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Abstract 

Environmental-economic perspectives are recently taking growing momentum in the analysis of country-level 

performances, but few studies take into account the multi-dimensional nature of the phenomenon. The leading 

measure of pollution still remains only CO2 emission or, at best, CO2 equivalent emission. The few works taking 

a multi-criteria perspective are mainly related to specific case studies, urban areas, or the localization of renewable 

power plants. In this paper, we propose a multi-criteria analysis for a macro-perspective assessment of 10 different 

pollutants in 30 European countries over the period 2008–2015. Methodologically, we propose a new hybrid tool 

allowing us to merge the consolidated procedure usually employed for environmental evaluation: PROMETHEE, 

with a more flexible weighing process inspired by Data Envelopment Analysis. The unprecedented use of this tool 

for developing a macro perspective allows the clustering of European countries according their relative 

performances without any exogenous assumption about the weights given to the specific pollutants. In addition, 

the empirical evidence emerging from the analysis provides a comprehensive picture of patterns followed by 

European economies, which highlights the relative strengths and flaws at country-level for the considered 

pollutants.  
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1. Introduction 

The analysis of country-level performances is increasingly focusing in the dynamics and interaction between 

environment and economic. Given the largely documented health endpoints associated with pollutants (Nemery et 

al., 2001), such a growing interest reflects the awareness about the key role played by environmental issues in 

ensuring people’s well-being. This is proven by the inclusion of environmental objectives among the agendas of 

the main international organizations, such as the Sustainable Development Goals (SDGs) set by United Nations 

and the Better Life index indicators proposed by the Organisation for Economic Co-operation and Development 

(OECD, 2016; Costanza et al., 2016).  



 

In particular, such an “environment alertness” has begun to take increasing momentum in the last decades, when 

the amount of greenhouse gas emissions (GHG) in the atmosphere has raised up to alarming levels. As GHGs have 

been acknowledged as being the primary responsible for global warming (IPCC, 2015), many policy actions have 

been aimed at counteracting its anthropogenic causes. For instance, the ratification of the international treaty of 

1997, known as Kyoto protocol, by countries of the European Union (EU), lead the way to a cap-and-trade system 

called European Emission Trading Scheme (ETS). This scheme committed European State Parties of the United 

Nations Framework Convention on Climate Change (UNFCCC) to reduce GHG emissions by 9% (compared to 

1990 levels) over the period 2005-2012. A goal that has been achieved by the EU, but mostly because of the 

economic recession and the enlargement of the union to Eastern countries (Borghesi, 2011). More recently, the 

achievement of the “zero emissions” goal has been declared by 196 countries in 2015 during the 21st Conference 

of the Parties of the UNFCCC (2018). By this Paris Agreement, countries have been left substantially free as to 

the way they choose to achieve the target of zero GHG net emissions by the end of this century—although it would 

better to accomplish the goal by 2070. 

Since carbon dioxide (CO2) is the most common pollutant emitted by human activities, policy targets are usually 

expressed in CO2 equivalent (CO2e), that properly refer to the amount of carbon dioxide that would give the same 

warming effect as the effect of the greenhouse gas or greenhouse gases being emitted. However, using CO2e as 

standard unit might neglect two main issues. Firstly, the CO2e standard unit not allows for considering the whole 

spectrum of harmful substances, as only certain pollutants may be indicated in CO2e (CH4, CO2, HFCS, NF3, 

N20, PFCS, and SF6). Secondly, measuring air pollution in CO2 equivalent means that global warming potentials 

should have common weights for all countries. Nevertheless, this assumption denies two main fact. On the one 

hand, country-level performances expressed in terms of quantity of pollution effectively produced reflect a 

plethora of factors that are strictly linked to country-specific aspects, such as forest density, economic structure 

and specialization, level of technological progress, and state of development. On the other hand, the negative 

impact of a gas is not only on global warming as it inevitably embraces health issues, with effects that are 

differentiated across pollutants. All these aspects could vary among countries and pollutants as well, thus there is 

no reason to assume that they can be represented by some sort of common weights. 

So that, coping with the above issues requires to adopt a multi-criteria decision method. To give a contribution in 

this direction, here we made use of a multidimensional approach, which appears to be particularly suitable for the 

evaluation of countries environmental performances when the heterogeneous sources of air pollution, as well as 

their differentiated impacts on human health, are accounted for. In detail, we propose a Preference Ranking 

Organization METHod for the Enrichment of Evaluations with Optimal Weights (PROMETHEE-OW) method. 

At the best of the authors’ knowledge, this is to date the first empirical attempt to estimate countries’ environmental 

performances on the basis of the multidimensionality nature of pollution taking into account differentiated country-

specific weights. The analysis concentrates on the EU area with the inclusion of Norway and Switzerland 

performing a cross-country analysis over the period 2008–2015.  



 

The paper is organized as follows. Section 2 presents the literature review, while section 3 describes the new 

methodology. Section 4 presents the data, section 5 and 6 report results and discussion while section 7 contains 

the conclusions.  

2. Literature Review  

In this paper, we propose a multi-criteria analysis for a macro-perspective assessment for 30 European countries 

over the period 2008–2015. The use of the multidimensional approach for performing evaluation studies is, to 

date, very rare in the literature investigating economic and environmental relations. Scholars are mainly focused 

on a unique value for an environmental degradation (CO2 equivalents) and only few studies make use of a multi-

criteria approach.  

The issue of how to synthesize multidimensional information into one metric has recently paved the way to the 

development of composite indicators (see Nardo et al., 2008; Costanza et al., 2016).  As mentioned in Greco et al. 

(2018), adopting a multi-dimensional approach rises three main issues, i.e. (i) which indicators should be 

considered; (ii) which aggregation rule should be chosen (ii) how to weight the indicators to collapse 

multidimensionality into one single metric (Greco et al. 2018). In what follows we describe the way these three 

issues are faced in previous studies and how this paper contributes to the literature. 

 

2.1 Choice of indicators 

The issue of choice of indicators is strictly related to the comprehensive definition of “air pollution”. It is 

commonly associated with indoor and outdoor environmental contamination by some gases and solids that 

substantially modify the natural characteristic of the atmosphere. Among them, “air” pollutants are supposed to be 

the major environmental health issue (Brunekreef and Holgate, 2002) as they have been found to cause mortality 

and morbidity in hundreds of thousands of people in Europe and USA during the twentieth century (Nemery et 

al., 2001). For a comprehensive analysis of air pollution, the CO2 equivalent could be not appropriate since it does 

not consider the whole spectrum of harmful substances. In general, the impacts of air pollution on human health 

are disentangled in short and long-term risks. The former provokes cardiovascular or respiratory problems, while 

the latter lead to lung cancer, heart attacks, death from stroke or coronary disease, and more generally to a reduction 

of life expectancy (Kampa and Castanas, 2008). The most common health-harmful pollutants belonging to the “air 

pollution” category have been identified as follows: particulate matter with a diameter of less than 5 and 10 μm 

(PM2.5 and PM10), carbon monoxide (CO), ozone (O3), black carbon (BC), sulphur dioxide (SO2), and nitrogen 

oxides (NOx) (WHO, 2018). Each year in European cities where the levels of these pollutants exceed those levels 

defined by the World Health Organization (WHO), 436,000 premature deaths are recorded. In general, sanitary 

problems due to air pollution are extremely serious in areas characterized by low urban forest density (Irga et al., 

2015) and a semi-arid climate. 



 

All of these issues make clear that air pollution evaluations require multidimensionality which in turn brings the 

problems of aggregation rule and weights (Greco et al. 2018).    

 

2.2 Aggregation rule 

On the aggregation rule, the main categorization in the literature is between compensatory and non-compensatory 

approaches (Munda 2005). Compensatory requires the assumption that a unit can compensate for the loss in one 

dimension with a gain in another (Nardo et al. 2008; Munda and Nardo, 2009). Simple or weighted average/sum 

of different indicators (as in the case of CO2 equivalent) as well as the standard Data Envelopment Analysis (DEA 

- Charnes et al., 1978) applications are a fully compensatory approaches. Of course, granular and important 

information can be lost by such assumption.  

One of the most important non-compensatory aggregation techniques is PROMETHEE (Brans and Vincke, 1985; 

Brans and De Smet, 2016). The PROMETHEE method belongs to the family of outranking methods (Ishizaka, 

Nemery, 2013), which is based on pairwise comparisons, and permits to represent indifference, strict preference, 

and incomparability between options. For its desirable characteristics, PROMETHEE has been largely used to 

evaluate the air pollution in different urban areas, for assessing air quality in residential houses (Ayoko et al., 

2004; Nikolić, et al., 2010; Coban et al., 2018), and recently for a macro evaluation in Europe (Antanasijević et 

al., 2017). A crucial and open issue in these studies is the assignment of weights.  

 

2.3 Weights 

Regarding the weights, Nardo et al. (2008) list several procedures in the construction of a composite index, with 

equal weighting being the most frequent solution (Floridi et al. 2011; Paruolo et al., 2013; Antanasijević et al., 

2017). This method has been strongly criticized (Decancq and Lugo, 2013), mainly because it misses 

differentiating among important and non-important characteristics and the “double counting” problem may arise. 

Some work has preconized assigning weights proportional to the harmfulness or quality of the emission (Nikolić 

et al., 2010; Crnković et al., 2016; Deljanin et al., 2016), but it is not clear how harmfulness can be measured. 

Expert opinions can be used, but they are likely to be biased towards their subjective perception (Greco et al., 

2018).  

To avoid these shortcomings, in previous composite indices, the data-driven methods, in particular DEA without 

input (Benefit of Doubt - BoD), have been extensively employed as technique of aggregation (Decancq and Lugo, 

2013; Patrizii et al., 2017, Greco et al., 2018). The basic assumption of DEA evaluations is that the status-quo is 

a choice of the decision maker (Cherchye et al., 2007). Based on this premise, DEA compiles multi-dimensional 

metrics into one index using the combination of weights that is the most convenient for the evaluated alternative. 

 



 

2.4 Proposal 

In order to embody the most compelling solutions to the aggregation and weighting techniques, we propose a 

specific tool allowing joining the consolidated procedure usually employed for environmental evaluation: 

PROMETHEE (Brans and Vincke, 1985), with a more flexible weighing process inspired by DEA. In the standard 

PROMETHEE, the decision makers explicitly select the weights attached to the different criteria where the weights 

represent the relative importance of the criteria. An important feature of the standard PROMETHEE weights is 

that once selected, they remain the same for all the alternatives. However, there are some cases in which different 

alternatives have different objective functions, and there is no reason to assume that they can be represented by 

some sort of common weights. In the efficiency literature, DEA models do not require the assumption of a common 

technology (Patrizii and Resce, 2015). Following the DEA weighting process, our approach does not employ a 

common set of weights for all alternatives. Instead, for each alternative, a different set of weights is calculated 

with a linear optimization procedure. The aim of this optimization is to select weights in order to highlight the 

particular strength of the evaluated alternative. Constraints are added in order to ensure that none of scores obtained 

by candidates is higher than the maximum score obtained by a standard PROMETHEE evaluation. Moreover, as 

the method is a further development of PROMETHEE, it inherits all its advantages: it avoids the “compensation 

effects” (which means higher performance in a criterion can compensate for the lower performance in other 

criteria), it can incorporate thresholds, which means that above or below them the score does not contribute 

anymore to their overall performance. This feature is important because it avoids over-emphasizing criteria, which 

can be seen in DEA (Tofallis, 2008). Methodologically, our proposal differs from the classical PROMETHEE in 

two ways: the autogenous selection of weights rather than a subjective choice by a decision maker, and the fact 

that different weights characterize different alternatives. On the choice of indicators this paper contributes to the 

literature considering 10 air pollutants that are particularly harmful for human health and environmental balance 

when highly concentrated in the atmosphere: Methane (CH4); Carbon monoxide (CO); Carbon dioxide (CO2); 

Ammonia (NH3); Non-methane volatile organic compounds (NMVOC); Nitrous oxide (N2O); Nitrogen oxides 

(NOX); Ozone Particulates < 2.5µm (PM2.5); Particulates < 10µm (PM10); Sulphur dioxide (SOX). 

Our work differs from the Environmental Performance Index (EPI) developed by the Yale Center for 

Environmental Law & Policy (Wendling et al., 2018). This composite index is made of different punctual weights 

associated to a large group of indicators divided into two broad categories (environmental health and ecosystem 

vitality) which does not refer only to air pollution, such as our case. Moreover, despite the considered pollutant of 

our analysis could be retrieved within EPI’s sub-indicators, not all of them are directly included. Eventually, the 

EPI is not reported annually and is not fully comparable among different editions due to changes in weights whilst 

our study analyses a continuous time-span.  



 

3. Methodology 

We propose a new technique based on the combination of PROMETHEE (Brans and Vincke, 1985; Brans 

et al., 1986) and DEA (Charnes et al., 1978). The standard PROMETHEE methods require from decision makers 

two sources of information: information between the criteria (weights) and information within each criterion 

(preference functions). The main difference with standard PROMETHEE is that in this model weights are 

calculated by means of an optimization process inspired by DEA. 

Formally, we have 𝑛 alternatives in the set 𝐴 =  {𝑎1, . . . , 𝑎𝑛} which are evaluated on 𝑚 criteria in the set 

𝐹 =  { 𝑓1, . . . , 𝑓𝑚}. 𝑓𝑘(𝑎𝑖) denotes the evaluation of the alternative 𝑎𝑖 on the criterion 𝑓𝑘. For each ordered pair of 

alternatives (𝑎𝑖 , 𝑎𝑗), and for each criterion (𝑓𝑘), the decision maker expresses their preference by means of the 

unicriterion preference function 𝑃𝑘(𝑎𝑖, 𝑎𝑗). The unicriterion preference function 𝑃𝑘(𝑎𝑖, 𝑎𝑗) is a function of the 

difference between the alternative 𝑎𝑖 and the alternative 𝑎𝑗 on the criterion 𝑘, i.e. 𝑓𝑘(𝑎𝑖) – 𝑓𝑘(𝑎𝑗). It is expressed 

in a number between 0 and 1 that indicates the extent to which the alternative 𝑎𝑖 is preferred or not to the alternative 

𝑎𝑗 on the criterion 𝑓𝑘. Several typical shapes of preference function are proposed (Brans and Vincke, 1985): the 

linear, the level, and the Gaussian preference function (see Supplementary).  

After the preference function selection, for each criterion (𝑘) and for each alternative (𝑖) we estimate the 

PROMETHEE unicriterion net flows: 

 𝜙𝑘(𝑎𝑖) =
1

𝑛 − 1
∑[𝑃𝑘(𝑎𝑖, 𝑎𝑗) − 𝑃𝑘(𝑎𝑗, 𝑎𝑖)], 𝑘 = 1, … , 𝑚

𝑛

𝑗=1

 (1) 

Equation 1 shows a measure of the number of times the 𝑖-th alternative is preferred over the other 

alternatives of the set, minus the number of times the 𝑖-th alternative is being preferred by other alternatives, on 

the 𝑘-th criterion.  

In the basic PROMETHEE models, the decision makers explicitly select the weights attached to the 

different criteria where the weights represent the relative importance of the criteria (Ishizaka and Nemery, 2013). 

The main innovation in this study is to estimate the weights by means of a DEA optimization on the unicriterion 

net flows (Equation 2). More specifically, for each alternative we estimate the global score (𝜙(𝑎𝑖)) by using the 

following linear program: 

 

𝜙(𝑎𝑖) = max
𝑤𝑘

∑ 𝜙
𝑘
(𝑎𝑖)𝑤𝑘

𝑚

𝑘=1

∑ 𝑤𝑘

𝑚

𝑘=1

= 1

𝑤𝑘 ≥ 0, 𝑘 = 1, … , 𝑚

 (2) 

 



 

Where 𝑤𝑘 is the weight associated to the criterion 𝑘 for the alternative 𝑖. Weights estimation can be 

sometimes very difficult and highly subjective. In line with DEA methodology, the linear program in Equation 2 

is computed separately for each alternative. The weights in the objective function (𝑤𝑘 ≥ 0, 𝑘 = 1, … , 𝑚) are 

chosen optimally with the purpose of maximizing the score of the evaluated alternative. The optimization ensures 

that each alternative is evaluated on the bases of its own best possible weights, in this way it is put in its most 

favourable light, and any other weighting scheme would generate a lower global score. As in the standard 

PROMETHEE, the constraint (Equation 2) ensures that the sum of the weights is equal to 1 for all the evaluated 

alternatives.  

In addition to the global score 𝜙(𝑎𝑖), the optimization in Equation 2 provides information about the 

performance in each criterion considered. For each alternative (𝑖), a high 𝑤𝑘 signals a good performance in the 

criterion (𝑘). Moreover, supplementary information can be obtained by a “pessimistic” optimization on the same 

unicriterion net flows 𝜙𝑘(𝑎𝑖) as follows: 

 

𝜙(𝑎𝑖) = min
𝑢𝑘

∑ 𝜙
𝑘
(𝑎𝑖)𝑢𝑘

𝑚

𝑘=1

∑ 𝑢𝑘

𝑚

𝑘=1

= 1

𝑢𝑘 ≥ 0, 𝑘 = 1, … , 𝑚

 

 

(3) 

The linear program in Equation 3 is computed separately for each alternative, and the weights in the 

objective function (𝑢𝑘 ≥ 0, 𝑘 = 1, … , 𝑚) are chosen optimally with the purpose of minimizing the score of the 

evaluated alternative. By the optimization (Equation 3) each alternative is evaluated on the bases of its own less 

favourable possible weights, therefore for each alternative (𝑖) a high 𝑢𝑘 obtained by  Equation 3 signals a bad 

performance in the criterion (𝑘). It is worth noting that with the optimizations in Equation 2 and 3 weights assume 

a value only for the pollutant in which the country performs better. More in details, looking at the weights in Figure 

3 it can be noted that the weights assume the value of one (the maximum) for one specific pollutant for observation 

(country/year), and assume the value of zero for all the others pollutants. On the bases of this evidence, double 

counting can be excluded using PROMETHEE-OW. 

In the next section, the models presented in Equation 2 and 3 are applied to European countries, using 

pollutants as criteria. Ranking is performed simultaneously for all years (2008–2015) and countries in order to 

obtain valid comparisons among both different periods and different countries. Moreover, in this study we employ 

a level preference function with 𝑝 = 0 so that any difference within criteria is relevant for ranking, but the 

methodological innovation presented in Equation 2 and 3 can be applied to all shapes of preference function are 

proposed in PROMETHEE (Brans and Vincke, 1985). 



 

4. The data  

The dataset exploited in this study is provided by the AEA accounts (Air Emissions Account) collected yearly by 

Eurostat (2018) for the seven-year period 2008–2015. AEA accounts report emissions assigned to the country 

according to the residence principle (i.e. the residence of the operator causing the emission). The list of pollutants 

included in the analysis embraces 10 air pollutants that are particularly harmful for human health and 

environmental balance when highly concentrated in the atmosphere (see Table 1). 

  (Table 1 about here) 

The working sample provided by Eurostat consists 30 European countries, namely all EU28 members except 

Norway and Switzerland. They have been chosen as these countries are economically and politically well-

connected with each other by means of their similar institutional framework. By preventing very distinctive path-

dependent or developmental stage caused patterns, these commonalities put countries on a path to converge 

towards “green-related” issues, thus improving the quality of the comparison when environmental performances 

are investigated at the country level.  

On the other hand, the time window 2008-2015 is mainly caused by data availability as the use of other sources 

for enlarging the final sample would have produced not comparable data. This period also coincides with the recent 

recession experienced by EU countries. So that, as production processes represent the main source of polluting 

activities, such a time restriction may allow to better understand environmental performances at the country-level 

by controlling for decreases industrial production due to the 2008 crisis. To this purpose, emissions expressed in 

absolute values are divided by the ratio between the gross value added of manufacturing and the gross value-added 

sourced from all economic activities (Table 2).  

(Table 2 about here) 

Figure 1 shows the percentage of manufacturing value added over total gross value added between 2008 

and 2015 for the countries of our sample.  

(Figure 1 about here) 

5. Results 

In this study, we apply PROMETHEE-OW in order to estimate a composite index of environmental performances 

in 30 European countries by considering the country-level emissions of 10 polluting substances. We focus on 

environmental performance by using the ratios between the kg of each of the 10 pollutants and the share of gross 

value added of manufacturing on gross value-added sourced from all activities, as criteria. For all the 30 countries 

of the sample, Figure 2 shown the trend of the global scores 𝜙(𝑎𝑖) calculated with Equation 2 (black line) and, 

contextually, the level of GHG emissions in CO2e divided by the ratio between the gross value added of 

manufacturing and the gross value-added sourced from all economic activities (red line). Such a comparison allows 

to fully appreciate in which cases a multi-criteria approach may be more informative than a single indicator 



 

approach (CO2e) which, contrary to the former, does not account for all pollutants and makes use of common 

weights. In fact, we observe divergence paths in many cases. For example, Bulgaria, Croatia, Cyprus, Greece, 

Lithuania and Luxembourg are recording global scores less than 0 but show good environmental performances 

when expressed in CO2e units. This means that, for the above cases, using a single metric approach may pose the 

risk to overestimate the environmental performance of these countries. Such a divergence is even huge for Italy 

and Poland, whose global score trend is found below -0.5. On the contrary, the high global score shown by France 

is not paralleled by a low level of CO2e emissions, thus suggesting that when including other pollutants and using 

differentiated weights France performs better. Similarly, UK appears to perform better with the PROMETHEE-

OW than CO2e standard, whose trend turns out to be particularly bad.   

(Figure 2 about here) 

More in general, to further acknowledge how marked are the differences in results for all the 30 European countries 

when passing from a single to a multi-criteria approach, Figure 3 provides a static comparison between two 

different maps: (a) the one grouping countries according the standard deviation from the mean of the synthetic 

CO2e index mean value measured over the period 2008-2015; (b) the second grouping countries according the 

standard deviation from the mean of global score mean value referred to the same time window.  

(Figure 3 about here) 

Focusing on Figure 3b, which is obtained by performing the new PROMETHEE-OW approach, we classify 

environmental performances at the country level by grouping together those countries with similar global score. 

In particular, by looking at the standard deviation values (𝜎 = .559) from the mean (𝜇 =  .207), we identify four 

groups and one outlier. In the case of normal distribution, 68% of values should be within mean − + 1 ∗ 𝜎, while 

95% of values should be within mean − + 2 ∗ 𝜎. Therefore, four groups are there defined as follows:  

(i) good performers as Austria, Estonia, Finland, Ireland and Malta, with global score greater than the mean plus 

1 standard deviation and below the mean plus 2 standard deviations;  

(ii) medium-good performers as Belgium, Czech Republic, Denmark, France, Hungary, Lithuania, Netherlands, 

Portugal, Slovakia, Slovenia, Spain, Sweden, Switzerland and United Kingdom with global score greater than the 

mean and below the mean plus 1 standard deviation;  

(iii) medium-bad performers as Bulgaria, Croatia, Cyprus, Greece, Luxemburg and Netherlands with global score 

below the mean and above the mean minus 1 standard deviation;  

(iv) bad performers as Germany, Latvia, Poland, and Romania with global score below the mean minus 1 standard 

deviation and above the mean minus 2 standard deviation.  

The outlier country turns out to be Italy (the lowest performer), with a global score below the mean minus 2 

standard deviations.  

By focusing on global score trends occurring over the period 2008–2015, we observe an almost stable classification 

without remarkable changes in those scores. The dynamic of the scores shows a general stability or a moderate 

increase is most of the analysed cases. However, it could be stressed the virtuous behaviour of countries such as 



 

Belgium, Bulgaria, Czech Republic, France and Ireland, which show the highest increase in global score over the 

period under investigation. On the contrary, Italy, Lithuania, Spain and Sweden are those countries where the most 

significant decreases in global scores are recorded during the period 2008-2015 (Figure 4).  

(Figure 4 about here) 

Finally, Figure 5 shows the minimum and maximum weights associated, in each year and each country, 

among pollutants. Those weights are presented from two perspectives: optimistic by means of the optimization in 

program (Equation 2); and pessimistic by means of the optimization in program (Equation 3). In the first one, the 

pollutants with the higher weights could be interpreted corresponding to countries that have a relative good 

performance and the opposite in the other perspective. Therefore, it is possible to sensitize these weights, 

evidencing those pollutants in which each country has relative good and bad performance. A bulk of countries, 

including Austria, Czech Republic, Denmark, Portugal, Romania, Slovakia, Slovenia, Sweden, and Switzerland 

show more stable patterns both for good and bad perspectives, while pollutants associated with the remaining 

countries change over time, especially in the cases of Croatia, France, Greece, Ireland, Italy, Malta, and 

Netherlands.  

(Figure 5 about here) 

6. Discussion  

The above classification reflects the differences in terms of economy structure at country-level. In general, most 

of the countries belonging to the group of good and medium-good performers are mainly characterized by services-

based and knowledge-intensive economies. As a consequence, given the secondary role played by the 

manufacturing industry in the above-mentioned cases, good performers’ emissions turn to be lower when 

compared with manufacturing-focused economies. This may reflect the case of Malta, whose economic structure 

is mainly focused on the service sector. In addition, good and medium-good environmental performance could be 

linked to other reasons. Firstly, as in the case of Ireland (Figure 2), high valued added in manufacturing activities 

could increase the global score by raising the value of the denominator in the measurement, thus leading to better 

performance. In fact, during the last decade, the Irish government has increased public funding for academic 

research in order to attract higher value foreign direct investments and increase the dynamism of its indigenous 

enterprise base in these activities (Ramirez et al., 2016). Secondly, good environmental scores could be associated 

with successfully environmental policies specifically designed for the industrial sector. For example, the greening 

process involving industrial policies during the last decade in Estonia has improved innovation in the field of 

environmental technology and higher value-added activities in the use of renewable natural resources, by leading 

the country to overperform in environmental issues (Pilvik, 2014). Thirdly, as in the cases of France and Portugal, 

another aspect linked to good environmental performance could be recognized in the low-carbon footprint of the 

energy supply. In France, nuclear energy plays a key role in the country energy mix (IEA, 2017a), while Portugal’s 

positioning is mainly due to its mass use of renewable sources (hydroelectric dams and wind power) in the energy 



 

supply composition, that account for the most of mainland electricity consumption (in March 2018 it raised up to 

103.6%) (APREN, 2018). Finland and Sweden registered a remarkable decrease in their manufacturing industries’ 

value-added during the period 2008–2015, thus focusing their economies on knowledge-based and service sectors. 

Moreover, both countries made strong efforts to promote renewable energy systems. For example, with the largest 

percentage of forest cover in the European area (more than 70%) (FAO, 2018)—which is a major source of carbon 

sequestration—Finland registered the higher rates on GHG reduction in 2011 and 2012 (WB, 2017), fuelled by 

the ambitious goal to reach 38% of their consumption from renewable resources from 2020 (IEA, 2013a). Sweden 

is instead considered one of the countries in the IEA framework that made the strongest efforts since 2008 to 

achieve low-carbon intensity and high share of renewable energy in the total energy supply. It has also the 

ambitious target of achieving a fossil fuel-independent vehicle fleet by 2030 and zero net GHG emissions by 2050 

(IEA, 2013c).  

Regarding the bad performers of Germany, Latvia, Poland, Romania and the outlier Italy, their low scores 

are mainly associated with their manufacturing-focused economies characterized by low value-added and/or 

energy intensive activities. In fact, almost 30% of the total employment in these countries is located in the industrial 

sector (WB, 2018). In addition, when compared with better performers, those countries are often characterized by 

less successful environmental policy programs as in the case of Latvia, where the Green Investment Scheme (GIS) 

launched to reduce energy consumption in the industrial sector appears to work not effectively (Ozoliņa and Rosā, 

2012). Moreover, the degree of sustainability in the energy supply is another relevant element for distinguishing 

between good and bad performers. For example, among the latter, Poland is the one which is still dominated by 

high-carbon footprint sources with an energy mix composed of 80% (in 2015) coal power production (Janeiro and 

Resch, 2017). In contrast, in the case of Romania, the decrease of the manufacturing sector value probably 

represented the main cause of its bad behaviour. In addition, given that these countries have the lowest amount of 

employment in the services sector, the primary role of industrial and agricultural sectors leads to lower 

environmental efficiency (WB, 2018). The case of Germany and Italy is for sure peculiar since they are considered 

as two countries that have overcome their so-called Environmental Kuznets Curve (EKC) and are now in their 

decreasing phase of CO2 emissions (e.g. Mazzanti and Musolesi, 2013; Shahbaz et al., 2017). However, in the 

EKC literature, commonly only one pollutant is considered (CO2) and is averaged by total population. Moreover, 

Italy and Germany showed also good sustainable performance according to Antanasijevic et al. (2017) during the 

period 2004-2014. Therefore, the choice to implement a multi-criteria approach that considers different weights, 

pollutants and which has a particular focus on the sustainability of the industrial sector leads once again to different 

results. Nevertheless, both Italy and Germany have implemented ambitious programmes for their future, such as 

the National Energy Strategy (2013) and the Energy Concept (2010), respectively, with the aim of boosting their 

energy sectors toward higher renewable structures (IEA, 2013b, 2017b). Moreover, from an environmental-

oriented policy perspective, particular attention must be pointed towards the pollutants determining good and bad 

performance of the countries. In particular, NH3, PM2.5, and SOX, turn to be the most common pollutants associated 



 

with pessimistic perspectives. However, given that the above pollutants directly and indirectly enter into several 

economic activities (Table 1), there is reason to believe that defining a specific line of policy intervention requires 

much effort. In this regard, when environmental goals are settled by governments and institutions, the issue of 

complexity that arises from the present empirical analysis needs to be taken into account. Rather than rely only on 

the indicator of GHG pollutants, that is the common CO2e measure, our score is able to provide a larger perspective 

over time of the air-pollution path of European countries. Furthermore, by knowing good and bad performances, 

each country can identify flaws and strengths of their manufacturing sector in terms of emissions. For example, in 

the last group of countries, Italy and Germany have to put efforts in decreasing mainly CH4 and SOx emissions, 

Poland on NMVOC and N2O while Romania, with a more mixed behaviour, on CO, NMVOC, and SOx. 

6. Conclusions 

We propose to overcome the common CO2 measure and investigate the European environmental context 

from a multi-dimensional perspective. We implemented PROMETHEE-OW to evaluate 10 groups of pollutants 

for each country over the period 2008–2015. Compared with other techniques implemented for composite 

indicators, the main advantages of PROMETHEE-OW are in the weighting and aggregation process. Regarding 

the weights, PROMETHEE-OW uses different vector weights for different units that allow us to take into account 

the different technologies in the spirit of Data Envelopment Analysis. Regarding the aggregation, PROMETHEE-

OW is non-compensatory, as it is based on PROMETHEE. The main findings stem from the comparison between 

PROMETHEE-OW and CO2e results (Figure 2), whose analysis encloses relevant policy implications. Here we 

argue that, in those countries where the two trends diverge, the use of a single-metric approach (CO2e) may pose 

the risk of affecting environmental performances evaluation as no attention is paid to two pillar issues: (i) the 

complete array of air pollutants and (ii) their common weighing. Such a risk appears particularly relevant for a 

bulk of countries (Bulgaria, Croatia, Cyprus, Greece, Lithuania, Luxembourg, Italy, and Poland) for which 

PROMETHEE-OW shows worse performances than those emerging when the CO2e is used. On the other hand, 

France and UK are likely to behave better when their environmental performances are evaluated with 

PROMETHEE-OW. So that, we claim that the two approaches are inherently dissimilar also in terms of the 

outcomes provided to policy makers as countries that appear to perform well within the CO2 approach do the 

contrary within the PROMETHEE-OW, and vice-versa. In addition to this, we sustain that PROMETHEE-OW 

might be also more informative by means of the weights produced in the optimizations. From our results, it is 

possible to classify European countries into groups according to their relative performances. Good, medium-good, 

medium-bad, and bad performers. Countries with good performance are characterized by economic structures, 

which are more services- and knowledge-oriented, environmental policies which spur the industrial sector, and/or 

demonstrate improvement in the energy mix. Conversely, countries with bad performances have important 

industrial sectors but with low value-added and/or a low green energy mix. Moreover, we identified pollutants in 



 

which countries have relative good and bad performances, providing a tool to identify which areas require more 

attention from policy makers.  

In conclusion, the main implication of our analysis is that considerable efforts should be made to identify 

the sources of inefficiencies emerging when countries’ environmental performances are evaluated by considering 

a plethora of polluting substances which differently affect environment and human health. Expressing countries’ 

trends in CO2e terms does not help to do so. In fact, since they not include all the pollutants, synthetic CO2e 

indicators are not useful from the point of view of environmental policy design. Nonetheless, countries are still 

evaluated on the basis of the amount of the emissions expressed in CO2, with the worrisome property that these 

values do not take into account the whole spectrum of polluting substances as well as their inner differences. To 

have a real impact on the design of environmental policies of the EU Member States, here we argue that a multi-

criteria approach may help to prevent from misleading researchers, policy makers, politicians, as well as the 

general public. Policy makers in the field of environmental policy should be able to identify the policy problems 

in their environmental performance and relate them to their causes to be able to select policy instruments to 

mitigate the problems. So that, our approach can be useful for a better policy design. Further development could 

be oriented to emissions from different sources (e.g. industrial, residential, transportation) and a more disaggregate 

analysis focused on regions rather than European countries. 
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Table 1. Man-made emissions’ sources 

Pollutant Label Human-related sources Main damages for human-being 

Methane CH4 Livestock farming, production 

of fossil fuels, wet rice 

cultivation, biomass burning, 

landfill and domestic sewage, 

chemical industry, power 

stations, residential buildings. 

Relatively small health damages; 

however, it represents one of the 

major greenhouse gases (indirect 

effects). 

Carbonic monoxide CO Transport processes. The exposure produces several 

health problems, reduction of life 

expectancy and death.   



 

Carbonic dioxide CO2 Power stations, motor vehicles, 

and other processes where fuels 

containing carbon are burnt. 

Considered the main greenhouse 

gases, environmental implication 

(indirect effects). 

Nitrous Oxides N2O Agricultural and industrial 

processes, combustion of fossil 

fuels, solid waste. 

Minor direct problems such as 

nausea or vomiting; however, 

despite its low harmfulness, it 

represents one of the main 

scavengers of the stratospheric 

ozone (indirect effects). 

Ammonia NH3 Use of fertilizers and waste 

disposal sites or industrial 

processes. 

Neuronal disinhibition, irritation 

and corrosion of skin, eyes, and 

the respiratory system. 

Non-methane volatile 

organic compounds 

NMVOC Transport and industrial 

processes. 

Respiratory and cardiovascular 

system damages, acute chronic 

diseases, carcinogenic and 

mutagenic effects. Damages on 

crops (indirect effect). 

Nitrous oxide NOX Transport sector and energy 

sector. 

Damages on soil, water, and 

forests (indirect effect). 

Particulate matter (10 

micrometres 

diameter) 

PM10 Power plants, industrial 

facilities, fires, and cars. 

Damages for the respiratory 

system, asthma, cardiovascular 

problems, hearth attacks, lung 

cancer. 

Particulate matter (2.5 

micrometres 

diameter) 

PM2_5 Construction sites, unpaved 

roads, fires, and cars. 

Damages for the respiratory 

system, asthma, cardiovascular 

problems, hearth attacks, lung 

cancer, cardiopulmonary 

mortality. 

Sulphur dioxide SOX_SO2 Power stations, oil refineries 

and other large industrial 

plants, motor vehicles, and 

domestic boilers. 

Damages for lung functions, 

irritation and obstruction of the 

respiratory system. 



 

Sources: ATSDR (1998, 2014), Henry et al. (2006), Ravishankara et al. (2009), Thrane et al. (2013), WHO (2013), 

Laurent and Hauschild (2014), Naturvårdsverket (2016), CDCP (2018), EEA (2018), EPA (2018a,b), 

EUROSTAT, (2018).   
 

Table 2. Descriptive statistics (kilograms per capita) 

Variable Mean Min Max 

CH4 53.410 0.078 1003.820 

CO 20.510 0.003 327.330 

CO2 8980.960 41.164 170657.400 

N2O 1.996 0.002 33.136 

NH3 10.924 0.020 211.932 

NMVOC 14.044 0.028 283.397 

NOX 26.569 0.039 507.182 

PM10 3.638 0.005 55.372 

PM2_5 2.216 0.003 44.841 

SOX_SO2 15.123 0.046 250.456 

Source: EUROSTAT (2018). 

 

 

 

 

Figure 1. Percentage of gross value-added of manufacturing on the total gross value-added 



 

 
Source: Authors’ elaboration based on Eurostat, Annual National Accounts (2018). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Global scores and emissions of CO2 equivalent 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. One-single metric approach (CO2e, mean value) a) and  Multi-criteria approach 

(PROMETHEE-OW, mean value) b) 

Figure 3 a) 



 

 
 

 

 

 

 

 

 

 

 

 

Figure 3 b) 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Changes of global scores between 2008 and 2015 



 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5. Weights associated with the different substances: optimistic (max) and pessimistic 

perspectives (min)  



 

 
 

 

 


