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Software effort estimation studies still suffer from discordant empirical results (i.e., conclusion instability)
mainly due to the lack of rigorous benchmarking methods. So far only one baseline model, namely Automati-
cally Transformed Linear Model (ATLM), has been proposed yet it has not been extensively assessed. In this
paper, we propose a novel method based on Linear Programming (dubbed as Linear Programming for Effort
Estimation, LP4EE) and carry out a thorough empirical study to evaluate the effectiveness of both LP4EE
and ATLM for benchmarking widely used effort estimation techniques. The results of our study confirm the
need to benchmark every other proposal against accurate and robust baselines. They also reveal that LP4EE
is more accurate than ATLM for 17% of the experiments and more robust than ATLM against different data
splits and cross-validation methods for 44% of the cases. These results suggest that using LP4EE as a base-
line can help reduce conclusion instability. We make publicly available an open-source implementation of
LP4EE in order to facilitate its adoption in future studies.

CCS Concepts: rSoftware and its engineering→ Software creation and management;
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1. INTRODUCTION
Software effort estimation is the process of predicting the most realistic amount of ef-
fort (usually expressed in terms of person-hours or person-month) required to develop
or maintain a software project.

Due to the strategic importance to software companies of getting accurate effort es-
timates, over the last 30 years researchers have focused on the construction of formal
models to support the engineers in this process [Jorgensen and Shepperd 2007]. As a
result a variety of promising approaches have been proposed ranging from the use of
statistical models (e.g., [Briand and Wieczorek 2002]) and analogy-based techniques
(e.g., [Kocaguneli et al. 2012b; Kocaguneli et al. 2013; Shepperd and Schofield 2000])
to the more recent use of machine learning (e.g., [Mair et al. 2000; Mendes and Mosley
2008]), search-based approaches (e.g., [Ferrucci et al. 2009; Ferrucci et al. 2010b; Fer-
rucci et al. 2014; Sarro et al. 2016]) and combinations of two or more of these methods
(e.g., [Corazza et al. 2010; Kocaguneli et al. 2010; Corazza et al. 2013; Kocaguneli et al.
2012a]).

Although these techniques have pushed forward the state-of-the-art, it is also true
that previous research has often shown discordant empirical evidence produced by a
diversity of predictors, historical datasets and methods used for the evaluation, thus
bringing to the well-known “conclusion instability” phenomenon in the software effort
estimation research (i.e., different sets of best effort predictors exist under various
different situations) [Keung et al. 2013].

Previous work highlighted that a central role to this problem is played by three im-
portant factors: (i) the lack of usage of baseline benchmarks [Whigham et al. 2015];
(ii) the validation method and subset of the data used for models’ training and testing
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Table I: Requirements of a Baseline Estimation Model.
1. Be simple to describe, implement, and interpret.
2. Be deterministic in its outcomes.
3. Be applicable to mixed qualitative and quantitative data.
4. Offer some explanatory information regarding the prediction

by representing generalised properties of the underlying data.
5. Have no parameters within the modelling process that require tuning.
6. Be publicly available via a reference implementation and associated

environment for execution.
7. Generally be more accurate than a random guess or an estimate based

purely on the distribution of the response variable.
8. Be robust to different data splits and validation methods.
9. Do not be expensive to apply.
10. Offer comparable performance to standard methods.

[Myrtveit et al. 2005]; (iii) the evaluation measures used for the comparison [Kitchen-
ham and Mendes 2009; Myrtveit et al. 2005; Foss et al. 2003; Mittas and Angelis 2013].

For the above reasons, a thorough comparative assessment of effort prediction mod-
els has became necessary and selecting reliable baselines for comparative benchmark-
ing is crucial to this purpose. However, no de facto baseline benchmark either in terms
of estimation models or repository is available to effort estimation studies. Only re-
cently [Whigham et al. 2015] have outlined seven requirements (no. 1–7 in Table 1)
that a baseline model should possess and discussed the possible use of an Automati-
cally Transformed Linear Model (ATLM) as a baseline.

In this paper, we propose (and show that it is important) considering other crucial
requirements in addition to those previously suggested by [Whigham et al. 2015].

First of all, we claim that a baseline model should prove to be robust to different
data splits under different cross-validation methods in order to mitigate conclusion
instability (requirement no. 8 in Table 1). Let us support our claim with an example:
Consider the scenario where a novel estimation method M is proposed and assessed
with respect to a given baseline model B by using only one validation method V and
one data split D, if B is sensitive to the selection of V and D, it may occur that M
outperforms B only for this particular instance of V and D. Previous studies show
that this scenario is not an exceptional one, but it is actually quite common [Sigweni
et al. 2016; Rodriguez et al. 2010]. Therefore, we argue that this requirement must be
met by a baseline, in addition to those previously proposed by [Whigham et al. 2015],
in order to qualify (and be used) as a robust benchmark.

We also augment this requirement set with two additional requirements (no. 9 and
10 in Table 1) which were originally suggested by [Chen et al. 2018] for benchmarking
search-based software engineering methods and are relevant to baseline effort esti-
mation methods too. These requirements are: “do not be expensive to apply” (which
can be measured, for example, in terms of required CPU or number of evaluations de-
pending on the approach used) and “offer comparable performance to standard meth-
ods” (indeed while we do not expect a baseline model to outperform all state-of-the-art
methods, it should offer a level of performance that often approaches existing standard
methods in order to be insightful [Chen et al. 2018]).

In this paper, we investigate the suitability of ATLM with respect to all these re-
quirements and also propose a novel baseline model, dubbed as Linear Programming
for Effort Estimation (LP4EE), which is as simple as the one proposed by [Whigham
et al. 2015] yet is based on a strong optimization framework such as Linear Program-
ming, and has never been used for effort estimation before.
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To this end we empirically assess the effectiveness of both models for benchmark-
ing well-known and widely used regression and analogy-based estimation methods
(i.e., Classification and Regression Tree, Random Forest, Support Vector Regression,
K-Nearest Neighbour) for 10 publicly available industrial datasets by using four dif-
ferent cross-validation methods (i.e., k-fold with k=3, 5, 10, and leave-one-out) and
repeating the evaluation 30 times with different data splits, following best practice to
build and assess prediction systems [Shepperd and MacDonell 2012; Whigham et al.
2015; Langdon et al. 2016].

The results of our empirical study show that both approaches satisfy the require-
ments to be qualified as a baseline model for effort estimation yet LP4EE provides
similar or more accurate estimates than ATLM and is much less sensitive than ATLM
to multiple data splits and different cross-validation methods, therefore suggesting
that using LP4EE as a baseline reduces conclusion instability.

In order to facilitate the adoption of LP4EE as an estimation method and baseline
model in future studies we make available a free and open-source implementation for
the R environment1.

To summarise, the contributions of our work are:

— the suggestion of three important requirements for a baseline model, in addition to
the ones proposed in literature by [Whigham et al. 2015].

— a novel estimation method for effort estimation based on Linear Programming (i.e.,
LP4EE), which satisfies all the requirements to qualify as a baseline;

— a thorough empirical study (based on best practice for evaluating prediction models)
to assess the effectiveness of our LP4EE approach and the previously proposed base-
line ATLM, both in terms of estimation accuracy and robustness to different data
splits and validation methods;

— the results of our empirical study revealed that both LP4EE and ATLM provide
better or comparable results with respect to state-of-the-art effort estimation tech-
niques, thus confirming the need to compare any new technique against a well-known
and robust baseline which represents a method of easy usage and public availability,
besides being already approved and tested, allowing a fair and adequate assessment
[Whigham et al. 2015];

— we also found that the use of different data splits and cross-validation methods can
bring to significantly different results, however LP4EE is less sensitive than ATLM
with respect to this issue, thus suggesting that using LP4EE as a baseline reduces
conclusion instability yet provides similar or more accurate estimates than ATLM;

— a freely available implementation of LP4EE1, which aims to facilitate its adoption
and a more rigorous benchmarking in subsequent effort estimation studies.

The rest of the paper describes the mathematical Linear Programming model we
propose for effort estimation together with its usability and implementation (Section
2). Then we present the design (Section 3) and results (Section 4) of the empirical study
we carried out to assess our proposal. We conclude the paper presenting related work
on baseline models for software effort estimation (Section 5) and our final remarks
(Section 6).

2. OUR PROPOSAL: LINEAR PROGRAMMING FOR EFFORT ESTIMATION (LP4EE)
Linear Programming (LP) [Nash 2000] aims to achieve the best outcome from a mathe-
matical model with a linear objective function subject to linear equality and inequality

1The source code of our R script (together with the data and the results of our study) is available on the ac-
companying website http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/LP4EE/index.html and GitHub project
https://github.com/fedsar/LP4EE.
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constraints. The feasible region is given by the intersection of the constraints and the
Simplex (linear programming algorithm) is able to find a point in the polyhedron where
the function has the smallest value (minimisation) in polynomial time.

The model proposed for the effort estimation problem minimises the Sum of Absolute
Residual (SAE), subject to an inequality constraint imposing that the effort estimated
for each of the projects in the training set has to fall in R+

0 , as follows:

minimise
n∑

i=1

|
m∑
j=1

aijxj − ActualEfforti|

subject to
n∑

i=1

m∑
j=1

aij xj ≥ 0

xj ≥ 0, j = 1, ...,m

(1)

where aij represents the coefficient of the jth feature for the ith project, xj is the value
of the jth feature, and ActualEfforti is the actual effort of the ith project.

Due to the non-linearity of the absolute value function, the above model has been
linearised as follows:

minimise
n∑

i=1

ti

subject to
n∑

i=1

m∑
j=1

aijxj ≥ 0

n∑
i=1

m∑
j=1

aijxj − ActualEfforti − ti ≤ 0

n∑
i=1

m∑
j=1

aijxj − ActualEfforti + ti ≥ 0

xj ≥ 0, j = 1, ...,m
ti free, i = 1, ..., n

(2)

Let Xi,∀i be the part of Eq. (1) wrapped in the absolute value.∀i, the slack variable ti
and the following two constraints have been added to the model:

Xi ≤ ti

−Xi ≤ ti
Therefore we can have one of the following cases:

Xi > 0 : The second constraint, −Xi ≤ ti, is always fulfilled as −Xi is negative and ti is
implicitly ≥ 0. Since ti is minimised by the objective function and 0 ≤ Xi ≤ ti, the
first constraint, Xi ≤ ti, is satisfied and ti is abs(X).

Xi < 0 : The first constraint,Xi ≤ ti, is always fulfilled asXi is negative and ti is implicitly
≥ 0. Since ti is minimised by the objective function and 0 ≤ −Xi ≤ ti, the second
constraint, −Xi ≤ ti, is satisfied and ti is abs(X).

Xi = 0 : Both constraints are always fulfilled since ti is implicitly≥ 0. Since ti is minimised
by the objective function, 0 = Xi = ti. So ti is abs(X).

When a new project is presented to the model, the following equation is used to
predict its effort:
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EstimatedEffort = a1x1 + ... + anxn (3)
where x represents the value of a given project feature and a represents the corre-
sponding coefficient evaluated by LP.

2.1. LP4EE: Model usability and the R Package
Given a dataset of past software projects (or components), where each project Pi is
characterised by the vector [x1, .., xn, y], where x1, ..., xn are the project features (inde-
pendent variables) and y is the actual effort needed to realise the project Pi (dependent
variable), LP4EE automatically builds the minimisation model as defined in Eq. (2)
and finds the global optima. To solve this model we used the Simplex algorithm con-
ceived by [Dantzig 1998] and implemented in the R packages linprog and lpSolve2.

We realised LP4EE as an R script and made it free and open source to facilitate its
adoption in future effort estimation studies3. This script offers a simple interface to
use our proposed LP4EE approach in a fully automated way.

To run the script one has to call the function lp(trainingsetDF, testsetDF,
column), where trainingsetDF and trainingsetDF are the training and test set data
tables, respectively, and column is a vector of strings containing the names of the in-
dependent variables used for the construction of the estimation model and the depen-
dent variable (e.g., c(‘‘varA", ‘‘varB", ‘‘Effort")), as named in the data tables.
The training set and test set data tables are formed by m rows (one per software
project/component), n columns, each representing an independent variable, and the
n+ 1 column representing the dependent variable (in our case the effort).

Given a training set, the training function returns the best weights found for each
of the predictors on the training set. If a test set is provided, the best model found on
the training set is automatically evaluated on the test set (i.e., to test its predictive
ability) and the estimated and actual values for each of the target projects contained
in the test set are returned together with the corresponding absolute residuals (i.e.,
|ActualEffort−EstimatedEffort|, which can be used by the user to compute other accu-
racy measures for further analysis (see Section 3.3 for the definition of some accuracy
measures).

It is worth noting that the input data to LP4EE neither needs any pre-processing nor
requires satisfying any assumptions; these are tasks that often imply manual effort
and knowledge of some statistics which even if basic may negatively affect the predic-
tions if not applied correctly (see e.g., [Kitchenham and Mendes 2009]). Therefore, this
is a strenght of LP4EE which many other approaches do not have, in fact they require
certain assumptions to hold in order to be used correctly. These approaches include
simple statistical methods such as linear regression which assumes that the data sat-
isfy at least four important criteria [Kitchenham and Mendes 2009] and ATLM which
still requires manual pre-processing to handle multicollinearity although it applies
automatic data transformation in order to comply with these criteria

3. EMPIRICAL STUDY DESIGN
This section presents the design of the empirical study we carried out to assess the
suitability of Linear Programming as a baseline model for effort estimation: We de-
scribe the research questions, the data and techniques we experimented with to an-

2These packages are freely available from Cran-R (https://cran.r-project.org/web/packages/linprog/index.
html, http://cran.r-project.org/src/contrib/packages.html\#lpSolve) and can be easily installed in the R en-
vironment by calling the functions install.packages("linprog") and install.packages("lpSolve"), and
imported in your code (require(linprog) require(lpSolve).
3The source code of our R script is available at https://github.com/fedsar/LP4EE
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swer these questions, and the validation approach and evaluation criteria we used to
assess the results.

3.1. Research Questions
Since we propose LP4EE as a novel estimation model, first of all we need to check
whether it satisfies the seven requirements outlined by [Whigham et al. 2015] in order
to qualify as a suitable baseline, together with the additional ones we have suggested
herein (see Table 1 for the full list of requirements). This constitutes our first research
question:
RQ1. Satisfying the Requirements of a Baseline Model: Does our proposed ap-
proach LP4EE meet the requirements of a baseline estimation model?

To answer this question we explain how LP4EE satisfies the first six quality require-
ments proposed by [Whigham et al. 2015] and empirically show that LP4EE meets
requirement no. 7 (i.e., be able to outperform simple effort estimation methods) by
comparing it with three simple methods recommended as sanity check [Mendes and
Kitchenham 2004a; Shepperd and MacDonell 2012] (i.e., Mean and Median Effort and
Random Guessing, which are explained in Section 3.5). Given the simplicity of these
approaches (both in terms of definition/comprehensibility and ease of usage) it is clear
that if LP4EE does not outperform them, it cannot qualify as a suitable baseline bench-
mark. Also, as suggested by [Chen et al. 2018] we empirically assess that LP4EE is not
expensive to apply (requirement no. 9).

In order to establish whether our proposed approach (LP4EE) can be proposed as an
accurate and robust baseline model for effort estimation, our second research question
investigates its performance when used as a benchmark to asses widely used state-of-
the art techniques:
RQ2. Benchmarking State-of-the-art Estimators: Can LP4EE be effectively used
as a baseline model?

If we find that LP4EE is comparable, yet better than more sophisticated techniques,
then we have scientific evidence to suggest that it can be adopted as the de facto esti-
mation model for benchmarking novel proposals.

To answer RQ2 we compare the performance of LP4EE with respect to another base-
line for effort estimation (i.e., ATLM), which to the best of our knowledge has been the
first and (so far) the only approach recommended as a baseline model in the effort
estimation community. To perform this comparison we take into account not only the
estimation accuracy of both models (requirement no. 10), but also their stability across
different data splits and validation methods (requirement no. 8) as it is well-known
that different choices may lead to different results [Foss et al. 2003; Sigweni et al.
2016]. Thus, it is crucial that a baseline benchmark provides similar results across
different data splits and cross-validation methods.

This motivates the following sub-questions. First of all we investigate to what extent
LP4EE and ATLM are robust to different validation methods:

RQ2.1. Different Validation Methods: Is LP4EE (ATLM) robust to the use of
different cross-validation methods?

To answer this question we repeat our experiments by using four cross-validation
methods: leave-one-out (LOO), 3-fold, 5-fold, and 10-fold cross-validation. We use the
Cliff ’s statistical test and effect size (see Section 3.4) to assess whether LP4EE and
ATLM provide statistically different estimates when different validation methods are
used.

Then, we investigate how robust (i.e., sensitive) these baseline models are against
different data splits:
RQ2.2 Different Data Splits: Is LP4EE more robust than ATLM to the use of differ-
ent data splits?:
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To answer this question we compare all the algorithms in terms of the Variance Rel-
ative Error (RE∗) measure (see Section 3.4) and a stability assessment is extensively
performed, as suggested by [Whigham et al. 2015]. If our method will prove to be ro-
bust (i.e., provide similar results) across different runs and splits, it means that the
it is less likely to be influenced by randomness, therefore fewer comparisons will be
needed in future when comparing a new algorithm to our baseline model.

Last but not least we assess if our proposal provides more accurate estimates than
ATLM:

RQ2.3 Accuracy: Is LP4EE more accurate than ATLM for benchmarking state-of-
the-art estimation methods?

To answer this question we compare the estimates of both baseline models, LP4EE
and ATLM, with those of four state-of-the art estimation methods (i.e., Classification
and Regression Tree, K-Nearest Neighbour, Random Forest, Support Vector Regres-
sion) by using unbiased summary measures (i.e., Mean Absolute Error, Median Ab-
solute Error, Standardized Accuracy), statistical significance test (i.e., Wilcoxon Test)
and effect size (i.e., Vargha and Delaney’s A12), as detailed in Section 3.4.

3.2. Datasets
To empirically investigate our RQs we used 10 publicly available datasets (namely
Albrecht+Kemerer (AK), China, Desharnais, Finnish, Kitchenam, Maxwell, Miyazaki,
Nasa, Nasa93Coc, Telecom) containing a diverse sample of industrial software projects
developed by a single company or several software companies [Menzies et al. 2017].
A detailed description of each of these datasets can be found in Appendix A, while
in Table 2 we report the source of the data, the number of observations and the de-
scriptive statistics of the variables used for each of the datasets. We can observe that
these datasets exhibit a high degree of diversity: They differ for number of observations
(from 18 to 499), number and type of features (from 1 to 17), technical characteristics
(e.g., software projects developed in different programming languages and for differ-
ent application domains, ranging from telecommunications to commercial information
systems), companies involved (e.g., the Desharnais dataset is within-company (WC),
the others are cross-company (CC)) and geographical locations (software projects com-
ing from China, Canada, Finland, etc.). Furthermore, all these datasets have been
widely used in several effort estimation studies (see e.g., [Sarro et al. 2016; Sarro et al.
2012b; Ferrucci et al. 2014; Kocaguneli et al. 2012a; Sigweni et al. 2016; Shepperd and
Schofield 2000]).

3.3. Evaluation Criteria
Several measures have been proposed to evaluate the accuracy of a prediction model.
Generally they are based on the Absolute Error (i.e., |ActualEffort−EstimatedEffort|).
The most popular are MMRE and Pred(25) [Conte et al. 1986] but have been widely
criticised [Foss et al. 2003; Kitchenham et al. 2001; Korte and Port 2008; Port and Ko-
rte 2008; Shepperd et al. 2000; Stensrud et al. 2003] for being biased towards under-
estimations and for behaving very differently when comparing prediction models. The
use of other (more standardised) measures, such as the Mean Absolute Error (MAE)
or Median Absolute Error (MdAE) and the Standardized Accuracy (SA) has been rec-
ommended to compare prediction models [Shepperd and MacDonell 2012; Langdon
et al. 2016], while the use of the Variance Relative Error (RE∗) has been suggested by
[Whigham et al. 2015] to evaluate baseline models.
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Table II: Descriptive statistics of the 10 datasets used in our study.
Dataset Type Variable Min Max Mean Std. Dev.
AK CC AdjFP 99.90 2307.00 782.80 549.75
(39 projects) Effort 0.50 1107.00 97.79 188.27
China CC Input 0.00 9404.00 167.10 486.34
(499 projects) Output 0.00 2455.00 113.60 221.27

Enquiry 0.00 952.00 61.60 105.42
File 0.00 2955.00 91.23 210.27
Interface 0.00 1572.00 24.23 85.04
Effort 26.00 54620 .00 3921.00 6481.00

Desharnais WC TeamExp 0.00 4.00 2.30 1.33
(77 projects) ManagerExp 0.00 4.00 2.65 1.52

Entities 7.00 386 121.54 86.11
Transactions 9.00 661.00 162.94 146.09
AdjustedFPs 73.00 1127.00 284.48 182.26
Effort 546.00 23490.00 4903.95 4188.19

Finnish CC HW 1.00 3.00 1.26 0.64
(38 projects) AR 1.00 5.00 2.24 1.50

FP 65.00 1814.00 763.58 510.83
CO 2.00 10.00 6.26 2.73
Effort 460.00 26670.00 7678.29 7135.28

Kitchenham CC AFP 15.36 18140 527.70 1521.99
(145 projects) Effort 219.00 113900.00 3113.00 9598.00
Maxwell CC SizeFP 48.00 3643.00 673.31 784.04
(62 projects) Nlan 1.00 4.00 2.55 1.02

T01 1.00 5.00 3.05 1.00
T02 1.00 5.00 3.05 0.71
T03 2.00 5.00 3.02 0.89
T04 2.00 5.00 3.19 0.70
T05 1.00 5.00 3.05 0.71
T06 1.00 4.00 2.90 0.69
T07 1.00 5.00 3.24 0.90
T08 2.00 5.00 3.81 0.96
T09 2.00 5.00 4.06 0.74
T10 2.00 5.00 3.61 0.89
T11 2.00 5.00 3.42 0.98
T12 2.00 5.00 3.82 0.69
T13 1.00 5.00 3.06 0.96
T14 1.00 5.00 3.26 1.01
T15 1.00 5.00 3.34 0.75
Effort 583.00 63694.00 8223.20 10500.00

Miyazaki CC SCRN 0.00 281.00 33.69 47.24
(48 projects) FORM 0.00 91.00 22.38 20.55

FILE 2.00 370.00 34.81 53.56
Effort 896.00 253760.00 13996.00 36601.56

Nasa CC Methodology 19.00 35.00 27.78 5.38
(18 projects) Experience 6.00 21.00 15.83 3.36

Effort 5.00 138.30 49.47 45.72
Nasa93Coc CC rely 0.88 1.40 1.11 0.13
(93 projects) data 0.94 1.16 1.00 0.07

cplx 0.85 1.65 1.18 0.15
time 1.00 1.66 1.13 0.20
stor 1.00 1.56 1.13 0.19
virt 0.87 1.15 0.92 0.09
turn 0.87 1.15 0.96 0.09
acap 0.71 1.00 0.89 0.09
aexp 0.82 1.13 0.93 0.06
pcap 0.70 1.00 0.91 0.10
vexp 0.90 1.21 1.00 0.08
lexp 0.95 1.14 0.97 0.05
modp 0.82 1.24 0.98 0.09
tool 0.83 1.24 1.00 0.09
sced 1.00 1.08 1.04 0.04
kloc 0.90 980 94.02 133.60
Effort 8.40 8211 624.41 1135.93

Telecom CC Files 3.00 284.00 110.33 91.33
(18 projects) Effort 23.54 1115.54 284.34 264.71
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MAE is unbiased (towards over or underestimation) and defined as follows:

MAE =
1

N

N∑
i=1

|ActualEfforti − EstimatedEfforti| (4)

where N is the number of projects used for evaluating the performance, and
ActualEfforti and EstimatedEfforti are the measured and estimated effort, respec-
tively, for the project i. MdAE is the median of the above distribution and is generally
less sensitive than MAE to extreme outliers.

SA is based on MAE and defined as follows:

SA =

(
1−

MAEPj

MAErguess

)
· 100 (5)

where MAEPj
is the MAE of the approach Pj being evaluated and MAErguess is the

MAE of a large number (e.g. 1,000) of random guesses (note that except for large
datasets the MAErguess can be replaced by an exact MAE, MARP0, as suggested by
[Langdon et al. 2016]). Thus, SA represents how much better Pj is than random guess-
ing: A value close to zero means that the prediction model Pj is practically useless,
performing little better than a mere random guess [Shepperd and MacDonell 2012].

The RE∗ is defined as follows:

RE∗ =
var(EstimatedEffort−ActualEffort)

var(ActualEffort)
(6)

RE∗ is an appropriate baseline error measure since it gives a score of 1 to a prediction
model with zero variance and a score less than 1 to any useful predictor. Any model
producing an RE∗ greater than 1 would be considered poor, regardless of the dataset
[Whigham et al. 2015]. In this study, we use MAE, MdAE and SA to evaluate the
accuracy of the estimates provided by the approaches we considered, and RE∗ to assess
their stability across different data splits and validation methods.

To establish if the estimations of one method are significantly better than those pro-
vided by another method, one can test whether there is a statistically significant differ-
ence between these estimates [Kitchenham et al. 2001; Mendes et al. 2003; Stensrud
and Myrtveit 1996]. We perform 30 independent runs per algorithm, per validation
approach, per dataset to allow for such statistical testing, correcting for multiple sta-
tistical tests. Specifically, to answer RQ1 and RQ2, we use the Wilcoxon Signed Rank
Test [Cohen 1988] since the Shapiro test [Royston 1982] showed that many of our sam-
ples came from non-normally distributed populations, making the T -test unsuitable.
The Wilcoxon test is a safe test to use (even for normally distributed data), since it
raises the bar for significance, by making no assumptions about underlying data dis-
tributions. In particular, we test the following Null Hypothesis: “The mean (median)
absolute errors provided by the prediction model Pi are not significantly less than those
provided by the prediction model Pj for the dataset D”, and set the confidence limit, α,
at 0.05 and applied the standard Bonferroni correction (α/K, where K is the number
of hypotheses) when multiple hypotheses were tested. To summarise the results of the
Wilcoxon comparisons, we use the following win-tie-loss procedure as done in previous
work [Kocaguneli et al. 2012a; Sarro et al. 2017; Sarro et al. 2018]: If the distribu-
tion i is statistically significantly better (less) than j according to the Wilcoxon test we
update wini and lossj , otherwise we increment tiei and tiej .

Since it is inadequate to merely show statistical significance alone [Arcuri and
Briand 2014], we also investigate whether the effect size is worthy of interest by
using the Vargha and Delaney’s A12 non-parametric effect size measure. Indeed, as
suggested in recent best practice [Arcuri and Briand 2014; Shepperd and MacDonell
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2012], it is better, in cases such as ours when not all samples are normally distributed,
to use a standardised measure rather than a pooled one like the Cohen’s d. Given a
performance measure M , the A12 statistic measures the probability that running al-
gorithm A yields better M -values than running another algorithm B, based on the
following formula Â12 = (R1/m − (m + 1)/2)/n, where R1 is the rank sum of the first
data group we are comparing, and m and n are the number of observations in the
first and second data sample, respectively. If the two algorithms are equivalent, then
Â12 = 0.5. Given the first algorithm performing better than the second, Â12 is consid-
ered small for 0.6 ≤ Â12 < 0.7, medium for 0.7 < Â12 < 0.8, and large for Â12 ≥ 0.8,
although these thresholds are somewhat arbitrary. In this case, we are always inter-
ested in any improvement in predictive performance, so no transformation of the Â12

metric is needed [Neumann et al. 2015].
To assess the difference in the results achieved by the estimation methods when

using different data splits and validation methods (i.e., RQs 2.1-2.2) we used the
Cliff ’s statistical test [Cliff 1996] together with the Hochbergs method [Hochberg 1988;
Hochberg and Benjamini 1990] for controlling multiple tests available through the R
function cidmulv2 of the package WRS. The Cliff ’s test is an appropriate choice when
dealing with non-normal data as in our case. Indeed this test provides a robust, non-
parametric effect size and is reliable in presence of tied values4.

3.4. Validation Method
A validation process is required to verify whether a method produces a useful esti-
mation of the actual development effort. Indeed, when the accuracy of the model is
computed using the same dataset employed to build the prediction model, the accu-
racy evaluation is considered optimistic [Briand and Wieczorek 2002]. Therefore we
perform a multiple-fold (i.e., k-fold) cross-validation by partitioning the dataset in k
disjoint test sets (the observations are sampled uniformly at random, without replace-
ment) and considering the remaining observations as the training set.

To ensure that our experiments are not biased by the number of folds used, we exe-
cute them by using 3-fold, 5-fold, 10-fold and leave-one-out. The Cliff ’s statistical test
and the Hochbergs method (see Section 3.3) have been used to investigate if there
are statistically significant differences among the absolute residuals obtained by both
LP4EE and ATLM using these validation methods (RQ 2.1). Since we observed a sta-
tistically significant difference only when comparing k-fold to LOO (see Section 4.2.1
for more details), we report herein the results obtained using both 3-fold and LOO and
make all the results (including those obtained using 5-fold and 10-fold) available on
the accompanying website1.

3.5. Estimation Techniques
3.5.1. Random Guessing. Random Guessing (RG) is a naı̈ve benchmark suggested to

assess the usefulness of a prediction system [Shepperd and MacDonell 2012]. It ran-
domly assigns the y value of another case to the target case. More formally, it is defined
as: Predict a y for the target case t by randomly sampling (with equal probability) over
all the remaining n− 1 cases and take y = r where r is drawn randomly from 1...nr = t
[Shepperd and MacDonell 2012]. Any prediction system should outperform random
guessing since an inability to predict better than random implies that the prediction
system is not using any target case information.

4The WRS package is available at https://cran.r-project.org/web/packages/WRS2/index.html, while a useful
guide by Prof. Barbara Kitchenham can be found at http://crest.cs.ucl.ac.uk/cow/31/.
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3.5.2. Mean Effort (Median) Effort. Mean Effort and Median Effort are two naı̈ve base-
lines commonly used as a benchmark in previous effort estimation studies. Specifically,
the mean (median) of the past project efforts is used as the predicted effort for a target
project [Mendes and Kitchenham 2004a].

3.5.3. Automatically Transformed Linear Model. The Automatically Transformed Linear
Model (ATLM) has been proposed by [Whigham et al. 2015] as a baseline effort es-
timation model. This approach is based on a multiple linear regression of the form
yi = β1x1i + β2x2i + ...+ βnxni + εi, where yi is referred to as the quantitative response
variable, xi are explanatory variables, and βi are determined using a least squares es-
timator [Neter et al. 1996]. Categorial explanatory variables are handled by using the
standard contrasts approach of dummy variables for each qualitative xi which is the
default method provided by the R tool [R Development Core Team 2011]. The approach
also performs an automatic data pre-processing5, as it is recommended to transform
skewed data when forming linear models [Kitchenham and Mendes 2009], by assessing
the suitability of log and square-root transformations of the response and explanatory
variables based on the underlying distribution of the data. This transformation step
is calculated by comparing the skewness [Dimitriadou et al. 2008] for each of the re-
sponse and explanatory variables. The transformation that results in the least skewed
data for each variable is selected and used when constructing the linear model and
predicting effort. An appropriate inverse transformation of the predictions is applied
to make the model results meaningfully compared to the untransformed test data. The
details of the transformation algorithm can be found elsewhere [Whigham et al. 2015].

3.5.4. Classification and Regression Trees. Classification and Regression Trees (CART)
are machine learning methods that build prediction models by recursively partitioning
the data and fitting a simple prediction model within each partition [Breiman et al.
1984]. The partitioning can be graphically represented with a decision tree. Decision
trees where the dependent variable takes a finite set of values are called “classification
trees”, while decision trees where the dependent variable takes continuous values are
called “regression trees”. In our work, regression trees were generated using the R
package tree, which is publicly available in the Cran-R repository 6. Since CART does
not have any seed associated with it (i.e., produces the same results each time it is
executed under the same configuration) only one run per data split is required.

3.5.5. K-Nearest Neighbour. K-Nearest Neighbour (KNN) is an analogy-based approach
that, given a target instance (e.g., a new software project characterized by a vector of
n features), retrieves the instances relevant to this target from a case base of past
projects. These relevant cases are identified by using the Euclidean distance as a sim-
ilarity function, which measures the distance between the target case and the other
cases based on the values for the n features of these projects. The average of the ef-
fort values of the k most similar past projects is then used as the effort estimate for
the target project. If there are ties for the k − th nearest vectors, all are used to com-
pute the average. The choice of k is left to the user and has been a matter of some
debate [Kadoda et al. 2001]. In this work we experimented KNN with different values
of k = 1, ..., 10. Table 3 shows the results in terms of MAE produced by the 10 KNN
configurations for each of the 10 datasets under investigation (the best MAE values
are highlighted in bold, the worst ones in italic). We can observe that the configura-
tion that exhibits the worst performance for almost all datasets is KNN1. On the other
hand, KNN10 achieves the most accurate results for 6 out of 10 dataset when the 3-

5A manual pre-processing is still needed to handle multicollinearity if two or more variables are collinear.
6https://cran.r-project.org/web/packages/tree/tree.pdf
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Table III: KNN configurations: Standardised Accuracy (SA) obtained by 10 different
KNN configurations for each of the 10 datasets (best values in bold, worst in italic)
using 3-fold (a) and LOO (b) cross-validation methods.

(a) 3-fold
AK China Desharnais Finnish Kitchenam Maxwell Miyazaki Nasa Nasa93Coc Telecom

KNN1 (worst) 0.32 0.29 0.28 0.35 0.29 0.37 0.43 0.10 0.20 0.36
KNN2 0.38 0.37 0.38 0.39 0.37 0.50 0.47 0.15 0.30 0.36
KNN3 0.44 0.40 0.42 0.42 0.41 0.53 0.48 0.09 0.36 0.38
KNN4 0.43 0.42 0.42 0.42 0.43 0.54 0.48 0.11 0.39 0.41
KNN5 0.43 0.43 0.42 0.41 0.44 0.54 0.47 0.11 0.41 0.40
KNN6 0.44 0.44 0.42 0.41 0.44 0.53 0.47 0.09 0.43 0.39
KNN7 0.43 0.44 0.42 0.40 0.45 0.52 0.46 0.08 0.44 0.38
KNN8 0.43 0.45 0.43 0.41 0.45 0.51 0.46 0.06 0.46 0.36
KNN9 0.44 0.45 0.43 0.42 0.45 0.51 0.46 0.05 0.47 0.33
KNN10 (best) 0.44 0.46 0.44 0.43 0.45 0.50 0.45 0.05 0.47 0.30

(b) LOO
AK China Desharnais Finnish Kitchenam Maxwell Miyazaki Nasa Nasa93Coc Telecom

KNN1 (worst) 0.09 -0.13 0.15 0.22 0.34 0.75 0.53 -0.33 -0.27 0.28
KNN2 0.07 0.01 0.26 0.21 0.39 0.80 0.56 -0.20 -0.15 0.28
KNN3 0.22 0.07 0.34 0.30 0.43 0.81 0.57 -0.31 -0.01 0.20
KNN4 0.24 0.10 0.36 0.30 0.48 0.82 0.57 -0.31 0.07 0.14
KNN5 (best) 0.20 0.13 0.37 0.27 0.48 0.83 0.58 -0.37 0.06 0.20
KNN6 0.22 0.15 0.34 0.28 0.48 0.83 0.56 -0.31 0.10 0.26
KNN7 0.23 0.15 0.34 0.27 0.49 0.82 0.56 -0.35 0.10 0.28
KNN8 0.22 0.16 0.34 0.27 0.49 0.82 0.55 -0.32 0.13 0.25
KNN9 0.21 0.16 0.34 0.27 0.50 0.82 0.56 -0.40 0.12 0.21
KNN10 0.22 0.16 0.34 0.23 0.49 0.82 0.56 -0.38 0.15 0.16

fold validation is used, and KNN5 provides the most accurate results for 3 out of 10
dataset when the LOO validation is used. Therefore, we use KNN1, KNN5 and KNN10
to answer all our RQs. The package used for the KNN method is the R package caret,
which is publicly available from Cran-R7.

3.5.6. Random Forest. Random Forest (RF) [Ho 1995] is an ensemble learning method
for classification and regression tasks, which constructs multiple decision trees at
training time and picks as a final model the one that is the mode of the classes (clas-
sification) or the mean prediction (regression) of the individual trees. In our work, RF
was trained and configured using the train function of the R package caret, which
is publicly available in the Cran-R repository7. Specifically we use the train function
performing 30 times a simple grid search with a nested 2-fold to mitigate the learner
bias due to the intrinsic randomness of RF. The best model is selected on the training
set according to this function and then used to predict the effort of the unseen projects
contained in the test set.

3.5.7. Support Vector Regression. Support Vector Regression (SVR) is a machine learn-
ing method able to map non-linear separable patterns into a higher feature space
where points of different categories are divided by a clear gap that is as wide as pos-
sible. For a regression task the aim is to minimise a loss function, maximising the
support vector bounds. In our work, SVR is configured and trained using the R pack-
age caret, which is publicly available in the Cran-R repository7. Through this function
we automatically apply a simple grid search for hyper-parameters tuning8 and run a
nested 2-fold cross-validation 30 times to handle the intrinsic SVR randomness. The
best SVR prediction model built on the training set over the 30 runs is used to estimate
the effort for the previously unseen test set projects.

7https://cran.r-project.org/web/packages/caret/caret.pdf
8Grid-search is one of the simplest way to tune machine learners and alternative approaches have been
investigated in the context of effort estimation [Corazza et al. 2010; Corazza et al. 2013] and defect prediction
[Sarro et al. 2012a; Fu et al. 2016; Tantithamthavorn et al. 2018]
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3.6. Threats to Validity
Several factors can bias the validity of empirical studies. In this section we discuss the
construct, conclusion and external validity threats that may affect our study.

To satisfy construct validity a study has “to establish correct operational measures
for the concepts being studied” [Kitchenham et al. 1995]. This means that the study
should represent to what extent the predictor and response variables precisely mea-
sure the concepts they claim to measure [Mendes et al. 2003]. Thus, the choice of the
features and the way they are collected are crucial aspects. We mitigated such a threat
by using real-world datasets widely used to empirically evaluate effort estimation mod-
els and excluding from these datasets all the independent variables that are not known
at prediction time and therefore cannot be used for prediction purposes. To this end we
read all the papers were the data was originally released/described rather than sim-
ply relying on the information available from public repositories or subsequent papers
reusing this data as this might be misleading. A detailed description of this aspect can
be found in Appendix A.

With regards to the conclusion validity, we carefully applied the statistical tests,
verifying all the required assumptions and correcting for multiple statistical testing.
To reduce conclusion instability [Menzies and Shepperd 2012], we followed recent best
practice to assess prediction systems [Shepperd and MacDonell 2012; Whigham et al.
2015; Langdon et al. 2016]. Moreover, we used datasets of different sizes to mitigate
the threats related to the number of projects and features in each dataset. We also
compared our approach to traditional techniques using publicly available tools to allow
for replications and comparisons.

To mitigate external validity threats we used a large number of software projects
covering different contexts and domains, however we cannot claim that our results
generalise beyond the subjects studied herein.

4. RESULTS
4.1. RQ1. Does LP4EE Satisfy the Requirements for a Baseline Model?
Linear Programming (LP) has been largely used in the optimization field [Rardin 1998]
primarily due to the fact that it offers a strong mathematical framework along with an
easy implementation and results interpretability. To the best of our knowledge this is
the first time that LP is used for effort estimation.

In the following we describe how our proposed method, LP4EE, satisfies all the re-
quirements a baseline estimation model should meet (as listed in Table 1).

LP4EE describes the effort estimation problem as a simple and elegant constrained
linear mathematical problem (see Section 2), which is easily readable and even ge-
ometrically representable (requirement 1). Moreover, LP4EE performs an automatic
feature selection at learning time and explicitly gives as outputs the coefficients for
each of the features for the dataset under evaluation. This feature of LP not only
gives easy interpretability and straightforward application of the model to new test
points (requirement 1), but also provides users with an insight into the most impor-
tant variables of the projects (requirement 4). Furthermore, LP4EE is deterministic in
its outcome (requirement 2) and can be applied to real, integer, and categorical vari-
ables (requirement 3). It is also hyper-parameters free (requirement 5) and a reference
implementation for the R environment is publicly available1 (requirement 6).

In order to show that LP4EE satisfies requirement 7 (i.e., be more accurate than a
random guess or an estimate based purely on the distribution of the response vari-
able) we empirically assessed whether it is more accurate than a random guess and
also than estimates based on the Mean and Median effort of past projects (as de-
tailed in Section 3.5). The analysis of the SA values (see Table 4) suggests that the
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estimations obtained using LP4EE are always better than those achieved by using
Mean (SALP4EE > SAMean), Median (SALP4EE > SAMedian), and Random estimates
(SALP4EE > 0) for all the 10 datasets considered in our study. These observations
are confirmed by the tests we used to assess if any statistically significant difference
arises between the accuracy of the estimates provided by LP4EE and the other meth-
ods considered and the magnitude of this difference (i.e., effect size). Table 5 shows
the win-tie-loss outcome of the Wilcoxon test (for both the MAE and MdAE distribu-
tions) summarised by counting the number of times LP4EE scored a p− value < 0.001
(win), p− value > 0.99 (loss) and 0.001 <= p− value <= 0.99 (tie). We can observe that
LP4EE achieves the best win-tie-loss for balance across all the measures and datasets
considered. Indeed, the MAE and MdAE distributions obtained by LP4EE are always
statistically significantly better than those provided by other methods with a large ef-
fect size for 21 out of 27 cases (78%) and a medium effect size for the remaining six
cases (22%). For completeness, the same tests have been carried out for ATLM and the
results are reported in the last three columns of Table 5. We can observe that ATLM
does not always score a win and provides a worse win-tie-loss outcome with respect to
LP4EE. This inferential statistical analysis confirms that our approach significantly
outperforms the baselines, thereby passing the sanity check set by requirement 7 (see
Table 1).

To check if requirement 9 holds (i.e., do not be expensive to apply), we have analysed
the running time spent by LP4EE and ATLM to build an estimation model for each of
the 10 datasets using four different cross-validation methods. We ran all the experi-
ments on a notebook with an Intel Core i5 2Ghz CPU and memory of 8GB. Table VI
shows the average running time over 30 runs expressed in seconds9: We can observe
that both LP4EE and ATLM build the prediction model in less than a second (usually
milliseconds) for all the datasets and validation methods we considered and therefore
both approaches satisfy requirement 9.

Finally, we have assessed that LP4EE is robust to different data splits and valida-
tion methods (requirement 8) and offers comparable performance to standard methods
(requirement 10) by carrying out a thorough empirical study, whose results are dis-
cussed in Section 4.2.

Therefore, we can positively answer our first research question RQ1: LP4EE satis-
fies the requirements for a baseline estimation model.

4.2. RQ2: Is LP4EE Effective to Benchmark State-of-the-art Estimators?
4.2.1. RQ2.1: Is LP4EE (ATLM) Sensitive to Different Cross-validation Methods?. To check to

what extend our proposed method, LP4EE, is sensitive to the validation method we
ran the same experiments with four different methods widely used in effort estima-
tion, i.e., leave-one-out (LOO), 3-fold, 5-fold, and 10-fold. The Cliff ’s statistical test and
the Hochberg’s method have been used to investigate if there are statistical differences
among the absolute residuals obtained by both LP4EE and ATLM using these valida-
tion methods. The resulting p-values, corrections, and effect sizes are shown in Table
7. First of all we observe that the p-values obtained by LP4EE for the comparisons
among 3-, 5- and 10-fold are all above the significance threshold, so we cannot state
that there are statistically significant differences in the use of these validation meth-
ods using LP4EE, while there are differences in two cases using ATLM. On the other
hand, we found statistical significant differences between the use of LOO and all the
considered k-fold for 25% of the comparisons using LP4EE and 27% of the cases us-

9For completeness we report the running time of the state-of-the-art approaches and observe that CART
and KNN build method in less than a second, while RF and SVR take always more than a second and SVR
takes up to 16 seconds to build a prediction model for the largest dataset (i.e., China) in our empirical study.
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Table IV: RQs1-2 (requirements 7 & 10): Standard Accuracy (SA) obtained by the
sanity check, baseline and state-of-the-art methods using 3-fold (a) and LOO (b) cross-
validation for the 10 datasets considered in our study.

(a) 3-fold
AK China Desharnais Finnish Kitchenam Maxwell Miyazaki Nasa Nasa93Coc Telecom

Sanity Check Mean 0.27 0.25 0.24 0.22 0.19 0.27 0.16 0.11 0.22 0.24
Median 0.37 0.36 0.31 0.23 0.34 0.33 0.39 0.09 0.34 0.20

Baseline LP4EE 0.48 0.49 0.47 0.41 0.66 0.54 0.54 0.11 0.58 0.38
ATLM 0.51 0.32 0.43 0.46 0.20 0.50 0.49 -0.35 0.58 0.37

State-of-the-art CART 0.35 0.39 0.36 0.43 0.22 0.46 0.20 0.06 0.44 0.32
KNN1 0.32 0.29 0.28 0.35 0.29 0.37 0.43 0.10 0.20 0.36
KNN10 0.44 0.46 0.44 0.43 0.45 0.50 0.45 0.05 0.47 0.30
RF 0.41 0.45 0.43 0.48 0.40 0.51 0.53 0.11 0.53 0.41
SVR 0.42 0.44 0.41 0.41 0.38 0.49 0.40 0.09 0.51 0.42

(b) LOO
AK China Desharnais Finnish Kitchenam Maxwell Miyazaki Nasa Nasa93Coc Telecom

Sanity Check Mean -0.01 -0.15 0.13 0.03 0.25 0.72 0.31 -0.34 -0.23 -0.03
Median 0.14 0.03 0.21 -0.02 0.39 0.75 0.49 -0.23 -0.04 -0.25

Baseline LP4EE 0.28 0.22 0.37 0.26 0.69 0.82 0.65 -0.23 0.35 0.27
ATLM 0.31 -0.03 0.36 0.33 0.53 0.84 0.57 -0.61 0.43 0.17

State-of-the-art CART 0.10 0.06 0.30 0.47 0.27 0.81 0.44 -0.52 0.15 0.16
KNN1 0.09 -0.13 0.15 0.22 0.34 0.75 0.53 -0.33 -0.27 0.28
KNN5 0.20 0.13 0.37 0.27 0.48 0.83 0.58 -0.37 0.06 0.20
RF 0.18 0.15 0.35 0.39 0.44 0.82 0.62 -0.28 0.31 0.30
SVR 0.23 0.14 0.35 0.29 0.44 0.82 0.53 -0.26 0.25 0.29

Table V: RQ1. Sanity Check (requirement 7): Results of the Wilcoxon test and A12

effecti size obtained by comparing the MAE and MdAE distributions of our proposed
method, LP4EE (left), with those achieved by the sanity check estimators Random,
MeanEffort and MedianEffort for the 10 datasets considered in our study. For com-
pleteness, sanity check estimators are also included for ATLM (right).

(a) Wilcoxon test (3-fold)

MAE MdAE MAE MdAE
LP4EE vs. win loss tie win loss tie ATLM vs. win loss tie win loss tie
Random 10 0 0 10 0 0 Random 9 0 1 9 0 1
Mean 9 0 1 10 0 0 Mean 9 1 0 9 0 1
Median 9 0 1 9 0 1 Median 8 1 1 9 1 0
Total 28 0 2 28 0 1 Total 26 2 2 27 1 2

(b) Wilcoxon test (LOO)

MAE MdAE MAE MdAE
LP4EE vs. win loss tie win loss tie ATLM vs. win loss tie win loss tie
Random 9 1 0 10 0 0 Random 8 2 0 9 1 0
Mean 10 0 0 10 0 0 Mean 9 1 0 10 0 0
Median 10 0 0 9 1 0 Median 8 2 0 8 2 0
Total 29 1 0 29 1 0 Total 25 5 0 27 3 0

(c) Vargha and Delaney’s A12 Effect Size (3-fold)

MAE MdAE MAE MdAE
LP4EE vs. large med small large med small ATLM vs. large med small large med small
Random 9 1 0 9 1 0 Random 9 0 1 9 0 1
Mean 6 3 1 9 1 0 Mean 5 4 1 9 0 1
Median 6 3 1 5 4 1 Median 2 6 2 6 3 1
Total 21 7 2 23 6 1 Total 16 10 4 24 3 3

(d) Vargha and Delaney’s A12 Effect Size (LOO)

MAE MdAE MAE MdAE
LP4EE vs. large med small large med small ATLM vs. large med small large med small
Random 9 0 1 10 0 0 Random 8 0 2 9 0 1
Mean 10 0 0 10 0 0 Mean 9 0 1 10 0 0
Median 10 0 0 9 0 1 Median 8 0 2 8 0 2
Total 29 0 1 29 0 1 Total 25 0 5 27 0 3
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Table VI: RQ1. Do not be expensive to apply (requirement 9): Running time
(average seconds over 30 runs) taken by LP4EE, ATLM, CART, KNN, RF and SVR to
build an estimation model for each of the 10 datasets and four cross-validation (CV)
methods considered in our study.

Dataset CV LP4EE ATLM CART KNN RF SVR
AK 3-fold 0.0092 0.0046 0.0024 0.0004 2.3554 1.4460

5-fold 0.0081 0.0044 0.0021 0.0003 2.0595 1.3949
10-fold 0.0088 0.0039 0.0022 0.0003 2.3192 1.5658
LOO 0.0078 0.0003 0.0023 0.0004 2.6043 1.5395

China 3-fold 0.2298 0.0075 0.0036 0.0013 2.9212 16.3439
5-fold 0.2805 0.0067 0.0034 0.0009 2.7005 18.2760
10-fold 0.3545 0.0079 0.0039 0.0007 3.0747 22.7024
LOO 0.4356 0.0003 0.0040 0.0005 3.6875 26.5700

Desharnais 3-fold 0.0240 0.0085 0.0031 0.0005 2.3753 3.0256
5-fold 0.0259 0.0067 0.0028 0.0004 2.3922 3.3034
10-fold 0.0257 0.0059 0.0026 0.0004 2.2447 3.4593
LOO 0.0360 0.0003 0.0033 0.0005 3.0007 5.0737

Finnish 3-fold 0.0121 0.0062 0.0024 0.0004 2.2098 2.0035
5-fold 0.0129 0.0058 0.0026 0.0004 2.3855 2.2649
10-fold 0.0114 0.0052 0.0024 0.0003 2.1703 2.2422
LOO 0.0874 0.0004 0.0046 0.0005 3.4779 3.2748

Maxwell 3-fold 0.0444 0.0150 0.0040 0.0007 2.8332 3.3576
5-fold 0.0463 0.0124 0.0037 0.0006 2.7612 3.6881
10-fold 0.0448 0.0118 0.0038 0.0006 2.4820 3.8507
LOO 0.0635 0.0004 0.0041 0.0007 3.4517 5.0363

Miyazaki 3-fold 0.0129 0.0056 0.0026 0.0004 2.3288 1.8966
5-fold 0.0126 0.0050 0.0025 0.0004 2.2354 1.9051
10-fold 0.0119 0.0048 0.0023 0.0003 2.1711 2.0773
LOO 0.0150 0.0003 0.0029 0.0004 2.9094 2.4808

Kitchenam 3-fold 0.0255 0.0043 0.0026 0.0004 2.4366 2.0846
5-fold 0.0278 0.0036 0.0023 0.0004 2.1405 1.9956
10-fold 0.0307 0.0038 0.0024 0.0004 2.2541 2.2662
LOO 0.0376 0.0002 0.0026 0.0003 2.6469 2.5188

Nasa 3-fold 0.0079 0.0050 0.0028 0.0004 2.3331 1.3351
5-fold 0.0087 0.0050 0.0026 0.0004 2.7048 1.4499
10-fold 0.0065 0.0044 0.0021 0.0003 2.2017 1.3005
LOO 0.0067 0.0004 0.0038 0.0004 2.5745 1.4574

Nasa93Coc 3-fold 0.0503 0.0122 0.0039 0.0007 2.4017 3.9508
5-fold 0.0518 0.0109 0.0036 0.0006 2.4506 4.4908
10-fold 0.0631 0.0122 0.0040 0.0007 2.7360 5.7340
LOO 0.0652 0.0002 0.0031 0.0005 2.8387 5.3400

Telecom 3-fold 0.0077 0.0042 0.0022 0.0003 2.2351 1.3014
5-fold 0.0077 0.0049 0.0023 0.0004 2.3310 1.4240
10-fold 0.0058 0.0039 0.0019 0.0003 2.0089 1.2193
LOO 0.0056 0.0003 0.0027 0.0003 2.1835 1.2479

ing ATLM10. The above results suggest that both LPEE and ATLM can be sensitive
to different validation methods when LOO and k-fold are compared, but we did not
observe any statistical significant difference when using LP4EE with different k-fold
(i.e., k=3,5,10). Therefore our answer to RQ2.1 is: LP4EE exhibits a slightly better
stability than ATML against the use of different validation methods.

4.2.2. RQ2.2: Is LP4EE More Robust than ATLM to Different Data Splits?. In order to assess
to what extend LP4EE and ATLM are sensitive (i.e., robust) to different data splits we
performed 30 independent cross-validation runs using each time a different data split,
obtained uniformly at random, and observed if the results remain similar across these
runs.

Table 8 shows the best estimators for each of the 30 splits when state-of-the-art
approaches are benchmarked against ATLM (column a) or LP4EE (column b). If we
count the number of times a state-of-the-art approach is the best estimator we can
observe that this happens for 119 out of 300 cases (39%) when ATLM is used as a
baseline, while if we use LP4EE this number is much lower, i.e. 50 cases out of 270
(16%), therefore showing that in 23% of the cases we would get a wrong answer to the

10Given the difference observed in the results between the k-fold and the LOO cross-validation methods,
we report in this paper the results obtained using both the 3-fold and the LOO methods for all the RQs.
All results (including those with 5-fold and 10-fold) are available on the accompanying website to allow for
replications of our study http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/LP4EE/index.html.
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Table VII: RQ2.1. Robustness to Different Validation Methods (requirement 8):
Results of the Cliff ’s statistical significance test reported in the form p-value (p.crit)
(P(X>Y)) where p.crit is the threshold below which the p-value can be considered
significant according to the Hochbergs method, and P(X>Y) indicates the effect size
(the leading zero is omitted, e.g. 0.05 is reported as .05).

(a) MAE

Technique Dataset LOO vs. 3-fold LOO vs. 5-fold LOO vs. 10-fold 3-fold vs. 5-fold 3-fold vs. 10-fold 5-fold vs. 10-fold
LP4EE AK .03 (.01) (.70) .99 (.05) (.50) .16 (.01) (.63) .83 (.02) (.52) .11 (.01) (.65) .46 (.02) (.56)

China .48 (.01) (.57) .72 (.02) (.53) .72 (.01) (.53) .68 (.01) (.53) .99 (.05) (.50) .89 (.02) (.49)
Desharnais .03 (.01) (.70) .07 (.01) (.67) .48 (.02) (.57) .47 (.01) (.56) .58 (.02) (.55) .72 (.05) (.53)
Finnish .72 (.05) (.53) .01 (.01) (.73) .29 (.01) (.60) .09 (.01) (.63) .45 (.02) (.56) .54 (.02) (.45)
Kitchenam .16 (.01) (.63) .48 (.01) (.57) .72 (.01) (.53) .87 (.02) (.49) .82 (.02) (.52) .96 (.05) (.50)
Maxwell .29 (.01) (.60) .48 (.01) (.57) .48 (.01) (.57) .62 (.02) (.54) .54 (.02) (.55) .83 (.05) (.52)
Miyazaki .00 (.01) (.13) .29 (.02) (.40) .03 (.01) (.70) .35 (.02) (.41) .03 (.01) (.70) .40 (.05) (.57)
Nasa .16 (.01) (.37) .48 (.02) (.43) .29 (.01) (.40) .44 (.01) (.56) .88 (.05) (.51) .71 (.02) (.47)
Nasa93Coc .01 (.01) (.27) .29 (.01) (.40) .72 (.02) (.53) .62 (.02) (.46) .48 (.01) (.56) .79 (.05) (.52)
Telecom .07 (.01) (.33) .72 (.05) (.47) .29 (.02) (.60) .16 (.01) (.61) .16 (.01) (.63) .51 (.02) (.55)

ATLM AK .48 (.02) (.57) .16 (.01) (.63) .29 (.02) (.6) .23 (.01) (.61) .23 (.01) (.61) .61 (.05) (.54)
China .72 (.01) (.53) .99 (.05) (.50) .99 (.02) (.50) .83 (.02) (.52) .83 (.01) (.52) .77 (.01) (.52)
Desharnais .00 (.01) (.23) .29 (.01) (.60) .48 (.02) (.57) .08 (.01) (.64) .36 (.02) (.58) .87 (.05) (.51)
Finnish .29 (.01) (.40) .07 (.01) (.67) .72 (.02) (.47) .07 (.01) (.64) .98 (.05) (.50) .32 (.02) (.42)
Kitchenam .16 (.01) (.63) .72 (.02) (.47) .03 (.01) (.70) .87 (.05) (.48) .02 (.01) (.71) .35 (.02) (.58)
Maxwell .00 (.01) (.20) .29 (.02) (.40) .72 (.05) (.53) .11 (.01) (.62) .01 (.01) (.70) .25 (.02) (.59)
Miyazaki .16 (.02) (.63) .03 (.01) (.70) .03 (.01) (.70) .21 (.02) (.60) .04 (.01) (.68) .26 (.05) (.59)
Nasa .99 (.05) (.50) .16 (.01) (.63) .29 (.02) (.60) .24 (.01) (.59) .29 (.01) (.58) .94 (.02) (.51)
Nasa93Coc .29 (.02) (.40) .72 (.02) (.47) .16 (.01) (.63) .83 (.05) (.52) .03 (.01) (.68) .06 (.01) (.64)
Telecom .29 (.01) (.40) .29 (.01) (.60) .72 (.02) (.53) .40 (.01) (.57) .59 (.02) (.55) .79 (.05) (.52)

(b) MdAE

Technique Dataset LOO vs. 3-fold LOO vs. 5-fold LOO vs. 10-fold 3-fold vs. 5-fold 3-fold vs. 10-fold 5-fold vs. 10-fold
LP4EE AK .03 (.01) (.70) .99 (.05) (.50) .48 (.02) (.43) .51 (.02) (.45) .09 (.01) (.36) .32 (.01) (.42)

China .00 (.01) (.77) .01 (.01) (.73) .99 (.05) (.50) .59 (.02) (.54) .47 (.02) (.44) .31 (.01) (.42)
Desharnais .01 (.01) (.73) .48 (.01) (.57) .72 (.02) (.53) .48 (.01) (.44) .50 (.02) (.44) .86 (.05) (.49)
Finnish .07 (.02) (.33) .00 (.01) (.23) .00 (.01) (.17) .80 (.05) (.48) .06 (.01) (.35) .07 (.02) (.35)
Kitchenam .72 (.02) (.47) .48 (.01) (.43) .48 (.01) (.43) .41 (.01) (.43) .94 (.05) (.51) .75 (.02) (.53)
Maxwell .00 (.01) (.07) .00 (.01) (.13) .00 (.01) (.17) .70 (.05) (.47) .13 (.02) (.38) .21 (.02) (.40)
Miyazaki .01 (.01) (.27) .07 (.01) (.33) .07 (.01) (.33) .34 (.02) (.57) .65 (.02) (.54) .86 (.05) (.49)
Nasa .00 (.01) (.00) .00 (.01) (.07) .00 (.01) (.07) .94 (.05) (.49) .09 (.02) (.37) .17 (.02) (.39)
Nasa93Coc .00 (.01) (.00) .00 (.01) (.17) .03 (.01) (.30) .65 (.02) (.54) .83 (.05) (.48) .73 (.02) (.47)
Telecom .00 (.01) (.03) .00 (.01) (.13) .00 (.01) (.17) .95 (.05) (.51) .03 (.02) (.33) .04 (.02) (.34)

ATLM AK .72 (.05) (.47) .07 (.01) (.33) .00 (.01) (.23) .13 (.02) (.38) .02 (.01) (.30) .22 (.02) (.40)
China .99 (.05) (.50) .29 (.01) (.40) .16 (.01) (.37) .53 (.02) (.45) .28 (.01) (.41) .64 (.02) (.46)
Desharnais .00 (.01) (.00) .00 (.01) (.23) .01 (.01) (.27) .42 (.02) (.56) .69 (.05) (.46) .60 (.02) (.46)
Finnish .00 (.01) (.07) .00 (.01) (.07) .00 (.01) (.10) .63 (.05) (.54) .02 (.02) (.32) .01 (.02) (.30)
Kitchenam .03 (.01) (.70) .29 (.02) (.60) .16 (.02) (.37) .88 (.05) (.49) .04 (.01) (.32) .12 (.01) (.38)
Maxwell .16 (.01) (.63) .29 (.02) (.40) .48 (.05) (.43) .27 (.01) (.41) .23 (.01) (.40) .46 (.02) (.44)
Miyazaki .00 (.01) (.23) .03 (.01) (.30) .07 (.01) (.33) .29 (.02) (.41) .22 (.02) (.40) .50 (.05) (.45)
Nasa .00 (.01) (.07) .00 (.01) (.23) .00 (.01) (.10) .99 (.05) (.50) .14 (.02) (.38) .11 (.02) (.38)
Nasa93Coc .00 (.01) (.01) .07 (.01) (.33) .16 (.02) (.37) .03 (.01) (.67) .23 (.02) (.60) .60 (.05) (.46)
Telecom .00 (.01) (.10) .00 (.02) (.23) .00 (.01) (.13) .51 (.05) (.45) .00 (.01) (.26) .03 (.02) (.33)

question “Does the approach x outperform the baseline model?” if we benchmark it
against ATLM rather than LP4EE.

Figure 1 shows the mean RE∗ values and the standard deviation achieved by both
ATLM and LP4EE over 30 runs for the 10 datasets considered in this study. We can
observe that ATLM achieves an average RE∗ less than 1 and a small standard devia-
tion only for three datasets, while its average RE∗ for the China, Nasa and Nasa93Coc
datasets is over 5 with a high standard deviation. Differently, LP4EE achieves an aver-
age RE∗ value less than 1 and a small standard deviation for eight out of 10 datasets,
and for the remaining two datasets (i.e., Nasa and Telecom) this value is still very close
to 1 with a small standard deviation. Thus, LP4EE exhibits a much lower variability
across different data splits with respect to ATLM.

The analysis of the RE∗ values (Table 9) confirms that our proposed method, LP4EE,
is a very good estimator for almost all the splits scoring an RE∗ < 1 for 243 out of 300
cases (81%) and 9 out of 10 cases (90%) when we use the 3-fold validation and the LOO
validation, respectively. Such a high number of positive scores highlights that LP4EE
produces very similar results through different runs, hence it is less inclined to be good
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Table VIII: RQ2.2: Best Estimation Method per dataset when ATLM (a) or LP4EE
(b) is used as a benchmark for each of the 30 data splits (3-fold cross-validation).

AK China Desharnais Finnish Maxwell Miyazaki Kitchenam Nasa Nasa93Coc Telecom
(a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

Split1 ATLM LP4EE KNN10 LP4EE KNN10 KNN10 RF RF ATLM LP4EE ATLM LP4EE RF RF KNN1 KNN1 ATLM LP4EE KNN1 KNN1
Split2 ATLM LP4EE RF LP4EE ATLM LP4EE ATLM CART ATLM LP4EE ATLM LP4EE RF LP4EE KNN1 LP4EE ATLM LP4EE RF RF
Split3 ATLM LP4EE KNN10 LP4EE RF RF RF RF ATLM LP4EE ATLM LP4EE ATLM RF SVR SVR ATLM LP4EE RF RF
Split4 ATLM LP4EE KNN10 LP4EE KNN10 KNN10 ATLM LP4EE ATLM LP4EE KNN10 KNN10 RF RF RF RF RF LP4EE RF LP4EE
Split5 ATLM KNN10 KNN10 LP4EE KNN10 KNN10 ATLM RF ATLM LP4EE ATLM LP4EE RF LP4EE SVR LP4EE ATLM LP4EE SVR SVR
Split6 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE SVR SVR ATLM LP4EE RF LP4EE RF LP4EE KNN1 LP4EE RF LP4EE RF LP4EE
Split7 ATLM LP4EE KNN10 LP4EE ATLM LP4EE CART CART ATLM LP4EE ATLM RF ATLM LP4EE RF RF ATLM RF KNN1 KNN1
Split8 ATLM KNN10 KNN10 LP4EE RF LP4EE RF RF ATLM LP4EE KNN10 LP4EE ATLM RF RF RF ATLM RF RF LP4EE
Split9 ATLM LP4EE KNN10 LP4EE ATLM LP4EE RF RF ATLM LP4EE ATLM LP4EE RF LP4EE RF RF ATLM LP4EE ATLM KNN1
Split10 ATLM LP4EE KNN10 LP4EE ATLM LP4EE ATLM CART ATLM LP4EE ATLM LP4EE RF LP4EE KNN1 KNN1 ATLM LP4EE SVR SVR
Split11 SVR SVR KNN10 LP4EE RF LP4EE ATLM RF ATLM LP4EE KNN10 LP4EE RF LP4EE SVR LP4EE RF LP4EE ATLM RF
Split12 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE RF RF ATLM LP4EE RF LP4EE ATLM LP4EE KNN1 LP4EE ATLM LP4EE SVR SVR
Split13 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE ATLM KNN10 ATLM LP4EE ATLM LP4EE ATLM LP4EE KNN1 KNN1 ATLM RF SVR SVR
Split14 ATLM LP4EE KNN10 LP4EE ATLM LP4EE RF RF ATLM LP4EE ATLM LP4EE ATLM LP4EE KNN10 LP4EE RF RF RF LP4EE
Split15 ATLM LP4EE RF LP4EE ATLM LP4EE RF RF ATLM LP4EE ATLM RF RF LP4EE KNN1 KNN1 ATLM LP4EE KNN1 KNN1
Split16 ATLM LP4EE RF LP4EE KNN10 LP4EE RF RF ATLM LP4EE ATLM LP4EE ATLM LP4EE RF RF RF LP4EE RF RF
Split17 ATLM LP4EE KNN10 LP4EE RF RF RF RF KNN10 LP4EE CART CART ATLM LP4EE RF RF ATLM LP4EE SVR SVR
Split18 ATLM LP4EE KNN10 LP4EE RF LP4EE RF RF ATLM LP4EE ATLM LP4EE ATLM LP4EE SVR LP4EE ATLM LP4EE RF LP4EE
Split19 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE RF RF ATLM LP4EE KNN10 LP4EE ATLM LP4EE KNN10 LP4EE SVR LP4EE SVR SVR
Split20 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE ATLM RF ATLM LP4EE SVR LP4EE RF LP4EE KNN1 KNN1 SVR LP4EE SVR SVR
Split21 ATLM LP4EE RF LP4EE ATLM LP4EE ATLM SVR ATLM LP4EE CART LP4EE RF LP4EE KNN1 LP4EE SVR LP4EE KNN1 KNN1
Split22 ATLM LP4EE KNN10 LP4EE ATLM LP4EE RF RF ATLM LP4EE ATLM LP4EE RF LP4EE KNN1 LP4EE ATLM LP4EE RF RF
Split23 ATLM LP4EE KNN10 LP4EE KNN10 KNN10 RF RF ATLM LP4EE ATLM LP4EE RF RF SVR SVR ATLM LP4EE SVR SVR
Split24 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE RF RF ATLM LP4EE CART CART ATLM LP4EE RF LP4EE RF RF RF RF
Split25 ATLM LP4EE RF LP4EE ATLM LP4EE CART CART ATLM LP4EE ATLM RF ATLM RF RF LP4EE ATLM LP4EE SVR SVR
Split26 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE ATLM RF ATLM LP4EE RF LP4EE RF LP4EE KNN1 KNN1 RF LP4EE SVR LP4EE
Split27 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE RF RF ATLM LP4EE ATLM LP4EE ATLM RF RF RF ATLM LP4EE SVR LP4EE
Split28 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE RF RF ATLM LP4EE CART LP4EE ATLM LP4EE SVR LP4EE ATLM LP4EE SVR SVR
Split29 ATLM LP4EE KNN10 LP4EE RF LP4EE RF RF ATLM LP4EE KNN10 LP4EE ATLM RF SVR SVR ATLM LP4EE ATLM RF
Split30 ATLM LP4EE KNN10 LP4EE KNN10 LP4EE ATLM SVR ATLM LP4EE RF RF RF RF RF RF ATLM LP4EE CART LP4EE

Fig. 1: RQ 2.2. Robustness to Different Data Splits (requirement 8): Mean
(height) and standard deviation (bar) of RE∗ (over 30 runs) achieved by ATLM and
LP4EE per dataset. The red dotted line represents the RE∗ threshold value 1.
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due to the randomness of the data splits11. On the other hand, ATLM achieved a total
score of 187 out of 300 (62%) and 7 out of 10 (70%) using 3-fold and LOO, respectively.
Therefore, we can claim that LP4EE is more robust than ATLM for 39% of the cases
(i.e., 19% and 20% for 3-fold and LOO, respectively).

These observations are confirmed by the inferential statistical analysis, whose the
results are shown in Table 10 in form of win-loss-tie summary and large-medium-small
summary for the Wilcoxon statistical test of the RE∗ distributions and the A12 effect
size, respectively. The improvement of LP4EE over the five state-of-the-art techniques
is significant (p < 0.001) for 78 out of 100 cases (78%) and worse for only one (1%), with
effect sizes large (60%), medium (23%) and small (22%). On the other hand, the RE∗

11It is not our aim to compare LP4EE (ATLM) with the state-of-the-art methods considered in our study,
however for completeness we also report their RE∗ values in Table 9 and it is interesting to observe that
LP4EE is also more robust than all the state-of-the-art methods but KNN10 and SVR when a 3-fold valida-
tion is used and provides always same or better RE∗ values when a LOO validation is used.
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Table IX: RQ2.2: Robustness to Different Data Splits (requirement 8): RE∗ re-
sults. Columns represent estimation techniques, rows represent datasets. The value
in each cell counts how many times (out of 30 independent runs for 3-fold, and out of
one run for LOO) RE∗ < 1 for a given estimator (i.e., since RE∗ ≥ 1 indicates a poor
estimator, we count how many times an approach is actually good).

(a) 3-fold
LP4EE ATLM CART KNN1 KNN10 RF SVR

AK 30 26 6 4 17 17 19
China 30 0 29 4 30 30 30
Desharnais 30 30 23 3 30 30 30
Finnish 29 27 27 17 28 30 29
Kitchenam 30 29 0 0 30 26 26
Maxwell 30 23 26 13 30 29 30
Miyazaki 28 24 0 22 29 29 27
Nasa 0 0 2 1 0 7 11
Nasa93Coc 30 20 20 1 28 29 30
Telecom 6 8 15 18 25 13 27
Total 243 187 148 83 247 240 259

(b) LOO
LP4EE ATLM KNN1 KNN5 CART RF SVR

AK 1 1 1 1 1 1 1
China 1 1 0 1 1 1 1
Desharnais 1 1 1 1 1 1 1
Finnish 1 1 1 1 1 1 1
Kitchenam 1 0 1 1 1 1 1
Maxwell 1 1 1 1 1 1 1
Miyazaki 1 1 1 1 1 1 1
Nasa 0 0 0 0 0 0 0
Nasa93Coc 1 1 1 1 1 1 1
Telecom 1 1 1 1 1 1 1
Total 9 8 8 9 9 9 9

values achieved by ATLM are statistically significant better than the others for only
58 of 100 cases (58%) and also statistically significantly worse in 30 of 100 cases (30%)
with large (38%), medium (20%) and small (42%) effect sizes, therefore suggesting that
ATLM’s estimates are much more sensitive than LP4EE to the composition of the data
splits, which is an unwanted behaviour for a baseline benchmark.

The above results allow us to positively answer RQ2.2: LP4EE is more robust
than ATLM against the use of different data splits.

4.2.3. RQ2.3: Is LP4EE More Accurate than ATLM?. The analysis of the SA measure (Table
4) reveals that our proposed algorithm LP4EE provides better results than ATLM for
8 out of 10 (3-fold validation) and 6 out of 10 (LOO validation) datasets (i.e., 70% of
the cases) and is comparable for the remaining ones. LP4EE also outperforms almost
all the state-of-the-art techniques against which we compare it, in fact the SA values
provided by LP4EE are the highest in 60% of the cases.

These observations are confirmed by the inferential statistical analysis we have car-
ried out, whose results are summarised in Table 11 in the form of “win-loss-tie” for the
Wilcoxon test results and “large-medium-small” for the A12 effect sizes (for both the
3-fold and LOO validation methods). We can observe that LP4EE produces estimates
significantly more accurate (p < 0.001) than the five state-of-the-art techniques both in
terms of MAE and MdAE for 143 out of 200 cases (71%) and worse only for 20 out of 200
cases (10%); no statistical difference was found in the remaining 19% of the cases. The
same analysis for ATLM reveals that it is significantly better than the state-of-the-art
only for 126 out of 200 cases (63%) and worse for 40 out of 200 (20%); no significant
difference was found in the remaining 48% of the cases. The practical significance of
these differences is overall higher for LP4EE than ATLM, indeed LP4EE achieved 55%
large, 18% medium and 28% small effect sizes, while ATLM achieved 47% large, 16%
medium and 37% small effect sizes.
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Table X: RQ2.2 Robustness to Different Data Splits (requirement 8): Results of
the Wilcoxon test and A12 effect size obtained by comparing the RE∗ distributions of
LP4EE (left) and ATLM (right) with those of the state-of-the-art techniques.

(a) Wilcoxon Test (3-fold)

LP4EE vs. win loss tie ATLM vs. win loss tie
CART 7 0 3 CART 5 2 3
KNN1 9 0 1 KNN1 7 1 2
KNN10 8 0 2 KNN10 6 2 2
RF 5 1 4 RF 4 3 3
SVR 6 0 4 SVR 6 2 2
Total 35 1 14 Total 28 10 12

(b) Wilcoxon Test (LOO)

LP4EE vs. win loss tie ATLM vs. win loss tie
CART 9 1 0 CART 6 4 0
KNN1 10 0 0 KNN1 7 3 0
KNN5 8 2 0 KNN5 6 4 0
RF 8 2 0 RF 5 5 0
SVR 8 2 0 SVR 6 4 0
Total 43 7 0 Total 20 20 0

(c) Vargha and Delaney’s A12 effect size (3-fold)

LP4EE vs. large med small ATLM vs. large med small
CART 3 4 3 CART 2 3 5
KNN1 6 3 1 KNN1 4 3 3
KNN10 0 8 2 KNN10 0 6 4
RF 1 4 5 RF 1 3 6
SVR 2 4 4 SVR 1 5 4
Total 12 23 15 Total 8 20 22

(d) Vargha and Delaney’s A12 effect size (LOO)

LP4EE vs. large med small ATLM vs. large med small
CART 9 0 1 CART 6 0 4
KNN1 10 0 0 KNN1 7 0 3
KNN5 8 0 2 KNN5 6 0 4
RF 8 0 2 RF 5 0 5
SVR 8 0 2 SVR 6 0 4
Total 43 0 7 Total 30 0 20

The above results suggest that our proposed method LP4EE has increased the over-
all performance over ATLM in 28% of the cases when benchmarking widely used effort
estimation approaches. Therefore, we can positively answer to RQ2.3: LP4EE is more
accurate than ATLM when benchmarking state-of-the art estimators.

5. RELATED WORK: BASELINE MODELS FOR SOFTWARE EFFORT ESTIMATION
Many researchers in the artificial intelligence community have strongly advocated
comparing novel prediction systems against simpler existing alternatives [Cohen
1995], however the use of baseline models in effort estimation studies is not a com-
mon practice yet. This may be due to the fact that very few studies have proposed
baseline/benchmarks and the majority focused on how to compare prediction systems
and how to use suitable statistic measures (see e.g., [Kitchenham et al. 2001; Mittas
and Angelis 2013; Shepperd and MacDonell 2012; Langdon et al. 2016]).

Previous work proposing regression models [Mendes and Kitchenham 2004a; 2004b;
Mittas and Angelis 2012] and model comparison frameworks [Mittas et al. 2015] for ef-
fort estimation used the mean (or median) of past project efforts as a naive benchmark
arguing that if a novel estimation method is not able to outperform these two bench-
marks it cannot be transferred to industry [Mendes and Kitchenham 2004a; 2004b].
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Table XI: RQ2.3 Accuracy (requirement 10): Results of the Wilcoxon test and A12

effect sizes obtained by comparing the MAE and MdAE distributions of LP4EE (left)
and ATLM (right) with those of the state-of-the-art techniques.

(a) Wilcoxon test (3-fold)

MAE MdAE MAE MdAE
LP4EE vs. win loss tie win loss tie ATLM vs. win loss tie win loss tie
CART 8 0 2 7 0 3 CART 5 1 4 6 0 4
KNN1 7 0 3 7 0 3 KNN1 8 1 1 7 2 1
KNN10 5 0 5 6 0 4 KNN10 1 1 8 7 0 3
RF 4 1 5 5 1 4 RF 3 2 5 5 1 4
SVR 5 0 5 7 0 3 SVR 5 2 3 7 1 2
Total 29 1 20 32 1 17 Total 22 7 21 32 4 14

(b) Wilcoxon test (LOO)

MAE MdAE MAE MdAE
LP4EE vs. win loss tie win loss tie ATLM vs. win loss tie win loss tie
CART 9 1 0 8 2 0 CART 7 3 0 8 2 0
KNN1 9 1 0 8 2 0 KNN1 8 2 0 8 2 0
KNN5 8 2 0 8 2 0 KNN5 5 5 0 9 1 0
RF 8 2 0 6 4 0 RF 5 5 0 7 3 0
SVR 8 2 0 10 0 0 SVR 7 3 0 8 2 0
Total 42 8 0 40 10 0 Total 32 18 0 40 11 0

(b) Vargha and Delaney’s A12 effect size (3-fold)

MAE MdAE MAE MdAE
LP4EE vs. large med small large med small ATLM vs. large med small large med small
CART 2 6 2 3 4 3 CART 2 3 5 4 2 4
KNN1 5 2 3 5 2 3 KNN1 1 7 2 6 1 3
KNN10 0 5 5 2 4 4 KNN10 0 1 9 3 4 3
RF 1 3 6 3 2 5 RF 0 3 7 2 3 5
SVR 1 4 5 3 4 3 SVR 0 5 5 4 3 3
Total 9 20 21 16 16 18 Total 3 19 28 19 13 18

(d) Vargha and Delaney’s A12 effect size (LOO)

MAE MdAE MAE MdAE
LP4EE vs. large med small large med small ATLM vs. large med small large med small
CART 9 0 1 8 0 2 CART 7 0 3 8 0 2
KNN1 9 0 1 8 0 2 KNN1 8 0 2 8 0 2
KNN5 8 0 2 8 0 2 KNN5 5 0 5 9 0 1
RF 8 0 2 6 0 4 RF 5 0 5 7 0 3
SVR 8 0 2 10 0 0 SVR 7 0 3 8 0 2
Total 42 0 8 40 0 10 Total 32 0 18 40 0 10

Lately [Shepperd and MacDonell 2012] proposed the use of random guessing as a naı̈ve
benchmark to assess the usefulness of a prediction system. [Whigham et al. 2015] have
been the first ones to outline a preliminary set of requirements (no. 1 to 7 in Table 1)
for a baseline estimation model. Based on these criteria [Whigham et al. 2015] pro-
posed the use of Automatically Transformed Linear Model (ATLM) as a baseline, and
empirically showed that more sophisticated effort estimation approaches published in
literature were outperformed by this simpler approach yet they were not benchmarked
against any baseline when proposed.

In this paper we have refined the guidelines of [Whigham et al. 2015] by suggest-
ing an additional requirement, i.e., be robust to different data splits and validation
methods, which we argue is crucial to mitigate the conclusion instability in effort es-
timation studies, and also including two requirements originally suggested for search-
based baseline methods [Chen et al. 2018] as they are also relevant to effort estimation
models (i.e., do not be expensive to apply and offer comparable performance to standard
methods.). Moreover, we have extended the study of [Whigham et al. 2015] by empiri-
cally evaluating the effectiveness of ATLM for 10 publicly available industrial datasets
and by proposing a novel baseline model based on Linear Programming (see Section
2), which has proved to be more robust and accurate than ATLM in benchmarking
state-of-the-art estimation methods according to the results discussed in Section 4.
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6. CONCLUSIONS AND FUTURE DIRECTIONS
In this paper we have proposed a novel baseline model for effort estimation based
on Linear Programming (dubbed as LP4EE) and validated its effectiveness by car-
rying out a thourough empirical study, which follows best practice for a robust as-
sessment of estimation models and includes a comparison with a previous baseline
model, namely ATLM [Whigham et al. 2015]. In particular, we assessed the effec-
tiveness of both LP4EE and ATLM when benchmarking widely used regression and
analogy-based estimation methods (i.e., CART, KNN, RF, SVR) by using 10 publicly
available industrial datasets, 30 independent runs (i.e., using different data splits)
and four cross-validation methods (i.e., 3-fold, 5-fold, 10-fold, LOO), for a total of 2,000
(10 ∗ 30 ∗ 4) scenarios.

The results of our study show that both ATLM and LP4EE provide comparable
or better results than the more sophisticated state-of-the-art techniques for all the
datasets considered, therefore confirming the need to benchmark every other propos-
als against robust baseline benchmarks. Moreover, our results reveal that LP4EE is
more accurate and also more robust (i.e., it provides stable results against different
data splits and validation methods) than ATLM.

The positive results we have found for our novel approach to predictive modelling
benchmarking are very encouraging and suggest that using LP4EE as a baseline could
reduce the conclusion instability still widely observed in effort estimation studies.

To facilitate the adoption of LP4EE, we made a reference implementation freely
available for the R environment1, which is a very popular and widely used free software
environment for statistical computing.

We believe that the results presented in this paper together with a ready-to-use
baseline tool can foster more rigorous benchmarking in future effort estimation stud-
ies. Moreover, future work could investigate the effectiveness of LP for different effort
estimation scenarios (e.g., cross- vs. within-company [Mendes et al. 2014; Minku et al.
2015], chronological estimation [MacDonell and Shepperd 2003; Ferrucci et al. 2014;
Sigweni et al. 2016], web effort estimation [Di Martino et al. 2011; Ferrucci et al. 2012;
Di Martino et al. 2016]) as well as for different estimation tasks in software engineer-
ing (e.g., predicting apps’ rating [Sarro et al. 2018] and size [Ferrucci et al. 2015a;
2015b], bug-fixing time [Bhattacharya and Neamtiu 2011; Zhang et al. 2013]) or in
other domains. Besides, future studies could extend the LP model we proposed herein,
for example to consider different and multiple optimisation functions [Ferrucci et al.
2010a; Sarro et al. 2016].
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A. DESCRIPTION OF THE DATASETS USED IN THE EMPIRICAL STUDY
The Albrecht+Kemerer (AK) dataset consists of 24+15 (=39) industrial software
projects coming from the Albrecht [Albrecht and Gaffney 1983] and Kemerer [Kemerer
1987] datasets, respectively. The Albrecht software projects were developed by the IBM
DP service organisation and are characterised in terms of thousand Source Lines of
Code (i.e., KSLOC) and Function Points count, which is essentially a weighted sum
of the numbers of inputs, outputs, files, and inquiries provided to, or generated by, a
software. Also, the effort required to design, develop, and test the application is pro-
vided for each of the projects in terms of number of work-hours. The Kemerer software
projects are characterised by two categorical variables (Language and Hardware), two
software size measures based on Source Lines of Code (i.e., KSLOC), Adjusted Func-
tion Points (i.e., AdjFP) and Raw Function Points (i.e., RAWFP), and two dependent
variables, namely the project’s duration and the total effort needed to realise each of
the projects and computed based on man/month. Note that the use of the KSLOC and
the project’s duration is usually discouraged in the construction of effort estimation
models because these variables are usually correlated to the effort. Since Albrecht and
Kemerer have one independent variables in common which can be used at prediction
time (i.e., AdjFP) we select this to build the effort estimation model and used the vari-
able effort as the dependent one.

The China dataset [Yun 2010] includes data of 499 projects developed by different
Chinese companies. We used the basic elements used to calculate Function Points (i.e.,
Input, Output, Inquiry, File, Interface) as independent variables and the variable Ef-
fort as the dependent one.

The Desharnais dataset [Desharnais 1989] comprises 81 software projects derived
from a Canadian software company. We considered the total effort as a dependent vari-
able, but not the length of the code. We also excluded from our analysis the categorical
variables (i.e., Language and YearEnd) and four projects that have missing values,
as done in previous work (e.g., [Sarro et al. 2016; Kadoda and Shepperd 2001; Shep-
perd and Schofield 2000]). Therefore, we used the following independent variables:
TeamExp (i.e., the team experience measured in years), ManagerExp (i.e., the man-
ager experience measured in years), Entities (i.e., the number of the entities in the
system data model), Transactions (i.e., the number of basic logical transactions in the
system), AdjustedFPs (i.e., the Adjusted Function Points).

The Finnish dataset [Shepperd et al. 1996] contains data from 38 industrial soft-
ware projects developed by nine different Finnish companies. Each project is described
by the dependent variable Effort, expressed in person-hours, and five other variables,
among which we excluded the PROD variable since it represents the productivity ex-
pressed in terms of Effort and size, and only used HW (i.e., the type of hardware), FP
(i.e., Function Points), AR and CO as the independent variables to build effort estima-
tion models.
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The Kitchenham dataset [Kitchenham et al. 2002] contains data from 145 mainte-
nance and development industrial projects managed by a single outsourcing company,
including effort estimates and actuals (dependent variable), and function points count
(independent variable). The estimates were made as part of the company’s standard
project estimating process that involved producing two or more estimates for each
project and selecting one estimate to be the basis of client-agreed budgets.

The Maxwell dataset [Maxwell 2002] contains 62 industrial software projects devel-
oped for one of the biggest commercial banks in Finland. We employed 17 features:
Function Points (SizeFP) and 16 ordinal variables, i.e., number of different develop-
ment languages used (Nlan), customer participation (T01), development environment
adequacy (T02), staff availability (T03), standards used (T04), methods used (T05),
tools used (T06), softwares logical complexity (T07), requirements volatility (T08),
quality requirements (T09), efficiency requirements (T10), installation requirements
(T11), staff analysis skills (T12), staff application knowledge (T13), staff tool skills
(T14), and staff team skills (T15). As for the Desharnais dataset, we did not use cate-
gorical variables.

The Miyazaki dataset [Miyazaki et al. 1994] is composed by 48 industrial software
projects developed by 20 different software companies of the Fujitsu Large Systems
Users Group. For this dataset, we considered the following independent variables:
SCRN (i.e., the number of different input or output screens), FORM (i.e., the num-
ber of different report forms), and FILE (i.e., the number of different record format).
The dependent variable is Effort, defined as the number of person-hours needed from
system design to system test, including indirect effort such as project management.

The Nasa dataset [Bailey and Basili 1981] consists of 18 software projects devel-
oped for the NASA/Goddard Space Flight Center. The projects used in our analysis
are described in terms of the two independent variables Methodology (Me) and Ex-
perience (Exp), which represent, respectively, the methodologies used during design
and development, and the experience of the customer and of the programmers. Effort
is the dependent variable and measures the actual effort (expressed in man-months)
needed to release each of the projects from the beginning of the design phase through
the acceptance testing, therefore it includes the effort for programming, management
and support hours. A detailed description of these factors and the collection procedure
can be found elsewhere [Bailey and Basili 1981]. Note that we excluded from our anal-
ysis those factors that are unknown in the early phases of a project such as the actual
number of source lines developed [Bailey and Basili 1981].

The Nasa93Coc dataset [Menzies et al. 2005] consists of 93 projects developed be-
tween 1971 and 1987 by different NASA centres. The effort (our dependent variable)
was measured in calendar months of 152 hours and includes development and man-
agement hours. This dataset includes 15 COCOMO I discrete attributes (i.e., rely, data,
cplx, time, stor, virt, turn, acap, aexp, pcap, vexp, lexp, modp, tool, sced) , which are
in the range Very Low to Extra High as defined by [Boehm 1981] and software size in
thousand Source Lines of Code (i.e., KSLOC), which was estimated directly or with a
function point analysis.

The Telecom dataset [Shepperd and Schofield 2000] consists of 18 projects charac-
terised by two independent variables, i.e., the number of changes made as recorded
by the configuration management system (Changes) and the number of files changed
by a given enhancement project (i.e., Files), and the dependent variable Effort which
constitutes the actual effort. According to [Shepperd and Schofield 2000] only the vari-
able Files can be used for predictive purposes since none of the other information were
available at the time the prediction was made.
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