

IND+IN

(
−4∇

2
ζ
(1)
)

(3.37)

1
2

δ
(2)
h =D+(η)

1
10H 2

IND+IN

24
5

[
−
(

∇ζ
(1)
)2
(

5
12

+ fNL

)
+ζ

(1)
∇

2
ζ
(1)
(

5
3
− fNL

)]
(3.38)

1
6

δ
(3)
h =D+(η)

1
10H 2

IND+IN

108
25

[
ζ
(1)
(

∇ζ
(1)
)2

2
(

gNL +
5
9

fNL +
25
54

)
+

+ζ
(1)2

∇
2
ζ
(1)
(
−gNL −

50
27

+
20
9

fNL

)]
(3.39)
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1
24

δ
(4)
h =D+(η)

1
10H 2

IND+IN

432
125

[
ζ
(1)3

∇
2
ζ
(1)
(
−hNL +

10
3

gNL +
5
3

f 2
NL −

50
9

fNL +
125
81

)
+

+ζ
(1)2
(

∇ζ
(1)
)2

3
(
−hNL +

1
4

gNL +
5

18
f 2
NL +

25
108

fNL −
125
324

)]
, (3.40)

where in a general ΛCDM model D+ can be expressed as D+ = 5
2

H 2
IND+ IN

H 2( f1(Ωm)+
3
2 Ωm)

and
f is the standard grow factor:

f =
D′
+

H D+
. (3.41)

Eq. (3.38) is exactly the same solution for the homogeneous part of δ as in [26]. The
third and fourth order homogeneous solution (3.39) are new results.

Following pioneering work on second-order perturbations in the nineties [28, 78,
98, 31], other second-order solutions have been provided by [105] and [109], cf. also
[58], of which the homogeneous part is in accordance with the solution presented here.
Solutions up to third order have been derived in [118] using a different gauge, cf. also
[59, 100].

Furthermore, we are interested in the peaks of the density contrast, thus, we may
focus on terms involving ∇2ζ as ∇ζ vanishes for extremal values. At second order,
the amplitude is decreased by f GR

NL =−5
3 (cf. [27]), in third order by gGR

NL = 50
27 −

20
9 fNL,

and in fourth order by hGR
NL =−10

9 gNL − 5
9 f 2

NL +
50
27 fNL − 125

81 .
It is remarkable that at third order fNL contributes to the non-Gaussianity of the

density field and at fourth order, additional contributions appear involving f 2
NL and gNL.

The reason becomes quite obvious, when we look at the series expansion of the spatial
Ricci scalar R (3.18). The third order terms comprise combinations of third and zeroth
order, or first and second order. The second order terms contain the non-Gaussianity fNL

and consequently the combination of first and second order contributes an fNL term to
the third order result. The fourth order term, on the other hand, comprises combinations
of first and third order, second order squared, or two first order and one second order
terms, which results in the mixed non-Gaussian terms.
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3.6 The curvature perturbation ζ and the scalar poten-
tial ψ: relating to the Poisson gauge

We now relate the first-order curvature perturbation ζ (1) to first order gauge-invariant
(GI) Bardeen potentials Φ and Ψ [8] and to the Poisson gauge metric variables φP and
ψP.

The Ricci scalar R(3) of the comoving slicing, i.e. the slicing orthogonal to the
irrotational fluid flow with four-velocity uα , is a gauge invariant perturbation once we
assume a flat FLRW background. We then have (see equation (107) in [25])

R(3) =−a−24∇
2 (Ψ+H VS) (3.42)

with VS = v+χ ′ being the GI velocity perturbation. Again, using a covariant approxima-
tion for a perfect fluid with equation of state parameter w, one can derive (see equation
(127) in [25]):

0 =−a
[

3H 2 1
a2 (1+w)

VS −2a−2 (
Ψ

′−H Φ
)]

(3.43)

Combining, (3.42) and (3.43) and using that Ψ =−Φ yields

a2
δ
(3)R =−4∇

2
(

Ψ+H
2

3H 2 (1+w)

(
Ψ

′−H Φ
))

(3.44)

=−4∇
2
[
−Φ− 2

3H (1+w)

(
Φ

′+H Φ
)]

(3.45)

=−4∇
2
[
−Φ− 2

3(1+w)

(
H −1

Φ
′+Φ

)]
(3.46)

We compare (3.46) with the first order part of (3.17):

−4∇
2
ζ
(1) =−4∇

2
[
−Φ− 2

3(1+w)

(
H −1

Φ
′+Φ

)]
(3.47)

ζ
(1) =−Φ− 2

3(1+w)

(
H −1

Φ
′+Φ

)
(3.48)

which coincides with the definition of ζBST in [77].
In an Einstein-de Sitter universe, we have Φ′ = 0 and w = 0. We then obtain for

(3.48)

ζ
(1) =−5

3
Φ. (3.49)
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In Poisson gauge, the Bardeen potentials Φ and Ψ are expressed in terms of the scalar
potentials φ

(1)
P and ψ

(1)
P as follows:

Φ = φ
(1)
P and Ψ =−ψ

(1)
P . (3.50)

For the scalar potentials, the line element reads

ds2 = a2
[
−
(

1+2φ
(1)
P

)
dη

2 +
(

1−2ψ
(1)
P

)
δi jdxidx j

]
. (3.51)

Therefore, equation (3.49) becomes

ζ
(1) =−5

3
ψ

(1)
P . (3.52)

In the main body of the chapter, we have used the synchronous-comoving gauge. A
general metric in the synchronous-comoving gauge reads

ds2 = a2{−dη
2 +
[
(1−2ψS)δi j +χSij

]
dxidx j} (3.53)

with χi j =
(
∂i∂ j − 1

3δi j∇
2)χ .

The following calculations of this subsection are my work.
At first-order, the metric (3.53) is related to the metric (3.11), which we used in this

paper, via

e2ζ (1)
γ̌i j =

(
1−2ψ

(1)
S

)
δi j +χ

(1)
Sij (3.54)(

1+2ζ
(1)
)

δi j + e2ζ (1)
α̌
(1)
,i j =

[
1−2

(
ψ

(1)
S +

1
6

∇
2
χ
(1)
S

)]
δi j +χ

(1)
S,ij (3.55)

2ζ
(1)

δi j + α̌
(1)
,i j =−2

(
ψ

(1)
S +

1
6

∇
2
χ
(1)
S

)
δi j +χ

(1)
S,ij (3.56)

⇒ ζ
(1) =−

(
ψ

(1)
S +

1
6

∇
2
χ
(1)
S

)
=−Rc (3.57)

with Rc being the comoving curvature perturbation and α̌(1) = χ
(1)
S at first order. Using

the gradient expansion approximation, equation (3.57) becomes

ζ
(1) =−ψ

(1)
S . (3.58)

To confirm the relation between ψ
(1)
P and ψ

(1)
S via ζ (1) from equation (3.52) and

(3.57), we perform a gauge transformation of ψ(1) from Poisson gauge to synchronous-
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comoving gauge:

φ
(1)
P =α

′
PS +H αPS, (3.59)

ψ
(1)
P =ψ

(1)
S − 1

3
∇

2
βPS −H αPS (3.60)

with αPS = β
′
PS =−1

2
χ
(1)′
S (3.61)

In [26], the first-order scalar potential χ is expressed in terms of the density contrast
δ (1). For an Einstein-de Sitter universe, we obtain the following relation:

χ
(1)
S =−2∇

−2
δ
(1)
S =−η2

5
Rc (3.62)

with H = 2
η

. Substituting equation (3.62) into equation (3.60) yields

ψ
(1)
P =ψ

(1)
S − 1

3
∇

2
βPS −H αPS (3.63)

=ψ
(1)
S +

1
6

∇
2
χ
(1)
S +

2
η

1
2

(
−2η

5
Rc

)
(3.64)

=ψ
(1)
S +

1
6

∇
2
χ
(1)
S − 2

5
Rc (3.65)

=ψ
(1)
S +

1
6

∇
2
χ
(1)
S − 2

5

(
ψ

(1)
S +

1
6

∇
2
χ
(1)
S

)
(3.66)

=
3
5

(
ψ

(1)
S +

1
6

∇
2
χ
(1)
S

)
(3.67)

Within the approximation of the gradient expansion, equation (3.67) simplifies to

ψ
(1)
P =

3
5

ψ
(1)
S , (3.68)

which is in accordance with equations (3.58) and (3.52).

3.7 Long and short wavelength split

Equations (3.69) - (3.71) in this section are my responsiblity.
In the ΛCDM model, we assume that galaxies evolve in virialised dark matter halos.

The halos collapse once the matter density field reaches a critical value. This matter
density is determined by the spatial amplitude, C(x), in particular by the nonlinear,
spatial Ricci scalar R, which comprises of spatial derivatives of ζ . While we don’t
address here issues related to the halo density, we derive formulas for the matter
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density field, performing a peak-background split, where we decompose ζ into a longer-
wavelength modes ζl and shorter-wavelength modes ζs using ζ (1) = ζs +ζl [27]. The
short wavelength mode represents modes attributed to local peak formation, whereas the
long wavelength modes are assumed to be absorbed into the background. We already did
a gradient expansion and by that we are limiting our analysis to large scale wavelengths,
λ > λmin. In the peak-background split, the gradient of the shorter wavelength modes(
λmin < λs < λsplit

)
still remains small and the gradient of the long wavelength modes

(λl > λsplit) is small enough to be neglected.
Hence, the series expansion of the Ricci scalar (3.35) up to fourth order simplifies to

R ≃−4∇
2
ζs −

24
5
(∇ζs)

2
(

fNL +
5

12

)
−

− (ζs +ζl)∇
2
ζs

24
5

(
fNL −

5
3

)
−

− (ζs +ζl)(∇ζs)
2 216

25

(
gNL −

5
9

fNL −
25
54

)
−

− (ζs +ζl)
2

∇
2
ζs

108
25

(
gNL −

20
9

fNL +
50
27

)
−

− (ζs +ζl)
2 (∇ζs)

2 1296
125

(
hNL −

1
4

gNL −
5

18
f 2
NL −

25
108

fNL −
125
324

)
−

− (ζs +ζl)
3

∇
2
ζs

432
125

(
hNL −

10
3

gNL −
5
3

f 2
NL −

50
9

fNL +
125
81

)
(3.69)

Substituting this result (3.69) into the expression for the density contrast (3.31), where
we use (3.32) for the spatial function C(x), gives

δ =
1(

f1 (Ωm)+
3
2Ωm

)
H 2

[
−∇

2
ζs −

6
5
(∇ζs)

2
(

fNL +
5
12

)
−

− (ζs +ζl)∇
2
ζs

6
5

(
fNL −

5
3

)
−

− (ζs +ζl)(∇ζs)
2 54

25

(
gNL −

5
9
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)
−

− (ζs +ζl)
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∇
2
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(
gNL −
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9

fNL +
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)
−
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2 (∇ζs)

2 54
125

(
hNL −

1
4

gNL −
5
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f 2
NL −

25
108

fNL −
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)
−

− (ζs +ζl)
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∇
2
ζs

18
125

(
hNL −
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3

gNL −5
3

f 2
NL −

50
9

fNL +
125
81

)
+ . . .

]
(3.70)

=δ
(1)+

1
2

δ
(2)+

1
6

δ
(3)+

1
24

δ
(4)+ . . . (3.71)
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From the above, one can read off the different contributions to matter density field at
different orders.

If, however, fNL = gNL = hNL = 0, the long-wavelength contribution ζl in (3.70) is
derived from the series expansion of the exponential e−2ζ in (3.17) [27]:

R =e−2ζ

[
−4∇

2
ζ −2(∇ζ )2

]
(3.72)

=e−2ζ (1)
[
−4∇

2
ζ
(1)−2

(
∇ζ

(1)
)2
]

(3.73)

=e−2(ζl+ζs)
[
−4∇

2
ζs −2(∇ζs)

2
]
+O (∇ζl) (3.74)

≈e−2ζl Rs (3.75)

with Rs = e−2ζs
[
−4∇2ζs −2(∇ζs)

2
]
. In this case, the forefactor e−2ζl can be absorbed

into the background scale factor

a → al = eζl a. (3.76)

Note that we perform the split into long and short wavelengths after expanding ζ in terms
of ζ (1) using eq. (3.33). As a consequence, the absorption of the long mode curvature
perturbation ζl into the scale factor in eq. (3.76) is only valid for fNL = gNL = hNL = 0.

3.8 Relation between Newtonian and relativistic
non-Gaussianities in the matter-dominated era

The calculations in this section have been performed by me.
We now want to relate our relativistic results, obtained with the gradient expansion,

with the local-type primordial non-Gaussianity described in a Newtonian fashion,
generalising the results in [27]. We now focus on the matter-dominated era, assuming
therefore f = Ωm = 1 and ρ̄ = 3

κ
H 2. First, we use the standard expansion for the

Newtonian potential [65]:

φN = φ1︸︷︷︸
φ (1)

+ f N
NL
(
φ

2
1 −⟨φ 2

1 ⟩
)︸ ︷︷ ︸

1
2 φ (2)

+gN
NLφ

3
1︸ ︷︷ ︸

1
6 φ (3)

+hN
NL
(
φ

4
1 −⟨φ 4

1 ⟩
)︸ ︷︷ ︸

1
24 φ (4)

+ . . . (3.77)

Note that f N
NL, gN

NL, and hN
NL do not refer to primordial non-Gaussianity such as fNL,

gNL, and hNL, respectively, but to non-Gaussianity in the Newtonian picture at some
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initial time in the matter dominated era. We now want to split the Newtonian potential
into long and short wavelength modes φ1 = φs+φl , and substitute them into the Poisson
equation. To this end, first consider its gauge-invariant first-order version in terms of
the Bardeen potential Φ and the gauge-invariant density perturbation δGI [8]:

∇
2
Φ =

κ

2
ρ̄δGI, (3.78)

where κ = 8πG. Given that Φ reduces to φ
(1)
P in Poisson gauge and δGI reduces to δ

(1)
S

in synchronous-comoving gauge, we get4 [8, 25, 26]:

∇
2
φN =−∇

2
φ
(1)
P =−κ

2
ρ̄δ

(1)
S , (3.79)

Where the Newtonian potential φN can been clearly identified with the Poisson gauge
metric perturbation φP when a post-Newtonian-like expansion is used [81, 89]. As
discussed in section 3.4, the equations in the gradient expansion at leading order formally
coincide with those of first-order perturbation theory, while including the homogeneous
contributions at all orders. Therefore, we can assume that in this approximation the
Poisson equation (3.79) relates φ and δ at all orders. It follows that

∇
2
φ
(1)
N =∇

2
φ1 =−κ

2
a2

ρ̄δ
(1), (3.80)

1
2

∇
2
φ
(2)
N =∇

2 f N
NL
(
φ

2
1 −⟨φ 2

1 ⟩
)
=−κ

2
a2

ρ̄
1
2

δ
(2), (3.81)

1
6

∇
2
φ
(3)
N =gN

NL∇
2
φ

3
1 =−κ

2
a2

ρ̄
1
6

δ
(3), and (3.82)

1
24

∇
2
φ
(4)
N =hN

NL∇
2 (

φ
4
1 −⟨φ 4

1 ⟩
)
=−κ

2
a2

ρ̄
1

24
δ
(4). (3.83)

and subsequently, we omit the gradients of the long wavelength terms.
Second order:
Using the second-order part of equation (3.70) in equation (3.81) yields

f N
NL∇

2 (
φ

2
1 −⟨φ 2

1 ⟩
)
=

κ

2
ρ̄

6
5
(∇ζs)

2 ( 5
12 + fNL

)
+(ζs +ζl)∇2ζs

(
fNL − 5

3

)
H 2 5

2

(3.84)

2 f N
NL

(
(∇φs)

2+(φs +φl)∇
2
φs

)
=

18
25

a−2
[
(∇ζs)

2
(

5
12

+ fNL

)
+(ζs +ζl)∇

2
ζs

(
fNL −

5
3

)]
(3.85)

4See [112] for a discussion of different sign conventions.
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In the matter-dominated era, the first-order scalar potential φ1 is linearly related to the
first order curvature perturbation ζ in equation (3.49), which reads for the longer and
shorter wavelength modes [27]:

φ1 i =
3
5

ζi with the index i = l, s. (3.86)

In order to discuss our result and compare it to the Newtonian dynamics, we focus on
the peaks of the metric perturbations and, therefore, omit the terms involving (∇ζs)

2

(or (∇φs)
2).

18
25

f N
NL (ζs +ζl)∇

2
ζs =

18
25

(ζs +ζl)∇
2
ζs

(
fNL −

5
3

)
(3.87)

f N
NL =

(
fNL −

5
3

)
(3.88)

Equation (3.88) shows that the non-Gaussianity f N
NL derived in the Newtonian picture

consists of the primordial non-Gaussianity fNL and an additional term, which has
its origin in the nonlinearity of General Relativity. Even if there is no primordial
non-Gaussianity ( fNL = 0), there remains an effective non-Gaussianity of magnitude
f N
NL =−5

3 . (See also [27, 26])
Third order:
Analogously to (3.84), we combine the third-order part of equation (3.70) with (3.82)
neglecting any terms involving (∇ζs)

2:

3gN
NL (φs +φl)

2
∇

2
φs =−κ

2
ρ̄

1
5
2H 2

[
−27

25
(ζs +ζl)

2
∇

2
ζs

(
gNL −

20
9

fNL +
50
27

)]
(3.89)

and use the relationship (3.86):

3
27

125
gN

NL (ζs +ζl)
2

∇
2
ζs −

3
5

27
25

(ζs +ζl)
2

∇
2
ζs

(
gNL −

20
9

fNL +
50
27

)
(3.90)

gN
NL =

(
gNL −

20
9

fNL +
50
27

)
, (3.91)

which, analogously to the second order approach, is what we aimed to show. We see
that we obtain the same non-Gaussian contribution as in (3.39).

Fourth order:
The recursive process above can be extended to arbitrarily large orders. As an example,
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here we use the fourth-order part of (3.70), substituting it into (3.83) neglecting any
terms involving (∇ζs)

2:

4hN
NL (φs +φl)

3
∇

2
φs =

=
κ

2
ρ̄

108
125

(ζs +ζl)
3

∇2ζs
5
2H 2

(
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f 2
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9

fNL +
125
81

)
(3.92)

Again we make us of (3.86)

4
(

3
5

)4

hN
NL (ζs +ζl)

3
∇

2
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3
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108
125

(ζs +ζl)
3

∇
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hNL −
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3
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9

fNL +
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)
(3.93)

hN
NL =hNL −

10
3

gNL −
5
3

f 2
NL −

50
9

fNL +
125
81

(3.94)

As in second and third order, we aimed to show that in comparison with the Newtonian
gravitational dynamics, we obtain an effective non-Gaussian contribution even with
Gaussian primordial initial conditions. ( fNL = gNL = hNL = 0)

3.9 Conclusions

In this chapter we have investigated non-Gaussian contributions to the density field at
very large scales, extending the results of [27] and [26] up to fourth order in standard
perturbation theory, within the regime and at the leading order of the gradient expansion
(aka long wavelength approximation). At second order, our result agrees with the result
of [26], [105], and [109] (cf. also [58] for other second order results). At third and
fourth order, our solutions are new (other third order results, using a different gauge,
were derived by [118], cf. also [59, 100]) and have been published in [55].

By performing a gradient expansion, we only consider very large scales of the order
of the Hubble radius, at which the spatial gradients are negligible with respect to the
time derivatives. We consider spatial gradient up to O

(
∇2), thus including expressions

linear in the density contrast, δ , the inhomogeneous expansion, ϑ , etc.. In this regime,
the evolution equation for the density contrast takes the same form as the first order
equation using standard perturbation theory. In particular, the density contrast δ , as
well as the expansion ϑ are of O(∇2), thus any squared term or combination of the two
quantities is negligible. At these scales the spatial Ricci scalar remains constant. Using
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the synchronous-comoving gauge, it is a valid approximation to assume a conformal
flat spatial metric, i. e. to neglect anisotropic metric perturbations on these scales. As a
consequence, the spatial Ricci scalar can be written as a series expansion.

The evolution equation for the density contrast in the gradient expansion is ef-
fectively equivalent to the first order standard perturbation theory evolution equation.
Therefore, the same ansatz for δ , in which the density contrast is split into a time and a
space dependent part, can be used. The spatial amplitude C(xi) is proportional to the
spatial Ricci scalar, and thereby determined by its nonlinearity.

Our solution is the homogeneous solution of [26], [105], and [109]. In the gradient
expansion we neglect the terms that source the particular solution.

We show how non-Gaussianity contributes to third and fourth order of SPT within
the regime of the gradient expansion. At third order, we obtain terms of order O(3),
O(1)O(2), and O(1)O(1)O(1) in the density contrast. Naturally, the combinations
O(3) and O(1)O(2) will involve terms with gNL and fNL, respectively. Hence, at this
order, both fNL and gNL contribute to the density contrast. At fourth order, we obtain
terms containing hNL, gNL, f 2

NL, and fNL in the density contrast.
We should keep in mind that for terms of order O(3) or higher, our homogeneous

solution is not the only contribution in the full solution containing fNL terms and other
non-Gaussianities. At third order, the particular solution is sourced by terms containing
the second order density contrast, which involves fNL. At fourth order, the source terms
for the particular solution will contain the second and third order density contrast and,
thus, terms containing both fNL and gNL.

Futhermore, we perform a peak-bachground split by decomposing ζ (1) into longer-
wavelenth modes ζl and shorter-wavelenth modes ζs following the work of [27] and
aim to compare our relativistic result to local-type non-Gaussianity using Newtonian
dynamics in the matter dominated era. We show how the mixing of the non-Gaussian
parameters fNL, gNL, and hNL translates into a Newtonian treatment.

In summary, we compute the nonlinear, relativistic contributions in the density
field at higher orders at very large scales. In addition we impose initial conditions
involving primordial non-Gaussianity up to fourth order. In this context, we see that the
nonlinear nature of GR generates both effective non-Gaussian terms and a mixing of
the primordial non-Gaussian parameters fNL, gNL, and hNL at higher orders.

Our results should be relevant in the discussion of higher-order contributions to
observables [31, 117], e.g. for higher-order statistics such as the bispectrum, cf. [118,
100]. In addition, they may help in setting initial conditions - and extract relativistic
effects - from simulations of the growth of large scale structure in cosmology, both
Newtonian, cf. [33, 103] (see also [110]) and [49] (and references therein), and in full
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numerical relativity [50, 15, 74, 14, 51], cf. also [2, 39, 44]. In turn, fully general
relativistic simulations will help to establish the range of validity of higher-order
standard perturbation theory and of the long-wavelength approximation we used in this
paper, as well as other nonlinear relativistic approximations such as the post-Friedmann
scheme [81, 89, 33], see also [102, 103, 101], and other approximations [30, 57, 30].
We leave all of this for future work.



Chapter 4

Full-sky and full scale weak lensing
analysis with the Post-Friedmann
approximation

This chapter provides the basis for the publication [54].

4.1 Motivation

Until now, cosmic shear surveys have covered only parts of the sky, see for example
DES [1] with a coverage of around 5000 square degrees. But future surveys such as
Euclid and LSST will deliver high precision data of large sky areas. With this vast
amount of high precision data, weak lensing is becoming more and more a promising
tool to map the universe.

Yet, the WL analysis is challenging; while we use different approximation schemes
for large and small scales, by its own nature weak lensing necessarily involves different
scales, because by integrating along the light path, large and small scales couple. E.g.
two galaxies are far apart but aligned along the line of sight. The two galaxies act as
consecutive lenses and thereby couple large and small scales. Furthermore, the majority
of the high precision data from these surveys will be data from smaller, nonlinear
scales. It is standard to use Newtonian dynamics for the structure formation on small
scales, but with e.g. Euclid aiming at 1% accuracy, is the Newtonian treatment still
sufficient or do relativistic effects come into play? In this chapter, we will use a
different approximation scheme, the post-Friedmann (PF) formalism [80], which is a
post-Newtonian-type approximation scheme in a cosmological setting that combines
both the Newtonian treatment on small, nonlinear scales and the relativistic analysis
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on large scales. Therefore, it seems to be the ideal approximation for a thorough weak
lensing analysis. Furthermore, the PF formalism provides an apt framework for n-body
simulations with relativistic corrections [102, 33, 103].

With the coming full-sky surveys in mind, we need to go beyond the small-angle
approximation, which restricts to angular scales much smaller than the angular diameter
distance at the source. On these angular scales relativistic effects as well as fluctuations
of the gravitational potentials along the line of sight are neglected. The dominant
contributions come from derivatives of the gravitational potentials transverse to the line
of sight [19]. In order to perform a full-sky weak lensing analysis, we follow the work
of [17, 23], in which the distortions of the galaxy images are projected onto a spherical
screen space and the shear and convergence are expressed in terms of spherical spin
operators.

The outline of this chapter is the following: in section 4.2, we derive the magni-
fication matrix. Starting from the geodesic deviation equation, we derive the Jacobi
mapping up to order O

(
1
c4

)
with the PF formalism, thereby including both leading

order 1
c3 gravimagnetic contributions and the first relativistic corrections to the scalar

contributions at order O
(

1
c4

)
. Furthermore, we present the Jacobi mapping in terms

of the redshift z instead of the affine parameter χ and add redshift perturbations up
to the required order. In section 4.3, we change to spherical coordinates and spin
operators. Furthermore, we split the Jacobi mapping into two functions according to
their rotational symmetry s. Thereby, we map the distortions of the galaxy images onto
a sphere instead of a plane. This circumvents the thin-lens approximation and offers
the possibility of a full-sky analysis. Furthermore, we extract the reduced shear and
convergence from the spin-weighted functions we derived from the Jacobi mapping.
In the next section 4.4, we show that if we take the limit for large scales within the
PF framework, we retain the first-order convergence and reduced shear in standard
perturbation theory (SPT).

4.2 Derivation of the Magnification Matrix

In weak lensing we study the distortion of light through gravitational masses. We are
interested how a light bundle changes, when it is propagated [95, 111, 92, 96, 69, 107].
We consider two neighbouring geodesics xµ(λ ) and yµ(λ ) = xµ(λ )+ξ µ(λ ), which
start at λ = 0 at the observer O. The relative acceleration between the two geodesics is
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expressed by the geodesic deviation equation

D2ξ µ

Dλ 2 = Rµ

ναβ
ξ

β kνkα , (4.1)

O

dΩO

S
dAS

Figure 4.1 The surface dAS is related to
the solid angle dΩO at the observer O.

where kµ = dxµ

dλ
denotes the tangent vec-

tor to the congruence of light rays. Let
us assume that a light beam is emitted
at the source S and measured at the ob-
server O. Furthermore, vµ

O denotes the 4-
velocity of the observer in O. We define an
orthonormal spacelike basis with nµ

a with
a = 1, 2, which is orthogonal to kµ and
to uµ

O. It is standard to refer to the two
dimensional space spanned by nµ

a as the
screen space. Thus, we can create a ba-
sis with {nµ

1 ,n
µ

2 ,k
µ ,uµ

O}, which is parallel
transported along the geodesic:

Dnµ
a

Dλ
= 0 and

Duµ

O
Dλ

= 0. (4.2)

The deviation vector expressed in this basis reads

ξ
µ = ξ

a
n nµ

a +ξkkµ +ξuuµ

O, (4.3)

with ξ a(0) = 0, ξk(0) = 0, and ξv(0) = 0. If we substitute (4.3) into (4.1) and express
the result in terms of the basis {nµ

1 ,n
µ

2 ,k
µ ,vµ

O}, it follows from ξ µkµ = 0 that ξu = 0 and
that the relative acceleration has only contributions on the spacelike basis nµ

a [17, 92]:

D2ξ c

Dλ 2 = Rc
aξ

a, with Rc
a = Rµ

ναβ
kνkαnc

µnβ
a . (4.4)

Let θ b
O be the vectorial angle between the two neighbouring geodesics at the observer O.

We can assume that |θ | is small enough such that ξ a can be linearised in terms of θ b
O:

ξ
a
n = Da

bθ
b
O (4.5)
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with θ b
O ≡ dξ b

dλ

∣∣∣
λ=0

. The matrix Dab denotes the linear Jacobi mapping, which relates

the angle θ b
O between the two neighbouring geodesics at the observer O to the distance

ξ c between the geodesics at the source S.
We substitute (4.5) into the geodesic deviation equation (4.4) projected onto the

screen space nµ
a and obtain [17, 96, 69, 107, 56]

d2

dλ 2 Dab = RacD
c

b (4.6)

with Dab(0) = 0 and dDab
dλ

∣∣∣
λ=0

= δab. The affine parameter λ is a perturbative quantity.
In order to take these perturbations into account, we rewrite the evolution equation (4.6)
in terms of the unperturbed parameter χ , defined as χ ≡ c(ηO −η), where η denotes
conformal time. Note that we choose our time coordinate as x0 = c(ηO −η) = χ (see
section 4.2.1 for a more detailed discussion). As a consequence dχ/dλ = dx0/dλ = k0.
The total derivative with respect to λ transforms then into

d
dλ

=
dχ

dλ

d
dχ

= k0 d
dχ

. (4.7)

Substituting (4.7) into (4.6) we obtain

d2

dχ2 Dab +
1
k0

dk0

dχ

d
dχ

Dab =
1

(k0)2 RacDcb . (4.8)

To solve eq. (4.8), we need to calculate k0 and Rab and solve the equation order
by order in powers of 1/c. The calculation can be simplified by using the fact that
null geodesics are not affected by conformal transformations. As a consequence, the
calculation can be performed without the Friedmann expansion, i.e. for the metric ds2

defined through
ds̃2 = a2ds2 , (4.9)

where ds̃2 is the line element associated to the metric (2.77)-(2.80). The effect of the
expansion can then simply be taken into account at the end by rescaling the mapping by
the conformal factor [17]

D̃ab(χS) = a(χS)Dab(χS) , (4.10)

where Dab denotes the Jacobi mapping for the metric ds2, and D̃ab is the expression for
the metric ds̃2.
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The matrix D̃ab(χS) represents the Jacobi mapping for sources situated at constant
conformal time χS. However, observationally we select sources at constant redshift
zS. Since the observed redshift is itself affected by perturbations, zS = z̄S +δ zS, where
1+ z̄S = 1/aS, this will modify the expression of the Jacobi mapping 1. In particular,
we can write

D̃ab (χS) = D̃ab (χS (z̄S)) = D̃ab (z̄S) = D̃ab (zS −δ zS)

= D̃ab (zS)−
d

dzS
D̃ab (zS)δ zS +

1
2

d2

dz2
S
D̃ab (zS)δ z2

S

− 1
3!

d3

dz3
S
D̃ab (zS)δ z3

S +
1
4!

d4

dz4
S
D̃ab (zS)δ z4

S +O

(
1
c5

)
, (4.11)

where in the second and third lines the matrix D̃ab (zS) and its derivatives 2 are formally
given by eqs. (4.8) and (4.10) where χS can now be interpreted as χ(zS) and 1+ z̄S can
be replaced by 1+ zS.

The Jacobi mapping D̃ab(zS) is usually decomposed into a convergence κ , a shear
γ = γ1 + iγ2 and a rotation ω

D̃ab =
χ(zS)

1+ zS

(
1−κ − γ1 −γ2 −ω

−γ2 +ω 1−κ + γ1

)
. (4.12)

The prefactor χ(zS)/(1+ zS) represents the magnification of images due to the back-
ground expansion of the Universe, for sources situated at the observed redshift zS. The
convergence κ denotes the magnification or demagnification of images due to perturba-
tions. The shear γ is the trace-free, symmetric part of D̃ab and refers to the change in
the shape. The rotation ω , the antisymmetric part of D̃ab, represents a rotation without
any change in the shape. Note that what we observe when we measure the ellipticity of
galaxies is not directly the shear γ but rather the reduced shear g which is the ratio of
the anisotropic and isotropic deformations [9, 17, 63]

g ≡ γ

1−κ
. (4.13)

The rotation ω does in principle contribute to ellipticity orientation (see [17]). However,
we will see that the rotation is of order O

(
1
c4

)
and contributes consequently to the

1Note that we normalise the scale factor to 1 today: aO = 1.
2The derivatives in eq. (4.11) are formally given by dnD̃ab(z̄S)/dz̄n

S

∣∣∣
z̄S=zS
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ellipticity at the order O
(

1
c6

)
. Therefore our ellipticity measurement is dominated by

the reduced shear.
Following [17], the convergence, shear and rotation can be expressed in terms of

the spin-0 and spin-2 components of the Jacobi mapping D̃ab

0D̃ ≡D̃11 + D̃22 + i
(
D̃12 − D̃21

)
, (4.14)

2D̃ ≡D̃11 − D̃22 + i
(
D̃12 + D̃21

)
. (4.15)

The spin-0 field contains the contribution from the magnification and the rotation,
whereas the spin-2 field is related to the shear distortion. Comparing eqs. (4.14)
and (4.15) with (4.12) we obtain

κ =1− 1+ zS

2χS
Re
[

0D̃
]
, ω =− 1+ zS

2χS
Im
[

0D̃
]
, (4.16)

γ =− 1+ zS

2χS
2D̃ , (4.17)

where Re and Im denote the real and imaginary parts of the spin-0 component. The
reduced shear then becomes

g =− 2D̃

Re
[

0D̃
] . (4.18)

The advantage of expressing the shear in terms of the spin-2 component of the magnifi-
cation matrix is that this allows us to expand it onto spin-weighted spherical harmonics.
We can then uniquely decompose it into an E-component (or scalar gradient) and a
B-component (or curl) [83]. Contrary to the γ1 and γ2 components, the E and B compo-
nents are invariant under a rotation of the coordinate system around the line of sight.
As a consequence, this decomposition is particularly well adapted to a full-sky survey
where the line of sight direction varies from patch to patch of the sky. In approximations
in which we expand in powers of 1/c, the time-derivative of a quantity changes its order
because an additional factor 1/c is introduced. This reflects the assumption that the
motion of matter is regarded as slow. In our case, however, all time-derivatives originate
from the parallel transport along the geodesic, which is the covariant derivative w.r.t λ 3.
Let A(λ ) be a scalar function, then

dA
dλ

=A,0k0 +A,iki = k0 dA
dχ

= k0
(

A,0 +
ki

k0 A,i

)
, (4.19)

3We will see in the next section that the contracted Riemann tensor Ra
b, and therefore the Jacobi

mapping Da
b, only contain time-derivatives that are derived from d

dλ
.
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k0 =
dχ

dλ
=−c

dη

dλ
and A,0 =−1

c
Ȧ, ⇒ A,0k0 = Ȧ

dη

dλ
(4.20)

In the following calculations, all time-derivatives appears always alongside a factor k0.
Therefore they will not change the order in this approximation scheme.

4.2.1 The Jacobi mapping Dab

In this section, we compute the Jacobi mapping for the orders O
(

1
c2

)
, O
(

1
c3

)
, and

O
(

1
c4

)
using the post-Friedmann formalism, which was introduced in section 2.4. First

we compute in subsections 4.2.1 various terms in the evolution equation (4.8) up to the
required order. Then, in subsection 4.2.1 we use the our previous results to solve for the
Jacobi mapping Dab at different orders.

We introduced the conformal time η so that the line element ds2 of the metric
(2.77)-(2.80) changes to

ds̃2 = a2ds2. (4.21)

Then the Jacobi mapping Dab conformally transforms as

D̃ab = aDab (4.22)

(see Appendix A of [17]). This highlights the fact that a conformal transformation does
not affect angles but only distances. In this subsection, we will compute the Jacobi
mapping for the metric ds̃2, whereas in the next subsection 4.2.2, we will use equation
(4.22) to reintroduce the scale factor a.

Before we solve the evolution equation (4.8) for each order, we need expressions
for both k0 and Rab up to order O

(
1
c4

)
, and nµ

a and ki up to order O
(

1
c2

)
.

The wave-vector kµ and the screen-space basis nµ
a

All following calculations of chapter 4 are my responsibility.
The two quantities kµ and nµ

a do not change under parallel transport along the null
geodesic and we can solve the transport equations up to the required order. First, we
want to solve the geodesic equation

Dkµ

Dλ
= 0 (4.23)
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with kµ = dxµ

dλ
. Analogously to the previous section, we substitute the derivative w.r.t.

λ with a derivative w.r.t. χ = c(η0 −η). Then the geodesic equation (4.23) reads

k0 dkµ

dχ
=−Γ

µ

ναkνkα . (4.24)

The solution for (4.24) up to order O
(

1
c4

)
yields

k0 =k̄0 exp
(

2UN
1
c2 −2

∫
χ

0
WN,0dχ

′ 1
c2 +4UP

1
c4 −4

∫
χ

0
dχ

′WP,0
1
c4

)
−

− 1
c3

∫
χ

0
BNi, jk̄ j 1

k̄0 k̄idχ
′− 1

c4
1

2k̄0 hi jk̄ik̄ j +
1
c4

1
2k̄0

∫
χ

0
dχ

′hi j,mk̄ik̄ jk̄m+

− 4
c4UN,ik̄i

∫
χ

0
dχ

′
[
WN −

(
χ −χ

′)(k̄0W ,i
N −WN, j

k̄ik̄ j

k̄0

)]
+

+
4
c4

∫
χ

0
dχ

′UN,ik̄i
[
WN −

∫
χ ′

0
dχ

′′
(

k̄0W ,i
N −WN, j

k̄ik̄ j

k̄0

)]
+

+
4
c4

∫
χ

0
dχ

′WN,0ik̄i
∫

χ ′

0
dχ

′′
[
WN −

(
χ
′−χ

′′)(k̄0W ,i
N −WN, j

k̄ik̄ j

k̄0

)]
(4.25)

with the Weyl potential WA = 1
2 (UA +VA)

4 with A = N, P. The subscript N refers to
Newtonian contributions, while the potentials with subscript P are considered to be
relativistic contributions. At order O

(
1
c2

)
we obtain the leading order Newtonian

contributions. At order O
(

1
c3

)
, a vector field perturbation Bi

N is introduced, which is
sourced by Newtonian quantities but represents a relativistic contribution.

In order to solve ki up to order O
(

1
c4

)
we look at the spatial part of (4.23)

k0 dki

dχ
=−Γ

i
ναkνkα (4.26)

and find the solution

ki =k̄i
(

1−2VN
1
c2

)
+2

1
c2

∫
χ

0
W ,i

N dχ
′+

1
c3 Bi

N − 1
c3

∫
χ

0
B ,i

Nmk̄mdχ
′+

− 1
c4 k̄i (4VP −2V 2

N
)
−4

1
c4VN

∫
χ

0
W ,i

N dχ
′+4

1
c4

∫
χ

0
dχ

′W ,i
NWN+

+2
1
c4

∫
χ

0
dχ

′ (2WP,−W 2
N
)
, j δ

i j +δ
i j4

1
c4

∫
χ

0
dχ

′
(

WN, j

∫
χ ′

0
WN,nk̄ndχ

′′
)
.

(4.27)

4At order O
(

1
c2

)
, the Einstein field equations yield that VN =UN and therefore WN =VN =UN . We

decided to keep UN and VN throughout the calculations. Potentially, they could differ, e.g. in a modified
gravity theory.
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The expressions for k0 and ki in (4.52) and (4.27) are derived as follows:

k0 up to O
(

1
c4

)
:

For simplicity, we set A = 2UN
1
c2 + 4UP

1
c4 , C = 2VN

1
c2 + 4VP

1
c4 . Then the PF metric

yields

g00 =− e−A, g0i =−Bi
1
c3 , and gi j = eC

δi j +hi j
1
c4 . (4.28)

The geodesic equation (4.24) yields

k0 dk0

dχ
=− 1

2
g0γ
(
2gγν ,α −gαν ,γ

)
kνkα (4.29)

=− 1
2

g00 (2g0ν ,αkνkα −gαν ,0kνkα) (4.30)

=− 1
2

g00
(

2
dg00

dχ
k0k0 +2

dg0i

dχ
k0ki −g00,0k0k0 −2g0i,0k0ki −gi j,0kik j

)
(4.31)

dk0

dχ
=−g00

(
dg00

dχ
k0 +

dg0i

dχ
ki − 1

2
g00,0k0 −g0i,0ki − 1

2k0 gi j,0kik j
)

(4.32)

=−
(
−dA

dχ

)
k0 +

(
−dBi

dχ

)
ki 1

c3+

+
g00

2k0

[
(−A,0)g00k0k0 −2Bi,0k0ki 1

c3 +

(
C,0eC

δi j +hi j,0
1
c4

)
kik j
]

=
dA
dχ

k0 − dBi

dχ
ki 1

c3 −
1
2

A,0k0 −g00Bi,0ki 1
c3+

+
g00

2
C,0

(
−g00k0 +2Biki 1

c3 −hi jkik j 1
k0

)
+

g00

2k0 hi j,0kik j

=
dA
dχ

k0 − dBi

dχ
ki 1

c3 −
1
2

A,0k0 −g00Bi,0ki 1
c3 +

1
2

C,0
(
−k0)+ g00

2k0 hi j,0kik j

=
dA
dχ

k0 − dBi

dχ
ki 1

c3 −
1
2
(A+C),0 k0 −g00

(
dBi

dχ
− 1

c3 Bi, jk j 1
k0

)
ki +

g00

2k0 hi j,0kik j

=
dA
dχ

k0 − 1
2
(A+C),0 k0 − 1

c3 Bi, jk̄ j 1
k̄0 k̄i − 1

2k̄0 hi j,0k̄ik̄ j (4.33)

Now we will extract the different orders from the solution (4.33). We will start with the
order O

(
1
c2

)
:

dk0(2)

dχ
=

dA(2)

dχ
k̄0 − 1

2

(
A(2)+C(2)

)
,0

k̄0 (4.34)
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⇒ k0(2) =k̄0 1
c2

[
A(2)− 1

2

∫
χ

0

(
A(2)+C(2)

)
,0

dχ

]
(4.35)

=k̄0 1
c2

(
2UN −

∫
χ

0
WN,0dχ

′
)

(4.36)

=k̄0 1
c2

(
2UN −2WN +

∫
χ

0
WN,mk̄mdχ

′
)
. (4.37)

For O
(

1
c3

)
we have

k0 dk0

dχ
=− 1

2
g00 (2g0ν ,αkνkα −gαν ,0kνkα) (4.38)

=− 1
2

g00 (2g0i,α k̄ikα −2g0i,0k̄0k̄i) (4.39)

=
dg0i

dχ
k̄i −g0i,0k̄i (4.40)

=− 1
c3

dBNi

dχ
k̄i +BN,0k̄i (4.41)

⇒ k0(3) =−BNik̄i 1
c3 +

1
c3

∫
χ

0
BNi,0k̄idχ (4.42)

=− 1
c3

∫
χ

0
BNi, jk̄ik̄ jdχ (4.43)

To solve for k0 up to order O
(

1
c4

)
we need to go beyond the so-called Born approxima-

tion, and integrate eq. (4.24) along the perturbed geodesic. We have

k0(χ) = k̄0 +
∫

χ

0
dχ

′G(χ ′) , (4.44)

where we have defined
G =−Γ

0
να

kνkα

k0 . (4.45)

At order O
(

1
c4

)
on the other hand, we need to integrate along the perturbed trajectory

xµ(χ) = x̄µ(χ)+δxµ(χ). We have

G
(
xµ(χ ′)

)
=G
(
x̄µ(χ ′)+δxµ(χ ′)

)
=G
(
x̄µ(χ ′)

)
+δxµ(χ ′)∂µG

(
x̄µ(χ ′)

)
+O

(
1
c6

)
(4.46)

→ k0 (χ) =k̄0 +
∫

χ

0
dχ

′G
(
x̄µ(χ ′)

)
+
∫

χ

0
dχ

′
δxµ(χ ′)∂µG

(
x̄µ(χ ′)

)
+O

(
1
c6

)
=k̄0 + k0

G + k0
δG +O

(
1
c6

)
(4.47)
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Since G is at least of order 1/c2, it is enough to consider only the first term of the Taylor
expansion in eq. (4.46). We need to calculate δxµ(χ) at order 1/c2. We have

dxµ

dχ
=

dxµ

dλ

dλ

dχ
=

kµ

k0 . (4.48)

Using eq. (4.27) and (4.37) we obtain

d
dχ

xi
pert =

ki

k0 = k̄i − 2
c2WN k̄i +2

1
c2

∫
χ

0

(
W ,i

N −WN, jk̄ik̄ j
)

dχ
′+O

(
1
c3

)
(4.49)

δxi =− 2
c2

∫
χ

0
dχ

′WN
k̄i

k̄0 +
2
c2

∫
χ

0
dχ

′
∫

χ ′

0
dχ

′′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)
, (4.50)

d
dχ

x0
pert =1 δx0 = 0 . (4.51)

Inserting this into eqs. (4.46) and (4.44) we obtain for k0
δG

k0
δG =− 4

c4UN,ik̄i
∫

χ

0
dχ

′
[
WN −

(
χ −χ

′)(k̄0W ,i
N −WN, j

k̄ik̄ j

k̄0

)]
+

+
4
c4

∫
χ

0
dχ

′UN,ik̄i
[
WN −

∫
χ ′

0
dχ

′′
(

k̄0W ,i
N −WN, j

k̄ik̄ j

k̄0

)]
+

+
4
c4

∫
χ

0
dχ

′WN,0ik̄i
∫

χ ′

0
dχ

′′
[
WN −

(
χ
′−χ

′′)(k̄0W ,i
N −WN, j

k̄ik̄ j

k̄0

)]
. (4.52)

To solve for k0
G, we look at the geodesic equation (4.24):

dk0

dχ
=

dA(2)

dχ
k0(2)+

dA(4)

dχ
k̄0 − 1

2

(
A(2)+C(2)

)
,0

k0(2)+

− 1
2

(
A(4)+C(4)

)
,0

k̄0 − 1
2k̄0 hi j,0k̄ik̄ j 1

c4

=
dA(2)

dχ
k̄0
[

A(2)− 1
2

∫ (
A(2)+C(2)

)
,0

dχ

]
+

dA(4)

dχ
k̄0−

− 1
2

(
A(2)+C(2)

)
,0

k̄0
[

A(2)− 1
2

∫ (
A(2)+C(2)

)
,0

dχ

]
+

− 1
2

(
A(4)+C(4)

)
,0

k̄0 − 1
2k̄0 hi j,0k̄ik̄ j 1

c4

=k̄0 1
2

d
(

A(2)
)2

dχ
k̄0 − k̄0k̄0

[
d

dχ

(
A(2)1

2

∫ (
A(2)+C(2)

)
,0

dχ

)
+

−A(2)1
2

(
A(2)+C(2)

)
,0

]
+
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+
dA(4)

dχ
k̄0 − 1

2

(
A(2)+C(2)

)
,0

k̄0A(2)+
1
8

d
dχ

[∫ (
A(2)+C(2)

)
,0

dχ

]2

+

− 1
2

(
A(4)+C(4)

)
,0

k̄0 − 1
2k̄0 hi j,0k̄ik̄ j 1

c4

=k̄0 1
2

d
(

A(2)
)2

dχ
k̄0 − k̄0k̄0 d

dχ

(
A(2)1

2

∫ (
A(2)+C(2)

)
,0

dχ

)
+

dA(4)

dχ
k̄0−

+
1
8

d
dχ

[∫ (
A(2)+C(2)

)
,0

dχ

]2

− 1
2

(
A(4)+C(4)

)
,0

k̄0 − 1
2k̄0 hi j,0k̄ik̄ j 1

c4

⇒ k0(4)
G =A(4)k̄0 + k̄0 1

2

(
A(2)

)2
k̄0 − k̄0k̄0

(
A(2)1

2

∫ (
A(2)+C(2)

)
,0

dχ

)
+

+
1
2

[
1
2

∫ (
A(2)+C(2)

)
,0

dχ

]2

− 1
2

∫
dχ

(
A(4)+C(4)

)
,0

k̄0+

− 1
2k̄0

∫
dχhi j,0k̄ik̄ j 1

c4 (4.53)

If we compare (4.53) with the following exponential ansatz

ea+b+c =1+a+b+ c+
1
2
(
a2 +b2 + c2 +2ab+2bc+2ac

)
+ . . . (4.54)

a ≡ A(2), b ≡−1
2

∫ (
A(2)+C(2)

)
,0

dχ, c ≡ A(4)− 1
2

∫
dχ

(
A(4)+C(4)

)
,0

k̄0

(4.55)

→ ea+b+c =1+a+b+ c+
1
2
(
a2 +b2 +2ab+

)
+ . . . (4.56)

=1+A(2)− 1
2

∫ (
A(2)+C(2)

)
,0

dχ +A(4)+

− 1
2

∫
dχ

(
A(4)+C(4)

)
,0

k̄0 +
1
2

(
A(2)

)2
+

+
1
8

[∫ (
A(2)+C(2)

)
,0

dχ

]2

−A(2)
∫ (

A(2)+C(2)
)
,0

dχ (4.57)

we see that we can rewrite k0
G as

k0
G =k̄0 exp

[
A(2)− 1

2

∫ (
A(2)+C(2)

)
,0

dχ +A(4)− 1
2

∫
dχ

(
A(4)+C(4)

)
,0

]
−

−
∫

Bi, jk̄ j 1
k̄0 k̄idχ − 1

2k̄0

∫
dχhi j,0k̄ik̄ j − k̄0 (4.58)

and in terms of the metric potentials:

k0
G =k̄0 exp

[
2UN

1
c2 −

∫
χ

0
(UN +VN),0 dχ

′ 1
c2 +4UP

1
c4 −

∫
χ

0
dχ

′2(UP +VP),0
1
c4

]
−
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− 1
c3

∫
χ

0
BNi, jk̄ j 1

k̄0 k̄idχ
′− 1

c4
1

2k̄0

∫
χ

0
dχ

′hi j,0k̄ik̄ j − k̄0 (4.59)

The next step is to solve equation (4.26) up to O
(

1
c3

)
, which reads

k0 dki

dχ
=−Γ

i
ναkνkα (4.60)

for ki. For order O
(

1
c2

)
we obtain

dki

dχ
=− 1

2k0 δ
i j (2g jν ,α −gνα, j

)
kνkα (4.61)

=− 1
2k0 δ

ik
(

2
dgk j

dχ
k jk0 −g00,kk0k0 −g jp,kk jkp

)
(4.62)

=−2
1
c2

dVN

dχ
ki +

1
c2k0

(
U ,i

Nk0k0 +V ,i
N δ jpk jkp

)
(4.63)

=−2
dVN

dχ
ki +(UN +VN)

,i (4.64)

⇔ ki =k̄i −2VN k̄i +2
∫

χ

0
W ,i

N dχ
′. (4.65)

and for order O
(

1
c3

)
dki

dχ
=− 1

2k̄0 δ
i j (2g jν ,α −gνα, j

)
kνkα (4.66)

=− 1
2

δ
i j
(

2
dg j0

dχ
−2g0m, jk̄m

)
(4.67)

=
dBi

N
dχ

−B ,i
Nmk̄m (4.68)

ki =Bi
N −

∫
B ,i

Nmk̄mdχ. (4.69)

As the next step we want to find an expression for the screen space nµ
a by solving (4.2)

up to order O
(

1
c2

)
:

Dnµ
a

Dλ
=0 with (4.70)

n0
a =

1
c2

∫
χ

0
UN,in̄i

adχ
′ and (4.71)

ni
a =

(
1− VN

c2

)
n̄i

a −
k̄i

k̄0

∫
χ

0

VN, j

c2 n̄ j
adχ

′. (4.72)
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The derivation of (4.71) and (4.72) is the following: as well as the phase vector kµ ,
the screen space unit vectors nµ

1 and nµ

2 are parallel transported along the line of sight
(4.70). In order to solve the evolution equation for the Jacobi mapping D , we will only
need an expression for nµ

s up to order O
(

1
c2

)
. Thus, we obtain

k0 dnµ
a

dχ
=− 1

2
gµβ

(
gβν ,α +gβα,ν −gνα,β

)
kνnα

a (4.73)

=− 1
2

gµβ
(
gβν ,α −gνα,β

)
kνnα

a − 1
2

gµβ
gβα

dχ
nα

a (4.74)

For n0
a we obtain

k0 dn0
a

dχ
=− 1

2
g00 (g00,αk0nα

a −gνα,0kνnα
a
)
− 1

2
g00 dg00

dχ
n0

a (4.75)

dn0
a

dχ
=− 1

2
ḡ00 (g00,α n̄α

a −gνα,0k̄ν n̄α
a
)
− 1

2
ḡ00 dg00

dχ
n̄0

a (4.76)

dn0
a

dχ
=

1
2
(
g00,in̄i

a −g ji,0k̄ jn̄i
a
)

(4.77)

dn0
a

dχ
=UN,in̄i

a −VN,0δ jik̄ jn̄i
a (4.78)

dn0
a

dχ
=UN,in̄i

a (4.79)

⇔ n0
a =

∫
χ

0
UN,in̄i

adχ
′+ const =

∫
χ

0
UN,in̄i

adχ
′ (4.80)

and for ni
a

k0 dni
a

dχ
=− 1

2
gi j (g jν ,αkνnα

a −gνα, jkνnα
a
)
− 1

2
gi j dg jk

dχ
nk

a (4.81)

dni
a

dχ
=− 1

2
ḡi j (g jν ,α k̄ν n̄α

a −gνα, jk̄ν n̄α
a
)
− 1

2
ḡi j dg jk

dχ
n̄k

a (4.82)

dni
a

dχ
=− 1

2
δ

i j
(

g jl,α k̄l n̄α
a −gpl, jk̄pn̄l

a

)
− dVN

dχ
n̄i

a (4.83)

dni
a

dχ
=−VN,α k̄in̄α

a +δ
i j

δplVN, jk̄pn̄l
a −

dVN

dχ
n̄i

a (4.84)

dni
a

dχ
=−VN, jk̄in̄ j

a −
dVN

dχ
n̄i

a (4.85)

⇔ ni
a =−VN n̄i

a −
∫

χ

0
VN, jn̄ j

ak̄idχ
′+ const (4.86)

⇒ ni
a =

(
1− VN

c2

)
n̄i

a − k̄i
∫

χ

0

VN, j

c2 n̄ j
adχ

′. (4.87)
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In this subsection, we have computed an expression for k0, ki, n0
a, and ni

a in (4.52),
(4.27), (4.71), and (4.72), respectively, up to the desired order.

The next quantity we have to compute in order to solve for the Jacobi mapping Dab

in (4.8), is the contracted Riemann tensor Rab (4.4) up to order O
(

1
c4

)
. In (4.4), the

Riemann tensor Rα

βγδ
is contracted either by ni

a or kα . Thus, every derivative within
the Riemann tensor will either be a spatial derivative (contracted by ni

a) or parallel
transported along the line of sight (contracted by kα ). Therefore, every time-derivative
in Ra

b will be accompanied by a factor k0 and, consequently, will not change the order
of any metric potential in Ra

b. Furthermore, up to O
(

1
c4

)
, any quantity of O

(
1
c3

)
will not mix with quantities of O

(
1
c2

)
and O

(
1
c4

)
. Thus, R

(3)a
b

5 can be computed
separately.

We start with the contracted Riemann tensor at order O
(

1
c3

)
, which is solely

composed of contributions of the vector potential BN
i :

R
(3)a

c = na
i n j

cRi
να jk

νkα = n̄ain̄ j
c

1
c3

(
dBN

(i, j)

dχ
− k̄kBN

k,i j

)
. (4.88)

In order to compute the orders O
(

1
c2

)
and O

(
1
c4

)
, we perform a pseudo-conformal

transformation

ds2 =− e−
2

c2 UN− 4
c4 UPdt2 +

(
e

2
c2 VN+

4
c4 VP

δi j +
1
c4 hi j

)
dxidx j (4.89)

=e
2

c2 VN+
4

c4 VP

[
−e−

4
c2 WN− 8

c4 WPdt2 +

(
δi j +

1
c4 hi je

− 2
c2 VN− 4

c4 VP

)
dxidx j

]
(4.90)

=e
2

c2 VN+
4

c4 VP

[
−e−

4
c2 WN− 8

c4 WPdt2 +

(
δi j +

1
c4 hi j

)
dxidx j

]
+O

(
1
c6

)
(4.91)

and use the expression for the conformally transformed Riemann tensor: [111]

Rαβγδ =R̂αβγδ −2gα[γ ∇δ ]∇β lnΩ+2gβ [γ ∇δ ]∇α lnΩ−2
(
∇[γ lnΩ

)
g δ ]α∇β lnΩ+

+2
(
∇[γ lnΩ

)
gδ ]β ∇α lnΩ+2gβ [γ gδ ]αgεζ (∇ε lnΩ)∇ζ lnΩ (4.92)

with gαβ = Ω2ĝαβ . Substituting the metric (4.91) into (4.92) with Ω = e
1

c2 VN+
2

c4 VP we
obtain

Rab =Rαβδγkαkδ nγ
anβ

b = e−
4

c2 WN− 8
c4 WP

[
−kik jn0

an0
b + k jk0n0

ani
b + k jk0ni

an0
b −
(
k0)2

ni
an j

b

]
5We refer to the different orders as X (n), where n denotes the inverse power of the speed of light c.
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[(
2
c2WN,i +

4
c4WP,i

)(
2
c2WN, j +

4
c4WP, j

)
− 2

c2WN,i j −
4
c4WP,i j

]
+

+δab

[
kαkβ

(
1
c2VN,δβ +

2
c4VP,δβ

)
− kαkβ

(
1
c2VN,δ +

2
c4VP,δ

)(
1
c2VN,β +

2
c4VP,β

)]
+

+
1

2c4 ni
an j

b

[
d2

dχ2 hi j −
d

dχ

(
h jp,i +hip, j

)
k̄p +hmp,i jkpkm

]
(4.93)

The contracted Riemann tensor at order O
(

1
c2

)
yields

R
(2)
ab =

(
k̄0)2

n̄i
an̄ j

b
2
c2WN,i j +δabk̄α k̄β 1

c2VN,δβ

=n̄i
an̄ j

b
2
c2WN,i j +δab

1
c2

d2VN

dχ2 (4.94)

and at order O
(

1
c4

)
R

(4)
ab =δab

1
c4

(
k̄0)2

[
2

d2

dχ2VP −
d

dχ
VN

d
dχ

VN +2
(

dUN

dχ
−WN,0

)
dVN

dχ

]
+

+ n̄i
an̄ j

b
1
c4

(
k̄0)2 [

4WP,i j −4W 2
N,i j +4WN,iWN, j −4WN,i jVN +

−4WN,i j
1
c4 k̄0

(
k̄in̄m

a n̄ j
b + k̄ jn̄m

b n̄i
a

)∫ χ

0
WN,mdχ

′
]
+

+
1

2c4 n̄i
an̄ j

b

(
k̄0)2

[
d2

dχ2 hi j −
d

dχ

(
h jp,i +hip, j

)
k̄p +hmp,i jkpkm

]
(4.95)

From now on, we will set k̄0 = 1 keeping in mind that k̄0 is of order O(c).

The Jacobi mapping Dab(χ) up to O
(

1
c4

)
Previously we derived k0, ki, n0

a, and ni
a in (4.52), (4.27), (4.71), and (4.72), respectively,

as well as Rab up to order O
(

1
c4

)
in (4.94), (4.88), and (4.95). In this subsection, we

will use these results and substitute them into the evolution equation (4.8). We will now
solve (4.8) for the order O

(
1
c2

)
, O
(

1
c3

)
, and O

(
1
c4

)
:

Order O
(

1
c2

)
At this order, the evolution equation for D

(2)
ab (4.8) reduces to

d2

dχ2 D
(2)
ab =− dk(2)0

dχ
δab +R

(2)
ab χ, (4.96)
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with D̄ab = χδab. We integrate (4.96) two times

Dab =
∫

χS

0
dχ
(
2− k0)

δab +
∫

χS

0
dχ (χS −χ)χRab. (4.97)

and substitute (4.94) and (4.52) up to order O
(

1
c2

)
into (4.97):

Dab (χS) =χSδab

(
1+VN

1
c2

)
−2

1
c2

∫
χS

0
dχ
[
WN +(χS −χ)WN,ik̄i]

δab+

+2
1
c2

∫
χS

0
dχ (χS −χ)χ n̄i

an̄ j
bWN,i j. (4.98)

The solution (4.98) formally coincides with the first order solution for Dab in SPT
[17, 23, 21]. This follows from the fact that the metric of order O

(
1
c2

)
in the PF

formalism is mathematically identical to the metric first order SPT. We derived the
evolution equation of the Jacobi mapping from the geodesic deviation equation, which
is a mathematical identity. Thus, as long as we don’t substitute field equations into
the evolution equation (4.8), the solution for the Jacobi mapping will mathematically
coincide.

In (4.98), the Jacobi mapping Dab involves the Weyl potential WN as well as the
scalar potential VN . Because we are using a conformal metric with the Weyl potential
in the conformal factor and because null geodesics are invariant under conformal
transformations, one would expect that Dab only comprises the Weyl potential WN . But
as noted in [17], the term involving VN is derived from the parallel transport of the basis
nµ

a , which is not conformally invariant.

Order O
(

1
c3

)
For order O

(
1
c3

)
, (4.8) yields

d2

dχ2 D
(3)
ab +

1
k̄0

dk(3)0

dχ

d
dχ

D̄ab =
1

(k̄0)2 R
(3)c
a D̄cb, (4.99)

Analogously to the previous order, we integrate along the background geodesic and
substitute (4.52) and (4.88) into (4.99):

D
(3)
ab (χS) =−

∫
χS

0
dχk(3)0δab +

∫
χS

0
dχ (χS −χ)χR

(3)
ab (4.100)

=
1
c3

∫
χS

0
dχ (χS −χ)BNi, jk̄ jk̄i

δab+
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+
1
c3

∫
χS

0
dχ (χS −χ)χ n̄i

an̄ j
b

[
dBN

(i, j)

dχ
− k̄mBN

m,i j

]
(4.101)

The second part of (4.101) coincides with the vector part of [17], in which the shear has
been computed up to second order in SPT. The first part of (4.101) will contribute to
the convergence.

Order O
(

1
c4

)
The Jacobi mapping D

(4)
ab is the solution of the following differential equation

d2

dχ2 D
(4)
ab =−

(
1
k0

dk0

dχ

)(4)

δab −
(

1
k0

dk0

dχ

)(2) d
dχ

D
(2)
ab +

+

(
1

(k0)
2 R c

a

)(4)

χδcb +

(
1

(k0)
2 R c

a

)(2)

D
(2)
cb (4.102)

In this section, we will derive the expressions for each term and subsequently combine
them. For simplicity , we define a function A(χ) as

A(χ)≡ 2(UN −WN)
1
c2 +

∫
dχ2WN,lkldχ

1
c2 +4(UP −WP)

1
c4 +

∫
dχ4WP,lkl 1

c4

(4.103)

so that k0 reduces to

k0 =k̄0eA(χ)− 1
c3

∫
BNi, jk̄ j 1

k̄0 k̄idχ − 1
c4

1
2k̄0 hi jk̄ik̄ j +

1
c4

1
2(k̄0)2

∫
dχhi j,l k̄ik̄ jk̄l

(4.104)

Using the expression (4.104), the first term in (4.102) yields

−
(

1
k0

d
dχ

k0
)(4)

=− e−A(χ)
[

eA(χ)dA(χ)
dχ

− 1
c4

1
2k̄0

dhi j

dχ
k̄ik̄ j +

1
c4

1
2(k̄0)2 hi j,l k̄ik̄ jk̄l

]
=−4

d
dχ

(UP −WP)
1
c4 −4WP,ik̄i 1

c4 +
1
c4

1
2k̄0

dhi j

dχ
k̄ik̄ j+

− 1
c4

1
2(k̄0)2 hi j,l k̄ik̄ jk̄l. (4.105)
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The second term in (4.102) becomes

−
(

1
k0

dk0

dχ

)(2) d
dχ

D
(2)
ab =− 1

k̄0
d

dχ
k0(2)

(
−k0(2)

δab +
∫

dχ
′Rabχ

′
)

=
1

2k̄0
d

dχ

(
k0(2)

)2
δab −

1
k̄0

d
dχ

k0(2)
∫

dχ
′Rabχ

′

=
1
2

d
dχ

(
2UN −2WN +2

∫
χ

0
WN,l k̄l

)2

δab−

−4
d

dχ

[
(UN −WN)

∫
n̄i

an̄ j
bχWN,i jdχ

′
]
+

+4(UN −WN) n̄i
an̄ j

bχWN,i j+

−2
d

dχ
(UN −WN)

(
−VN +χ

d
dχ

VN

)
δab

−2WN,l k̄l
[∫

2n̄i
an̄ j

bχWN,i jdχ
′+

(
−VN +χ

d
dχ

VN

)
δab

]
(4.106)

with ∫
dχ

′Rabχ
′ =
∫

2n̄i
an̄ j

bχWN,i jdχ
′+

(
−VN +χ

d
dχ

VN

)
δab and (4.107)

−VN +χ
d

dχ
VN =χ

2 d
dχ

(
1
χ

VN

)
=

d
dχ

(χVN)−2VN . (4.108)

The third term in (4.102) is given by(
1

k0k0 Rac

)(4)

χδ
c
b =χ

{
δab

1
c4

(
2

d2

dχ2VP −
d

dχ
VN

d
dχ

VN +

+2
d

dχ
(UN −WN)

dVN

dχ
+2WN,l k̄l dVN

dχ

)
+

+ n̄i
an̄ j

b
1
c4

[
4WP,i j −4W 2

N,i j +4WN,iWN, j −4WN,i jVN −

−4k̄lWN,l j

∫
χ

0
WN,idχ −4k̄lWN,il

∫
χ

0
WN, jdχ

]
+

+
1
2

[
d2

dχ2 hi j −
d

dχ

(
h jp,i +hip, j

)
k̄p +hmp,i jkpkm

]}
(4.109)

The last term in (4.102) yields(
1

k0k0 Rac

)(2)

D
(2)c

b =

(
d2

dχ2VNδac +2n̄q
an̄p

cWN,qp

)
[χVNδ

c
b+
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−
∫

dχ
′
(

2WN +2
∫

WN,mk̄m
)

δ
c
b+

+ 2
∫

χ

0

∫
χ ′

0
dχ

′dχ
′′
χ
′′n̄q

c n̄p
bWN,qp

]
=δabχVN

d2

dχ2VN − d2

dχ2VNδab

∫
dχ

′
(

2WN +2
∫

WN,mk̄m
)
+

+2
d2

dχ2VN

∫
χ

0

∫
χ ′

0
dχ

′dχ
′′
χ
′′n̄q

an̄p
bWN,qp+

+2n̄q
an̄p

bWN,qpχVN+

−2n̄q
an̄p

bWN,qp

∫
χ

0
dχ

′
(

2WN +2
∫

χ ′

0
dχ

′′WN,mk̄m
)
+

+4n̄q
an̄p

c n̄rcn̄s
bWN,qp

∫
χ

0

∫
χ ′

0
dχ

′dχ
′′
χ
′′WN,rs

=δab

[
χ

2
d2

dχ2V 2
N −χ

(
dVN

dχ

)2

−2
d2

dχ2

(
VN

∫
χ

0
dχ

′WN

)
+

+2
d

dχ
(VNWN)+2WN

d
dχ

VN −2
d2

dχ2

(
VN

∫
dχ

′
∫

dχ
′′WN,mk̄m

)
+4

d
dχ

(
VN

∫
dχ

′WN,mk̄m
)
−2VNWN,mk̄m

]
+

+ n̄i
an̄ j

b

[
2

d2

dχ2

(
VN

∫
χ

0

∫
χ ′

0
dχ

′dχ
′′
χ
′′WN,i j

)
+

−4
d

dχ

(
VN

∫
dχ

′
χ
′WN,i j

)
+4VN χWN,i j+

−4WN,i j

∫
χ

0
dχ

′WN −4WN,i j

∫
χ

0

∫
χ ′

0
WN,mk̄m+

+4n̄s
cn̄rcWN,is

∫
χ

0

∫
χ ′

0
dχ

′dχ
′′
χ
′′WN,r j

]
(4.110)

At order O
(

1
c4

)
, we have to go beyond the Born approximation and take perturba-

tions of the null geodesic into account. Therefore, we rearrange the evolution equation
(4.8) and define a function S (χ), which will perturb later.

d2

dχ2 Dab =
1

χ2 S (χ) (4.111)

with Sab ≡χ
2
(
− 1

k0
dk0

dχ

d
dχ

Dab +
1

(k0)2 R c
a Dcb

)
(4.112)

Perturbation along the geodesic: analogously to k(4)0 in equation (4.44) and (4.46)
we can no longer integrate along the background null geodesic x̄µ but need to take
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perturbations of the geodesic up to order O
(

1
c2

)
into account. We perturb the geodesic

xµ(χ) and evaluate the function S at the geodesic position xµ

pert(χ) = xµ(χ)+δxµ(χ).
In equations (4.50) and (4.51) we solved for δ xi and δ x0, respectively. Next, we expand
Sab

(
xi

pert
)
=Sab(xi)+δx j ·δ (Sab) j

∣∣
x. Considering the definition of the function Sab

in (4.112), we see that we obtain two additional terms

(
D̄acR

(2)c
b

)
, jδx j and −

(
D̄ab

dk0(2)

dχ

)
, jδx j (4.113)

which are computed as follows:(
D̄acR

(2)c
b

)
, j

δx j =

=n̄i
an̄ j

b
1
c4

[
−χ4WN,i jm

∫
χ

0
WNdχ

′k̄m +

+χ4WN,i jm

∫
χ

0

∫
χ ′

0

(
W ,m

N −WN,l k̄mk̄l
)

dχ
′′dχ

′
]
+

+δab
1
c4

{
−2

d2

dχ2

(
χVN,m

∫
χ

0
WNdχ

′k̄m
)
+

+2
d

dχ

(
2VN,m

∫
χ

0
WNdχ

′k̄m +χVN,mk̄mWN

)
+

−2k̄mVN,mWN +2k̄m
χWN

d
dχ

VN,m+

+2
d2

dχ2

[
χVN,m

∫
χ

0

∫
χ ′

0

(
W ,m

N −WN,l k̄mk̄l
)

dχ
′′dχ

′
]
+

−4
d

dχ

[
VN,m

∫
χ

0

∫
χ ′

0

(
W ,i

N −WN, jk̄ik̄ j
)

dχ
′′dχ

′+

+ χVN,m

∫
χ

0

(
W ,m

N −WN,l k̄mk̄l
)

dχ
′
]
+

+4VN,m

∫
χ

0
dχ

(
W ,m

N −WN,l k̄mk̄l
)
+2χVN,m

(
W ,m

N −WN,l k̄mk̄l
)}

(4.114)

and

−

(
d

dχ
D̄ab

dk0(2)

dχ

)
,mδxm =δab

1
c4

[
4

d
dχ

(
UN,m

∫
χ

0
WNdχ

′k̄m
)
−4UN,mk̄mWN+

−4
d

dχ

(
WN,m

∫
χ

0
WNdχ

′k̄m
)
+4WN,mk̄mWN+

+4WN,nmk̄nk̄m
∫

χ

0
WNdχ

′+
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−4
d

dχ

(
UN,m

∫
χ

0

∫
χ ′

0

(
W ,m

N −WN, jk̄mk̄ j)dχ
′′dχ

′
)
+

+4UN,m

∫
χ

0

(
W ,m

N −WN, jk̄mk̄ j)dχ
′+

+4
d

dχ

(
WN,m

∫
χ

0

∫
χ ′

0

(
W ,m

N −WN, jk̄mk̄ j)dχ
′′dχ

′
)
+

−4WN,m

∫
χ

0

(
W ,m

N −WN, jk̄mk̄ j)dχ
′+

−4WN,nmk̄n
∫

χ

0

∫
χ ′

0

(
W ,m

N −WN, jk̄mk̄ j)dχ
′′dχ

′
]
.

(4.115)

We substitute (4.105) - (4.110) into (4.102) and add the terms (4.114) and (4.115).
Furthermore, we perform the integrals to obtain an expression for D

(4)
ab . The Jacobi

map can be divided into an isotropic part, which involves δab and an anisotropic part
involving ni

an j
b. Only the latter contributes to the shear, whereas both parts contribute

to the convergence. In this section we will group the terms of Dab according to the
potentials or their couplings and will discuss each category separately. We split Dab

into

D
(4)
ab = D

(P)
ab +D

(VV )
ab +D

(WW )
ab +D

(UW )
ab +D

(VW )
ab +D

(h)
ab , (4.116)

where the subscripts refer to the couplings of the potentials. The contribution D
(P)
ab is a

purely relativistic contribution generated by the relativistic potentials UP, VP, and WP:

D
(P)
ab =

2
c4 χSVPSδab −

4
c4

∫
χS

0
dχ

[
WP +(χS −χ)WP,i

k̄i

k̄0

]
δab

+
4
c4

∫
χS

0
dχ (χS −χ)χ n̄i

an̄ j
bWP,i j . (4.117)

D
(P)
ab take the same form as the Jacobi mapping D

(2)
ab in (4.98), which is due to the form

of the metric (2.77) - (2.80). The D
(VV )
ab contribution contains all the terms quadratic in

VN :

D
(VV )
ab =

1
c4

[
χS

2
V 2

NS −2
∫

χS

0
dχ(χS −χ)χ

(
dVN

dχ

)2
]

δab . (4.118)

This terms contributes only to the convergence, since they are proportional to δab. The
D

(WW )
ab contribution contains all the terms quadratic in WN . It can be split into a part

proportional to δab and a part proportional to nanb, which contributes also to the shear
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and rotation:

D
(WW )
ab =δab

1
c4


∫

χS

0
dχ

4WN,m

∫
χ

0
dχ

′WN
k̄m

k̄0 +2W 2
N +2

(∫
χ

0
dχ

′WN,l
k̄l

k̄0

)2

+

−4WN,m

∫
χ

0
dχ

′ (
χ −χ

′)(W ,m
N −WN, j

k̄mk̄ j(
k̄0
)2

)
+4WN

∫
χ

0
dχ

′WN,l
k̄l

k̄0

]
+

+4
∫

χS

0
dχ(χS −χ)

[
WN,m

(∫
χ

0
dχ

′

(
W ,m

N −WN, j
k̄mk̄ j(
k̄0
)2

)
−WN

k̄m

k̄0

)
+

−WN,nm
k̄n

k̄0

∫
χ

0
dχ

′

((
χ −χ

′)(W ,m
N −WN, j

k̄mk̄ j(
k̄0
)2

)
−WN

k̄m

k̄0

)
+

+
1
k̄0WN,0i

∫
χ

0
dχ

′

((
χ −χ

′)(W ,i
N −WN, j

k̄ik̄ j(
k̄0
)2

)
− k̄iWN

)]}
+

+ n̄i
an̄ j

b
1
c4

{
−
∫

χS

0
dχ

(
4WN

∫
χ

0
dχ

′
χ
′WN,i j

)
+

+
∫

χS

0
dχ(χS −χ)

[
−2χW 2

N,i j −4WN,l
k̄l

k̄0

∫
χ

0
dχ

′
χ
′WN,i j +

−4χ
k̄l

k̄0WN,l j

∫
χ

0
dχ

′WN,i −4χ
k̄l

k̄0WN,il

∫
χ

0
dχ

′WN, j+

−4WN,i j

∫
χ

0
dχ

′
(

WN +
(
χ −χ

′)WN,m
k̄m

k̄0

)
+

+4n̄s
cn̄rcWN,is

∫
χ

0
dχ

′ (
χ −χ

′)
χ
′WN,r j+

+χ4WN,i jm

∫
χ

0
dχ

′

((
χ −χ

′)(W ,m
N −WN,l

k̄mk̄l(
k̄0
)2

)
−WN

k̄m

k̄0

)]}
.

(4.119)

with

2
(

UN −WN +
∫

χ

0
dχWN,l k̄l

)2

−V 2
N +4VNWN +4VN

∫
χ

0
dχWN,l k̄l =

2W 2
N +V 2

N +2
(∫

χ

0
dχWN,l k̄l

)2

+4WN

∫
χ

0
dχWN,l k̄l

(4.120)

and

d
dχ

V 2
N −2

d
dχ

(UN −WN)

(
χ

d
dχ

VN −VN

)
−2WN,l k̄l

(
χ

d
dχ

VN −VN

)
−2VN

d
dχ

WN+
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−2VNWN,mk̄m +2χ
d

dχ
(UN −WN)

dVN

dχ
+2χWN,l k̄l dVN

dχ
= 0 (4.121)

The remaining tensor contributions read

Dhijab =δab

[
1

2k̄0

∫
χS

0
dχhi jk̄ik̄ j − 1

2(k̄0)2

∫
χS

0
dχ(χS −χ)hi j,l k̄ik̄ jk̄l

]
+

n̄i
an̄ j

b

[
1
2

χShi j+
∫

χS

0
dχ

[
−hi j −

χ

2
(
h jp,i +hip, j

)
k̄p
]
+

+
∫

χS

0
dχ(χS −χ)

[
χ

2
(
h jp,i +hip, j

)
k̄p +

χ

2
hmp,i jkpkm

]
(4.122)

4.2.2 Redshift Perturbations

In the previous section 4.2.1 we have calculated the Jacobi mapping Dab in an non-
expanding universe, as a function of the coordinate χS. We now use eqs. (4.10)
and (4.11) to calculate the Jacobi mapping D̃ab in an expanding universe, as a function
of the observed redshift zS. Let us start by calculating the redshift perturbations up to
order O

(
1
c4

)
.

The redshift of a photon emitted at S and measured at O is given by

1+ zS =

(
g̃µν k̃µ ũν

)
S(

g̃µν k̃µ ũν
)

O

=
1
aS

(
gµνkµuν

)
S(

gµνkµuν
)

O

=
1
aS

(1+δ f ) , (4.123)

where we have defined

δ f ≡
(
gµνkµuν

)
S(

gµνkµuν
)

O

−1 , (4.124)

and we have used that under conformal transformation the photon wave vector trans-
forms as k̃µ = kµ/a2 and the four-velocity as ũµ = uµ/a (see e.g. [23] for more detail).
Note that we normalise the scale factor to aO = 1. Using that 1+ z̄S = 1/aS we can
write

1+ zS = (1+ z̄S)(1+δ f ) = (1+ zS −δ zS)(1+δ f ) , (4.125)

leading to

δ zS = (1+ zS)
δ f

1+δ f
. (4.126)

The perturbation δ f depends on the metric potentials and the peculiar velocity at both
the source and observer positions. However, as argued at the beginning of section 4.2.1
the metric perturbations at the observer do not contribute to the observed shear, conver-
gence and rotation. The observer velocity would generate a global dipole variation in
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the convergence, which is degenerated with the vector contribution at the observer. This
dipole can be subtracted from the observables, and we therefore do not consider it here.

Using eq. (4.124), the perturbation δ f is calculated as a function of χS. We need to
express it in terms of the observed redshift zS. We obtain

δ zS =(1+ zS)δF(χS) = (1+ zS)δF(zS −δ zS) (4.127)

=(1+ zS)

[
δF(zS)−

d
dzS

δF(zS)δ zS +
1
2

d2

dz2
S

δF(zS)δ z2
S −

1
3!

d3

dz3
S

δF(zS)δ z3
S

]
+O

(
1
c5

)
,

where we have defined

δF =
δ f

1+δ f
≃ δ f −δ f 2 +δ f 3 −δ f 4 + . . . . (4.128)

The perturbation δ f depends on the four velocity uµ . In the PF formalism it is given by
[80]

ui =
vi

c
u0 (4.129)

u0 =1+
1
c2

(
UN +

1
2

v2
)
+

1
c4

(
1
2

U2
N +2UP + v2VN +

3
2

v2UN +
3
8

v4 −BNivi
)
,

(4.130)

where v2 = ∑i j δi jviv j. Inserting this into (4.124) and neglecting terms at the observer
we obtain

δ f (χS) =
(
g00k0u0 +g0ik0ui +g0ikiu0 +gi jkiu j)(χS)−1

=e−2UN
1

c2 −4UP
1

c4
k0

k̄0 u0 +BNi
1
c3

k0

k̄0
1
c

viu0 +BNi
1
c3

ki

k̄0 u0

− e2VN
1

c2 +4VP
1

c4 δi j
ki

k̄0
1
c

viu0 −1 , (4.131)

where all terms are evaluated at the source position χS.

The derivation of δF , δ f and δ zS

In this section we will compute the different orders of δ zS, δF , as well as δ f using

δ zS =(1+ zS)

[
δF(zS)−

d
dzS

δF(zS)δ zS +
1
2

d2

dz2
S

δF(zS)δ z2
S −

1
3!

d3

dz3
S

δF(zS)δ z3
S

]
+

(4.132)
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+O

(
1
c5

)
(4.133)

and
δF =

δ f
1+δ f

= δ f −δ f 2 +δ f 3 −δ f 4 + . . . , (4.134)

and

δ f ≡
gµνkµuν |S
gµνkµuν |O

−1. (4.135)

δ f up to order O
(

1
c4

)
reads

δ f (1) =− 1
c

vS∥ (4.136)

δ f (2) =
1
c2

(
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S

)
(4.137)

δ f (3) =
1
c3

[∫
χS

0
dχBNi,0k̄i − vS∥

(
VNS +

1
2

v2
S

)
− vi

Sδi j

∫
χS

0
dχW ,i

N

]
(4.138)

δ f (4) =
1
c4

{
2UPS −4

∫
χS

0
dχWP,0 −

3
2

U2
NS +2

(∫
χS

0
dχWN,0

)
− 1

2

∫
χS

0
dχhi j,0

k̄ik̄ j(
k̄0
)2+

+ v2
S

(
VNS +

1
2

UNS +
3
8

)
−BNSivi + vi

S

∫
χ

0
dχB ,i

Nm
k̄m

k̄0 +

− 4
c4

(
UNS,i

k̄i

k̄0

∫
χ

0
dχWN

)
+

4
c4

∫
χS

0
dχUN,i

k̄i

k̄0WN+

+
4
c4

∫
χS

0
dχ

(
WN,0i

k̄i

k̄0

∫
χ

0
dχ

′WN

)
+

+
4
c4UNS,i

∫
χS

0

∫
χ

0
dχdχ

′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)
+

− 4
c4

∫
χS

0
dχ

[
UN,i

∫
χ

0
dχ

′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)]
+

− 4
c4

∫
χS

0
dχ

[
WN,0i

∫
χ

0

∫
χ ′′

0
dχdχ

′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)]}
(4.139)

For δF up to order O
(

1
c4

)
, we obtain

δF(1) =δ f (1) =−1
c

vS∥ (4.140)

δF(2) =δ f (2)−δ f (1)2
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=
1
c2

(
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S − v2

S∥

)
(4.141)

δF(3) =δ f (3)−2δ f (2)δ f (1)+δ f (1)3 (4.142)

=
1
c3

[∫
χS

0
dχBNi,0k̄i − vS∥

(
VNS +

1
2

v2
S

)
− vi

Sδi j

∫
χS

0
dχW ,i

N

+2
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
vS∥− v3

S∥

]
(4.143)

δF(4) =δ f (4)−δ f (2)2 +3δ f (2)δ f (1)2 −δ
(1)4 (4.144)

=
1
c4

{
2UPS −4

∫
χS

0
dχWP,0 −

3
2

U2
NS +2

(∫
χS

0
dχWN,0

)
+

− 1
2

∫
χS

0
dχhi j,0

k̄ik̄ j(
k̄0
)2 + v2

S

(
VNS +

1
2

UNS +
3
8

)
−BNSivi+

+ vi
S

∫
χ

0
dχB ,i

Nm
k̄m

k̄0 − 4
c4

(
UNS,i

k̄i

k̄0

∫
χS

0
dχWN

)
+

+
4
c4

∫
χS

0
dχUN,i

k̄i

k̄0WN +
4
c4

∫
χS

0
dχ

(
WN,0i

k̄i

k̄0

∫
χ

0
dχ

′WN

)
+

+
4
c4UNS,i

∫
χS

0

∫
χ ′

0
dχdχ

′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)
+

− 4
c4

∫
χS

0
dχ

[
UN,i

∫
χ

0
dχ

′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)]
+

− 4
c4

∫
χS

0
dχ

[
WN,0i

∫
χ

0

∫
χ ′

0
dχ

′dχ
′′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)]
+

−
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)2

+

+3
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
v2

S∥− v4
S∥

}
. (4.145)

The derivatives w.r.t. zS in (4.132) read

− d
dzS

δF(zS)
(1) =− dχS

dzS

d
dχS

δF(zS)
(1) =

a2
S

a′S
v′S∥

1
c
=−aS

c
HSc

v′S∥ (4.146)

− d
dzS

δF(zS)
(2) =− dχS

dzS

d
χS

δF(zS)
(2) =

a2
S

a′S

d
χS

δF(zS)
(2)

=− aSc
HS

1
c2

(
dUNS

dχS
−2WNS,0 + vSv′S −2vS∥v′S∥

)
(4.147)

− d
dzS

δF(zS)
(3) =− aSc

HS

1
c3

[
BNSi,0k̄i − v′S∥

(
VNS +

1
2

v2
S

)
+
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− vS∥

(
d

dχS
VNS + vSv′Sv′S∥

)
− vi′

Sδi j

∫
χS

0
dχW ,i

N

− vi
Sδi jW

,i
NS +2

(
d

dχS
UNS −2WNS,0 + vSv′S

)
vS∥+

+2
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
v′S∥−3v2

S∥v′S∥

]
(4.148)

d2

dz2
S

δF(1) =
dχS

dzS

d
dχS

(
aS

c
cHS

v′S∥

)
=

a2
Sc

cHS

[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

]
(4.149)

d2

dz2
S

δF(2) =− 1
c2

a2
Sc

HS

{(
1+

H ′
S c

H 2
S

)[
dUNS

dχS
−2WNS,0 + vSv′S −2vS∥v′S∥

]
+

− c
HS

[
d2UNS

dχ2
S

−2
dWNS,0

dχS
+ v′2S + vSv′′S −2v′2S∥−2vS∥v′′S∥

]}
(4.150)

d3

dz3
S

δF(1) =
a3

Sc
cHS

{(
2+

H ′
S c

H 2
S

)[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

]
+ (4.151)

− c
HS

[
v′′S∥

(
1+

H ′
S c

H 2
S

)
+ v′S∥

(
H ′′

S c
H 2

S
+

2H ′2
S

H 2
S

)
−

v′′′S∥c

HS
+

H ′
S v′′S∥c

H 2
S

]}
(4.152)

Note that the prime denotes the derivative w.r.t. the parameter χ . However, we define
H ≡ ȧ(η)/a(η) using the derivative w.r.t. the conformal time η . Since d

dχ
=−1

c
d

dη
,

every H comes with a factor
(
−1

c

)
. This factor c does not change the order of the

expression because it only appears due to the convention we choose for H .
Using (4.136) - (4.152), we obtain for δ zS up to order O

(
1
c4

)
the following:

δ z(1)S =(1+ zS)δF(1) =−(1+ zS)
1
c

vS∥ (4.153)

δ z(2)S =(1+ zS)

(
δF(2)− d

dzS
δF(1)

δ z(1)
)

=(1+ zS)
1
c2

[
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S − v2

S∥+
c

HS
v′S∥vS∥

]
(4.154)

δ z(3)S =(1+ zS)

(
δF(3)− d

dzS
δF(1)

δ z(2)− d
dzS

δF(2)
δ z(1)+

1
2

d2

dz2
S

δF(1)
δ z(1)2

)
(4.155)

=(1+ zS)
1
c3

{∫
χS

0
dχBNi,0k̄i − vS∥

(
VNS +

1
2

v2
S

)
− vi

Sδi j

∫
χS

0
dχW ,i

N

+2
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
vS∥− v3

S∥+
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− c
HS

v′S∥

[
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S − v2

S∥+
1

HS
v′S∥vS∥

]
+

+
c

HS

[
dUNS

dχ
−2WNS,0 + vSv′S −2vS∥v′S∥

]
vS∥+

+
c

2HS

[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

]
v2

S∥

}
(4.156)

δ z(4)S =(1+ zS)

[
δF(4)− d

dzS
δF(1)

δ z(3)− d
dzS

δF(2)
δ z(2)− d

dzS
δF(3)

δ z(1)+

(4.157)

+
1
2

d2

dz2
S

δF(2)
δ z(1)2 +

d2

dz2
S

δF(1)
δ z(1)δ z(2)− 1

6
d3

dz3
S

δF(1)
δ z(1)3

]
=(1+ zS)

1
c4

{
2UPS −4

∫
χS

0
dχWP,0 −

5
2

U2
NS −2

(∫
χS

0
dχWN,0

)2

+

+4UNS

∫
χS

0
dχWNS,0 +4UNS,i

∫
χS

0
dχ (χS −χ)

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)
+

+3
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
v2

S∥− v4
S∥+

− 1
2

∫
χS

0
dχhi j,0

k̄ik̄ j(
k̄0
)2 + v2

S

(
VNS −

1
2

UNS +
1
8

v2
S −2

∫
χS

0
dχWN,0

)
+

−BNSivi
S + vi

S

∫
χS

0
dχB ,i

Nm
k̄m

k̄0 −4UNS,i
k̄i

k̄0

∫
χS

0
dχ

′′WN+

+
∫

χS

0
dχ

[
4UN,i

k̄i

k̄0WN +4

(
WN,0i

k̄i

k̄0

∫
χ

0
dχ

′WN

)
+

−4UN,i

∫
χ

0
dχ

′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)
+

−4WN,0i

∫
χ

0
dχ

′ (
χ −χ

′)(W ,i
N −WN, j

k̄ik̄ j(
k̄0
)2

)]
+

− c
HS

v′S∥

{∫
χS

0
dχBNi,0k̄i − vS∥

(
VNS +

1
2

v2
S

)
− vi

Sδi j

∫
χS

0
dχW ,i

N

+2
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
vS∥− v3

S∥+

+
c

HS
v′S∥

[
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S − v2

S∥+
1

HS
v′S∥vS∥

]
+

− c
HS

[
dUNS

dχ
−2WNS,0 + vsv′S −2vS∥v′S∥

]
vS∥+

+
c

2HS

[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

]
v2

S∥

}
+

c
HS

[
dUNS

dχ
−2WNS,0 + vsv′S
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−2vS∥v′S∥
][

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S − v2

S∥−
c

HS
v′S∥vS∥

]
+

+
c

HS

[
BNSi,0k̄i − v′S∥

(
VNS +

1
2

v2
S

)
− vS∥

(
d

dχ
VNS + vSv′Sv′S∥

)
+

− vi′
Sδi j

∫
χS

0
dχW ,i

N − vi
Sδi jW

,i
NS +2

(
d

dχ
UNS −2WNS,0 + vSv′S

)
vS∥+

+2
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
v′S∥−3v2

S∥v′S∥

]
vS∥+

+
1
2

v2
S∥c

HS

{(
1+

H ′
S c

H 2
S

)[
dUNS

dχS
−2WNS,0 +

(
vSv′S −2vS∥v′S∥

)]
+

− c
HS

[
d2UNS

dχ2
S

−2
dWNS,0

dχS
+
(

v′2S + vSv′′S −2v′2S∥−2vS∥v′′S∥
)]}

+

−
vS∥c
HS

[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

][
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S+

−v2
S∥+

c
HS

v′S∥vS∥

]
+

v3
S∥
6

c
HS

{(
2+

H ′
S c

H 2
S

)[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

]
+

− c
HS

[
v′′S∥

(
1+

H ′
S c

H 2
S

)
+ v′S∥

(
H ′′

S c
H 2

S
+

2H ′2
S

H 2
S

)
−

v′′′S∥c

HS
+

H ′
S v′′S∥c

H 2
S

]}
.

(4.158)

From eq. (4.11) we see that to calculate D̃ab up to order O
(

1
c4

)
we need the first

derivative of D̃ab up to order O
(

1
c3

)
, the second derivative up to order O

(
1
c2

)
and the

third and fourth derivatives for the background D̃ab only.

d
dzS

D̃ab (zS) =
χS

(1+ zS)2

(
c

HSχS
−1
)

δab (4.159)

+
1

(1+ zS)2

[
−(1+ zS)δ D̃ab +

c
HS

d
dχS

(
(1+ zS)δ D̃ab

)]
d2

dz2
S
D̃ab(zS) =

χS

(zS +1)3

(
2−

H ′
S c2

χSH
3

S
− 3c

HSχS

)
δab+ (4.160)

+
1

(zS +1)3

[
2(1+ zS)δ D̃ab −

d
dχS

(
(1+ zS)δ D̃ab

) c
HS

(
3+

H ′c
H 2

)
+

+
c2

H 2
S

d2

dχ2
S

(
(1+ zS)δ D̃ab

)]
(4.161)

d3

dz3
S

˜̄Dab(zS) =δab
χS

(zS +1)4

(
11c

χSHS
−6−

H ′′
S c3

χSH 4
S
+

3c3H ′2

χSH
5

S
+

6c2H ′
S

χSH
3

S

)
(4.162)
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d4

dz4
S

˜̄Dab(zS) =δab
χS

(zS +1)5

(
24−

H ′′′
S c4

χSH
5

S
+

10c3H ′′
S

χSH 4 −
15c4H ′3

S

χSH 7
S

−
30c3H ′2

S

χSH
5

S
+

−
35c2H ′

S

χSH
3

S
+

10c4H ′
S H ′′

S
χSH 6 − 50c

χSH

)
. (4.163)

The expression for the Jacobi mapping D̃ab(zS) in terms of the redshift zS in (4.11)
reads for the orders O

(1
c

)
- O
(

1
c4

)
D̃

(1)
ab (χS) =D̃

(1)
ab (z̄S) =− d

dz̄S

¯̃Dab (zS)δ z(1)S (4.164)

D̃
(2)
ab (χS) =D̃

(2)
ab (zS)−

d
dz̄S

D̄ab (zS)δ z(2)S +
1
2

d2

dz̄2
S

¯̃Dab (zS)δ z(1)2S , (4.165)

D̃
(3)
ab (z̄S) =D̃

(3)
ab (zS)−

d
dz̄S

¯̃Dab (zS)δ z(3)S − d
dz̄S

D̃
(2)
ab (zS)δ z(1)S +

+
d2

dz̄2
S

¯̃Dab (zS)δ z(1)S δ z(2)S − 1
6

d3

dz̄3
S

¯̃Dab (zS)δ z(1)3S , and (4.166)

D̃
(4)
ab (z̄S) =D̃

(4)
ab (zS)−

d
dz̄S

¯̃Dab (zS)δ z(4)S − d
dz̄S

D̃
(2)
ab (zS)δ z(2)S +

− d
dz̄S

D̃
(3)
ab (zS)δ zS(1)+

1
2

d2

dz̄2
S

˜̄Dab (zS)
(

δ z(2)S

)2
+

+
1
2

d2

dz̄2
S
D̃

(2)
ab (zS)

(
δ z(1)S

)2
+

d2

dz̄2
S

¯̃Dab (zS)δ z(1)S δ z(3)+

− 1
2

d3

dz̄3
S

¯̃Dab (zS)δ z(2)S

(
δ z(1)S

)2
+

1
4!

d4

dz̄4
S

¯̃Dab (zS)
(

δ z(1)S

)4
. (4.167)

Due to the length of the full expression of D̃ab(zS) in (4.167) we list the different terms
in this section of the appendix:

− d
dz̄S

¯̃Dab (zS)δ z(4)S =
χS

(1+ zS)

(
1− c

HSχS

)
δab

1
c4

{
2UPS −4

∫
χS

0
dχWP,0 −

5
2

U2
NS+

−2
(∫

χS

0
dχWN,0

)2

+4UNS

∫
χS

0
dχWNS,0+

+4UNS,i

∫
χS

0
dχ (χS −χ)

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)
+

+3
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
v2

S∥− v4
S∥+

− 1
2

∫
χS

0
dχhi j,0

k̄ik̄ j(
k̄0
)2 + v2

S

(
VNS −

1
2

UNS +
1
8

v2
S −2

∫
χS

0
dχWN,0

)
+
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−BNSivi
S + vi

S

∫
χS

0
dχB ,i

Nm
k̄m

k̄0 −4UNS,i
k̄i

k̄0

∫
χS

0
dχ

′′WN+

+
∫

χS

0
dχ

[
4UN,i

k̄i

k̄0WN +4

(
WN,0i

k̄i

k̄0

∫
χ

0
dχ

′WN

)
+

−4UN,i

∫
χ

0
dχ

′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)
+

−4WN,0i

∫
χ

0
dχ

′
∫

χ ′

0
dχ

′′

(
W ,i

N −WN, j
k̄ik̄ j(
k̄0
)2

)]
+

− c
HS

v′S∥

{∫
χS

0
dχBNi,0k̄i − vS∥

(
VNS +

1
2

v2
S

)
− vi

Sδi j

∫
χS

0
dχW ,i

N

+2
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
vS∥− v3

S∥+

+
c

HS
v′S∥

[
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S − v2

S∥+
1

HS
v′S∥vS∥

]
+

− c
HS

[
dUNS

dχ
−2WNS,0 + vSv′S −2vS∥v′S∥

]
vS∥+

+
c

2HS

[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

]
v2

S∥

}
+

c
HS

[
dUNS

dχ
−2WNS,0 + vSv′S

−2vS∥v′S∥
][

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S − v2

S∥−
c

HS
v′S∥vS∥

]
+

+
c

HS

[
BNSi,0k̄i − v′S∥

(
VNS +

1
2

v2
S

)
+

− vS∥

(
d

dχ
VNS + vSv′S

)
− vi′

Sδi j

∫
χS

0
dχW ,i

N

− vi
Sδi jW

,i
NS +2

(
d

dχ
UNS −2WNS,0 + vSv′S

)
vS∥+

+2
(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S

)
v′S∥−3v2

S∥v′S∥

]
vS∥+

+
1
2

v2
S∥c

HS

{(
1+

H ′
S c

H 2
S

)[
dUNS

dχS
−2WNS,0 +

(
vSv′S −2vS∥v′S∥

)]
+

− c
HS

[
d2UNS

dχ2
S

−2
dWNS,0

dχS
+
(

v′2S + vSv′′S −2v′2S∥−2vS∥v′′S∥
)]}

+

−
vS∥c
HS

[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

][
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S − v2

S∥+
c

HS
v′S∥vS∥

]
+

+
v3

S∥
6

c
HS

{(
2+

H ′
S c

H 2
S

)[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

]
+
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− c
HS

[
v′′S∥

(
1+

H ′
S c

H 2
S

)
+ v′S∥

(
H ′′

S c
H 2

S
+

2H ′2
S

H 2
S

)
−

v′′′S∥c

HS
+

H ′
S v′′S∥c

H 2
S

]}
,

(4.168)

− d
dz̄S

D̃
(2)
ab (zS)δ z̃(2)S = δab

χS

1+ zS

[(
VNS −2

1
χS

∫
χS

0
dχ

[
WN +(χS −χ)WN,i

k̄i

k̄0

])
+

− c
χSHS

(
VNS +χS

dVNS

dχS
−2
[
WNS +

∫
χS

0
dχWN,i

k̄i

k̄0

])][
UNS −2

∫
χS

0
dχWN,0+

+
1
2

v2
S − v2

S∥+
c

HS
v′S∥vS∥

]
+

− n̄i
an̄ j

b
χS

1+ zS

[
1
χS

(
2
∫

χS

0
dχ (χS −χ)χWN,i j

)
− c

χSHS
2
∫

χS

0
dχχWN,i j

][
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S − v2

S∥+
c

HS
v′S∥vS∥

]
,

(4.169)

− d
dz̄S

D̃
(3)
ab (zS)δ z̃(1)S = δab

χS

1+ zS

[
−

vS∥
χS

∫
χS

0
dχ (χS −χ)BNi, j

k̄ jk̄i(
k̄0
)2

+
cvS∥

χSHS

∫
χS

0
dχBNi, j

k̄ jk̄i(
k̄0
)2

]
+

+ n̄i
an̄ j

b
χS

1+ zS

[
−

vS∥
χS

∫
χS

0
dχ (χS −χ)χ

(
dBN

(i, j)

dχ
− k̄m

k̄0 BN
m,i j

)

+
cvS∥

χSHS

∫
χS

0
dχχ

(
dBN

(i, j)

dχ
− k̄m

k̄0 BN
m,i j

)]
, (4.170)

1
2

d2

dz̄2
S

˜̄Dab (zS)
(

δ z̃(2)S

)2
= δab

χS

zS +1

(
1−

H ′
S c2

2χSH
3

S
− 3c

2HSχS

)
[UNS+

−2
∫

χS

0
dχWN,0 +

1
2

v2
S − v2

S∥+
c

HS
v′S∥vS∥

]2

, (4.171)

1
2

d2

dz̄2
S
D̃

(2)
ab (zS)

(
δ z̃(1)S

)2
= δab

χS

zS +1

[
VNS −2

1
χS

∫
χS

0
dχ

[
WNS +(χS −χ)WN,i
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k̄0

]
+

−

(
VNS +χS
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VNS −2
[
WNS +

∫
χS

0
dχWNS,i

k̄i

k̄0

]) c
2HSχS

(
3+

H ′c
H 2

)
+
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+
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2H 2
S χS
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2
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VNS +χS
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VNS −2
[ d
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WNS +WNS,i
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])]
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S∥
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b
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1
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∫
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∫
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c
HSχS

(
3+

H ′c
2H 2χS

)
+

+
c2

H 2
S

χSWNS,i j

]
v2

S∥, (4.172)

d2

dz̄2
S

¯̃Dab (zS)δ z(1)S δ z(3) =− χS

zS +1
δabvS∥

(
2−

H ′
S c2

χSH
3

S
− 3c

HSχS

){∫
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1
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)
− vi
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∫
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(
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1
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v2
S

)
vS∥− v3

S∥+

− c
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1
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S∥+
1

HS
v′S∥vS∥

]
+

+
c

HS

[
dUNS

dχ
−2WNS,0 + vSv′S −2vS∥v′S∥

]
vS∥+

+
c

2HS

[
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

]
v2

S∥

}
, (4.173)

−1
2

d3

dz̄3
S

¯̃Dab (zS)δ z(2)S

(
δ z(1)S

)2
= δab

χS

zS +1

(
− 11c

2χSHS
+3+

H ′′
S c3

2χSH 4
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− 3H ′2c3

2χSH
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+

−
3H ′
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χSH
3

S

)
v2

S∥

[
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S − v2

S∥+
c

HS
v′S∥vS∥

]
, (4.174)

1
4!

d4

dz̄4
S

¯̃Dab (zS)
(

δ z(1)S

)4
=

1
24

δab
χS

zS +1

(
24−

H ′′′
S c4

χSH
5

S
+

10c3H ′′
S

χSH 4 −
15c4H ′3

S

χSH 7
S

+

−
30c3H ′2

S

χSH
5

S
−

35c2H ′
S

χSH
3

S
+

10c4H ′
S H ′′

S
χSH 6 − 50c

χSH

)
v4

S∥. (4.175)

The Jacobi mapping D̃ (zS)

We can now express the Jacobi mapping as a function of zS. Substituting the expressions
for δ zS in (4.153)-(4.158) as well as the expressions of the derivatives (4.159)-(4.163)
into eq. (4.11), we obtain D̃ab(zS) up to order O

(
1
c4

)
.
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We see that the redshift perturbations generate a new order O
(1

c

)
in the expansion,

proportional to the galaxy peculiar velocity vS∥:

D̃
(1)
ab =

(
c

HSχS
−1
)

χS

1+ zS

vS∥
c

δab , (4.176)

with H ≡ 1
a

da
dη

. Note that because we define H using the time derivative and not the
derivative w.r.t. χ , we obtain an additional factor c: da/dη =−cda/dχ . This factor
does not influence the order of the expression. The contribution in eq. (4.176) has been
called Doppler magnification, and it is the dominant contribution to the convergence at
low redshift [21, 6, 22]. Note that in standard perturbation theory, since the peculiar
velocity is a perturbative quantity it contributes to the Jacobi mapping at the same order
as the gravitational potentials. In the PF framework however, the peculiar velocity is
non-perturbative, but it is always weighted by a factor 1/c. As such it is of lower order
than the Newtonian gravitational potentials in the expansion 1/c. This illustrates nicely
the difference between the PF formalism and standard perturbation theory. The Doppler
term is usually neglected in lensing analyses, first because at lowest order it does not
contribute to the shear, and second because at high redshift, its contribution to the
convergence is subdominant with respect to the Newtonian contribution of order 1/c2.
From the PF formalism we see however that the velocity contribution will dominate in
the regime where vS∥/c is larger than the lensing potential integrated along the photon
trajectory, see eq. (4.98).

At order O
(

1
c2

)
we obtain

D̃
(2)
ab = D̃

(2)
ab (zS)+

1
c2

χS

1+ zS

{(
1− c

HSχS

)(
UNS −2

∫
χS

0
dχWN,0 +

1
2

v2
S+

+v2
S∥−

c
HS

v′S∥vS∥

)
+

(
1−

H ′
S c2

2χSH
3

S
− 3c

2HSχS

)
v2

S∥

}
δab , (4.177)

where a prime denotes a derivative with respect to χ . In the first line, D̃
(2)
ab (zS) is

obtained from eq. (4.98) where the background coordinate χS can be replaced by its
value at the observed redshift zS. We see that at this order, the Jacobi mapping is
not only affected by the radial component of the peculiar velocity vS∥ but also by its
transverse part through v2

S = v2
S∥+ v2

S⊥. Note that since the redshift corrections at this
order are proportional to δab they will only affect the convergence, and leave the shear
and rotation unchanged.
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At the order O
(

1
c3

)
we obtain

D̃
(3)
ab =D̃

(3)
ab (zS)+

1
c3

χS

1+ zS
δab

{
vS∥

(
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H ′
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χSH
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S
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HSχS
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0
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+
1
2

v2
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S∥+
c

HS
v′S∥vS∥

]
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1− 11c

6χSHS
+
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6χSH 4
S
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2χSH
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S
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H ′
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3

S
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+

−
(

c
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S∥+
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1
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S
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vS∥+

− c
HS
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1
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S∥+
1

HS
v′S∥vS∥

)
+

+
c

HS

(
dUNS

dχ
−2WNS,0 + vSv′S −2vS∥v′S∥

)
vS∥+

+
c

2HS

(
v′S∥

(
1+

H ′
S c

H 2
S

)
− c

HS
v′′S∥

)
v2

S∥+

+vS∥

∫
χS

0
dχ

(
WN +(χS −χ)WN,i

k̄i

k̄0

)]
+

+
cvS∥
HS

(
VNS +χS

dVNS

dχS
−2WNS −2

∫
χS

0
dχWN,i

k̄i

k̄0
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+ n̄i
an̄ j

b
1
c3

χS

1+ zS
vS∥

[
− 2

χS

∫
χS

0
dχ (χS −χ)χWN,i j+

+
c

χSHS
2
∫

χS

0
dχχWN,i j

]
. (4.178)

Without redshift perturbations, only the vector potential Bi
N contributes to the Jacobi

mapping at the order O
(

1
c3

)
, see eq. (4.101). However, since the peculiar velocity

comes at order O
(1

c

)
, we obtain couplings between the velocity and the Newtonian

potentials that also contribute at this order, as well as terms cubic in the velocity. Note
that at this order the peculiar velocity modifies not only the convergence, but also the
shear.

Finally, at the order O
(

1
c4

)
we obtain

D̃
(4)
ab =D̃

(4)
ab (zS)−

d
dz̄S

¯̃Dab (zS)δ z(4)S − d
dz̄S

D̃
(2)
ab (zS)δ z(2)S +

− d
dz̄S

D̃
(3)
ab (zS)δ z(1)S +

1
2

d2

dz̄2
S

˜̄Dab (zS)
(

δ z(2)S

)2
+
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+
1
2

d2

dz̄2
S
D̃

(2)
ab (zS)

(
δ z(1)S

)2
+

d2

dz̄2
S

¯̃Dab (zS)δ z(1)S δ z(3)

− 1
2

d3

dz̄3
S

¯̃Dab (zS)δ z(2)S

(
δ z(1)S

)2
+

1
4!

d4

dz̄4
S

¯̃Dab (zS)
(

δ z(1)S

)4
, (4.179)

where we list the individual terms of (4.179) in the appendix in equation (4.168) -
(4.175).

4.3 Extraction of Shear and Convergence

A convenient way to extract the shear and convergence is to introduce spin-fields.
[17, 16, 52, 84]. In section 4.2 we already related spin-0 and spin-2 fields to the
convergence and the shear via (4.14) and (4.15), respectively. In this section, we will
introduce spin operators on a sphere. In weak lensing, the projection on a sphere using
these operators has the advantage that we don’t have to rely on the small-angle or
thin-lens approximation.

4.3.1 Spin Operators on a Sphere

We introduce unit vectors ei
+ and ei

− which are defined as

ei
± = ei

θ ± iei
φ , (4.180)

where ei
θ

and ei
φ

denote the angular unit vectors in spherical coordinates. The unit
vectors ei

+ and ei
− span the screen space. To each point on the screen space, we

can associate a spin-s field sX , which transform under a rotation about the ei
r-axis as

sX → eiδ s
sX . Furthermore, we introduce the derivatives ̸∂ and ¯̸∂ , which increase and

decrease the spin s by 1, respectively:

̸∂ sX ≡−sins
θ

(
∂θ +

i
sinθ

∂φ

)
sin−s

θ sX =−
(

∂θ +
i

sinθ
∂φ

)
sX + scotθ sX

(4.181)

¯̸∂ sX ≡−sin−s
θ

(
∂θ −

i
sinθ

∂φ

)
sins

θ sX =−
(

∂θ −
i

sinθ
∂φ

)
sX − scotθ sX

(4.182)

The derivatives ̸∂ and ¯̸∂ are effectively angular covariant derivatives on a sphere. If
we apply both ¯̸∂ and ̸∂ consecutively, the spin s remains unchanged and we obtain an
expression corresponding to the angular Laplace operator ∆φψ . The spin-s field sX can
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be associated with a symmetric and trace-free tensor Xa1...as for s ≥ 0 in the following
way

Xa1...as ≡ 2−s
sXea1

− . . .eas
− (4.183)

and inversely sX ≡ ea1
+ . . .eas

+Xa1...as. (4.184)

For s < 0, we define Xa1...a|s| ≡ 2−|s|
sXea1

− . . .e
a|s|
− [17].

The PF metric includes vector and tensor potentials, which can be decomposed into
spin fields:

Bi =Brei
r +

1
2−1Bei

++
1
21Bei

− (4.185)

hi j =hrr

(
ei

re
j
r −

1
2

e(i+e j)
−

)
+−1hre

(i
+e j)

r + 1hre
(i
−e j)

r +
1
4−2hei

+e j
++

1
42hei

−e j
−

(4.186)

The spin-0 and spin-2 fields 0D and 2D:

We begin with the spin-2 field 2D . Using (4.184), 2D reads

2D = ea
+eb

+Dab. (4.187)

For the following sections we choose to normalise k̄µ such that k̄0 = k̄ik̄ jδi j = 1, because
the Jacobi mapping does not depend on the normalisation of k̄µ , since it only depends
on the ratio k̄i

k̄0 .

We begin with the spin-2 field 2D . Using (4.187), 2D reads up to order O
(

1
c4

)
the

following

2D̃
(2) (zS) =

1
zS +1

2
1
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∫
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0
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χS −χ

χ
̸∂ 2WN , (4.188)

2D̃
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with WN,r =WN,ik̄i and using (A.22)-(A.24) for
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χ ′

0
dχ

′dχ
′′
χ
′′WN,r j =
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+
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(4.191)

and

−ei
+e j

+χ4WN,i jm
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The last six lines in (4.190) are contributions from the redshift perturbations. The
spin-0 field 0D̃ is obtained by ea

−eb
+D̃ab. The real and imaginary part of 0D̃ is related to

the convergence and rotation, respectively. The combination of ea
+ and eb

− neither lowers
nor raises the spin s and thus results in a spin-0 expression. We rearrange ea

−eb
+D̃ab to

ea
−eb

+D̃ab =
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(
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+
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D̃ab (4.194)

=ℜ
(

0D̃
)
+ iℑ

(
0D̃
)
≡ 0D̃R + 0D̃I (4.195)

and split the expression into its real and imaginary part. First, we compute the real part

0D̃R and obtain for the background and up to order O
(

1
c3

)
:

0
¯̃DR (zS) =
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(
1
2

v2
S +

1
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)
+

−
(

c
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H
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c

HS
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)
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2H 2
S
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S∥

}
. (4.199)

As at order O
(

1
c4

)
the expression for 0D̃

(4)
R is very long, we split it into nine parts:

0D̃
(4)
R =0D̃

(P)
R + 0D̃

(VW )
R + 0D̃

(UW )
R + 0D̃

(WW )
R + 0D̃

(h)
R +

+ 0D̃
(δ z)
R + 0D̃

(v)
R + 0D̃

(v2)
R + 0D̃

(v4)
R (4.200)

where the superscripts (UW ), (VW ), and (WW ) refer to the respective couplings and
the superscripts (P) to terms involving the quantities UP, VP, and WP. The superscript
(h) denotes terms with the tensor potential hi j. The contributions of the redshift per-
turbations are split into two categories, which read 0D̃

(δ z)
R and 0D̃

(v)
R . The superscripts

(v), (v2), and (v4) refer to terms with the peculiar velocity vS or its projection along the
line of sight vS∥, while the superscript (δ z) denotes all terms stemming from redshift
perturbations independent of the peculiar velocity vS.
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We begin with 0D̃
(P)
R . Note that due to the form of the metric (2.77) - (2.80), the

contributions of the potentials VP and WP in 0D̃
(4)
R will be of the same form as the

potentials VN and WN in 0D̃
(2)
R in (4.198) without redshift perturbations. The terms with

UP and WP, which are derived from the redshift perturbations in (4.179), will appear in
the part 0D̃

(δ z)
R .

0D̃P =
1

zS +1
1
c4

[
χS4VP −

∫
χS

0
dχ

(
8WP −4

χS −χ

χ

¯̸∂ ̸∂WP

)]
. (4.201)

0D̃
(UW )
R =

1
zS +1

1
c4

{∫
χS

0
dχ8

[
UNSWN −UNWN −UN,0

∫
χ

0
dχ

′WN+

+(χS −χ)

(
UN,0WN −WN

d
dχ

UN

)]
+ (4.202)

−4
∫
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0
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1
χ
̸∂UN

∫
χ

0
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′ (
χ −χ

′) 1
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¯̸∂WN+
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∫
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0
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1
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∫
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0
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′ (
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′) 1
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̸∂WN+

+4
∫
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}
. (4.203)

For 0D̃
(VV )
R and 0D̃

(VW )
R , we obtain

0D̃
(VV )
R =

1
c4

[
χS

2
V 2

NS −4
∫

χS

0
dχ(χS −χ)χ ′

(
d

dχ
VN

)2
]

(4.204)

and

0D̃
(VW )
R =

1
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2
1
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{∫
χS

0
dχ

[
−2VNSWN −2χWN

d
dχ

VNS +2χVNS,0WN +2χWN
d

dχ
VN+

−2WN χVN,0 − 2̸∂VN

∫
χ

0
dχ

′ 1
χ ′

¯̸∂WN −2 ¯̸∂VN

∫
χ

0
dχ

′ 1
χ ′ ̸∂WN +VNSWN

]
+
∫

χS

0
dχ(χS −χ)

[
2WN

d
dχ

VN −2WNVN,0 +2χWN

(
d2

dχ2VN − d
dχ

VN,0

)
+ ̸∂VN
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]}
. (4.205)
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respectively. The next two terms contain the couplings of the lensing potentials WN −WN

as well as hi j:

0D̃
(WW )
R =

1
zS +1

1
c4

{∫
χS

0
dχ

[
−8W 2

N +8WNSWN −16WN,0
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+
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24
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∫
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χ ′ ̸∂WN+ (4.206)

− 4
χ
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∫
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∫
χ

0
dχ

′WN
χ −χ ′

χχ ′ +

−4WN

∫
χ

0

1
χ ′

¯̸∂ ̸∂WNdχ
′− 4̸∂ ¯̸∂

(
WN

∫
χ

0

1
χ ′WNdχ

)]
(4.207)

+
∫

χS

0
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+
2

χ2 ̸∂
¯̸∂ 2

WN

∫
χ

0

χ −χ ′

χ ′ ̸∂WNdχ
′
]}
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and

0D̃
(h)
R =

1
zS +1

1
c4

{
−χS

2
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1
2

∫
χS
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)
. (4.209)

The contributions to 0D̃
(4) from the redshift perturbations are divided into 0D̃

(δ z)
R , 0D̃

(v)
R ,

0D̃
(v2)
R , and 0D̃

(v4)
R , where 0D̃

(δ z)
R denotes the perturbations independent of the peculiar

velocity and 0D̃
(v)
R , 0D̃

(v2)
R , and 0D̃

(v4)
R refer to the terms involving the peculiar velocity

at different powers:
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(4.210)
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0D̃
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and
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Now we compute the imaginary part 0D̃I of 0D̃ . Note that 0D̃I comprises only terms off
the diagonal of the Jacobi mapping D̃ab and therefore only consists of terms involving
n̄i

an̄ j
b. At both order O

(
1
c2

)
and order O

(
1
c3

)
the Jacobi mapping Dab is symmetric in

the indices a and b. Consequently, using (A.22) and (A.28) the rotation ω vanishes at
these orders. At order O

(
1
c4

)
the only term that contributes to 0D̃

(4)
I stems from the

product of the second order contracted Riemann with the second order Jacobi mapping
R

(2)b
a D

(2)
bc . Note that all contributions from the redshift perturbations in D̃

(4)
ab in (4.179)

are symmetric and consequently do not contribute to the rotation ω .

0D̃
(4)
I =

1
c4

1
zS +1

∫
χS

0
dχ(χS −χ)

1
2

(
ea
−eb

+− ea
+eb

−

)
4n̄s

cn̄crWN,as

∫
χ

0

∫
χ ′

0
dχ

′dχ
′′
χ
′′WN,rb

=
1

zS +1

∫
χS

0
dχ

χS −χ

χ2

(
¯̸∂ 2

WN

∫
χ

0
dχ

′ χ −χ ′

χ ′ ̸∂ 2WN+

−̸∂
2WN

∫
χ

0
dχ

′ χ −χ ′

χ ′
¯̸∂ 2

WN

)
. (4.214)

4.3.2 The reduced shear g

The reduced shear g is measured from the ellipticity of galaxies. It is given by

g =
γ

1−κ
=− 2D̃

Re
[

0D̃
] . (4.215)
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At order O
(

1
c2

)
, the shear and reduced shear are equal, since κ̄ = 0. We have

g(2) =−2D̃
(2)

0
¯̃D

=− 1
c2

∫
χS

0
dχ

χS −χ

χSχ
̸∂ 2WN . (4.216)

This is the standard Newtonian expression for the shear, written in terms of derivatives
on the sphere.

At order O
(

1
c3

)
both 2D̃ and 0D̃ contribute to the reduced shear. Since the imagi-

nary part of 0D̃ is of order O
(

1
c4

)
we can write

g(3) =− 2D̃
(2)+ 2D̃

(3)

0
¯̃D + 0D̃ (1)

=− 1

0
¯̃D

(
−0D̃

(1)

0
¯̃D

2D̃
(2)+ 2D̃

(3)

)

=
1
c3

{∫
χS

0
dχ

′ χS −χ

2χSχ

[
d

dχ
(χ̸∂1B)+ ̸∂ 2Br

]
+

− c
HSχ2

S
vS∥

∫
χS

0
dχ̸∂

2WN

}
. (4.217)

Both (4.216) and (4.217) are complex as can be seen in (A.6) and (A.14). Because we
perform a parallel transport along the line of sight, every time derivative is accompanied
by a factor k0, which is of the order O (c), see (4.20). Therefore, the time derivatives
of the scalar potentials at order O

(
1
c2

)
and the vector potentials at O

(
1
c3

)
do not

change to O
(

1
c3

)
and O

(
1
c4

)
, respectively and at this order, the only contribution to

the reduced shear comes from the vector potential Bi
N . Although the vector potential Bi

N

does not influence the matter dynamics at O
(

1
c2

)
, it affects the photon geodesic and

consequently contributes to both the convergence and shear. In the thin-lens or small-
angle approximation, all derivatives along the geodesic are neglected. The contributions
of the vector field are by definition beyond the Newtonian approximation and are
regarded as relativstic effects. However, in the PF formalism the Bi

N field is sourced
by Newtonian quantities, i.e. the product (1+δ )vi with vi being the peculiar velocity.
In summary, we see that the dominant correction to the Newtonian expression (4.216)
is due to two different effects: the vector potential Bi

N and the peculiar velocity of the
galaxies vS∥. The vector potential in the PF approximation has been computed from
N-body simulations on non-linear scales [103, 33, 102]. It was found that the power
spectrum of the vector field Bi

N/c3 is of the order of 10−5 the power spectrum of the
scalar potential WN/c2 over a range of scales and redshifts. Comparing eq. (4.217)
with eq. (4.216) we see that part of the vector contribution enters in the reduced
shear with exactly the same kernel as the Newtonian scalar part. As such we expect
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that the impact of the vector potential on the reduced shear will be of the order of
∼
√

10−5g(2) ∼ 3×10−3g(2) ∼ 3×10−5, since g(2) is of order 10−2 [43].
The second contribution at order O

(
1
c3

)
is due to the peculiar velocity of galaxies

vS∥, coupled to the standard Newtonian shear. This contribution is due to two effects.
First, the reduced shear g is measured as a function of redshift, which is affected by
the source peculiar velocity. To understand this effect, let us assume that we measure
g for two different galaxies that are at the same redshift. One of the galaxies has no
peculiar velocity, whereas the other has a velocity directed towards the observer. As a
consequence, the second galaxy is physically situated at a larger distance than the first
one. The impact of a given lens on the two galaxies will then be different, since the
distance between the lens and the source is different. The second velocity contribution
to g simply comes from the fact that the shear at second order γ(2) is divided by the
convergence at first order κ(1) which is affected by peculiar velocity. This effect reflects
the fact that peculiar velocities change the apparent size of galaxies, which has then an
impact on the reduced shear. Note that in standard perturbation theory, this term appears
at the next order, i.e. at the same order as the lens-lens coupling and Born correction, see
eq. (4.218). However here since velocities are of order O

(1
c

)
, this coupling is already

present at order O
(

1
c3

)
.

At order O
(

1
c4

)
, the reduced shear contains contributions from the shear up to order

O
(

1
c4

)
and from the convergence up to order O

(
1
c2

)
. We obtain

g(4) =− 2D̃

0D̃
=−2D̃

(2)+ 2D̃
(3)+ 2D̃

(4)

0D̃ (0)+ 0D̃ (1)+ 0D̃ (2)

=
1
c4

{
−
∫

χS

0
dχ

χS −χ

χSχ
̸∂ 2 (2WP +W 2

N
)

(4.218)

−
∫

χS

0
dχ

χS −χ

χSχ2 ̸∂
[̸

∂
2WN

∫
χ

0
dχ

′ χ −χ ′

χ ′
¯̸∂WN + ̸∂ ¯̸∂WN

∫
χ

0
dχ

′ χ −χ ′

χ ′ ̸∂WN

]
+
∫

χS

0
dχ

χS −χ

χSχ
̸∂ 2WN ·

[∫
χS

0
dχ

′ χS −χ ′

χ ′χS

¯̸∂ ̸∂WN − 2
χS

∫
χS

0
dχ

′WN

]
+2

∫
χS

0
dχ

χS −χ

χSχ

[
1
χ

WN

∫
χ

0
dχ

′̸
∂

2WN − 1
χ
̸∂WN

∫
χ

0
dχ

′ χ −χ ′

χ ′ ̸∂WN

−̸∂
2
(

WN,0

∫
χ

0
WNdχ

′
)]

+
2
χS

∫
χS

0
dχ

[
WN

∫
χ

0

dχ ′

χ ′ ̸∂
2WN +

1
χ
̸∂ 2
(

WN

∫
χ

0
dχ

′WN

)]
− 1

42hS −
1
2

∫
χS

0
dχ

(
χS −χ

χSχ

1
2
̸∂ 2hrr +

1
χ
̸∂ 1hr

)
+

+

[
2
∫

χS

0
dχ

χS −χ

χSχ
̸∂ 2WN +

c
HSχS

∫
χS

0
dχ

1
χS
̸∂ 2WN

](
UNS −2

∫
χS

0
dχWN,0

)
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+

(
v2

S +
c

HS
vS∥v′S∥

)∫
χS

0
dχ

χS −χ

χSχ
̸∂ 2WN

+
1

2HSχ2
S

∫
χS

0
dχ̸∂

2WN

(
χS

χ

2c
HS

vS∥v′S∥+ v2
S

)
+ v2

S∥

[
− c2

H 2
S

1
2χ2

S
̸∂ 2WNS −3

(
1− c

2HSχS
+

c2H ′
S

2H 3
S χS

)∫
χS

0
dχ

χS −χ

χSχ
̸∂ 2WN

+
1

2χS

c
HS

(
3+

H ′
S c

2H 2
S
− 2c

HSχS

)∫
χS

0
dχ

1
χ
̸∂ 2WN

]
+ vS∥

[∫
χS

0
dχ

(χS −χ)

χSχ

(
d

dχ

(
χ̸∂ 1BN)+ ̸∂ 2BN

r

)
+

c
2HSχS

∫
χS

0
dχ

1
χS

(
d

dχ

(
χ̸∂ 1BN)+ ̸∂ 2BN

r

)]}
.

The first line is the standard shear contribution, where the Newtonian potential WN

has been replaced by the relativistic potential WP and the square of WN . This term
encodes the fact that large-scale structures along the photon trajectory are not completely
described by the Newtonian potential WN , and that WP and W 2

N both give corrections to
the potential felt by the photons. The second line contains the lens-lens coupling and
correction to Born approximation [36]. These terms have four transverse derivatives of
the potential, and they are therefore expected to dominate at small scales. The third line
contains the product between the shear and the convergence at order O

(
1
c2

)
. The first

term in this line also has four transverse derivatives and is therefore of the same order of
magnitude as the lens-lens coupling and post-Born correction. Note that the boundary
term in the convergence, proportional to VNS (see eq. (4.221)) cancels with a similar
term in 2D̃ and does not contribute to the reduced shear. Lines 4 and 5 contain various
couplings along the photon trajectory. These terms have been computed for the first
time using standard perturbation theory up to second order in [17] and the expressions
agree. Line 6 contains the contribution from the tensor modes, which also appear at
second order in SPT. Finally, the last 6 lines contain the contributions due to redshift
perturbations. In line 7, we have the redshift perturbations due to gravitational redshift
and the integrated Sachs-Wolfe effect. In the following 3 lines, we have the Doppler
contributions coupled with the scalar potential. Since the velocity is of order 1/c, the
reduced shear at order O

(
1
c4

)
contains contribution from the second order Doppler, i.e.

from both vS∥ and vS⊥ through the transverse Doppler effect. Finally, in the last two
lines we have couplings between the first order Doppler contribution and the vector
potential.
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Note that in harmonic space, the angular derivatives ̸∂ and ¯̸∂ are linked to an l factor.
Therefore, within the small angle approximation, terms with higher order derivatives
̸∂ and ¯̸∂ will be dominant. (4.218) is the equivalent of the solution in [17] but using
the PF formalism in terms of the redshift z including redshift perturbations instead
of using standard perturbation theory with affine parameter χ . In [17], the coupling
terms in the reduced shear are discussed that occur once one goes beyond the thin-lens
approximation. In this thesis I extend the work of [17] by computing the convergence
in terms of spherical spin operators.

4.3.3 The convergence κ

We now calculate the convergence, i.e. the part of the Jacobi map which modifies only
the size of the galaxy. As discussed in section 4.2 it is given by the real part of the
spin-0 contribution

κ = 1− 1+ zS

2χS
Re
[

0D̃
]
. (4.219)

The convergence corresponds to the rotational symmetry of a spin-0 field. When using
the spin operators ̸∂ and ¯̸∂ , the only possible combination of these operators is an
equal order of spin raising operators ̸∂ and spin lowering operators ¯̸∂ . In the thin-lens
approximation terms containing derivatives would dominate over derivatives along the
line of sight.

At order O
(1

c

)
the convergence becomes

κ
(1) =

(
1− c

HSχS

)
vS∥
c

. (4.220)

This contribution, called Doppler magnification, has been derived in [21] for the first
time and studied in detail in [6, 22]. Since it is directly sensitive to the galaxy peculiar
velocity, it provides an alternative way of measuring velocities, independently from
redshift-space distortions, and to test theories of modified gravity [5]. In the PF
formalism, this term is the dominant contribution to the convergence. As shown
in [6, 22] this is effectively the case at low redshift z ≤ 0.5. At high redshift however,
the order O

(
1
c2

)
derived below dominates over the Doppler magnification, because

the deviations generated by ¯̸∂ ̸∂WN accumulate along the photon trajectory, whereas
the peculiar velocity decreases with redshift. Nevertheless, the Doppler term is still
measurable in this regime due to its dipole around overdensities [22]. At order O

(
1
c2

)
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the convergence is given by

κ
(2) =

1
c2

[
−
∫

χS

0
dχ

χS −χ

χχS

¯̸∂ ̸∂WN −VNS +
2
χS

∫
χS

0
dχWN

+

(
c

HSχS
−1
)(

UNS −2
∫

χS

0
dχWN,0 +

1
2

v2
S −

c
HS

v′S∥vS∥

)
−
(

2− 5c
2HSχS

−
cH ′

S

2H 3
S χS

)
v2

S∥

]
(4.221)

The first term in (4.221) is the standard Newtonian contribution to the convergence.
Since it contains two transverse derivatives, it dominates over the other terms when one
correlates galaxies at small separations. This term is the only one which changes the
apparent size of galaxies through a real focusing of the light beam. The other two terms
in the first line modify the length of the geodesic between the source and the observer,
and consequently they change the apparent size of galaxies. The terms in the second
and third line are due to the fact that we observe the size of galaxies as a function
of redshift, which is a perturbed quantity. In particular, the first term in the second
line is the contribution from gravitational redshift and the second one is the integrated
Sachs-Wolfe contribution. The terms proportional to peculiar velocities in the second
and third lines are second-order Doppler contributions. These contributions are sensitive
not only to the radial part of the peculiar velocity vS∥ but also to its transverse part since
v2

S = v2
S∥+ v2

S⊥. Note that one contribution depends also on the time derivative of the
peculiar velocity v′S∥, which contributes to the redshift perturbation at second-order, see
eq. (4.154).

The convergence at order O
(

1
c3

)
is given by

κ
(3) =

1
c3

{∫
χS

0
dχ

[
χS −χ

2χSχ

¯̸∂ ̸∂BNr +
1

4χ

( ¯̸∂ 1BN + ̸∂−1BN
)
− 1

χS
BNr+

+

(
c

HSχS
−1
)

BNr,0

]
+ vS∥

[(
−4+

H ′
S c2

χSH
3

S
+

5c
HSχS

)
UNS

+
∫

χS

0
dχ

(
6−

2H ′
S c2

χSH
3

S
− 10c

HSχS
+

χ

χS
+

cχ

HSχ2
S

)
WN,0+

+
∫

χS

0
dχ

(
χS −χ

χχS
− c

χχSHS

)
¯̸∂ ̸∂WN +2VNS +WNS+

+
c

HS

(
dUNS

dχ
−2WNS,0

)
+

c
HSχS

[
−3VNS +WNS+

−χS
dVNS

dχS
+
∫

χS

0
dχ

2
χS

WN +
c

H

(
dUNS

dχ
−2WNS,0

)]]
+
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+ v′S∥

(
c

HSχS
−1
)

c
HS

(
−UNS +2

∫
χS

0
dχWN,0

)
+

+

(
c

HSχS
−1
)(

1
21vS

∫
χS

0
dχ

1
χ

¯̸∂WN +
1
2−1vS

∫
χS

0
dχ

1
χ
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)
+

+

(
H ′

S c2

χSH
3

S
+

4c
HSχS

−3
)

vS∥
1
2

v2
S +

1
2

c
HS

v2
S∥v′S∥

(
3

H ′
S c2

χSH
3

S
+

+
5c

HSχS
−

H ′
S c

H 2
S χS

−3
)
−
(

c
HSχS

−1
)

c
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v′S∥

(
1
2

v2
S +

1
HS

v′S∥vS∥

)
+

+

(
c

HSχS
−1
)

c
H

vS∥vSv′S −
(

c
HSχS

−1
)

c2

2H 2
S

v′′S∥v2
S∥+

+ v3
S∥

(
2− 8c

HSχS
−

H ′′
S c3

6χSH 4
S
+

H ′2c3

2χSH
5

S

)}
. (4.222)

As for the reduced shear, at this order the convergence contains two types of contri-
butions. First, contributions from the vector potential Bi

N . The dominant contribution
at small scales is given by the first term, which contains two transverse derivatives,
and is equivalent to the shear contribution in eq. (4.217). In addition, since the con-
vergence is a spin-0 field it contains contributions from the spin-1 and -1 part of Bi

N ,
on which the transverse operators ̸∂ and ¯̸∂ act once. The second type of contributions
to the convergence are due to the coupling between the first order Doppler contribu-
tion and the convergence at second order. The spin-1 and -1 contributions 1vS and

−1vS, respectively, stem from the decomposition of the peculiar velocity field vi
S into

vi
S = vi

S∥+
1
2−1vSei

++ 1
2 1vSei

− and occur when the vector field vi
S is coupled with the

derivative of the scalar potential WN . Finally, the convergence contains also a pure
Doppler contribution, proportional to the velocity cubed, in the last line of (4.222).

The expression for the convergence at order O
(

1
c4

)
is grouped into various terms

according to the potentials or their couplings plus various contributions from redshift
perturbations:

κ
(4) =κ

(P)+κ
(UW )+κ

(VV )+κ
(VW )+κ

(WW )+κ
(h)+κ

(δ z)+κ
(v)+κ

(v2)+κ
(v4).

(4.223)

The superscripts (UW ), (VW ), (VV ), and (WW ) refer to the couplings of the Newtonian
potentials UN , VN , and WN , whereas the superscript (P) denotes the contributions of the
post-Friedmann potentials UP, VP, and WP. The last four terms in eq. (4.223) with the
superscripts (δ z), (v), (v2), and (v4) refer to the terms that are introduced via the redshift
perturbations in eq. (4.179). In particular (δ z) regroups all redshift perturbations not
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due to peculiar velocity, whereas the other terms regroup the velocity terms at each
relevant order.

The first contribution of eq. (4.223) reads

κ
(P) =

2
c4

(∫
χS

0
dχ

2
χS

WP −VP −
∫

χS

0
dχ

χS −χ

χSχ

¯̸∂ ̸∂WP

)
, (4.224)

and is of purely relativistic origin. Note that κ(P) takes on the same form as κ(2)

in eq. (4.221) with the relativistic potentials 2VP and 2WP replacing the Newtonian
potentials VN and WN . The terms derived from the redshift perturbations in κ(2) have
their relativistic analogue in κ(δ z).

The next contributions κ(UW ), κ(VV ), κ(VW ), and κ(WW ) collect the coupling terms
with the Newtonian potentials UN , VN , and WN :

κ
(UW ) =

1
χS

1
c4

{∫
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+
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∫
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(4.225)

κ
(VV ) =

1
c4

[
2
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χS

0
dχ

(χS −χ)χ
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(
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− 1
4

V 2
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]
, (4.226)

κ
(VW ) =

1
c4
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}
, (4.227)

and

κ
(WW ) =

1
c4

{∫
χS

0
dχ

1
χS

[
4W 2

N −4WNSWN +8WN,0
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χ

0
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′WN +
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−̸∂ ¯̸∂ 2
WN

∫
χ

0
dχ

′ χ −χ ′

χ2χ ′ ̸∂WN

]}
.

The tensor potential hi j contributes to the convergence in the following way:

κ
(h) =

1
c4

1
4

[
hrr (χS)−

∫
χS

0
dχ

1
χ

(̸
∂−1hr + ¯̸∂ 1hr −hrr

)
+

+
∫

χS

0
dχ

χS −χ

χSχ

(̸
∂ ¯̸∂hrr −χhrr,0

)]
. (4.229)

Finally, the redshift perturbations are split into four different groups: the first group is
denoted by κ(δ z) and refers to the redshift perturbations independent of the peculiar
velocity, while the other groups κ(v), κ(v2), and κ(v4) refer to the terms dependent on
the peculiar velocity.

κ
(δ z) =

1
c4

{[
1
χS

∫
χS

0
dχ

(
2WN −

(
χS −χ − c

Hs

)
1
χ
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+
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κ
(v) =
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κ
(v2) =
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c4
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and
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The convergence at second-order in standard perturbation theory has been computed
in [106]. We expect some of the terms in our formalism to be equivalent to the SPT
result, while others will be different, due to the different counting of perturbations.

4.3.4 The rotation ω

The rotation ω is related to the imaginary part of the spin-0 component 0D̃ via eq. (4.16),
which is proportional to the anti-symmetric part of D̃ab, see eq. (4.14) . From eqs. (4.98),
(4.101), (4.176), (4.177) and (4.178) we see that up to order O

(
1
c3

)
, D̃ab is symmetric

and that there is therefore no rotation at those orders. At order O
(

1
c4

)
on the other

hand, there is a anti-symmetric contribution generated by the coupling R
(2)
ac D

(2)
cb in
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eq. (4.112). Using 0D̃
(4)
I in equation (4.214), we obtain

ω
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1
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∫
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)
. (4.234)

We see that the only terms that contribute to the rotation at order O
(

1
c4

)
are the lens-lens

coupling and the post-Born correction, i.e. the terms with four transverse derivatives,
which dominate at small scales. The rotation contributes in principle to the ellipticity
orientation, as discussed in [17]. However, since the shear is at least of order O

(
1
c2

)
and the rotation is of order O

(
1
c4

)
, the contribution to the ellipticity is of order O

(
1
c6

)
.

This represents a very small contribution to the ellipticity B-mode.
A thorough analysis and discussion of the result can be found in the paper [54],

which is based on this chapter.

4.4 Comparison with Standard Perturbation Theory

In this section, we want to compare our results to those using SPT, e.g. [17]. In [80]
it was shown that the first-order SPT can be recovered from the PF approach: first
"resummed variables" φP and ψP were introduced, which are composed of different
orders of the PF formalism. Secondly, the Einstein field equations were linearised and
the new variables substituted. The outcome yields the first order field equations of
SPT6.The resummed variables φP and ψP read

φP =−
(

UN +
2
c2UP

)
and ψP =−

(
VN +

2
c2VP

)
. (4.235)

The lensing potential in terms of the resummed variables is defined as

ΨP ≡ 1
2
(φP +ψP) . (4.236)

We linearise κ and g and substitute (4.235), which yields

κ =
∫

χS

0
dχ

χS −χ

χχS

¯̸∂ ̸∂ΨP +ψPS −
2
χS

∫
χS

0
dχΨP (4.237)

6 We omitted any contributions of the redshift perturbations.
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and

g =−
∫

χS

0
dχ

χS −χ

χ
̸∂ 2

ΨP. (4.238)

Our outcome matches with the results of [17, 23].

4.5 Conclusion

Weak gravitational lensing is becoming a powerful tool to map the Universe. It could
help to constrain both modified gravity or the equation of state and could give us a
thorough insight into the distribution of matter regardless of its composition. Most of
the analysis done on weak lensing uses standard perturbation theory, which is valid on
large scales, where the perturbations are assumed to be small. However, weak lensing is
a gravitational effect that connects large to small scales by integrating along the line of
sight. In addition, future surveys will deliver high-precision data from small, nonlinear
scales.

In this chapter we compute the convergence κ , the shear γ , and the rotation ω up
to order O

(
1
c4

)
in the Post-Friedmann formalism. Our results provide a systematic

and consistent description of weak lensing observables, including scalar, vector and
tensor modes as well as galaxies’ peculiar velocities. We choose a spherical screen
space, whereby we are able to go beyond the small-angle or thin-lens approximation.
The PF formalism is especially advantageous for weak lensing analysis because of its
validity on all scales [80]: from small, nonlinear scales, where the density contrast is
large, to large, linear scales well within the relativistic regime. The metric of the PF
approximation consists of scalar potentials associated with Newtonian dynamics and
at higher orders scalar potentials that represent relativistic corrections. Furthermore, it
includes vector and tensor potentials, where the lower order vector potential is sourced
by Newtonian quantities and will therefore be associated with the Newtonian regime.
At the orders considered in this work, the tensor potential is non-dynamical and does
not represent gravitational waves. We choose the Poisson gauge; our Newtonian and
relativistic scalar potentials are UN and VN , and UP and VP, respectively. The vector
potential Bi is split into a "Newtonian" contribution Bi

N and a relativistic correction
Bi

P, which are divergence free. The tensor potential hi j is transverse and tracefree.
Furthermore, we denote the Weyl potential as WX = 1

2 (UX +VX) with X = N,P. In
derivation of κ , γ and ω , we have not picked a set of field equations and we therefore
assume that the Newtonian scalar potentials UN and VN not necessarily coincide. In
General Relativity, one obtains at leading order via the Einstein field equations that
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UN = VN , but in order to keep our result as general as possible, we refrained from
assuming the Newtonian potentials to be equal. This leaves the possiblity to use our
analysis to test modified gravity models.

Following [17, 23, 21], we compute κ , γ and ω in terms of spin-0 and spin-2
operators, respectively, on a sphere. The spin-weighted operators represent the spherical
symmetry that is associated with κ , γ , and ω . By using these operators,κ , γ , and ω

can be decomposed into the sum of spin-weighted spherical harmonics. We express
our result in terms of the redshift z instead of an affine parameter λ or χ , because
neither are measurable quantities, but the redshift z is. By introducing the redshift
z as variable, we need take redshift perturbations δ z into account. The redshift is
affected by the peculiar velocities, which modify the apparent distance between the
source and the observer, and consequently the apparent galaxy size. E.g. at the lowest
order, O

(1
c

)
, the peculiar velocities affect the convergence in eq. (4.220). This effect,

called Doppler magnification [21, 6, 22]. By choosing a spherical screen space, we
avoid the restrictions of the thin-lens approximation. In the thin-lens or small-angle
approximation relativistic correction and derivatives along the line of sight can be
neglected. In our result, we keep all coupling terms.

The null geodesic is conformally invariant and one would expect that our result
can be expressed only in terms of the Weyl potential WX , which remains the metric
potential after the (quasi) conformal transformation of the metric in equation (4.91).
However, there occur contributions and coupling terms involving the potentials UX and
VX that come in over various performed perturbations such as perturbing the path of the
geodesic in order to go beyond the Born approximation or the redshift perturbations.
Even before, we see that the convergence comprises terms of the scalar potential VX

evaluated at the source. These terms origin from the fact that the parallel transport of
the basis nµ

a is not conformally invariant [17].
We extend our analysis up to order O

(
1
c4

)
, where we have to take perturbations

of the photon geodesic into account and hence go beyond the Born approximation.
We express our results in terms of the redshift z instead of the parameters λ and χ .
The next step in this project is to compute the correlation function for the shear and
convergence and compare the results to observational data. Therefore, it is convenient
to use the redshift z, because it a measurable quantity, but the parameters λ and χ are
not. However, the redshift is a perturbative quantity and we need to take the redshift
perturbations δ z into account. δ z contributes lens-source couplings and perurbations
involving the peculiar velocity of the source.
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In summary, we extended the work of [17, 23] using the post-Friedmann approxima-
tion scheme. We computed the convergence and reduced shear up to order O

(
1
c4

)
and

expressed our results in terms of spin weighted operators and in terms of the redshift
z. The post-Friedmann formalism comprises scalar, vector, and tensor potentials. The
vector potential, a relativistic contribution, is sourced by Newtonian quantities and we
showed how it contributes to the convergence and reduced shear at the lower order
O
(

1
c3

)
.



Chapter 5

Conclusion

5.1 Summary of the work so far

In this thesis I present my work on nonlinear approximation schemes in relativistic
Cosmology. In the course of my PhD studies I focused on two main projects: the first
project deals with non-Gaussian contributions in the density field and the mixing of
fNL and gNL at higher orders [55]. The second project comprises the analysis of weak
lensing using the post-Friedmann approach [54]. The two projects were carried out
using various approximation schemes, which are valid on different scales.

In the Introduction I give a general overview of General Relativity and differential
geometry and introduced the quantities that will be used in the later chapters. Further-
more, I give a general overview of the current state of theoretical and observational
cosmology. Chapter 2 is dedicated to relativistic approximation schemes. I discuss
perturbation theory and gauge transformations and subsequently introduce the three dif-
ferent approximation schemes that will be used in the chapters 3 and 4, namely standard
perturbation theory, the gradient expansion, and the post-Friedmann approximation.

In chapter 3 I present the work based on the paper [55]. We investigate the evolution
of the density contrast on very large scales. We extend the work of [27] and [26] up
to fourth order in standard perturbation theory within the leading order of the gradient
expansion, which is up to order O

(
∇2). We recovered the second order results of [26],

[105], and [109], while the present third and fourth order results are new solutions
published in [55]. As discussed in the chapter 2 in section 2.3, the gradient expansion is
an approximation scheme that has a spatially homogeneous and isotropic space-time
as background and expands in terms of spatial gradients. Therefore, at low orders
such as O

(
∇2) we consider very large scales of the order of the Hubble radius. The

continuity equation (3.5) and the energy constraint (3.7) show that the density contrast
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δ , the expansion ϑ , and the Ricci scalar R are of order O
(
∇2) in the gradient expansion.

Therefore, it follows that the evolution equation for the density contrast (3.15) is linear in
δ and ϑ at this order of the gradient expansion and takes the same form as the evolution
equation at first order using standard perturbation theory. Furthermore, the Ricci
scalar R remains constant at these scales. We chose the synchronous-comoving gauge
and expressed the spatial metric perturbations in terms of the curvature perturbation
ζ . At order O

(
∇2) of the gradient expansion the spatial part of the metric can be

assumed to be conformally flat, i.e. neglect anisotropic metric perturbations. As a
metric perturbation we introduce the curvature perturbation ζ , which occurs in the
exponent of the conformal factor. We solve the evolution equation for the density
contrast δ up to fourth order in standard perturbation theory and impose primordial
non-Gaussianity up to the required order as initial conditions. At third and fourth
order of standard perturbation theory, we show how non-Gaussianity contributes to
the density contrast. In particular, we show that at third order terms involving gNL

as well as fNL occur. This is a consequence of the fact that at this order we obtain
terms of order O(3), O(2)O(1), and O(1)O(1)O(1). Naturally, the terms of order
O(3) and O(2)O(1) will contain gNL and fNL, respectively. At fourth order, we find
terms of order O(4), O(3)O(1), O(2)O(2), O(2)O(1)O(1), and O(1)O(1)O(1)O(1).
Therefore, the density contrast displays terms involving hNL, gNL, f 2

NL, and fNL. In
summary, our main result is that the nonlinear nature of General Relativity affects
the density contrast by contributing non-Gaussian terms and by mixing primordial
non-Gaussian parameters fNL, gNL, and hNL at higher orders.

In chapter 4 I present the work [54] on weak lensing using the post-Friedmann
approximation scheme. The incentive to use this approximation scheme is its validity
on all scales. The PF approximation unites the relativistic treatment of SPT on large
scales with the nonlinear Newtonian dynamics on small scales [80]. In weak lensing, we
integrate along the line of sight and thereby couple large to small scales. Furthermore,
we choose spherical spin-weighed coordinates to go beyond the thin-lens or small-angle
approximation following the work of [17]. The PF formalism is a post-Newtonian-type
approximation in a cosmological setting. We expand in inverse powers of the speed
of light c. Order O

(
1
c2

)
and O

(
1
c3

)
are sourced by Newtonian quantities such as the

scalar potentials UN and VN , whereas at higher orders relativistic corrections are added.
In chapter 4, I compute the convergence κ , the reduced shear g, and the rotation ω

up to O
(

1
c4

)
including scalar, vector and tensor perturbations. For our analysis we

chose the Poisson gauge. At orders considered in this work, the tensor contributions
are non-dynamical. Vector perturbations on the other hand contribute already at order
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O
(

1
c3

)
to the convergence and shear. In the PF formalism, the vector potential Bi

N at

order O
(

1
c3

)
is sourced by Newtonian quantities, but is a relativistic contribution. The

vector perturbation does not influence the matter dynamics but affects the light path
and therefore the weak lensing analysis [103]. As we compute the Jacobi mapping
Dab up to order O

(
1
c4

)
, we need to go beyond the Born approximation and introduce

perturbations of the photon geodesic. We express Dab in terms of the redshift z instead
of the parameter λ or χ , because unlike λ and χ , the redshift z is a measurable quantity.
The change to redshift introduces further perturbations, in particular perturbations
involving the peculiar velocity of the source. In the PF formalism, the peculiar velocity
adds a factor 1/c, which affects the order of the approximation. In order to perform
a full sky weak lensing analysis, we chose a spherical screen space. It is standard
to project the Jacobi mapping Dab onto a flat two dimensional subspace. Thereby,
we would limit our analysis to the small-angle or thin-lens approximation. In this
approximation, for example, derivatives along the line of sight are neglected. With a
spherical screen space, we capture the full sky and therefore more terms and couplings
contribute to Dab. Following the work of [17], we introduce spherical spin functions.
The spin s of a function reflects the spherical symmetry. Moreover, we introduce
derivatives ̸∂ and ¯̸∂ , which increase and lower the spin s by 1, respectively. In the
harmonic space, the differential operators ̸∂ and ¯̸∂ are linked to an l factor. Thus, terms
with higher order derivatives of these differential operators would be dominant in the
thin-lens approximation. I compute the reduced shear g and the convergence κ up to
order O

(
1
c4

)
in terms of the spherical spin derivatives and functions. At the lowest

order O
(1

c

)
the convergence is affected by the Doppler effect and displays a term solely

dependent on the scale factor a and the peculiar velocity at the source vS. At order
O
(

1
c2

)
the reduced shear coincides mathematically with the results of the first order

standard perturbation theory [17], yet the physical meaning of the results diverge. In
the PF formalism the lowest orders are built up by Newtonian quantities, whereas the
first order in standard perturbation theory contains relativistic corrections. The reduced
shear (from order O

(
1
c3

)
) and the convergence (from order O

(
1
c2

)
experience redshift

perturbations in terms of a Doppler effect with contributions involving the velocity
vS as well as contributions that couple the source to the lens. At order O

(
1
c3

)
the

vector field Bi
N contributes to both the reduced shear and the convergence. At order

O
(

1
c4

)
tensor and vector perturbations occur, whereas the latter ones are introduced

over the velocity dependent redshift perturbations. In both the reduced shear and the
convergence, we find various coupling terms including a huge number of lens-lens
coulings of the lensing potential WN = 1

2 (UN +VN). In summary, I present the full-sky,
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all scales weak lensing analysis in terms of the redshift z up to higher orders using
the post-Friedmann approximation scheme. In particular, the main result was to show
how the gravimagnetic potential contributes to the convergence and reduced shear in an
approximation that is valid inter alia on the small, nonlinear scales.

5.2 Future directions and work in progress

After concluding the second project by submitting the paper [54] to a peer-reviewed
journal, I intend to continue the project in collaboration with Camille Bonvin, and my
supervisors Marco Bruni and David Bacon to examine the results using well-established
statistics in order to compare them to observational data. Following the work [16] I will
compute the correlation function of the shear and convergence up to higher orders using
the post-Friedmann approximation. In order to cover the full sky, we choose spherical
coordinates and spin weighted operators analogously to the previous project [54] and
to [16, 17]. The shear correlation function can be obtained directly from observed
ellipticities and therefore can be compared to observational data. Our aim, in particular,
is to compute the angular power spectrum of the terms involving the gravimagnetic
potential in the shear and convergence.

5.2.1 Angular power spectrum

In chapter 4 and [54] we expressed the shear and convergence in terms of the spatial
basis

{
k̄i,ei

+,e
i
−
}

. Let A be a complex field, which transforms as A → eisαA , where
α denotes the angle of a rotation about k̄i. Expanded into spin-weighted spherical
harmonics, A and its complex conjugate A ∗ yield

A =∑
lm

salmsYlm and (5.1)

A ∗ =∑
lm

−salm−sYlm, (5.2)

respectively. The coefficients ±salm read

salm ≠l(l,−s)
∫

dn̂Y ∗
lm

¯̸∂ s
A and (5.3)

−salm ≠l(l,s)
∫

dn̂Y ∗
lm̸∂

sA ∗ (5.4)

with ̸ l ≡
√

(l+s)!
(l−s)! . We use n̂ = k̄i to denote the spatial direction of the geodesic.
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The angular power spectrum Cl is defined via the two-point correlation function

⟨almal′m′⟩ ≡Clδll′δmm′. (5.5)

5.2.2 Contribution of the gravimagnetic potential to the angular
power spectrum

At order O
(

1
c3

)
the gravimagnetic potential Bi

N contributes to both the convergence
κ and the reduced shear g. We start our analysis with the correlation function for the
convergence κ , which is a spin 0 field. We start with the terms from 0D̃ (4.199)

D =− 1
2c3

∫
χS

0
dχ
( ¯̸∂ 1BN + ̸∂−1BN −4BNr

)
, (5.6)

which contributes to the convergence κ (4.222). Then, the coefficient alm reads

alm = ̸ l(l,0)
∫

dkY ∗
lmD. (5.7)

We perform a Fourier transformation on D in (5.7) and obtain

alm ≠l(l,0)
∫

dnY ∗
lm

∫ d3k
(2π)3 D(k,z)eikin̂i

=
∫

dnY ∗
lm

∫ d3k
(2π)3 D(k,z)4π ∑

l′m′
il
′
jl′(kz)Yl′m′(n̂)Y ∗

l′m′(k) (5.8)

=∑
lm

il
∫ d3k

(2π)3 D(k,z) jl(kz)Y ∗
lm(k). (5.9)

We now substitute alm in (5.9) into the two point correlation function (5.5) and obtain

⟨alma∗l′m′⟩= il−l′
∫ d3k

(2π)3 jl(kz)Y ∗
lm(k)

∫ d3k′

(2π)3 jl′(k′z′)Y ∗
l′m′(k′)⟨D(k,z)D∗(k,z)⟩.

(5.10)

The aim of the project is to compute the angular power spectrum and compare the
outcome to observational data. Work [33, 103] on the vector potential Bi

N using the
PF formalism has shown that although the magnitude of the vector potential is small,
it is not negligible. Any effects caused by the vector potential are purely relativistic.
Hence, this offers the possibility to test General Relativity using current and future
observational data.
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Appendix A

Spin weighted functions

A.1 Real and imaginary contributions using spherical
spin operators

In (4.16) and (4.17), the convergence κ , the shear γ , and the rotation ω have been
defined via the real and imaginary part of 0D and 2D . In order to split 0D and 2D into
ℜ(0D) and ℑ(0D), and into ℜ(2D) and ℑ(2D), respectively, we need to examine the
derivatives ̸∂ and ¯̸∂ , and its application on scalars, vectors, and tensors. We start with
various combinations of the derivatives applied on the scalar functions X and Y :

¯̸∂ ̸∂X =

(
∂θ −

i
sinθ

∂φ + cotθ

)(
∂θ +

i
sinθ

∂φ

)
X =

(
∂

2
θ + cotθ +

1
sin2

θ
∂

2
φ

)
X

(A.1)

=∆θφ X ∈ R (A.2)

̸∂X ¯̸∂X =

(
∂θ +

i
sinθ

∂φ

)
X
(

∂θ −
i

sinθ
∂φ

)
X = ∂θ X∂θ X +

1
sin2

θ
∂φ X∂φ X ∈ R

(A.3)

̸∂X ¯̸∂Y +̸∂Y ¯̸∂X = 2
(

∂θ X∂θY +
1

sin2
θ

∂φ X∂φY
)
∈ R (A.4)

̸∂ ̸∂X =

(
∂θ +

i
sinθ

∂φ − cotθ

)(
∂θ +

i
sinθ

∂φ

)
X (A.5)

=

[
sinθ∂θ

(
1

sinθ
∂θ

)
− 1

sin2
θ

∂φ ∂φ + i2∂θ

(
1

sinθ
∂φ

)]
X ∈ C (A.6)

̸∂ X̸∂Y =∂θ X∂θY − 1
sin2

θ
∂φ X∂φY +

i
sinθ

(
∂θ X∂φY +∂θY ∂φ X

)
∈ C (A.7)
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We will find combinations like (A.1) - (A.4) in the expression for 0D̃
(2) and 0D̃

(4) in
(4.198) and (4.200), respectively. In sections 4.2 and 4.3.3 we discuss the physical
interpretations of the real and the imaginary part of 0D̃ and 2D̃ . While ℜ(2D̃) and
ℑ(2D̃) are both related to the shear (4.17), ℜ(0D̃) and ℑ(0D̃) are proportional to the
convergence κ and rotation ω (4.16), respectively. Because (A.1) - (A.4) are ∈R, 0D̃

(2)

and 0D̃
(4) will solely contribute to the convergence κ . Therefore, for the order O

(
1
c2

)
and O

(
1
c4

)
the rotation ω , which is related to the imaginary part of 0D̃

(2) and 0D̃
(4), is

zero.
Next we discuss the slashed derivatives applied to vectors. In 0D̃

(3) (4.199) and

2D̃
(3) (4.189) we find the following combinations:

¯̸∂ 1B =−
(

∂θ −
i

sinθ
∂φ + cotθ

)(
Bθ + iBφ

)
(A.8)

=−
[

1
sinθ

∂θ (sinθBθ )+
1

sinθ
∂φ Bφ

]
+ i
[
− 1

sinθ
∂θ

(
sinθBφ

)
+

1
sinθ

∂φ Bθ

]
∈ C

(A.9)

̸∂−1B =−
(

∂θ +
i

sinθ
∂φ + cotθ

)(
Bθ − iBφ
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(A.10)

=−
[

1
sinθ

∂θ (sinθBθ )+
1

sinθ
∂φ Bφ
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+ i
[

1
sinθ
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sinθBφ

)
− 1

sinθ
∂φ Bθ
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(A.11)

¯̸∂ 1B+̸∂−1B =−2
(

∂θ Bθ +
1

sinθ
∂φ Bφ

)
∈ R (A.12)

̸∂ 1B =−
(
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sinθ
∂φ − cotθ

)(
Bθ + iBφ
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(A.13)

=−
[

sinθ∂θ

(
1

sinθ
Bθ
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− 1
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∂φ Bφ
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− i
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sinθ∂θ

(
1

sinθ
Bφ
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1
sinθ

∂φ Bθ

]
∈ C

(A.14)

The only combination occurring in 0D̃
(3) is the real contribution (A.12). Therefore, we

conclude that 0D̃
(3) only contributes to the convergence κ and not to the rotation ω .

There are slashed derivatives of the tensor potential in both 0D̃ (4.200) and 2D̃

(4.190). However, the combinations only involve hrr, which is a scalar function of
spin-0 like X and Y in (A.1) - (A.7), and ±1hr

1, which is a spin-±1 function such as

1
±1hr expressed in terms of spherical coordinates yields ±1hr = hrθ ± ihrθ analogously to ±1B =

Bθ ± iBφ .
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±1B in (A.8) - (A.14). Thus, we can use the above relations to compute the real and
imaginary part.

A.2 Useful relations

In this subsection, we list useful relations using the spin-weighted formalism. First we
look at derivatives of the basis vectors ei

+, ei
−, and ei

r.

ei
+k̄ j

,i =
1
χ

e j
+ (A.15)

ei
−k̄ j
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ei
+e j

+em
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For the scalar function X we find the following relations useful:
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Let Y i be a vector field. We can express Y i in terms of the basis
{

k̄i,ei
+,e

i
−
}

as
Y i = Yrk̄i + 1

2−1Yei
++ 1

2 1Yei
−. Then, the following relations can be found:
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For a tensor field Zi j, which can be expressed as Zi j = Zrr
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Let sT be a function of spin s. The operators ̸∂ and ¯̸∂ obey the following commuta-
tion rule

( ¯̸∂ ̸∂ −̸∂ ¯̸∂
)

s T = 2ssT. (A.39)
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