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Abstract 

 

Abnormal repetitive behaviors (ARBs) are a prominent symptom of numerous human brain disorders 

and are commonly seen in rodent models. As rodent studies of ARBs continue to dominate the field, 

mounting evidence suggests that zebrafish (Danio rerio) also display ARB-like phenotypes and may 

therefore be a novel model organism for ARB research. In addition to practical research advantages, 

zebrafish share high genetic and physiological homology to humans and rodents, including multiple 

ARB-related genes and stereotypic behaviors relevant to ARB. Here, we discuss a wide spectrum of 

stereotypic repetitive behaviors in zebrafish, data on their genetic and pharmacological modulation, 

and the overall translational relevance of fish ARBs to modeling human brain disorders. Overall, the 

zebrafish is rapidly emerging as a new promising model to study ARBs and their underlying 

mechanisms.          
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1. Introduction 

 Abnormal repetitive behaviors (ARBs) commonly occur in neuropsychiatric diseases, 

including obsessive-compulsive disorder (OCD), autism spectrum disorder (ASD), trichotillomania, 

Parkinson’s disease, as well as Tourette’s, Rett, Fragile X and Prader-Willi syndromes [1-3]. Typical 

ARBs include abnormal motor behavior, disrupted social interactions, aberrant goal-oriented behavior 

and self-injurious cycled actions [4]. In humans, the most frequent ARBs include skin-picking, head-

hitting, repetitive manipulation of objects (spinning, twirling), repetitive use of language, body 

rocking, hand flapping, finger flicking and tics [5, 6]. Highly relevant clinically [1, 7, 8], some ARBs 

(e.g., skin-picking, hair-pulling) may also cause physical harm [9, 10]. Together, this emphasizes the 

growing clinical importance of ARBs and the need for their broad-scale translational research. 

 Animal experimental models are a powerful tool in neuroscience and biological psychiatry, 

markedly improving our understanding of CNS function and dysfunction [11-13]. Behaviorally, ARBs 

can be divided into two groups – motor stereotypies and impulsive/compulsive behaviors [14-16]. The 

former include the repetition of purposeless movements and/or body postures, whereas the latter 

involve cognitive inflexibility and aberrant goal-oriented behaviors [17-20]. Clinical motor 

stereotypies include repetitive stereotypical motor movements (SMMs), critical for neuropsychiatric 

diagnostics. Common SMMs include body rocking, hand flapping and finger moving, often seen in 

patients with ASD, Fragile X syndrome, Rett syndrome, Parkinson’s disease (e.g., periodic fast/slow 

finger movements), and Huntington’s disease [21-27]. Other common ARBs are tics, often occurring 

in Tourette’s syndrome [28] as unconscious, abrupt, periodical and arhythmical movements or 

vocalizations [1, 29]. OCD symptoms include complex ARBs stemming from persistent recurrent 

compulsive ideas [30], combining composite behavioral acts (compulsions or rituals) with repeated 

behaviors (e.g., washing and cleaning) that, unlike tics, are conscious [1]. 

 Given a wide spectrum of ARBs and multiple distinct CNS disorders with ARB-like 

phenotypes, the complex neurobiology of repetitive behaviors is poorly understood [31, 32]. However, 

the basic neuroanatomy and neuronal circuitry are beginning to unravel for some ARBs in both clinical 

and animal studies. For example, magnetic resonance imaging (MRI) in both humans and rodents has 



4 
 

revealed core brain structures involved in the regulation of motor behavioral patterns, including 

sensory motor and anterior cingulate cortex, cerebellum, thalamus and the basal ganglia [33-39]. 

Paralleling clinical findings, several rodent models with overt spontaneous stereotypies (e.g. deer mice, 

BTBR T+tf/J, C57BL/10, C57BL/6, C58 mice) are widely used to study ARBs, in which affected 

animals display repetitive jumping and self-grooming [40-43]. Neurochemical and clinical volumetric 

studies of the basal ganglia pathways implicate all major neurotransmitters in ARBs [44]. For example, 

OCD responds to selective serotonin reuptake inhibitors (SSRIs) [45], and disturbances in the 

serotonin transporter (SERT) are common in humans with OCD [46] and in animal models of this 

disorder [47, 48]. Likewise, gamma-aminobutyric acid (GABA), glutamate, noradrenaline, histamine, 

acetylcholine, cannabinoids, endogenous opioids and hypothalamic-pituitary-adrenal (HPA) axis 

hormones serve as reliable biomarkers of repetitive behavior [44, 49].  

 Various CNS disorders comorbid with ARBs have strong genetic determinants, including 

neuroligin (NLGN),  GABA A-receptor β3 gene (GABRB3), methyl-CpG-binding protein 2 (MeCP2), 

the fragile X mental retardation (FMR1), contactin-associated protein-like 2 (Cntnap2), SHANK 

family, tuberous sclerosis complex 1 (TSC1), neurexin 1a (NRXN1) [50-52] and dopamine D3 receptor 

genes (DRD3) [53, 54]. Neuroligin genes (e.g., NLGN3) modulate dopaminergic signaling in ventral 

striatum [55], and mouse knockouts in NLGN3 display robust motor stereotypies [55]. Other genes 

essential for GABA- and glutamatergic signaling are implicated in ARB pathogenesis [56]. For 

example, MeCP2 (encoding transcriptional regulator MeCP2) and GABRB3 (encoding the β3 subunit 

of the GABAA receptor) are associated with Rett and Prader-Willi syndromes [57-59]. Likewise, 

GABARB3 knockout mice display repetitive circling and tail chasing [60, 61], whereas MeCP2-

deficient mice exhibit impaired GABA signaling with forelimb stereotypies [62]. Genes related to 

aberrant glutamatergic signaling include SHANK2 and other SHANK genes (responsible for stability 

of excitatory synapses [56]), and their disturbances may trigger repetitive jumping [63]. Mice lacking 

genes affecting glutamate NMDA receptors (e.g., ninjurin 1/ning1) and grin1 (glutamate ionotropic 

receptor NMDA type subunit 1) exhibit compulsive grooming resembling clinical OCD [64, 65].  

In summary, the genetic contribution to ARBs, established in preclinical and clinical genetics 



5 
 

studies (Table 1), confirm shared core mechanisms of ARB pathogenesis in humans and rodent models 

[66-68], calling for further translational research in this field. However, as humans and rodents share 

80-85% genetic homology, it is logical to ask whether shared ARB pathways are generally 

evolutionarily conserved across vertebrate taxa? For example, while mutant mice with DAT genetic 

ablation show multiple repetitive behaviors [69-72], zebrafish (Danio rerio) with DAT genetic 

knockout can become a powerful model of DAT-mediated behavioral deficits. Generated recently, 

these mutant zebrafish display thigmotaxis (swimming closely to the walls of the tank, Fig. 3) [73] 

which may represent an ARB-like phenotype. Given a 70-75% of genetic homology between humans 

and zebrafish [74], their generally similar CNS [75] and core neurotransmitters, neurohormones [76], 

and their molecular targets [77-79], can experimental modeling of ARBs be extended to include fish 

models? In other words, can fish have ARBs? And, if they do, - how can ARBs of animals, separated 

from humans by thousands of years of evolution, inform us about core mechanisms underlying ARB 

pathogenesis? 

 2. ARB lessons from zebrafish 

While the vast majority of pre-clinical ARB data have been obtained from rodent models [43, 

80-86] (Table 1), the growing understanding of evolutionarily conserved core mechanisms of CNS 

disorders [12] necessitates novel models, new model organisms, and translational cross-species 

comparisons in the field of ARB research [87]. A small teleost fish, the zebrafish is rapidly gaining 

popularity in preclinical studies modeling human brain diseases [88] as a low-cost and research-

efficient vertebrate organism [89] with fast development highly suitable for CNS research [90]. 

Notably, transparency of embryos allows the observation of zebrafish CNS in vivo, further enhanced 

by zebrafish brain using imaging tools [91]. Finally, remarkable genetic and physiological similarity 

to humans, simply quantifiable overt behavioral responses, shared neural circuits and sensitivity to 

psychotrophic drugs make zebrafish an appropriate model species in preclinical studies of human CNS 

disorders [91, 92].  

Similar to rodent models, many basic behavioral patterns of zebrafish can be assessed in 

observation tanks similar to rodent open field tests, such as novel tank tests [93, 94]. Albeit not showing 
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some common rodent open field stereotypies (e.g., self-grooming), fish have their own set of 

stereotypic movements that can be recognized, quantified and modulated experimentally [95]. For 

example, zebrafish stereotypies are often observed in response to pharmacological intervention, and 

include repeated back-and-forth swimming at a particular part of the tank (e.g., at the bottom, middle, 

or top of the tank) [96], but may also include more specific behavioral pattern, such as stereotypic 

circling - repetitive round trajectory swimming, that is common for ketamine and other glutamatergic 

antagonists [97, 98] (Table 2). Furthermore, adult zebrafish may display repetitive thigmotaxis often 

seen following psychostimulant (e.g., nicotine) administration, and manifested as stereotypic 

swimming along the walls of the tank near the surface (similar to stereotypic locomotion of other 

model species in the open field test [99]).  

However, it is premature to interpret such behavioral patterns without thorough mechanistic 

analyses and complementing behavioral observations with pharmacological and genetic challenges to 

target ARBs. For example, recent studies of the neurophysiological underpinnings of repetitive turning 

and other ARB-like behavior have focused on zebrafish larvae, revealing an important role of hindbrain 

in such fish phenotypes [100-102]. Likewise, assessing thigmotaxis and its relevance to ARBs in 

rodents [103] and zebrafish [99], such responses can be also related to alternation in luminance, and 

represent a tendency to swim outward (rather than the preference for the edges) [104].     

 2.1. Autism-related models 

Like in rodents, disruption of some ASD-related genes provokes ARB-like phenotypes in 

zebrafish. For example, SHANK3 knockout zebrafish display aberrant circling, thigmotaxis, corner-to-

corner swimming and ‘looped’ figure-8 swimming [105]. With high homology of SHANK3 between 

rodents and zebrafish (Table 2), such fish ARBs resemble stereotypies in mouse mutants of this gene 

[106-108]. SYNGAP1 encoding synaptic Ras GTPase activating protein 1 is a critical regulator of 

glutamatergic NMDA-receptors [109] implicated in ASD [109, 110]. Zebrafish SYNGAP1 knockouts 

display remarkable stereotypic movements, including prolonged undulating swimming with frequent 

C-bends, accompanied by aberrant mid- and hindbrain development [111]. Contactin-associated 

protein-like 2 gene (CNTNAP2) triggers epilepsy and ASD [112, 113] by disrupting inhibitory GABA-
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ergic neurotransmission [114, 115]. In line with ASD-like ARBs in CNTNAP2 knockout mice [116, 

117], zebrafish CNTNAP2 mutants also display higher responsivity to GABA-A receptor inhibitors, 

causing circling and burst-like movements [118]. Thus, the disruption of key ASD-related genes leads 

to the development of stereotypic movements in zebrafish.  

The fragile X syndrome, clinically distinct from ASD, has an overlapping ARB phenotype with 

typical stereotypic movements, hand flapping and biting [119-121] triggered by aberrant activity of an 

X chromosome gene FMR1 (fragile X mental retardation 1) crucial for CNS development, 

neurotransmission and synaptic stability [122, 123]. FMR1 knockout rodents display aberrant jumping, 

circling, digging and increased self-grooming [124, 125]. Although zebrafish FMR1 knockouts and 

knockdowns have craniofacial alterations, aberrant neurotransmission (e.g., cholinergic in motor 

neurons, glutamatergic in the CNS) and behavioral changes (e.g., hyperactivity [126-129]), their ARBs 

have not yet been noted [127], necessitating further studies using this model organism.  

 Rett syndrome is another debilitating disorder genetically related to the X chromosome, mainly 

affecting females and manifesting in stereotyped hand wringing, rubbing or clapping movements 

[130]. The main candidate gene for Rett syndrome is MeCP2 [131], and MeCP2 knockout mice display 

similar neurological deficits [132], including ARB-like hindlimb clasping and altered dopamine and 

glutamate signaling [133, 134]. Zebrafish MeCP2 knockouts display abnormal thigmotaxis, likely 

associated with neurodevelopmental abnormalities in the hindbrain [135], and the MeCP2 knockdown 

impairs neurodevelopment and neurodifferentiation in larval fish [136].  

2.2. Modeling obsessive-compulsive disorder in zebrafish 

There are strong parallels between OCD and other ARB-related conditions, and animal models 

of OCD proposed based on their phenotypic stereotypy profiles, include genetic models (e.g., hyper-

dopaminergic mutant deer mice [137, 138] and Sapap, Slitrk5 and HoxB8 knockout mice [139]), drug-

induced and some other models [43, 140, 141]. Zebrafish models of OCD are gaining value in 

neuropsychiatric research [142-145]. Currently, there are many behavioral tasks that can be used to 

assess OCD phenotypes in zebrafish and that may be differently classified when using larvae or adult 

animals. Larvae OCD-like phenotypes are commonly analyzed by video-tracking software and 
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comprise subtle stereotypic movements such as dashing, freezing and repetitive rotational turns [142]. 

A recent method to analyze swimming behavior in zebrafish larvae [146] improves the analysis of their 

behavioral profiles and can be used as an important tool for OCD drug discovery assays. In addition 

to larvae, OCD phenotypes can be measured in adult zebrafish by assessing their stereotypic 

movements and compulsive choice [93, 142] (see further).  

The early studies using adult zebrafish focused on drug-induced locomotor effects to better 

understand OCD-related stereotypic behavior in zebrafish novel tank test, a paradigm similar to the 

open field in rodents [93]. For example, this has revealed stereotypic behavior in adult zebrafish 

expressed as repetitive rotations or “circling behavior”, such as those induced by NMDA receptor 

antagonists (e.g., ketamine) [147]. This approach has clear translational concordance with OCD and 

its treatment [148, 149], as ketamine and other NMDA antagonists often evoke stereotypic circling in 

humans and rodents. Zebrafish exposed to ibogaine (a hallucinogen with some NMDA antagonist 

activity that induces stereotypic behavior in rodents [150]) display circling behavior and repetitive 

corner-to-corner swimming [151]. Repetitive, unvarying perseverative behavior without goal or 

function has been described in zebrafish following cocaine withdrawal [130]. The predictive validity 

of stereotypic behavior in translational models is based on response to SSRIs which ameliorate OCD 

symptoms [152]. Notably, 5-HT1B receptor antagonists can induce repetitive behavior in zebrafish 

[153] that can be reversed by known OCD treatments (e.g., fluoxetine [154]) with striatal activation 

modulated only by specific OCD treatments [153]. 

Compulsive choice is another important OCD-related behavior frequently studied in rodent 

models [69] by subjecting the rodent to the spontaneous alternation test [155] and using the “signal 

attenuation” model [82]. In zebrafish, a compulsive choice can be studied in a T- or Y-maze assessing 

habit formation. Briefly, during acquisition of a learning task, normal animals will use both olfactory 

and visual stimuli to learn the location of food. Once the task is well learned, the animal will develop 

a ‘habit’ in which the amount of cognitive processing of the array of stimuli in the environment will 

be lower, as evidenced by lower sensitivity to devaluation, and by reduced sensitivity to contingency 

degradation [156-158]. Importantly, alterations in habit-forming have been observed in OCD patients 
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[159], suggesting that such behavior is an important marker of this disorder [160, 161]. In line with 

this, zebrafish exposed to alcohol during early brain development form habits early in the learning 

process in an adaptation of the T-maze “place-response” test Parker, Evans [162]. Such tests can be 

further validated by drugs traditionally used to treat OCD-related symptoms (e.g., fluoxetine), thus 

providing face and predictive validity for zebrafish models of  stereotypic behavior and habit formation 

in OCD-like phenotypes [93, 142]. 

2.3. Cognitive inflexibility 

Cognitive flexibility is the ability to adjust and adapt cognitive processing strategies in response 

to new, unexpected challenges [163]. Conceptually, it is the opposite end of the spectrum to ARBs, 

which are rigid and fixed. Therefore, understanding the biology of cognitive and behavioral flexibility 

may offer much to the study of ARBs, and vice versa [85]. Thus, to more closely translate the animal 

model to human OCD [1], assessment of cognitive flexibility-rigidity needs to be related to observed 

compulsive behaviors [164]. One method of measuring behavioral flexibility is attention set shifting 

tasks, which requires learning the response to a simple ‘rule’ applied to a complex stimulus, to identify 

relevant or non-relevant cues, and then modifying the response when the rule is changed, i.e. 

responding to the previously irrelevant (instead of the relevant, reinforced) cue [165]. Reductions in 

cognitive flexibility are seen in patients suffering from various neuropsychiatric disorders, including 

OCD and ASD [166], making it an important endophenotype to observe and model [167, 168].  

Many neuropsychiatric diseases affecting the frontal cortex have deficits in cognitive flexibility 

signified by increased perseveration for the previous rule and increased errors shifting from one rule 

to the next [166]. Notably, the severity of the condition (i.e., in OCD patients) correlates with the 

deficit in reversal learning [166, 169]. Another paradigm, similar to that in primates and rodents [165, 

170], has been adapted for zebrafish. For example, zebrafish are able to discriminate two colored cues 

(using a food reinforcer), demonstrating the capacity for to make ‘choices’ about differently valued 

stimuli. Zebrafish are also capable of cognitive flexibility, in terms of their responses to reversal 

learning and intra-dimensional set-shifting [171]. During a typical reversal learning protocol, an 

animal initially is trained (Phase 1) on a discrete-trial protocol to discriminate between two 
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differentially reinforced stimuli (e.g., colors: RED = S+ [reinforced], GREEN = S- [non-reinforced]). 

Once it has reached a criterion of response allocation to the reinforced alternative (e.g., 6-correct 

responses in a row), the reinforced and non-reinforced alternatives are reversed (GREEN = S+, RED 

= S-; Phase 2). During Phase 2, the animal initially shows low correct responses, but gradually learns 

that S-  from phase 1 is now S+, and reaches criterion on Phase 2. In Phase 3, the colors are switched 

to a new pair (intra-dimensional set shift; e.g., BLUE = S+, YELLOW = S-). In the final phase (Phase 

4), the two new colors are reversed. If the animal is showing cognitive flexibility, the hypothesis in a 

reversal learning experiment such as this is that the animal will reach criteria more quickly as the 

phases continue, on account of their switching the ‘rule’ by which they are performing responses on 

the task in an adaptive manner. Zebrafish require progressively fewer trials to reach learning criterion 

as a function of phase, confirming that this species can be cognitively flexible [172]. Thus, zebrafish 

performance on tasks of cognitive flexibility renders them ideal for the study of ARB, as cognitive 

inflexibility is a hallmark of ARBs. Together with the ease of genetic and pharmacological 

manipulations, zebrafish may further our knowledge on the cognitive-psychobiological aspects of 

cognitive flexibility in ARB-related disorders.  

 Another area of executive function that can be measured is working (e.g., spatial) memory 

[173]. The Y-maze (Fig. 4), a three-armed maze to record spontaneous alternation [174], has been 

adapted for zebrafish [175] as a useful tool for testing fish. Mazes can be set up in the presence or 

absence of any motivational or emotional factors, therefore permitting measures of motivation and 

learning or pure novelty seeking with minimal confound [175]. Automation of this task has enabled 

minimum user interaction and ease of recording several different variables from a single trial. A recent 

study employing the Y-maze used an analysis of overlapping tetragrams (i.e., in 100 trials, 16 

overlapping tetragrams ranging from RRRR to LLLL [176]) to determine how zebrafish explore the 

maze in a 1-h trial, revealing aberrant alternations in fish developmentally exposed to ethanol. Thus, 

the Y-maze has the potential of a flexible and relatively high-throughput method for assessing 

executive functions associated with learning and working memory. With some further investigation, 

the Y-maze can be an excellent tool for evaluating neuropsychiatric disorders with both extreme and 
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more subtle ARBs, thus broadening our ability to model cognitive dysfunction in zebrafish. Indeed, 

age-related changes in patterns of alternation and repetition have been found in zebrafish (Fig. 4). 

Given overt stereotypies as part of the typical behavioral repertoire of infant humans (reducing with 

age in normative development) [177, 178], repetitive movements in the aquatic Y-maze may mimic 

ARBs observed in human development.  

3. Existing challenges, model limitations, and future directions 

Clearly, numerous challenges exist in the development of zebrafish models of ARBs. For 

example, how to properly translate animal repetitive behavors into human ARBs? Indeed, several of 

clinical ARB symptoms are difficult, if not impossible, to observe in zebrafish. Therefore, the question 

is whether the behaviors selected in order to determine ARB are sufficient to call these animal 

behaviors ARBs. Another problem concerns the overall reliability of behavioral tests recognized 

recently and requiring an urgent sonution [179, 180]. One way to solve it is to ensure that standard 

protocols are published and utilised by groups using the same behavioral endpoints. Another strategy 

is to ensure automation is used as widely as possible. As stated earlier, this will be expedited by the 

recent advent and availability of commercially available automated testing hardware. Third, 

laboratories should adhere to standardized reporting protocols, such as the ARRIVE guidelines [181], 

to ensure that intra-laboratory procedures are transparent and fully repeatable, aiming to maximize 

interlaboratory reliability. Fourth, laboratories should be encouraged to share data and protocols in a 

timely manner, even from negative experiments, via preprint online servers, to enable fast and accurate 

reproduction of protocols across the community, and facilitate interlaboratory collaboration, if 

necessary. 

In addition to challenges mentioned above, one of the most useful aspects of the zebrafish 

model is the ability to carry out high-throughput testing in a vertebrate system. To a certain extent, this 

is possible in adult fish using protocols outlined above. However, there are some drawbacks to using 

adult zebrafish which are similar to those associated with mammalian model systems, includung 

practical problems with cost of housing, space constraints, long-term isolation of a sentient social 

species, and individual behavioral variance. Therefore, the more active use of larvae should be 
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considered, especially given the development of larval assays of complex behaviors (e.g., impulsivity) 

[182] which may be usful in the early characterization of ARBs, with strong links between behavioral 

compulsions and impulse control [183, 184]. Finally, in order for zebrafish to prove useful to study 

mechanisms of ARBs, several fundamental questions need to be addressed. Indeed, the underlying 

mechanics of normal action selection in zebrafish remain unclear. For example, what neural circuits 

underlie choice behavior, behavioral flexibility, and balance between various basal ganglia pathways? 

Once we have the answers to this question, zebrafish will be extremely useful in understanding the 

neural circuits underlying ARB (also see Table 2 for strategic directions in the study of ARBs using 

this organism).  
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Figure 1. Selected repetitive behavior in zebrafish. Panel A shows how drugs can affect zebrafish 

behavior in novel tank test. For example, acute ketamine exposure may induce characteristic repetitive 

behavioral patterns in zebrafish swimming, paralleling ketamine-evoked circling in rodents and clini-

cal stereotypies (see [147] for details). Panel B illustrates thigmotaxis in adult zebrafish, as they typi-

cally prefer to swim close to the walls of the tank [185]. Albeit potentially reflecting increased anxiety-

like behavior in some contexts (e.g., anxiogenic center avoidance), this response may also represent a 

pathological repetitive behavior (e.g., evoked by psychostimulants, such as nicotine) relevant to stere-

otypic peripheral hyperlocomotion, commonly seen in rodents (e.g., following psychostimulant drugs) 

(adapted from [186]).  
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Figure 2. Selected examples of genetic models of aberrant repetitive behaviors in zebrafish. 

SHANK3 (left panel) is an autism-related gene that encodes postsynaptic density protein (PSD, bind-

ing to glutamatergic NMDA receptors) whose ablation in mice impairs synaptic transmission. Knock-

down of SHANK in zebrafish up-regulates NMDA receptor and evokes ARB-like repetitive circling, 

corner-to-corner and figure-8 swimming (top view), according to [105]. A synaptic ras GTPase-acti-

vating protein SYNGAP1 (right panel) is another key protein involved in synaptic transmission, whose 

hypofunction in mice induces precocious maturation of synapses and increases synaptic transmission. 

NMDA receptor interact with postsynaptic density-95 (PSD-95) protein, which binds to SYNGAP. 

SYNGAP1 knockdown zebrafish demonstrate overt stereotypic movements, including prolonged un-

dulating swimming with frequent C-turns (top view), according to [187] 
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Figure 3. A brief summary of ARB-like behavioral phenotype of the dopamine transporter (DAT) 

knockout zebrafish, including swimming predominantly at the bottom of the tank with characteristic 

thigmotaxis (moving along the walls of the tank), according to [73]   
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Figure 4. The use of Y-maze to assess behaviorally flexible patterns of swimming (alternation 

and repetition) in zebrafish. This test also reveals certain developmental changes in zebrafish 

swimming, ranging from pure alternation (LRLR, RLRL) to pure repetition of previous response 

(RRRR, LLLL, Parker laboratory, unpublished data). Overall, young fish show high levels of pure 

repetition and pure alternation, whereas older zebrafish show lower levels of repetition relative to 

alternation. 
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Table 1. Selected animal models that parallel clinical symptoms of ARBs 
 

Rodents Zebrafish 
ARB Ref-

er-
ences  

ARB Refer-
ences 

Pharmacological    
Rat ASD model (prenatal valproate) evokes re-
petitive locomotion (back-and-forth moving) 

[188] Acute ketamine* induces increased circling be-
havior, Fig. 1 

[147] 

Amphetamine exposure in C58/J mice evokes 
repeated cage-lid back-flipping 

[65] Acute dizocilpine (MK-801)* increased cir-
cling behavior 

[98] 

Rat 6-OHDA** brain lesions (a Parkinson’s 
model) evoke compulsive lever-pressing under 
chronic pramipexole*** 

[189] Phencyclidine (PCP)* increased circling be-
havior 

[190] 

Rat prenatal exposure to lipopolysaccharide 
(LPS) increases repetitive self-grooming 

[191] The mixture of crude oil with lead increases 
cycle swimming in 15 larvae    

[192] 

Deer mice exhibit increased repetitive jumping 
following apomorphine***  

[193] Stereotypic corner-to-corner swimming at the 
bottom of the tank under ibogaine 

[151] 

Genetic    
Shank1 knockout mice display increased self-
grooming 

[194] Adult mecp2 mutants exhibit overt thigmotaxis [135] 

Histidine decarboxylase knockout mice display 
increased self-grooming  

[195] Shank3b knockouts display figure “8” swim-
ming, circling, cornering and walling (Fig. 2) 

[105] 

Mice with deleted Netrin-G ligand 2 (NGL-2) 
gene display increased self-grooming 

[196] Syngap1a knockdowns escape responses with 
prolonged repetitive C-bends    

[111] 

Hoxb8 KO mice (an OCD model) display patho-
logical self-grooming 

[139] CNTNAP2 mutant larvae display burst-like and 
circling movements  

[118] 

MeCP2 deficient mice display stereotyped fore-
paw movements and compulsive self-grooming 

[62] Adult DAT knockouts exhibit increased thig-
motaxis  

[73] 

 
*An antagonist of glutamate NMDA receptors 
**6-hydroxydopamine, a neurotoxic antidopaminergic agent 
***An agonist of several dopamine receptors 
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Table 2. Comparative genetic homology between human, rodent and zebrafish ARB-related 
genes, based on the Basic Local Alignment Search Tool (BLAST, www.blast.ncbi.nlm.nih.gov) 
database  
 

Gene Comparison: query coverage/homology  
Human vs 

Mouse 
Human vs 
Zebrafish 

Mouse vs 
Zebrafish 

SLC6A3   48%/87% 42%/79% 48%/78% 
FMR1  96%/89% 30%/75% 30%/75% 
MeCP2   82%/82%  5%/70%  5%/68%  
CNTNAP2   64%/81%  38%/68%  54%/68% 
SHANK1  73%/85%  28%/70%  35%/72% 
SHANK2 (zebrafish – shank2b gene)  48%/86%  35%/70%  27%/76% 
SHANK3 *  99%/85%  34-41%/71%   35-41%/73% 
TSC1 (zebrafish – tsc1a, tsc1b)  64%/81%  7-17%/69-72%  8-23%/69-73% 
GABRB3**   97%/81%  20%/79%  21%/80% 
DRD3  86%/88%  44%/74%  51%/75% 
5-HT2C  96%/83% 15%/70% 16%/69% 
SYNGAP1***  67%/ 92%  43%/73%**** No similarity 
HOXb8 (zebrafish: hoxb8a, hoxb8b)  99%/90%  37%/71-75%  25%/70-75% 
SLC1A1  82%/81%  37%/70%  38%/72% 

 
* Zebrafish shank3a – PREDICTED transcript variant X18, shank3b – PREDICTED transcript variant X4 
** Human/mouse – transcript variant 1, zebrafish – PREDICTED transcript variant X1 
*** Human – transcript variant 1, zebrafish: syngap1a – PREDICTED transcript variant X2, syngap1b 
**** No similarity with syngap1b 
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Table 3. Selected open questions in the field of zebrafish modeling of ARBs 
 

Questions 
Conceptual 

• What is entire spectrum of neurobehavioral ARB-like phenotypes in zebrafish? 
• Which brain structures are implicated in zebrafish ARBs? 
• Are there links between zebrafish ARB and social behavioral deficit? 
• How is normal motor sequence selection modified (varied) based on prior motor sequence performance in zebrafish? 
• How do alterations in mechanisms of motor sequence selection lead to repeated invariant behavioral sequences (ARBs)? 
• Are ARBs a neurological phenomenon, or the result of alterations in interaction with the environment? 
• Can ARBs spontaneously emerge in zebrafish (i.e., as a result of chronic isolation/under-stimulation)? 
• Can a zebrafish be ‘bored’? 
• Can ARBs in zebrafish be qualitatively differentiated from ‘normal’ behavior, and modeled, mathematically? 
• Do larval zebrafish display overt ARBs? Are they similar to those seen in adult fish? 
• Is there a pathological link between ARBs, self-aggression, and aggression? Can this be modeled in zebrafish? 
• Do ARBs display aging-related trajectories in zebrafish? 
• How does stress affect zebrafish ARBs? 
• Do zebrafish use ARBs in social or sexual contexts? 
• Do zebrafish ARBs display circadian rhythms? 

Translational 
•  What are the mechanisms of normal motor sequence selection and invigoration in zebrafish? 
• What is the homology in mechanics and/or circuitry of motor sequence selection between zebrafish and mammals? 
• If zebrafish ARB can be quantified into subunits or predictable patterns? Can they help test drugs or mimic human ARB? 
• Is there a substantial homology between human and zebrafish ARB-related neurocircuitry? 
• Do stress-evoked alterations in zebrafish ARBs resemble those evoked in human ARBs? 
• Do zebrafish ARBs respond to various drugs similarly to human ARBs?  
• How does impulsivity contribute to zebrafish ARB expression? 
• How does zebrafish individuality (‘personality’) affect ARB-like phenotypic variance in zebrafish populations? 
• Are there robust sex differences in some zebrafish ARBs similar to those in humans with certain CNS disorders? 
• Are there common/shared epigenetic mechanisms of ARB regulation in mammals and zebrafish? 
• Do aging-related ARBs in zebrafish resemble those observed in aging humans?   

Methodological 
• Can zebrafish ARBs be fractionated into quantifiable sub-units, in terms of predictable patterns of expression? 
• What is the potential for the development of a zebrafish ARB ethogram? 
• Can a zebrafish be trained to produce ARB? 
• Can a zebrafish that shows ARB be trained to stop producing these patterns? 
• What are neuroendocrine biomarkers of zebrafish ARBs? 
• Are there well-established strain differences in zebrafish ARBs? 
• Do zebrafish ARBs differ between the laboratories and/or between different vendors? 
• Do wild-caught zebrafish display ARBs? Do ARBs increase during domestication? 
• To what extent ARBs may concomitantly affect other neurobehavioral responses 
• Are there reliable tools for automated quantification of ARBs in zebrafish? 
• Are tools available for high-throughput multi-animal detection of ARBs in zebrafish groups? 

Others 
• Do zebrafish ARBs represent an animal welfare problem? 
• Can improved welfare (e.g., by using environmental enrichment) reduce zebrafish ARBs? 
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