
Time Triggered Handoff Schemes in Cognitive Radio Networks: A 

Survey  

1Usama Mir, 2Zeeshan Ahmed Bhatti 
1Saudi Electronic University (SEU), Saudi Arabia, u.mir@seu.edu.sa 

2King AbdulAziz University, Saudi Arabia, zbhatti@kau.edu.sa  

 

Abstract- Rapid development in wireless networks has largely raised the demand for spectrum bandwidth. However, current static 

spectrum allocation policy is unable to meet this ever-growing requirement which causes the spectrum scarcity problem. Cognitive 

radio network (CRN) has emerged as a grasping solution to scarcity problem where the secondary or unlicensed users are allowed 

to access the temporary free channels owned by the licensed or primary users. Among other important steps involved in a spectrum 

management process, handoff plays an essential role since it requires shifting the on-going transmission of a secondary user (SU) 

to a free channel without degrading the quality of service. An extensive work has been done in the field of spectrum handoff for 

CRNs. This work is mostly classified in timing, probability, and operating mode based handoff schemes. In this paper, we present 

a detailed classification and a compressive survey for time triggered handoff schemes. This topic is chosen because in time triggered 

handoff process, the handoff decision needs to be performed based on continuously sensing the arrival and departure patterns of 

licensed users, thus making it an important area of research. Therefore, we discuss the pros and cons for time triggered handoff 

schemes in detail. 

 

1. INTRODUCTION  

With rapid development of wireless networks, the demand for spectrum bandwidth has raised largely [49]. 

Number of devices utilizing the spectrum (licensed or unlicensed) is growing very fast in contrast to the availability 

of bandwidth. This spectrum scarcity problem occurred because the current spectrum allocation policy is static which 

is unable to accommodate the increasing bandwidth demands. In fact, the static allocation policy causes the licensed 

spectrum bands to be underutilized [36][47]. 

Cognitive radio network (CRN) comes as an efficient solution to spectrum underutilization [18]. A CRN enables 

a secondary, an unlicensed or a cognitive radio (CR) user, to utilize the temporarily unoccupied licensed bandwidth 

of a primary or licensed user in order to enhance the utilization of limited spectrum resources. CR maximizes channel 

utilization without effecting the well-established spectrum allocation regulation [46]. 

The main goal of cognitive radio (CR) technology is to allow unlicensed users to opportunistically utilize the 

spectrum holes (or white spaces) without disrupting communication of primary users (PUs). This opportunistic 

spectrum usage requires us to develop protocols and algorithms which can adapt to this highly changing environment. 

Moreover, due to the randomness in PU’s behavior with unpredicted arrival and departure timings, it is very difficult 

to achieve smooth spectrum usage to secondary users (SUs) and limited interference to PUs [110]. 

Spectrum management process in CRNs usually consists of three different steps: firstly, since CR gets temporary 

access to available spectrum; therefore, it monitors the available channel and detects the spectrum holes by 

continuously examining the PU activities known as spectrum sensing [43][48][83]. Next up, there can be multiple 

SUs accessing specific channels; this access should be coordinated to avoid collisions among users known as 

spectrum sharing [4][49][95]. The third step is spectrum mobility/handoff [28][46] where an SU should continue 

its access on a vacant channel in case of arrival of the corresponding PU. Spectrum handoff is an important step in 

spectrum management process as it requires shifting the on-going transmission of an SU to another free channel 

without degrading the QoS (quality of service) of licensed users [7]. 

As defined in [53], the triggering event is considered to be the main cause of handoff initiation. This triggering 

can be timing, CR user’s mobility, probability, or operating mode based. In CR user’s mobility based strategy, 

spectrum handoff can occur due to SUs mobility. This CR movement can be within the same cellular region without 

changing the current BS (base station) or to another cell, connecting to a new BS [102]. In probability based handoff, 

the channel prediction probability is chosen to be the main factor for handoff decision [35][120][6] . Thus, algorithms 

in these types of schemes are designed to predict the probability of future channel being idle or busy. With probabilistic 



estimates, sensing results are also used to make handoff decisions [46][120]. Next is the operating mode based handoff 

process [61][97]. As mentioned in [53], this handoff is divided in non-hopping and hopping categories. In the former, 

an SU does not perform a handoff in case of PU arrival and quietly stays on the current channel. In latter, the arrival 

of a PU may result in triggering of a handoff process and the affected SU may move to another channel. However, an 

SU may also decide not to perform handoff and stay idle on current channel. In timing based handoff schemes, both 

the effects of sensing decision and PU arrival rate are considered to trigger a handoff process. This type of handoff 

requires the movement patterns of PUs to be sensed and monitored carefully since the channel selection and handoff 

processes are to be performed based on the timing events triggered by a PU entering or leaving a channel. As per our 

knowledge and highlighted in [53], time triggered handoff is very important in CR networks because it is based on 

the timing of spectrum sensing [121] and actual handoff process. Time triggered handoff can further be divided in 

four types (depending on sensing and handoff triggering time) such as non-handoff, proactive handoff, reactive 

handoff and hybrid handoff/adaptive handoff, respectively [53]. An extensive work has been done in recent literature 

in field of spectrum handoff in CRNs. To the best of our knowledge, at present, there is no detailed classification and 

comprehensive survey dealing with time triggered handoff schemes. 

 

Table 1. List of Acronyms used throughout the paper 

Acronym/Abbreviation Full form 

AHP Analytical Hierarchy Process 

BS Base Station 

CCC Common Control Channel 

CDMA Code Division Multiple Access 

CRN Cognitive Radio Network 

CTMC Continuous Time Markov Chain 

CUWBIN Cognitive Ultra-Wide Band Industrial Network 

DFHC Dynamic Frequency Hopping Communities 

DSA Dynamic Spectrum Access 

FAHP Fuzzy Analytical Hierarchy Process 

FCC Federal Communications Commission  

FLB Fuzzy Logic Based 

FLC Fuzzy Logic Controller 

HMM Hidden Markov Model 

ISM Industrial Scientific Medical 

LTE Long Term Evolution  

MAC Medium Access Control 

MOTCSD Modified Optimal Target Channel Sequence Design 

NPRP Non-Preemptive Resume Priority  

PRP Preemptive Resume Priority 

PU Primary User 

QoS Quality of Service 

RF Radio Frequency 

SA Spectrum Aggregation  

SHCP Spectrum Handoff based on Commutative Probability 

SNR Signal Noise Ratio 

STBC Short Time Backup Channel 

SU Secondary User 

UWB Ultra Wide Band 

VoD Video on Demand 

WLAN Wireless Local Area Network 

WRAN Wireless Regional Area Network 

 



Moreover, we strongly believe that a handoff strategy should be developed by keeping in view the movements of PUs 

as an important design factor [66][103]. Therefore, in this paper, we address the aforementioned in detail. 

The main contributions of our paper are as follows: 

 Spectrum handoff strategies based on time triggering are discussed individually in terms of features and 

limitations.  

 Various figures and tables are drawn to present a comparative analysis.   

 We present different performance criteria which are important in designing an efficient handoff strategy. We 

also highlight important papers addressing each of the mentioned criteria.  

         A list of all acronyms/abbreviations with their full form is provided in Table 1.  

      The rest of the paper is organized as follows. In the following section, we give a general overview of cognitive 

radio technology and the handoff process. Existing surveys addressing spectrum handoff process are summarized in 

Section 3. Time triggered handoff schemes are discussed in section 4. In section 5, important criteria for handoff 

strategies are detailed. Section 6 highlights the current and future research issues and challenges for time triggered 

and other handoff schemes in general. Our work is concluded in section 7.  

2. OVERVIEW OF COGNITIVE RADIO AND HANDOFF PROCESS  

A. Cognitive Radio: Basic Concept and Importance  

Currently, spectrum in wireless networks is governed by government agencies through a static assignment policy. 

Spectrum is assigned to licensed users usually for a longer period of time in large geographical areas. Spectrum is 

fully utilized in certain portions while a sufficient amount of licensed spectrum remains underutilized due to recently 

deployed static spectrum access policies [36][47][50] . According to FCC (Federal Communication Commission) 

[36], at some point of a day, up to 85% of spectrum assigned to a licensed user may remain idle, showing a huge 

wastage.  

As a result of above, modern-day wireless networks are moving from static and centralized control to distributed 

and autonomous networks [38][3], where the devices may work more dynamically and can opportunistically select 

the available spectrum by having frequent interactions and information exchanges with their neighboring devices. By 

autonomous networks, we mean that the control and information are fully distributed and wireless devices have the 

capabilities of self-organization and adaptability to cope with frequent network changes. Most commonly, the devices 

are meant to be infrastructure independent and are designed to enable inter-device interactions over single and multi-

hop networks. 

These autonomous as well as opportunistic behaviors are now becoming both possible and necessary by the 

introduction of cognitive radio technology in wireless networks. A cognitive radio (designed to follow a dynamic 

access policy) comes as an efficient solution to spectrum underutilization issue. Joseph Mitola defined cognitive radio 

in [50] as “a radio that employs model based reasoning to achieve a specified level of competence in radio-related 

domains.” Generally, a CR (or a secondary user), considered to be an intelligent wireless network component that is 

aware of its surroundings through its sensing part, may adapt to the present environment by examining the radio 

frequency (RF) signals and can learn by interacting with its neighbors. Figure 1 shows that a CR is basically aware of 

its radio environment, having the capabilities of adapting to these surroundings according to the changes it perceives. 

To adapt, a CR continuously senses or monitors its environment. It contains the knowledge of the priorities, procedures 

and needs of its users by learning over time and finally can generate the possible solutions in order to facilitate the 

necessary communications with its neighbors. 

As detailed in [51], CR offers a novel way to solve static spectrum utilization problems. A CR senses the radio 

environment in order to identify those radio spectrum portions that are not in use by the legacy primary (or licensed) 

users and provides the incentives for making these unused bands available to perform the services required by the 

user. The unutilized spectrum portions are known as the spectrum holes or white spaces. In [86], Haykin gave his 

assessment about a spectrum hole as “a band of frequencies assigned to a primary user, but at a particular time and 



specific geographic location, the band is not being utilized by that user.” It is obvious that the first priority to using 

these holes must always stay with the PUs and the CR user can only utilize it in an opportunistic and/or a negotiated 

manner without causing any interference to the relative PUs. Apart from licensed access, efficient spectrum sharing 

in unlicensed bands is also an important concern, which can be addressed via CR technology. The key attribute of 

unlicensed bands is their “openness” where the users can access the spectrum without license/right at any time. 

Moreover, due to a large amount of traffic in unlicensed bands, users have less incentives to access the free-to-use 

spectrum [14]. Therefore, various collisions and conflicts can occur between the users, if unlicensed spectrum access 

is performed without coordination.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  

Normally, in CRNs channel utilization is maximized without affecting the well-established spectrum allocation 

regulations [46]. The CR technology enables an SU to determine white spaces opportunistically through spectrum 

sensing feature. It also helps in detecting the arrival of PU in an SU’s operating channel. The best channel is then 

selected through the spectrum access (sharing) feature and finally, spectrum handoff decision enables an SU to shift 

its ongoing transmission to another vacant channel on the arrival of a PU. These CR functions are summarized in 

Table 2.  

Table 2. Brief description of each CR function 

CR FUNCTIONS  DESCRIPTION 

Sensing Detection of unused bands or “spectrum holes” by sensing primary users signals 

Access/Sharing Accessing and sharing the available licensed (or unlicensed) spectrum between secondary 

users with or without coordination  

Handoff Leaving or vacating the licensed spectrum due to the arrival of corresponding licensed 

users 

 

Sensing internal 

states, spectrum 

holes, licensed 

user signals  

Adapting within 

the environment   

User needs such 

as spectrum, 

channel shifting 

Learning via 

neighbors and 

environment  

Figure 1. Elementary functions of cognitive radio 



B. Handoff Process in Cognitive Radio Networks 

Unlike traditional wireless networks, in CRNs a handoff should be performed before the arrival and without 

interrupting the performance of PUs, thus requiring accurate sensing capabilities [93]. Inspired by our previously 

proposed work in [95], we draw Figure 2 to depict the handoff process in CRNs. Two primary I and J and two 

secondary k1 and k2 users are taken for simplicity. In step 1 (as shown by double arrowed line), k1 and k2 are accessing 

the available band of J. In another instant of time, users k1 and k2 sense the arrival of primary user J (step 2). The two 

lines with circle heads depict the arrival of J. We assume, in this example, that users k1 and k2 have sensed another 

vacant band of primary user I (step 3), both the users now have to move to spectrum band 2 (step 4) to continue their 

transmission, thus the spectrum handoff process. This handoff process becomes more complicated with large number 

of users, thus requiring the development of sophisticated handoff management algorithms.  

 

Figure 2. Handoff process in cognitive radio networks [95] 

Spectrum handoff in CRNs is generally categorized in two major types as proactive and reactive. In the former, 

the channel selection is done based on detected traffic patterns of a PU, before the triggering event. In latter, the 

channel is selected by instant sensing after the occurrence of handoff triggering event. The secondary users affected 

by the handoff event can resume their transmission on a newly searched channel [30]. Thus, in both types of handoffs, 

the channel selection is done by continuously monitoring the signals of neighboring PUs. Some authors argue that it 

is sometimes desirable to have a combination of proactive and reactive handoff strategies to make one hybrid or 

adaptive solution [20][101][112]. However, in most hybrid solutions, an SU always shifts the channel when a PU 

arrives. We believe that an SU may have the option of staying silently on a channel while PU is accessing it, this 

would reduce the number of unwanted handoffs. All these proactive, reactive, and hybrid strategies use time triggering 

as their essential feature, thus we detail the above mentioned and several other approaches in our forthcoming sections.  

3. RELATED SURVEYS 

Recently, several surveys have been presented addressing the sensing and handoff related issues in CRNs. Table 

3 presents a comparative summary of the existing surveys. The works presented in [47][90][52] provide generalized 

surveys on spectrum mobility in CRNs. The purpose of these surveys is not specifically on time triggered handoff. 

The authors of [16][34] presented several dynamic spectrum access strategies in CRNs. These strategies are based on 

auction, game theory, multi agent systems, measurement models, network coded cognitive control channel, fuzzy 

logic, and Markov chains. Spectrum handoff is also discussed; however the focus remains entirely on spectrum 

sharing. A few interesting proactive and reactive handoff solutions are also discussed in [65][55], however, the 

aforementioned do not detail time triggered handoff strategies as discussed in our work. A lot of interesting approaches 

are missing in [65][42] and the aspect of hybrid solutions is almost ignored. Another short survey is presented in [9] 



which classifies the spectrum handoff strategies for multiple channel CRNs. A classification of spectrum handoff in 

CRNs is presented in [53], where triggering is discussed briefly however, details are not comprehensive like our work. 

The authors divided the existing handoff strategies into different classes such as handoff triggered by timing, mobility, 

probability, and operating mode. They also identified some open research areas for each class including intelligent 

spectrum handoff, priority based spectrum handoff, spectrum handoff schemes based on green CRNs [25], interference 

avoidance, spectrum handoff reduction, and optimization of handoff information collection parameters. Several 

important proactive and reactive schemes were discussed in [53], however, a large amount of recent work remained 

untouched which we discuss throughout our next sections in detail.   

 

Table 3. Summary of various surveys addressing spectrum handoff/mobility 

Reference 

# 

Topic Handoff 

discussion 

Classification Handoff 

strategies 

Timing based 

handoff strategies 

Publication 

Year 

[47] Spectrum Management Yes No No No 2008 

[52] Mobility Management Yes No No No 2010 

[9] Handoff Strategies Yes Yes Yes No 2010 

[16] Dynamic Spectrum 

Access 

Yes Yes No No 2013 

[34] Spectrum Assignment Yes Yes No No 2013 

[42] Handoff Strategies Yes Yes Yes No (categorization 

based on energy 

efficiency) 

2013 

[37] Dynamic Spectrum 

Access 

Yes Yes No No 2014 

[90] Spectrum Mobility Yes No No No 2015 

[65] Mobility Management Yes No Yes No 2015 

[55] Proactive and Reactive 

Handoff 

Yes No Yes Only two 2016 

[53] Handoff Strategies Yes Yes Yes Introduction (Only a 

few references related to 

time triggering) 

2016 

 

4. TIME TRIGGERED HANDOFF SCHEMES 

Time triggered handoffs are quite relevant to CRNs since the handoff decision totally relates to primary users 

activities. This requires handoff to be performed by continuously sensing the arrival and departure patterns of PUs 

thus, making the whole handoff process “time critical”. Other handoff schemes consider different factors to perform 

handoff decision such as CR user mobility, channel probability and operating frequency, however, in time triggered 

handoff, the actual timing of PU arrival should be considered to trigger a handoff event [53]. Therefore, the future of 

a CR user’s spectrum usage totally depends on how well it senses and monitors the activity of a neighboring PU [118].  

According to [53] and as shown in Figure 3, time triggered handoff schemes can be classified in four types such 

as non-handoff, proactive handoff, reactive handoff, and hybrid handoff strategies, respectively. Recently, a lot of 

work has been done in the literature to address the time triggered handoff process which is detailed in our forthcoming 

subsections. However, before going into further discussion about existing time triggered handoff strategies, we depict 

the behavior of a CR user under time triggered handoff scenario in Figure 4. The process starts with the detection of 

PU arrival and predicting PU stayed duration on its licensed channel via continuous sensing [45][5]. One possibility 

for an SU is to predetermine target channels for spectrum handoff, thus keeping a list of channels before transmission. 

This process is known as Proactive Handoff. A CR user can also decide to wait silently on current channel and allow 

the PU to finish its transmission and leave the channel. This type of time triggered handoff is called as Non-Handoff. 

A non-handoff strategy should be designed in a way that a CR user’s signal should not affect the transmission of the 



PU since both types of users co-exist on the same channel simultaneously. In another form of time triggered handoff, 

an SU can leave the channel at the time when the PU arrives. This type of handoff is known as Reactive Handoff. 

Sometimes it is better to use the combination of both proactive and reactive handoff strategies, thus making a(n) 

Adaptive/Hybrid strategy. We discuss all important algorithms/strategies related to non-handoff, proactive, reactive 

and hybrid/adaptive handoff types in the subsequent sections. 

 

Figure 3. A classification of time triggered handoff strategies  

Start 
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Figure 4. Adaptation of a CR user to different time triggered handoff types based on PU activity 

A. Non-handoff Schemes  

In a non-handoff technique shown in Figure 5, on the arrival of a PU, an SU stops its transmission and waits on 

the current channel “i” for PU to complete its transmission. When PU leaves, the corresponding SU can resume its 

transmission on channel i. The process continues until SU completes transmitting on channel i. This handoff technique 

is similar to the non-hopping approach of IEEE 802.22 [99]. The main feature for a non-handoff algorithm is to have 

a very low interference with a PU because the data transmission of an SU is fully dependent on PU’s activity. 

Moreover, the cost for searching another vacant channel and performing handoff is eliminated because an SU does 



not shift the channel, however, a non-handoff strategy may suffer from unpredictable waiting latency since a PU can 

stay on a channel for a pretty long duration. 

 

 
Figure 5. Non-handoff process considering one SU and one PU 

 

The authors of [91][30][63] adapted a non-handoff behavior in their proposed models. Normally, in a non-

handoff process, the average handoff delay for an SU’s transmission is the average period a PU occupies a channel. 

In [91], it is argued that performing handoff is a time consuming process since SUs have to search for other channels 

and reconfigure their operating parameters accordingly. Thus, authors believe on the idea of avoiding handoffs at PU 

arrival and staying and waiting silently on a channel unless the corresponding PU finishes its transmission. In the 

proposed model of [91], SUs having interruption in their transmissions (due to PU arrival) should maintain priority 

queues where they have to wait unless PU leaves the channel and other uninterrupted SUs finish their transmissions. 

This waiting time adds an extra delay, however, it reduces users collisions in accessing a channel.  

In [30], the authors compared cumulative handoff delay for non-handoff and random selection handoff strategies. 

These two approaches are renamed as “always staying” and “always changing” strategies, respectively. In an always 

staying approach, the target channels are predetermined since an SU does not perform a handoff. For an always 

changing scheme on the other hand, future channel has to be determined randomly on PU arrival (thus, this approach 

can also be classified under proactive handoff category). Through experiments, it is shown that with higher value of 

PU arrival, the random selection has more cumulative handoff delay compared to the non-handoff scheme. This delay 

is usually because the interrupted SUs with random selection method must wait for longer periods when changing 

their operating channels since the “selected target channels” are likely to be busy. Another important non-handoff 

strategy is given in [46] which is detailed in the survey presented in [53].  

Like above, in [63] load balancing is considered to be the primary goal for channel selection. At first, the optimal 

number of channels is sensed using CR sensing capability. Later, the best/optimal channel selection is done using 

probability based analysis. The prime objective of authors is to minimize the overall system time which remains at 

lower side due to the non-handoff policy adapted in [63].  

B. Proactive Handoff Schemes 

In proactive handoff strategies (Figure 6), the future channel for data communication is determined according to 

the detected traffic patterns of a PU, before the handoff triggering event. Prior to the arrival of a PU, an SU can shift 

its on-going transmission to another backup channel reducing the transmission delay. There is a lot of work done for 

proactive handoff in the current literature. For the sake of simplicity and explanation, below we divide the existing 

literature on proactive handoff in several subsections. In addition, the pros and cons of the proactive approaches are 

summarized in Table 4.  



 

Figure 6. Proactive handoff process at channel ‘i’ inspired by [46] 

Table 4. Summarized list of pros and cons of several proactive handoff schemes 

Pros and Cons of Proactive Handoff Schemes 

Approach/ 

(acronym) 

Advantage Limitation 

STBC Minimization in handoff delay compared to 

approaches with no backup channel 

Design and algorithmic complexity 

Fuzzy logic 

based 

schemes 

 Maximum channel utilization 

 Thorough comparison with existing 

random handoff schemes proves that SUs 

get their maximum throughput 

 No learning via environment 

 Wastage of backup channels 

 No robustness  

 Design and architectural complexity 

 Hardware overhead 

CPSH QoS is high Wastage of backup channels 

Markov 

based 

approaches 

 Accurate sensing using Markov models 

 Well defined states of channel usage, idle 

transmission and handoff for a user 

 SUs can access a channel in the presence 

of PUs 

 Limited comparison with existing solutions 

 In some solutions, despite collision 

avoidance, SUs signal can still affect the 

transmission of PUs which is unacceptable 

 Only one or two authors model the handoff 

process in continuous time 

MOTCSD Overall processing (sensing and handoff) time is at 

minimal level 

Traditional limitation of SUs acting greedy at times 

 

I. Short Time Backup Channel (STBC) 

Short time backup channel (STBC) is a proactive handoff strategy proposed in [9] where the backup channel for 

SU transmission is selected before the PU arrival. The handoff decision in STBC is dependent on the QoS of current 

channel. If the current channel meets the transmission (or QoS) requirements of an SU, the backup channel is released. 

Otherwise, the SU has to shift its transmission to the backup channel. Proposed strategy keeps the backup channel for 

a short duration so it achieves better bandwidth utilization compared to schemes maintaining a permanent backup 

channel. A minimum level of handoff delay can be achieved by STBC as compared to approaches with no backup 

channel because the target channel is selected before the occurrence of handoff triggering event. However, 



maintenance of backup channels results in bandwidth underutilization as well as a high algorithmic complexity since 

users have to manage current and backup channels simultaneously. Some other proactive schemes based on the idea 

of “not-using” a common control channel (CCC) for SUs communications are proposed in [110][109], respectively. 

The information about these schemes are already given in [53] quite comprehensively, therefore we skip the details 

here. In addition, the authors of [12] analyze the performance of CR handoff management system with and without 

the inclusion of a common control channel. Through extensive analytical and experimental results, it is revealed that 

the addition of a CCC leads to an additional delay, however, under ad-hoc network conditions, adding CR nodes is 

more costly than incorporating a CCC.     

 

II. Fuzzy Logic Based (FLB) Proactive Handoff 

An interesting Fuzzy logic based proactive spectrum handoff scheme is presented in [58]. The main purpose of 

fuzzy logic is to handle problems more efficiently compared to mathematical models. The proposed algorithm is based 

on two Fuzzy logic controllers (FLCs). The first controller is there to measure the distance between PUs and SUs. It 

also estimates the transmission power for an SU so that it should not affect the transmission of neighboring PUs. The 

second controller is designed to check whether an SU should stay on the current channel or leave. A handoff is 

initiated, if the QoS for an SU is not up to the mark and thus, the SU is causing considerable amount of interference 

to the transmission of neighboring PUs. The main advantage of this strategy is the use of Fuzzy logic which provides 

an efficient estimation of handoff decision parameters such as QoS and transmission power of an SU and its interfering 

effects on a PU’s transmission. Moreover, since no backup channel is used in this approach, the channel utilization 

remains maximal, however, the use of FLCs makes this approach suffer traditional limitations of having no robustness 

and overall architectural and design complexities.  

A proactive handoff scheme is presented in [78] that applies Fuzzy analytic hierarchy process (FAHP) for the 

handoff decision. This strategy reserves a number of backup channels in advance with the current operating channel. 

The pre-determined channels are characterized on the basis of required QoS and continuing validity indicators. The 

authors present extensive simulations to analyze proposed FAHP on the basis of switching frequency, overall system 

throughput and system delay. Comparisons with traditional random handoff schemes reflect that FAHP effectively 

reduces the latency and number of handoffs while improving the overall system throughput, but no limitations are 

identified in the results. We believe that this approach also suffers with the same drawbacks mentioned above for FLC 

based proactive approach [58]. 

III. Commutative Probability based Spectrum Handoff (CPSH) 

The authors of [10] proposed a proactive handoff strategy that is based on cumulative probability (CPSH). In 

this technique, a PU decides on whether to stay on its current operating channel or perform handoff depending on the 

results of probability estimation algorithm. According to this algorithm, an SU performs a handoff when: 1) a PU 

comes back to its licensed channel currently occupied by an SU; 2) the current channel does not meet the bandwidth 

requirements for an SU to continue its transmission; and 3) the quality of new channel is better than the current one 

(in terms of throughput). Another improvement in the proposed model is the use of a backup channel for a short 

duration (very much similar to [9]). If the current channel meets the transmission requirements for an SU, the backup 

channel is released to maximize the channel utilization, thus, providing a better QoS and minimum handoff delay for 

SUs. Though, backup channel is used for short durations, it can still result in channel underutilization since it remains 

free unless and until an SU initiates transmission on it. 

IV. Markov Models for Proactive Spectrum Handoff 

Random appearance of a PU can sufficiently degrade the ongoing communication of an SU on a specific 

spectrum band. This disruption in transmission can lead to lower throughput in CRNs. To cope with this challenge, 

the authors of [24] propose a hidden Markov model (HMM) based scheme to optimize handoff decision in CRNs. 

HMM is used to correct the spectrum sensing sequence in order to enhance the spectrum opportunities for SUs and 



check the state of a channel. Experimental results show the performance gain achieved by SUs with less probabilities 

of misdetections and false alarm.  

UWB (ultra wide band) technology has gained attention recently due to its significance in short range 

communications. Keeping in view the pros of UWB technology, the authors of [72] present a handoff strategy for 

cognitive ultra-wide band industrial networks (CUWBINs), where an SU can coexist with a PU on a channel. The 

busy and idle periods of a channel are modeled by developing Markov chains. This strategy avoids the collisions 

between SUs and its dynamic and diverse nature provides seamless connectivity to users. Through simulations, it is 

shown that the proposed proactive handoff models achieve less handoff delay as well as increased handoff efficiency 

compared to existing schemes which do not utilize UWB in their design process. However, as stated in [92], the 

coexistence of SUs with PUs results in lower throughput for users.   

In [15], the authors propose a 2-state CTMC (continuous time Markov chain) to model the channel availability 

for SUs by taking in account the secondary user’s mobility. A concept known as ‘‘guard distance’’ is introduced which 

is basically an additional separation between primary and secondary users. The purpose of guard distance is to prevent 

interference on PU transmissions. This guard distance is then optimized with the ‘‘sensing time’’ to maximize the 

opportunities in spectrum reuse. Likewise in [107], Markov models are presented with focus on calculating the forced 

termination and blocking probabilities in scenarios when an SU may or may not perform a handoff. Another related 

survey having details of Markov and similar prediction schemes can be found in [105].  

An approach allowing SUs to opportunistically operate on various vacant PU channels is presented in [114]. The 

algorithm allows an SU to predict the channel status and decide to stay idle on the current channel or perform handoff, 

respectively. The whole channel access and handoff scenario is modeled using a discrete time Markov chain that 

minimizes the total cost of an SU for a specific transmission. Moreover, the proposed strategy achieves a better data 

transmission efficiency and energy consumption as compared to always staying and always changing handoff schemes 

[30]. 

 

V. Modified Optimal Target Channel Sequence Design (MOTCSD) 

Wang et al., presented an interesting greedy algorithm in [56] which is based on proactive selection of target 

channels. Based on network status, the algorithm allows SUs to select suboptimal channels by comparing six different 

mathematically generated sequences (for details please refer to Theorem 2 and Figure 5 of [56]). The authors of [108], 

on the other hand, believe that instead of six sequences discussed in [56], a set of five target channel sequences are 

enough for the production of suboptimal greedy behavior (one of the six sequences is “redundant”). This modification 

can minimize the processing time spent during optimal target channel selection especially where the candidate 

channels are huge in numbers as reflected in presented results. Moreover, the algorithm of [108] can sufficiently 

decrease the probability of selecting the worst channel which was not addressed in [56].  

 

VI. Other Proactive Approaches 

Beside above, there are some other important strategies which are based on proactively sensing the channels and 

taking handoff decisions. In [40], an efficient spectrum access policy is developed which allows SUs to create a 

random order for the available channels (before PUs arrival/return), and then find optimal transmission and handoff 

opportunities in a distributed manner. In [17][111], the authors model the spectrum handoff process as a continuous 

time Markov chain with a focus on achieving minimal handoff delay. In [70], SUs are allowed to cooperate at several 

rendezvous points to share the information about PUs activity. All this activity is done proactively before the arrival 

of PUs. Multiple rendezvous points allow flexibility in SUs cooperation and thus the proposed approach achieves 

higher throughput than single rendezvous schemes discussed in [70]. Another interesting proactive handoff scheme is 

proposed in [1]. The authors introduce a novel concept of a channel assigning agent (CAA) under LTE (long term 

evolution)/WLAN cognitive radio network. The CAA is responsible for allocating channels to CR users as well as 

handling their movements from one cell to another. Unlike other proactive approaches, the inclusion of CAA in [1] 

simplifies the handoff management process since the duties of user registration, channel information storage, and 



seamless handoff management are performed by CAA. This performance gain is shown through experimental results 

in the form of reduced number of handoffs.  

 

C. Reactive Handoff Schemes 

In reactive handoff strategies, the future channel is selected by instant sensing after the occurrence of handoff 

triggering event. An SU can continue its paused transmission on newly searched channel [85]. The whole reactive 

process can be seen in Figure 7 where an SU senses and then moves to channel 2 at PU arrival. The advantage of 

reactive handoff is the accuracy in selecting the target channel, but as the selection is made from the results of on-

demand wideband sensing therefore, reactive approaches mostly suffer with an additional cost of sensing time [64]. 

Moreover, the handoff delay also increases because the sensing is started after the handoff triggering event. We detail 

existing reactive solutions as follows.  

SU

Channel 1
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Delay

Searching of 
and handoff 
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SU accessing 
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Figure 7. Reactive handoff process from channel 1 to channel 2. Different type of devices are used to differentiate between an SU 

and a PU  

I. Coordination and M/G/1 Queuing Models for Reactive Handoff 

The authors of [98] proposed a reactive handoff scheme named as dynamic frequency hopping communities 

(DFHC). This strategy is supposed to increase IEEE-802.22 performance in terms of QoS requirements of SU while 

providing reliable and timely spectrum sensing for guaranteeing the PU protection. A WRAN (wireless regional area 

network) cell (or an SU) while communicating on current channel observes availability of the next target channel. A 

coordination mechanism is also proposed in this scheme to avoid interference among SUs during sensing phase. 

Generally, a community leader manages the set of n coordinated SUs in DFHC. The SUs interchange sensing 

information by the coexistence window which is available at the end of a MAC (medium access control) frame. 

Another coordination based scheme is presented in [77] for Zigbee CRNs in which an SU can access multiple channels 

via periodic sensing and spectrum handoff. The authors divide their work in two sections; the monitoring section to 

obtain the received signal strength and the controlling section to evaluate the obtained result to declare SU presence 

or absence. For sensing process, an energy detection algorithm [84] is used that compares the received signal’s energy 

with a properly set threshold. If energy is more than the threshold, then the arrival of PU is declared. The handoff is 

performed by comparing the energy level of a channel with defined threshold.  



Like coordination, developing queuing models is also considered to be an efficient way for handoff management. 

Thus, in [27][28]1[89] M/G/1 queuing models are proposed to improve the channel usage of SUs. Each SU can 

simultaneously use multiple available channels for its transmission. Since, the availability of channels directly depends 

on traffic patterns of a PU, therefore service time is distributed non-trivially. M/G/1 queues are used to model the 

aggregated arrivals of all SUs sharing the available channels. Further, the proposed model in [27] considers two 

situations; 1) when the number of SUs accessing the channels is greater than the available channels, then some users 

must wait for the channel to become free and 2) when the number of SUs is less than the available channels, the 

packets waiting time remains minimal. The authors of [89], on the other hand, focus on minimizing the overall system 

time for SUs. This time is defined as a sum of transmission time and waiting time. Through simulations, the authors 

prove the reduction in overall system time as well as consistency between the results obtained via probabilistic M/G/1 

model and experiments. Another priority M/G/1 queuing based reactive handoff scheme is proposed in [26]. In the 

considered scenario, the PUs and SUs transmit on the same channel simultaneously until and unless an SU causes 

interference to a PU, resulting in handoff for the corresponding SU. The channel usage patterns and behaviors of 

primary and secondary users with multiple spectrum handoffs are categorized using M/G/1 queuing. The authors of 

[76] focus on the aspect of cross layer optimization in order to search for an alternate channel at PU arrival. M/G/1 

modeling is used to analyze the transmission performance of SUs for Physical and MAC layers on an aggregate basis.  

Both coordination and M/G/1 strategies maximize channel usage and user throughput by deploying efficient 

coordination and queuing mechanisms, however, handoff delay and waiting time for SUs are increased as the handoff 

decision is taken after the PU arrival. Moreover, the solution of [77] provides better results when the noise is at 

minimal level, but as the energy detector cannot distinguish between a PU’s signal and noise, therefore, a false alarm 

can be triggered causing unnecessary handoffs. Under multi-path fading or shadowing, a CR user requires higher 

detection capabilities to tackle with the channel randomness which can be provided by cooperation mechanisms 

[31][67]. 

 

II. Other Important Reactive Handoff Schemes  

In [33], an interesting reactive scheme is proposed with the focus on throughput maximization of SUs. An SU 

holds multiple available channels simultaneously and instead of utilizing a whole channel, an SU performs its 

transmission on multiple sub-channels. When a primary user wants to reclaim all the capacity of its channel, the SU 

then has to search for another vacant channel to continue its transmission. Through experiments the authors show that 

their reactive algorithm results in efficient throughput achievement for SUs with a low frequency of handoffs, 

however, this approach suffers with the complexity of dividing a channel in multiple sub-channels and then avoiding 

interference to corresponding PUs on each of the sub-channels. Different from [33], a slightly recent work proposed 

in [104] allows SUs to select future channels (on PU arrival) based on two criteria; the predicted probability of whether 

the target channel is idle or busy and the length of period for which a channel remains occupied by a PU. If a channel 

is idle and has shorter busy period, then a handoff is performed on that channel. This decision is then communicated 

to neighboring SUs. The proposed reactive scheme sufficiently reduces the number of handoffs, however, it requires 

efficient sensing to monitor the time a PU actually stays on a channel since the handoff decision is totally based on 

the length of a busy period. Moreover, the communication exchange between SUs also causes an extra overhead.  

The authors in [71] propose an interesting reactive handoff approach by introducing realistic channel switching 

capabilities, where the SUs can only switch to neighboring channels without inducing high latencies. Here, by realistic 

it means that SUs can only switch to those neighboring channels which are within their frequency range. This is 

unlikely to happen in other reactive approaches where any channel can be selected at PU arrival without considering 

device’s operating frequency. CTMC models are used to derive the forced termination and blocking probabilities for 

CR users. Through results, it is shown that increasing PU arrival rate has a direct impact on blocking and forced 

termination probabilities which is (kind of) an obvious trend.   

                                                           
1 Details about this work are thoroughly discussed in [53]. 



Normally, most of the above reactive solutions are developed for situations where an SU’s transmission is 

interrupted by a PU only once, thus ignoring the case of multiple PU interruptions. This important concern is addressed 

in [96] where a delay sensitive reactive strategy is presented for the SUs having multiple interruptions by neighboring 

PUs. An SU is allowed to access a channel more than once in different time slots. Moreover, an SU should complete 

its multiple transmissions within a specified time delay which is unlikely to happen in most of the above presented 

reactive approaches. Through mathematical analysis, the authors calculate buffer size, capacity of a fading channel, 

average delay in transmission, spectrum access of an SU, and waiting time. Experimental results show that the 

proposed approach incurs less delay especially for SUs having multiple interruptions.   

 

D. Hybrid/Adaptive Handoff Schemes 

The schemes we discussed so far are either proactive or reactive in nature. One important aspect recent 

researchers have focused on, is to combine the benefits of both proactive and reactive handoff schemes to develop an 

efficient hybrid/adaptive solution. Both words “hybrid” and “adaptive” can be used interchangeably, however, as 

discussed in our recent work [94], we differentiate between the two terms for the sake of explanation and classification. 

In a hybrid approach (shown in Figure 8), sensing of a primary user’s signals and handoff decision are both performed 

jointly in proactive and reactive manners, respectively. By continuous sensing, the target channel is selected 

proactively and the handoff is performed at the occurrence of triggering event, thus shifting to a (proactively) selected 

channel reactively on the arrival of a PU. In an adaptive solution (shown in Figure 9), “the decisions of channel 

selection and handoff are made by continuously monitoring the arrival and departure patterns of a PU. When a PU 

is moving quite regularly, an SU may adapt to reactive handoff strategy. While in case of rare PU movements, a 

proactive handoff solution is preferred by the corresponding SU. Thus, a secondary user can either choose between 

proactive or reactive approach based on the frequency of PU arrival and departure [94].” Below we detail various 

hybrid and adaptive handoff schemes.  

 

 
Figure 8. A simple example showing an SU performing hybrid handoff decisions. For simplicity two channels x and y are 

considered 

I. Hybrid Solutions  

Spectrum aggregation (SA) allows a PU or an SU to simultaneously utilize multiple spectrum bands in order to 

satisfy increased bandwidth demand and achieve better performance in terms of QoS [100]. CR being an intelligent 

radio can sense and utilize the available white spaces by examining the radio environment [119]. This sensing quality 

makes it possible to combine the idle channels by spectrum aggregation. A hybrid handoff scheme is proposed in [29], 



which is based on dynamic spectrum aggregation to identify the behavior of an SU during a handoff process. Whenever 

PU comes back to its licensed channel, the SU performs handoff to any other backup channel. All the channels other 

than the current channel are backup channels for an SU which can be either idle or utilized by a PU. An SU will wait 

for the completion of PU transmission if a channel is found busy. An SU should choose minimum handoff probability 

to reduce the number of handoffs. To minimize handoff delays, backup channels can be used, however, as previously 

mentioned, this might result in “channel underutilization.”  

 

Figure 9. An adaptive handoff strategy   

As presented in [29], the hybrid scheme proposed in [80] allows SUs to take a proactive or a reactive handoff 

decision on the basis of PU arrival rate as well as network parameters such as QoS and bandwidth. The combination 

of these parameter values along with PU arrival rate on current channel are compared with those of the neighboring 

sensed channel(s). Handoff decision is performed if the future channel provides higher QoS and bandwidth to an SU. 

Simulation results show that the proposed hybrid handoff scheme reduces the blocking probability and handoff delay 

for real-time services; however, it increases the waiting time and blocking probability for non-real time services since 

SUs have to wait quite a lot to get access to a channel.  

The authors of [112] presented a hybrid handoff scheme to maximize the QoS experience of multimedia centric 

SUs. An SU adaptively senses and selects the target channel before PU arrival and performs the handoff action after 

the triggering event depending on the varying channel conditions and QoS requirements. A mixed preemptive and 

non-preemptive resume priority (PRP and NPRP) queuing model is developed to provide differentiated multimedia 

services to SUs. The PRP captures the interactions between PUs and SUs, while the NPRP queuing is used to depict 

the behavior of an SU. The proposed queuing model allows the (so called) high priority SUs to continue their 

transmission without being interrupted by the neighboring SUs, thus achieving high QoS for users running multimedia 

based applications. Nevertheless, sometimes SUs with no multimedia services have to stay in a waiting queue for long 

durations, which increases the overall waiting time. Different from [112], the algorithm presented in [20] combines 

the analytical hierarchy process (AHP) [22] and technique for order of preference by similarity to ideal solution 

(TOPSIS) [21] to perform a handoff decision. AHP evaluates the decision criteria for the selection of best target 

channel while TOPSIS evaluates all available channels and arrange them from best to worst. Best channel for handoff 



is selected on the basis of channel availability probability, estimated duration of availability, available bandwidth, and 

SNR (signal to noise) ratio. Despite being an interesting hybrid algorithm, the proposed simulations are vague and 

presented results have not been justified properly. Another hybrid scheme is presented in [75] exploiting the benefits 

of both proactive and reactive decisions, however, this approach suffers with the traditional drawback of large number 

of handoffs at PU arrival. 

II. Adaptive Solutions  

Unlike reactive, proactive, and hybrid solutions, adaptive handoff approaches are rare to find in the existing literature. 

In this context, an adaptive handoff strategy is presented in [8] which combines both static and dynamic spectrum 

access features. In static access, the handoff action is not performed during the transmission of an SU. The channel is 

assigned only once at the start of transmission. Whereas in dynamic access, an SU can change the operating channel 

on the arrival of a PU to complete its transmission, thus trying to achieve the objective of maximal channel utilization 

[101]. Based on the network configuration and PU activity modeling (via heuristics), an SU can shift between static 

and dynamic modes, respectively. Thus, adapting to a static mode when the channels are idle and shifting to a dynamic 

mode when PU arrivals are frequent. Slightly different from [8], in [23] the available channels are detected proactively 

via periodic sensing. After channel selection, the periodic sensing is stopped and whole available time is dedicated to 

the SUs transmissions. On PU arrival, the transmission of an SU is shifted to the next selected channel. If next channel 

is busy, then on-demand sensing (as in reactive handoff) is performed to look for another vacant channel, thus, 

adaptively adjusting to various sensing and handoff modes according to PU activities. 

The above two strategies suffer with the traditional limitations of large waiting time, poor channel utilization, 

and unproductive handoffs. We tried to address these limitations in our recent work published in [94]. We apply energy 

detection sensing [84] to sense PU arrivals (this type of sensing is less complex in implementation [13]). In case of 

performing a handoff, the data delivery time [87] for proactive and reactive handoff decisions is calculated and the 

scheme with minimum data delivery time is applied for proper handoff function. This important factor was ignored in 

[8] and [23]. Another promising feature of our strategy is to model the overall handoff process using CTMCs [19] 

which can capture the system evolution dynamics, especially the effects of PU arrivals on SU services. It is shown 

through extensive simulations that the proposed continuous time models and adaptive nature of algorithm based on 

data delivery time allow SUs to achieve high spectrum usage, less unproductive handoffs, and minimum waiting 

delays compared to various existing solutions mentioned above.  

Beside all the schemes discussed so far, there are some important ones which are worth mentioning here, 

however, we are not detailing these strategies because they do not fit into the category of “time triggered handoff.” 

These important works are shown in Figure 10 and are a combination of static and dynamic spectrum sharing, fixed 

and probabilistic sequences, and preemptive and non-preemptive resume priority, respectively. 

 

5. PERFORMANCE CRITERIA FOR HANDOFF STRATEGIES 

In this section, we briefly discuss the important performance factors (or criteria) which can seriously affect the 

performance of a handoff strategy in CRNs. These criteria are chosen by thoroughly examining the existing literature. 

For the scope of this work, we mostly focus on “time triggering” strategies, however, these criteria are equally 

important and addressed in all other handoff management approaches.  

 

A. Number of Handoffs 

Spectrum handoff occurs very frequently in CRNs depending on the patterns of primary users. These handoffs 

can sufficiently decrease the performance of an SU by adding an additional delay and latency in transmission. This 

may seriously degrade the battery life and energy of an SU device. According to [88], on average 96% of device’s 

energy is consumed in a single spectrum handoff process [88]. Therefore, decreasing the number of handoffs is an 

important performance criterion to consider in design of handoff strategies. The schemes reported in 

[29][91][30][27][78][91][94][17][98][104][112] thoroughly focus on minimizing the number of handoffs in CRNs.  
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Figure 10. Approaches based on other factors than "time triggering" 

 

B. Channel Utilization  

Bandwidth is a limited and important resource in wireless communications. As discussed several times, the 

purpose of a CR user is to efficiently utilize the available channels to mitigate the effects of overall spectrum scarcity. 

Thus, efficient channel utilization is an important design and implementation factor for CRNs and this importance 

becomes more critical in highly frequent handoff conditions. Spectrum handoff strategies have to be designed without 

ignoring the overall channel utilization. Almost all the works discussed so far consider channel utilization as a part of 

their design and implementation process.   

C. Handoff Delay  

Handoff delay is the time an SU takes to pause an ongoing transmission on arrival of a PU until the 

communication is resumed on the next available channel. Handoff delay of a CR user comprises of waiting time, 

spectrum sensing time, and channel switching time [57][116]. Increase in handoff delay can cause sufficient 

degradation in transmission of an SU. Therefore, a good handoff strategy should encounter a minimum handoff delay. 

The work proposed in [1][8][29][30][72][8][80][20] address handoff delay in detail.  

D. Energy Efficiency  

Energy efficiency is highly desirable in CRNs due to limited lifetime of battery resources. Energy efficiency can 

sufficiently extend the life of a network. In certain situations such as forests fire detection [68], battle field 

communications [82], underground mines monitoring [69], disaster management [73], smart grids [2], and high alert 

zones [81], it is undesirable to replace the battery source of a CR device. The importance of energy becomes even 

more significant in situations where a user has to switch its on-going transmission to another vacant channel. This 

involves use of energy during the sensing process (before performing the handoff action). The authors of [41][42] 

[74][77][87][79] focus on designing energy efficient spectrum handoff algorithms. In addition, the survey presented 

in [115] highlights important aspects on how to control the transmission power of CR users to save as much energy 

as possible.  



Table 5. Time triggered handoff schemes with their performance criteria  

Ref. # Number 

of 

handoffs 

Channel 

utilization 

Delay/Handoff 

delay 

Energy 

efficiency 

QoS 

assurance 

Throughput 

maximization 

Total 

service 

time 

[1] V  V   V V 

[10]   V  V   

[104] V V      

[107]      V V 

[108]       V 

[11] V    V V  

[111]      V  

[112] V    V V V 

[114]  V      

[12]    V   V 

[15]  V     V 

[17] V V V     

[20]  V V   V  

[23]   V      

[24]  V      

[26] V V      

[27] V      V 

[28]   V     

[29] V  V  V   

[30] V  V     

[40]      V V 

[33] V     V  

[58]  V   V   

[63]     V  V 

[7]       V 

[70]      V V 

[71]  V      

[72]   V V     

[74]      V  

[76]      V V V 

[77]  V   V    

[78] V     V V 

[79]    V    

[8] V  V   V  

[80]    V  V   

[89]       V 

[9]   V     

[91] V       

[94] V V V   V V 

[96]  V V    V 

[98] V     V  

 

 



E. QoS Assurance 

Some applications such as live streaming, video on-demand (VoD), and online gaming desire for strict QoS 

requirements in traditional wireless and CR networks, therefore the design of a good handoff strategy should account 

for these requirements. QoS in CRNs depends on many factors such as transmission rate, PU arrival rate, number of 

handoffs, handoff delay, waiting time, and probability of false alarm. The handoff schemes proposed in 

[29][58][76][80][112] consider QoS as an essential part of their design process, however, most of these strategies 

suffer with the traditional limitations of not achieving maximum channel utilization and energy efficiency [4].  

F. Throughout  

Throughput is the total amount of data transferred by an SU in a specific time unit. In CRNs, it can be termed as 

the throughput achieved by an individual user or the overall throughput of the network. The works proposed 

in[1][8][20][27][78][98][112] focus on maximizing throughout for secondary users, however, some of the 

aforementioned also suggest to increase the transmission power for an SU to achieve a maximum throughput value. 

This may result in harmful interference to the transmission of neighboring PUs. Moreover, number of handoffs affects 

the overall throughout for SUs since the SUs have to stop their transmission on PU arrival and look for other channels. 

In some situations, an SU has to remain idle for a long period of time unless the corresponding PU leaves the channel 

or an SU finds another vacant space to continue transmission. This waiting time results in serious decrement in an 

SU’s throughout.   

G. Total Service Time for Secondary Users 

Total service time for an SU is the time it takes to complete the transmission on an allocated channel. Total 

service time comprises of waiting time, sensing time, channel processing time, and transmission time. The approaches 

presented in [27][108] consider waiting time to be an important factor affecting the service time of SUs. Likewise, 

waiting time reduction is shown in the results presented in [78][76]. The authors of [1][7][15][40][58][78][112] also 

focus on increasing service time of SUs without degrading the performance of PUs.  

To provide a more comprehensive analysis we summarize all the time triggered strategies with their performance 

criteria in Table 5.  

6. CHALLENGES, ISSUES AND FUTURE DIRECTIONS FOR A TIME TRIGGERED HANDOFF 

PROCESS 

In this section, we discuss the challenges and issues related to a time triggered handoff process and outline the 

future research directions and opportunities. Without the loss of generality, these issues are equally important for all 

sorts of handoff schemes.  

A. Intelligent Handoff Process 

Most of the existing time triggered handoff schemes lack the spectrum learning feature in their design [46]. 

Ideally, an SU should know the traffic patterns of a PU via its sensing capabilities and adapt to most suitable handoff 

technique wherever needed. As soon as the traffic patterns of a PU change, the SU should notice that and choose 

between, a proactive or a reactive handoff decision, accordingly. Despite the fact that various schemes consider 

sensing as an important factor in their design, still this issue requires further in depth investigation. In addition, 

device’s energy factor should be kept in consideration while designing a learning-based sensing/handoff strategy. We 

recommend researchers to go through an important work presented in [62]. Though, this intelligent handoff scheme 

is designed for virtual wireless networks (addressing a specific train communication scenario), it can easily be adjusted 

within the context of a CRN.    



B. Priority Based Spectrum Handoff 

In case of an emergency, such as natural or man-made disasters and health care emergencies or accidents, and 

security related situations, the spectrum of a PU can opportunistically be used by an SU in order to provide 

communication [32][39]. These emergency conditions require channel selection and handoff to be performed rather 

quickly compared to normal situations. Thus, a patient in an ambulance would desire for a priority e-health services 

with better mobility and QoS support compared to another person sitting at home trying to utilize bandwidth for his 

or her routine stuff. Therefore, spectrum handoff schemes should be designed by keeping in mind the fast varying 

nature of modern day applications. 

C. Interference Avoidance 

Primary users are the licensed owners of spectrum whereas the SUs have opportunistic access to the spectrum. 

The simultaneous appearance of an SU on a licensed spectrum band can cause harmful interference to a PU. This is a 

major issue in CRNs. The interference to the PU’s transmission should be avoided during the occurrence of handoff. 

For an accurate and efficient handoff process, the interference avoidance mechanism should be proposed in design 

process of a handoff strategy [53]. Moreover, to further mitigate the effects of users’ interferences, next channel 

selection and handoff should be performed with minimal delay. This requires a suitable organization of an SU’s traffic 

in real time [54]. Some recent researchers also suggest that it is rather useful to consider the interference between users 

as an important resource especially when traditional wireless and CR users coexist. Interested readers may refer to a 

promising recent work presented in [44].   

D. Optimization of Parameters Involved in Handoff Decision 

It is difficult and time consuming to consider the impact of all the parameters (such as throughput, number of 

handoff, etc.) in designing a handoff strategy due to the architectural complexity constraints. Therefore, parameters 

should be prioritized according to the situation. For example, in an ad-hoc scenario, special attention should be given 

to the random movements of SUs and PUs which may seriously affect the handoff process. In some other static 

situations, utility or throughput maximization could be prioritized since the users movements are not random and can 

be ignored in the design process. Thus, “dynamic adjustment/mining” of all important parameters is an important 

current and future challenge [60].   

 

7. CONCLUSION 

In this paper, spectrum handoff approaches based on time triggering are summarized. Various existing schemes 

are classified in non-proactive, reactive, and hybrid/adaptive handoff categories and their pros and cons are discussed 

in detail. Several figures and tables are provided to analyze time triggered handoff approaches in a comparative 

manner. We also discussed several important parameters such as throughput, delay, number of handoffs, and various 

others which are important in designing a handoff strategy. In future, we will continue to present any further research 

and advancement related to cognitive radio networks. 
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