Linear Programming as a Baseline for Software Effort Estimation

Federica Sarro, University College London
Alessio Petrozziello, University of Portsmouth

Software effort estimation studies still suffer from discordant empirical results (i.e., conclusion instability)
mainly due to the lack of rigorous benchmarking methods. So far only one baseline model, namely Automati-
cally Transformed Linear Model (ATLM), has been proposed yet it has not been extensively assessed. In this
paper, we propose a novel method based on Linear Programming (dubbed as Linear Programming for Effort
Estimation, LP4EE) and carry out a thorough empirical study to evaluate the effectiveness of both LP4EE
and ATLM for benchmarking widely used effort estimation techniques. The results of our study confirm the
need to benchmark every other proposal against accurate and robust baselines. They also reveal that LP4AEE
is more accurate than ATLM for 17% of the experiments and more robust than ATLM against different data
splits and cross-validation methods for 44% of the cases. These results suggest that using LP4EE as a base-
line can help reduce conclusion instability. We make publicly available an open-source implementation of
LP4EE in order to facilitate its adoption in future studies.

CCS Concepts:*Software and its engineering — Software creation and management;

Additional Key Words and Phrases: Software Effort Estimation, Linear Programming, Benchmarking

1. INTRODUCTION

Software effort estimation is the process of predicting the most realistic amount of ef-
fort (usually expressed in terms of person-hours or person-month) required to develop
or maintain a software project.

Due to the strategic importance to software companies of getting accurate effort es-
timates, over the last 30 years researchers have focused on the construction of formal
models to support the engineers in this process [Jorgensen and Shepperd 2007]. As a
result a variety of promising approaches have been proposed ranging from the use of
statistical models (e.g., [Briand and Wieczorek 2002]) and analogy-based techniques
(e.g., [Kocaguneli et al. 2012b; Kocaguneli et al. 2013; Shepperd and Schofield 2000])
to the more recent use of machine learning (e.g., [Mair et al. 2000; Mendes and Mosley
2008]), search-based approaches (e.g., [Ferrucci et al. 2009; Ferrucci et al. 2010b; Fer-
rucci et al. 2014; Sarro et al. 2016]) and combinations of two or more of these methods
(e.g., [Corazza et al. 2010; Kocaguneli et al. 2010; Corazza et al. 2013; Kocaguneli et al.
2012a]).

Although these techniques have pushed forward the state-of-the-art, it is also true
that previous research has often shown discordant empirical evidence produced by a
diversity of predictors, historical datasets and methods used for the evaluation, thus
bringing to the well-known “conclusion instability” phenomenon in the software effort
estimation research (i.e., different sets of best effort predictors exist under various
different situations) [Keung et al. 2013].

Previous work highlighted that a central role to this problem is played by three im-
portant factors: (i) the lack of usage of baseline benchmarks [Whigham et al. 2015];
(i1) the validation method and subset of the data used for models’ training and testing

Author’s addresses: f.sarro@ucl.ac.uk (corresponding author), alessio.petrozziello@port.ac.uk

Alessio Petrozziello

A:2 F. Sarro and A. Petrozziello

Table I: Requirements of a Baseline Estimation Model.

. Be simple to describe, implement, and interpret.

. Be deterministic in its outcomes.

. Be applicable to mixed qualitative and quantitative data.

. Offer some explanatory information regarding the prediction
by representing generalised properties of the underlying data.

. Have no parameters within the modelling process that require tuning.

. Be publicly available via a reference implementation and associated
environment for execution.

7. Generally be more accurate than a random guess or an estimate based

purely on the distribution of the response variable.

8. Be robust to different data splits and validation methods.

9. Do not be expensive to apply.

10. Offer comparable performance to standard methods.

W N~

S Ot

[Myrtveit et al. 2005]; (iii) the evaluation measures used for the comparison [Kitchen-
ham and Mendes 2009; Myrtveit et al. 2005; Foss et al. 2003; Mittas and Angelis 2013].

For the above reasons, a thorough comparative assessment of effort prediction mod-
els has became necessary and selecting reliable baselines for comparative benchmark-
ing is crucial to this purpose. However, no de facto baseline benchmark either in terms
of estimation models or repository is available to effort estimation studies. Only re-
cently [Whigham et al. 2015] have outlined seven requirements (no. 1-7 in Table 1)
that a baseline model should possess and discussed the possible use of an Automati-
cally Transformed Linear Model (ATLM) as a baseline.

In this paper, we propose (and show that it is important) considering other crucial
requirements in addition to those previously suggested by [Whigham et al. 2015].

First of all, we claim that a baseline model should prove to be robust to different
data splits under different cross-validation methods in order to mitigate conclusion
instability (requirement no. 8 in Table 1). Let us support our claim with an example:
Consider the scenario where a novel estimation method M is proposed and assessed
with respect to a given baseline model B by using only one validation method V and
one data split D, if B is sensitive to the selection of V and D, it may occur that M
outperforms B only for this particular instance of V' and D. Previous studies show
that this scenario is not an exceptional one, but it is actually quite common [Sigweni
et al. 2016; Rodriguez et al. 2010]. Therefore, we argue that this requirement must be
met by a baseline, in addition to those previously proposed by [Whigham et al. 2015],
in order to qualify (and be used) as a robust benchmark.

We also augment this requirement set with two additional requirements (no. 9 and
10 in Table 1) which were originally suggested by [Chen et al. 2018] for benchmarking
search-based software engineering methods and are relevant to baseline effort esti-
mation methods too. These requirements are: “do not be expensive to apply” (which
can be measured, for example, in terms of required CPU or number of evaluations de-
pending on the approach used) and “offer comparable performance to standard meth-
ods” (indeed while we do not expect a baseline model to outperform all state-of-the-art
methods, it should offer a level of performance that often approaches existing standard
methods in order to be insightful [Chen et al. 2018]).

In this paper, we investigate the suitability of ATLM with respect to all these re-
quirements and also propose a novel baseline model, dubbed as Linear Programming
for Effort Estimation (LP4EE), which is as simple as the one proposed by [Whigham
et al. 2015] yet is based on a strong optimization framework such as Linear Program-
ming, and has never been used for effort estimation before.

Alessio Petrozziello

Linear Programming as a Baseline for Software Effort Estimation A:3

To this end we empirically assess the effectiveness of both models for benchmark-
ing well-known and widely used regression and analogy-based estimation methods
(i.e., Classification and Regression Tree, Random Forest, Support Vector Regression,
K-Nearest Neighbour) for 10 publicly available industrial datasets by using four dif-
ferent cross-validation methods (i.e., k-fold with k=3, 5, 10, and leave-one-out) and
repeating the evaluation 30 times with different data splits, following best practice to
build and assess prediction systems [Shepperd and MacDonell 2012; Whigham et al.
2015; Langdon et al. 2016].

The results of our empirical study show that both approaches satisfy the require-
ments to be qualified as a baseline model for effort estimation yet LPAEE provides
similar or more accurate estimates than ATLM and is much less sensitive than ATLM
to multiple data splits and different cross-validation methods, therefore suggesting
that using LP4EE as a baseline reduces conclusion instability.

In order to facilitate the adoption of LP4EE as an estimation method and baseline
model in future studies we make available a free and open-source implementation for
the R environment!.

To summarise, the contributions of our work are:

— the suggestion of three important requirements for a baseline model, in addition to
the ones proposed in literature by [Whigham et al. 2015].

— a novel estimation method for effort estimation based on Linear Programming (i.e.,
LP4EE), which satisfies all the requirements to qualify as a baseline;

— a thorough empirical study (based on best practice for evaluating prediction models)
to assess the effectiveness of our LP4EE approach and the previously proposed base-
line ATLM, both in terms of estimation accuracy and robustness to different data
splits and validation methods;

—the results of our empirical study revealed that both LPAEE and ATLM provide
better or comparable results with respect to state-of-the-art effort estimation tech-
niques, thus confirming the need to compare any new technique against a well-known
and robust baseline which represents a method of easy usage and public availability,
besides being already approved and tested, allowing a fair and adequate assessment
[Whigham et al. 2015];

— we also found that the use of different data splits and cross-validation methods can
bring to significantly different results, however LP4EE is less sensitive than ATLM
with respect to this issue, thus suggesting that using LP4EE as a baseline reduces
conclusion instability yet provides similar or more accurate estimates than ATLM;

— a freely available implementation of LP4EE!, which aims to facilitate its adoption
and a more rigorous benchmarking in subsequent effort estimation studies.

The rest of the paper describes the mathematical Linear Programming model we
propose for effort estimation together with its usability and implementation (Section
2). Then we present the design (Section 3) and results (Section 4) of the empirical study
we carried out to assess our proposal. We conclude the paper presenting related work
on baseline models for software effort estimation (Section 5) and our final remarks
(Section 6).

2. OUR PROPOSAL: LINEAR PROGRAMMING FOR EFFORT ESTIMATION (LP4EE)

Linear Programming (LP) [Nash 2000] aims to achieve the best outcome from a mathe-
matical model with a linear objective function subject to linear equality and inequality

1The source code of our R script (together with the data and the results of our study) is available on the ac-
companying website http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/LPAEE/index.html and GitHub project
https://github.com/fedsar/LP4EE.

Alessio Petrozziello

A4 F. Sarro and A. Petrozziello

constraints. The feasible region is given by the intersection of the constraints and the
Simplex (linear programming algorithm) is able to find a point in the polyhedron where
the function has the smallest value (minimisation) in polynomial time.

The model proposed for the effort estimation problem minimises the Sum of Absolute
Residual (SAE), subject to an inequality constraint imposing that the effort estimated
for each of the projects in the training set has to fall in R, as follows:

minimise Z | Zaija:j — ActualEffort,|
i=1 j=1
n m (1)
subject to Z Zaij z; >0
i=1 j=1
z; >0, j=1..m

where a;; represents the coefficient of the j feature for the i'" project, z; is the value
of the jt" feature, and ActualEffort, is the actual effort of the i* project.

Due to the non-linearity of the absolute value function, the above model has been
linearised as follows:

n
minimise E t;

i=1
subject to Z Z a;;xjy >0
i=1 j=1
Z Z a;;x; —ActualEffort, —t; <0 (2)
i=1 j=1
n m
Z Z Qi —ActualE'fforti +t; > 0
i=1 j=1
z; >0, ji=1,...m
t; free, i=1,...,n

Let X;, Vi be the part of Eq. (1) wrapped in the absolute value.V:, the slack variable ¢;
and the following two constraints have been added to the model:

Xi <t

—-X; <ty
Therefore we can have one of the following cases:

X; > 0 : The second constraint, — X; < t;, is always fulfilled as — X is negative and ¢; is
implicitly > 0. Since ¢; is minimised by the objective function and 0 < X; < ¢;, the
first constraint, X; < t,, is satisfied and ¢; is abs(X).

X; <0 :The first constraint, X; < ¢;, is always fulfilled as X is negative and ¢; is implicitly
> 0. Since t; is minimised by the objective function and 0 < —X; < t;, the second
constraint, —X; < t;, is satisfied and ¢; is abs(X).

X; =0 :Both constraints are always fulfilled since ¢; is implicitly > 0. Since ¢; is minimised
by the objective function, 0 = X; = ¢;. So ¢; is abs(X).

When a new project is presented to the model, the following equation is used to
predict its effort:

Alessio Petrozziello

Linear Programming as a Baseline for Software Effort Estimation A:5

EstimatedEffort = a1x1 + ... + anzy, 3)

where x represents the value of a given project feature and a represents the corre-
sponding coefficient evaluated by LP.

2.1. LP4EE: Model usability and the R Package

Given a dataset of past software projects (or components), where each project P; is
characterised by the vector [z1,..,2,,y], where x4, ..., x,, are the project features (inde-
pendent variables) and y is the actual effort needed to realise the project P; (dependent
variable), LP4EE automatically builds the minimisation model as defined in Eq. (2)
and finds the global optima. To solve this model we used the Simplex algorithm con-
ceived by [Dantzig 1998] and implemented in the R packages 1inprog and 1pSolve?.

We realised LP4EE as an R script and made it free and open source to facilitate its
adoption in future effort estimation studies®. This script offers a simple interface to
use our proposed LP4EE approach in a fully automated way.

To run the script one has to call the function lp(trainingsetDF, testsetDF,
column), where trainingsetDF and trainingsetDF are the training and test set data
tables, respectively, and column is a vector of strings containing the names of the in-
dependent variables used for the construction of the estimation model and the depen-
dent variable (e.g., c (¢ ‘varA", ‘‘varB", ‘‘Effort")), as named in the data tables.
The training set and test set data tables are formed by m rows (one per software
project/component), n columns, each representing an independent variable, and the
n + 1 column representing the dependent variable (in our case the effort).

Given a training set, the training function returns the best weights found for each
of the predictors on the training set. If a test set is provided, the best model found on
the training set is automatically evaluated on the test set (i.e., to test its predictive
ability) and the estimated and actual values for each of the target projects contained
in the test set are returned together with the corresponding absolute residuals (i.e.,
|ActualEffort — EstimatedEffort|, which can be used by the user to compute other accu-
racy measures for further analysis (see Section 3.3 for the definition of some accuracy
measures).

It is worth noting that the input data to LP4EE neither needs any pre-processing nor
requires satisfying any assumptions; these are tasks that often imply manual effort
and knowledge of some statistics which even if basic may negatively affect the predic-
tions if not applied correctly (see e.g., [Kitchenham and Mendes 2009]). Therefore, this
is a strenght of LP4EE which many other approaches do not have, in fact they require
certain assumptions to hold in order to be used correctly. These approaches include
simple statistical methods such as linear regression which assumes that the data sat-
isfy at least four important criteria [Kitchenham and Mendes 2009] and ATLM which
still requires manual pre-processing to handle multicollinearity although it applies
automatic data transformation in order to comply with these criteria

3. EMPIRICAL STUDY DESIGN

This section presents the design of the empirical study we carried out to assess the
suitability of Linear Programming as a baseline model for effort estimation: We de-
scribe the research questions, the data and techniques we experimented with to an-

2These packages are freely available from Cran-R (https:/cran.r-project.org/web/packages/linprog/index.
html, http://cran.r-project.org/src/contrib/packages.html\#lpSolve) and can be easily installed in the R en-
vironment by calling the functions install.packages("linprog") and install.packages("1lpSolve"), and
imported in your code (require(linprog) require(lpSolve).

3The source code of our R script is available at https:/github.com/fedsar/LP4EE

Alessio Petrozziello

A:6 F. Sarro and A. Petrozziello

swer these questions, and the validation approach and evaluation criteria we used to
assess the results.

3.1. Research Questions

Since we propose LP4EE as a novel estimation model, first of all we need to check
whether it satisfies the seven requirements outlined by [Whigham et al. 2015] in order
to qualify as a suitable baseline, together with the additional ones we have suggested
herein (see Table 1 for the full list of requirements). This constitutes our first research
question:

RQ1. Satisfying the Requirements of a Baseline Model: Does our proposed ap-
proach LP4EE meet the requirements of a baseline estimation model?

To answer this question we explain how LP4EE satisfies the first six quality require-
ments proposed by [Whigham et al. 2015] and empirically show that LPAEE meets
requirement no. 7 (i.e., be able to outperform simple effort estimation methods) by
comparing it with three simple methods recommended as sanity check [Mendes and
Kitchenham 2004a; Shepperd and MacDonell 2012] (i.e., Mean and Median Effort and
Random Guessing, which are explained in Section 3.5). Given the simplicity of these
approaches (both in terms of definition/comprehensibility and ease of usage) it is clear
that if LP4EE does not outperform them, it cannot qualify as a suitable baseline bench-
mark. Also, as suggested by [Chen et al. 2018] we empirically assess that LP4EE is not
expensive to apply (requirement no. 9).

In order to establish whether our proposed approach (LP4EE) can be proposed as an
accurate and robust baseline model for effort estimation, our second research question
investigates its performance when used as a benchmark to asses widely used state-of-
the art techniques:

RQ2. Benchmarking State-of-the-art Estimators: Can LP4EE be effectively used
as a baseline model?

If we find that LP4EE is comparable, yet better than more sophisticated techniques,
then we have scientific evidence to suggest that it can be adopted as the de facto esti-
mation model for benchmarking novel proposals.

To answer RQ2 we compare the performance of LP4EE with respect to another base-
line for effort estimation (i.e., ATLM), which to the best of our knowledge has been the
first and (so far) the only approach recommended as a baseline model in the effort
estimation community. To perform this comparison we take into account not only the
estimation accuracy of both models (requirement no. 10), but also their stability across
different data splits and validation methods (requirement no. 8) as it is well-known
that different choices may lead to different results [Foss et al. 2003; Sigweni et al.
2016]. Thus, it is crucial that a baseline benchmark provides similar results across
different data splits and cross-validation methods.

This motivates the following sub-questions. First of all we investigate to what extent
LP4EE and ATLM are robust to different validation methods:

RQ2.1. Different Validation Methods: Is LP4EE (ATLM) robust to the use of
different cross-validation methods?

To answer this question we repeat our experiments by using four cross-validation
methods: leave-one-out (LOO), 3-fold, 5-fold, and 10-fold cross-validation. We use the
Cliff’s statistical test and effect size (see Section 3.4) to assess whether LP4EE and
ATLM provide statistically different estimates when different validation methods are
used.

Then, we investigate how robust (i.e., sensitive) these baseline models are against
different data splits:

RQ2.2 Different Data Splits: Is LP4EE more robust than ATLM to the use of differ-
ent data splits?:

Alessio Petrozziello

Linear Programming as a Baseline for Software Effort Estimation A7

To answer this question we compare all the algorithms in terms of the Variance Rel-
ative Error (RE*) measure (see Section 3.4) and a stability assessment is extensively
performed, as suggested by [Whigham et al. 2015]. If our method will prove to be ro-
bust (i.e., provide similar results) across different runs and splits, it means that the
it is less likely to be influenced by randomness, therefore fewer comparisons will be
needed in future when comparing a new algorithm to our baseline model.

Last but not least we assess if our proposal provides more accurate estimates than
ATLM:

RQ2.3 Accuracy: Is LP4EE more accurate than ATLM for benchmarking state-of-
the-art estimation methods?

To answer this question we compare the estimates of both baseline models, LP4EE
and ATLM, with those of four state-of-the art estimation methods (i.e., Classification
and Regression Tree, K-Nearest Neighbour, Random Forest, Support Vector Regres-
sion) by using unbiased summary measures (i.e., Mean Absolute Error, Median Ab-
solute Error, Standardized Accuracy), statistical significance test (i.e., Wilcoxon Test)
and effect size (i.e., Vargha and Delaney’s A15), as detailed in Section 3.4.

3.2. Datasets

To empirically investigate our RQs we used 10 publicly available datasets (namely
Albrecht+Kemerer (AK), China, Desharnais, Finnish, Kitchenam, Maxwell, Miyazaki,
Nasa, Nasa93Coc, Telecom) containing a diverse sample of industrial software projects
developed by a single company or several software companies [Menzies et al. 2017].
A detailed description of each of these datasets can be found in Appendix A, while
in Table 2 we report the source of the data, the number of observations and the de-
scriptive statistics of the variables used for each of the datasets. We can observe that
these datasets exhibit a high degree of diversity: They differ for number of observations
(from 18 to 499), number and type of features (from 1 to 17), technical characteristics
(e.g., software projects developed in different programming languages and for differ-
ent application domains, ranging from telecommunications to commercial information
systems), companies involved (e.g., the Desharnais dataset is within-company (WC),
the others are cross-company (CC)) and geographical locations (software projects com-
ing from China, Canada, Finland, etc.). Furthermore, all these datasets have been
widely used in several effort estimation studies (see e.g., [Sarro et al. 2016; Sarro et al.
2012b; Ferrucci et al. 2014; Kocaguneli et al. 2012a; Sigweni et al. 2016; Shepperd and
Schofield 2000]).

3.3. Evaluation Criteria

Several measures have been proposed to evaluate the accuracy of a prediction model.
Generally they are based on the Absolute Error (i.e., |ActualEffort — EstimatedEffort|).
The most popular are MMRE and Pred(25) [Conte et al. 1986] but have been widely
criticised [Foss et al. 2003; Kitchenham et al. 2001; Korte and Port 2008; Port and Ko-
rte 2008; Shepperd et al. 2000; Stensrud et al. 2003] for being biased towards under-
estimations and for behaving very differently when comparing prediction models. The
use of other (more standardised) measures, such as the Mean Absolute Error (MAE)
or Median Absolute Error (MdAE) and the Standardized Accuracy (SA) has been rec-
ommended to compare prediction models [Shepperd and MacDonell 2012; Langdon
et al. 2016], while the use of the Variance Relative Error (RE*) has been suggested by
[Whigham et al. 2015] to evaluate baseline models.

Alessio Petrozziello

A:8

F. Sarro and A. Petrozziello

Table II: Descriptive statistics of the 10 datasets used in our study.

Dataset Type Variable Min Max Mean Std. Dev.
AK CC AdjFP 99.90 2307.00 782.80 549.75
(39 projects) Effort 0.50 1107.00 97.79 188.27
China CC Input 0.00 9404.00 167.10 486.34
(499 projects) Output 0.00 2455.00 113.60 221.27
Enquiry 0.00 952.00 61.60 105.42
File 0.00 2955.00 91.23 210.27
Interface 0.00 1572.00 24.23 85.04
Effort 26.00 54620.00 3921.00 6481.00
Desharnais WC TeamExp 0.00 4.00 2.30 1.33
(77 projects) ManagerExp 0.00 4.00 2.65 1.52
Entities 7.00 386 121.54 86.11
Transactions 9.00 661.00 162.94 146.09
AdjustedFPs 73.00 1127.00 284.48 182.26
Effort 546.00 23490.00 4903.95 4188.19
Finnish CC HW 1.00 3.00 1.26 0.64
(38 projects) AR 1.00 5.00 2.24 1.50
FP 65.00 1814.00 763.58 510.83
CcO 2.00 10.00 6.26 2.73
Effort 460.00 26670.00 7678.29 7135.28
Kitchenham CC AFP 15.36 18140 527.70 1521.99
(145 projects) Effort 219.00 113900.00 3113.00 9598.00
Maxwell CC SizeFP 48.00 3643.00 673.31 784.04
(62 projects) Nlan 1.00 4.00 2.55 1.02
TO01 1.00 5.00 3.05 1.00
T02 1.00 5.00 3.05 0.71
T03 2.00 5.00 3.02 0.89
T04 2.00 5.00 3.19 0.70
T05 1.00 5.00 3.05 0.71
T06 1.00 4.00 2.90 0.69
T07 1.00 5.00 3.24 0.90
T08 2.00 5.00 3.81 0.96
T09 2.00 5.00 4.06 0.74
T10 2.00 5.00 3.61 0.89
T11 2.00 5.00 3.42 0.98
T12 2.00 5.00 3.82 0.69
T13 1.00 5.00 3.06 0.96
T14 1.00 5.00 3.26 1.01
T15 1.00 5.00 3.34 0.75
Effort 583.00 63694.00 8223.20 10500.00
Miyazaki CC SCRN 0.00 281.00 33.69 47.24
(48 projects) FORM 0.00 91.00 22.38 20.55
FILE 2.00 370.00 34.81 53.56
Effort 896.00 253760.00 13996.00 36601.56
Nasa CC Methodology 19.00 35.00 27.78 5.38
(18 projects) Experience 6.00 21.00 15.83 3.36
Effort 5.00 138.30 49.47 45.72
Nasa93Coc CC rely 0.88 1.40 1.11 0.13
(93 projects) data 0.94 1.16 1.00 0.07
cplx 0.85 1.65 1.18 0.15
time 1.00 1.66 1.13 0.20
stor 1.00 1.56 1.13 0.19
virt 0.87 1.15 0.92 0.09
turn 0.87 1.15 0.96 0.09
acap 0.71 1.00 0.89 0.09
aexp 0.82 1.13 0.93 0.06
pcap 0.70 1.00 0.91 0.10
vexp 0.90 1.21 1.00 0.08
lexp 0.95 1.14 0.97 0.05
modp 0.82 1.24 0.98 0.09
tool 0.83 1.24 1.00 0.09
sced 1.00 1.08 1.04 0.04
kloc 0.90 980 94.02 133.60
Effort 8.40 8211 62441 1135.93
Telecom CC Files 3.00 284.00 110.33 91.33
(18 projects) Effort 23.54 1115.54 284.34 264.71

Alessio Petrozziello

Linear Programming as a Baseline for Software Effort Estimation A:9
MAE is unbiased (towards over or underestimation) and defined as follows:
1 XN
MAE = N Z |Actual E f fort; — EstimatedE f fort;] 4)
i=1

where N is the number of projects used for evaluating the performance, and
Actual Ef fort; and EstimatedE f fort; are the measured and estimated effort, respec-
tively, for the project i. MAAE is the median of the above distribution and is generally
less sensitive than MAE to extreme outliers.

SA is based on MAE and defined as follows:

sa— (1. MAEr 1\ 4 (5)
N MAETguess '

where M AEp, is the MAE of the approach P; being evaluated and M AFE,. g, is the

MAE of a large number (e.g. 1,000) of random guesses (note that except for large

datasets the M AE, ,.ss can be replaced by an exact MAE, M ARPO, as suggested by

[Langdon et al. 2016]). Thus, SA represents how much better P; is than random guess-

ing: A value close to zero means that the prediction model P; is practically useless,

performing little better than a mere random guess [Shepperd and MacDonell 2012].
The RE* is defined as follows:

var(EstimatedE f fort — Actual E f fort)
var(Actual Ef fort)

RE* is an appropriate baseline error measure since it gives a score of 1 to a prediction
model with zero variance and a score less than 1 to any useful predictor. Any model
producing an RE* greater than 1 would be considered poor, regardless of the dataset
[Whigham et al. 2015]. In this study, we use MAE, MdAE and SA to evaluate the
accuracy of the estimates provided by the approaches we considered, and RE* to assess
their stability across different data splits and validation methods.

To establish if the estimations of one method are significantly better than those pro-
vided by another method, one can test whether there is a statistically significant differ-
ence between these estimates [Kitchenham et al. 2001; Mendes et al. 2003; Stensrud
and Myrtveit 1996]. We perform 30 independent runs per algorithm, per validation
approach, per dataset to allow for such statistical testing, correcting for multiple sta-
tistical tests. Specifically, to answer RQ1 and RQ2, we use the Wilcoxon Signed Rank
Test [Cohen 1988] since the Shapiro test [Royston 1982] showed that many of our sam-
ples came from non-normally distributed populations, making the T-test unsuitable.
The Wilcoxon test is a safe test to use (even for normally distributed data), since it
raises the bar for significance, by making no assumptions about underlying data dis-
tributions. In particular, we test the following Null Hypothesis: “The mean (median)
absolute errors provided by the prediction model P; are not significantly less than those
provided by the prediction model P; for the dataset D”, and set the confidence limit, «,
at 0.05 and applied the standard Bonferroni correction (o/ K, where K is the number
of hypotheses) when multiple hypotheses were tested. To summarise the results of the
Wilcoxon comparisons, we use the following win-tie-loss procedure as done in previous
work [Kocaguneli et al. 2012a; Sarro et al. 2017; Sarro et al. 2018]: If the distribu-
tion i is statistically significantly better (less) than j according to the Wilcoxon test we
update win; and loss;, otherwise we increment tie; and tie; .

Since it is inadequate to merely show statistical significance alone [Arcuri and
Briand 2014], we also investigate whether the effect size is worthy of interest by
using the Vargha and Delaney’s A5 non-parametric effect size measure. Indeed, as
suggested in recent best practice [Arcuri and Briand 2014; Shepperd and MacDonell

RE* = (6)

Alessio Petrozziello

A:10 F. Sarro and A. Petrozziello

2012], it is better, in cases such as ours when not all samples are normally distributed,
to use a standardised measure rather than a pooled one like the Cohen’s d. Given a
performance measure M, the A, statistic measures the probability that running al-
gorithm A yields better M-values than running another algorithm B, based on the
following formula A5 = (Ry/m — (m + 1)/2)/n, where R; is the rank sum of the first
data group we are comparing, and m and n are the number of observations in the
first and second data sample, respectively. If the two algorithms are equivalent, then
A5 = 0.5. Given the first algorithm performing better than the second, Ay, is consid-

ered small for 0.6 < Ay < 0.7, medium for 0.7 < A5 < 0.8, and large for Ais > 0.8,
although these thresholds are somewhat arbitrary. In this case, we are always inter-
ested in any improvement in predictive performance, so no transformation of the A,
metric is needed [Neumann et al. 2015].

To assess the difference in the results achieved by the estimation methods when
using different data splits and validation methods (i.e., RQs 2.1-2.2) we used the
Cliff’s statistical test [Cliff 1996] together with the Hochbergs method [Hochberg 1988;
Hochberg and Benjamini 1990] for controlling multiple tests available through the R
function cidmulv2 of the package WRS. The Cliff’s test is an appropriate choice when
dealing with non-normal data as in our case. Indeed this test provides a robust, non-
parametric effect size and is reliable in presence of tied values®.

3.4. Validation Method

A validation process is required to verify whether a method produces a useful esti-
mation of the actual development effort. Indeed, when the accuracy of the model is
computed using the same dataset employed to build the prediction model, the accu-
racy evaluation is considered optimistic [Briand and Wieczorek 2002]. Therefore we
perform a multiple-fold (i.e., k-fold) cross-validation by partitioning the dataset in %
disjoint test sets (the observations are sampled uniformly at random, without replace-
ment) and considering the remaining observations as the training set.

To ensure that our experiments are not biased by the number of folds used, we exe-
cute them by using 3-fold, 5-fold, 10-fold and leave-one-out. The Cliff’s statistical test
and the Hochbergs method (see Section 3.3) have been used to investigate if there
are statistically significant differences among the absolute residuals obtained by both
LP4EE and ATLM using these validation methods (RQ 2.1). Since we observed a sta-
tistically significant difference only when comparing k-fold to LOO (see Section 4.2.1
for more details), we report herein the results obtained using both 3-fold and LOO and
make all the results (including those obtained using 5-fold and 10-fold) available on
the accompanying website!.

3.5. Estimation Techniques

3.5.1. Random Guessing. Random Guessing (RG) is a naive benchmark suggested to
assess the usefulness of a prediction system [Shepperd and MacDonell 2012]. It ran-
domly assigns the y value of another case to the target case. More formally, it is defined
as: Predict a y for the target case ¢t by randomly sampling (with equal probability) over
all the remaining n — 1 cases and take y = r where r is drawn randomly from 1..n" = ¢
[Shepperd and MacDonell 2012]. Any prediction system should outperform random
guessing since an inability to predict better than random implies that the prediction
system is not using any target case information.

4The WRS package is available at https:/cran.r-project.org/web/packages/WRS2/index.html, while a useful
guide by Prof. Barbara Kitchenham can be found at http://crest.cs.ucl.ac.uk/cow/31/.

Alessio Petrozziello

Linear Programming as a Baseline for Software Effort Estimation A:11

3.5.2. Mean Effort (Median) Effort. Mean Effort and Median Effort are two naive base-
lines commonly used as a benchmark in previous effort estimation studies. Specifically,
the mean (median) of the past project efforts is used as the predicted effort for a target
project [Mendes and Kitchenham 2004a].

3.5.3. Automatically Transformed Linear Model. The Automatically Transformed Linear
Model (ATLM) has been proposed by [Whigham et al. 2015] as a baseline effort es-
timation model. This approach is based on a multiple linear regression of the form
yi = B1x1; + Paxe; + ... + Bun; + €;, Where y; is referred to as the quantitative response
variable, x; are explanatory variables, and 3; are determined using a least squares es-
timator [Neter et al. 1996]. Categorial explanatory variables are handled by using the
standard contrasts approach of dummy variables for each qualitative x; which is the
default method provided by the R tool [R Development Core Team 2011]. The approach
also performs an automatic data pre-processing®, as it is recommended to transform
skewed data when forming linear models [Kitchenham and Mendes 2009], by assessing
the suitability of log and square-root transformations of the response and explanatory
variables based on the underlying distribution of the data. This transformation step
is calculated by comparing the skewness [Dimitriadou et al. 2008] for each of the re-
sponse and explanatory variables. The transformation that results in the least skewed
data for each variable is selected and used when constructing the linear model and
predicting effort. An appropriate inverse transformation of the predictions is applied
to make the model results meaningfully compared to the untransformed test data. The
details of the transformation algorithm can be found elsewhere [Whigham et al. 2015].

3.5.4. Classification and Regression Trees. Classification and Regression Trees (CART)
are machine learning methods that build prediction models by recursively partitioning
the data and fitting a simple prediction model within each partition [Breiman et al.
1984]. The partitioning can be graphically represented with a decision tree. Decision
trees where the dependent variable takes a finite set of values are called “classification
trees”, while decision trees where the dependent variable takes continuous values are
called “regression trees”. In our work, regression trees were generated using the R
package tree, which is publicly available in the Cran-R repository . Since CART does
not have any seed associated with it (i.e., produces the same results each time it is
executed under the same configuration) only one run per data split is required.

3.5.5. K-Nearest Neighbour. K-Nearest Neighbour (KNN) is an analogy-based approach
that, given a target instance (e.g., a new software project characterized by a vector of
n features), retrieves the instances relevant to this target from a case base of past
projects. These relevant cases are identified by using the Euclidean distance as a sim-
ilarity function, which measures the distance between the target case and the other
cases based on the values for the n features of these projects. The average of the ef-
fort values of the k& most similar past projects is then used as the effort estimate for
the target project. If there are ties for the &k — th nearest vectors, all are used to com-
pute the average. The choice of & is left to the user and has been a matter of some
debate [Kadoda et al. 2001]. In this work we experimented KNN with different values
of k = 1,...,10. Table 3 shows the results in terms of MAE produced by the 10 KNN
configurations for each of the 10 datasets under investigation (the best MAE values
are highlighted in bold, the worst ones in italic). We can observe that the configura-
tion that exhibits the worst performance for almost all datasets is KNN1. On the other
hand, KNN10 achieves the most accurate results for 6 out of 10 dataset when the 3-

5A manual pre-processing is still needed to handle multicollinearity if two or more variables are collinear.
6https://cran.r-project.org/web/packages/tree/tree.pdf

Alessio Petrozziello

A:12 F. Sarro and A. Petrozziello

Table III: KNN configurations: Standardised Accuracy (SA) obtained by 10 different
KNN configurations for each of the 10 datasets (best values in bold, worst in italic)
using 3-fold (a) and LOO (b) cross-validation methods.

(a) 3-fold
AK China Desharnais Finnish Kitchenam Maxwell Miyazaki Nasa Nasa93Coc Telecom
KNNI1 (worst) 0.32 0.29 0.28 0.35 0.29 0.37 0.43 0.10 0.20 0.36
KNN2 0.38 037 0.38 0.39 0.37 0.50 0.47 0.15 0.30 0.36
KNN3 0.44 0.40 0.42 0.42 0.41 0.53 0.48 0.09 0.36 0.38
KNN4 043 042 0.42 0.42 0.43 0.54 0.48 0.11 0.39 0.41
KNN5 043 0.43 0.42 0.41 0.44 0.54 0.47 0.11 0.41 0.40
KNN6 044 044 0.42 0.41 0.44 0.53 0.47 0.09 0.43 0.39
KNN7 0.43 044 0.42 0.40 0.45 0.52 0.46 0.08 0.44 0.38
KNN8 0.43 045 0.43 0.41 0.45 0.51 0.46 0.06 0.46 0.36
KNN9 044 045 0.43 0.42 0.45 0.51 0.46 0.05 0.47 0.33
KNN10 (best) 0.44 0.46 0.44 0.43 0.45 0.50 0.45 0.05 0.47 0.30
(b) LOO
AK China Desharnais Finnish Kitchenam Maxwell Miyazaki Nasa Nasa93Coc Telecom
KNNTI (worst) 0.09 -0.13 0.15 0.22 0.34 0.75 0.53 -0.33 -0.27 0.28
KNN2 0.07 0.01 0.26 0.21 0.39 0.80 0.56 -0.20 -0.15 0.28
KNN3 0.22 0.07 0.34 0.30 0.43 0.81 0.57 -0.31 -0.01 0.20
KNN4 024 0.10 0.36 0.30 0.48 0.82 0.57 -0.31 0.07 0.14
KNN5 (best) 0.20 0.13 0.37 0.27 0.48 0.83 0.58 -0.37 0.06 0.20
KNN6 0.22 0.15 0.34 0.28 0.48 0.83 0.56 -0.31 0.10 0.26
KNN7 0.23 0.15 0.34 0.27 0.49 0.82 0.56 -0.35 0.10 0.28
KNN8 0.22 0.16 0.34 0.27 0.49 0.82 0.55 -0.32 0.13 0.25
KNN9 0.21 0.16 0.34 0.27 0.50 0.82 0.56 -0.40 0.12 0.21
KNN10 0.22 0.16 0.34 0.23 0.49 0.82 0.56 -0.38 0.15 0.16

fold validation is used, and KNN5 provides the most accurate results for 3 out of 10
dataset when the LOO validation is used. Therefore, we use KNN1, KNN5 and KNN10
to answer all our RQs. The package used for the KNN method is the R package caret,
which is publicly available from Cran-R’.

3.5.6. Random Forest. Random Forest (RF) [Ho 1995] is an ensemble learning method
for classification and regression tasks, which constructs multiple decision trees at
training time and picks as a final model the one that is the mode of the classes (clas-
sification) or the mean prediction (regression) of the individual trees. In our work, RF
was trained and configured using the train function of the R package caret, which
is publicly available in the Cran-R repository’. Specifically we use the train function
performing 30 times a simple grid search with a nested 2-fold to mitigate the learner
bias due to the intrinsic randomness of RF. The best model is selected on the training
set according to this function and then used to predict the effort of the unseen projects
contained in the test set.

3.5.7. Support Vector Regression. Support Vector Regression (SVR) is a machine learn-
ing method able to map non-linear separable patterns into a higher feature space
where points of different categories are divided by a clear gap that is as wide as pos-
sible. For a regression task the aim is to minimise a loss function, maximising the
support vector bounds. In our work, SVR is configured and trained using the R pack-
age caret, which is publicly available in the Cran-R repository’. Through this function
we automatically apply a simple grid search for hyper-parameters tuning® and run a
nested 2-fold cross-validation 30 times to handle the intrinsic SVR randomness. The
best SVR prediction model built on the training set over the 30 runs is used to estimate
the effort for the previously unseen test set projects.

Thttps://cran.r-project.org/web/packages/caret/caret.pdf

8Grid-search is one of the simplest way to tune machine learners and alternative approaches have been
investigated in the context of effort estimation [Corazza et al. 2010; Corazza et al. 2013] and defect prediction
[Sarro et al. 2012a; Fu et al. 2016; Tantithamthavorn et al. 2018]

Alessio Petrozziello

Linear Programming as a Baseline for Software Effort Estimation A:13

3.6. Threats to Validity

Several factors can bias the validity of empirical studies. In this section we discuss the
construct, conclusion and external validity threats that may affect our study.

To satisfy construct validity a study has “to establish correct operational measures
for the concepts being studied” [Kitchenham et al. 1995]. This means that the study
should represent to what extent the predictor and response variables precisely mea-
sure the concepts they claim to measure [Mendes et al. 2003]. Thus, the choice of the
features and the way they are collected are crucial aspects. We mitigated such a threat
by using real-world datasets widely used to empirically evaluate effort estimation mod-
els and excluding from these datasets all the independent variables that are not known
at prediction time and therefore cannot be used for prediction purposes. To this end we
read all the papers were the data was originally released/described rather than sim-
ply relying on the information available from public repositories or subsequent papers
reusing this data as this might be misleading. A detailed description of this aspect can
be found in Appendix A.

With regards to the conclusion validity, we carefully applied the statistical tests,
verifying all the required assumptions and correcting for multiple statistical testing.
To reduce conclusion instability [Menzies and Shepperd 2012], we followed recent best
practice to assess prediction systems [Shepperd and MacDonell 2012; Whigham et al.
2015; Langdon et al. 2016]. Moreover, we used datasets of different sizes to mitigate
the threats related to the number of projects and features in each dataset. We also
compared our approach to traditional techniques using publicly available tools to allow
for replications and comparisons.

To mitigate external validity threats we used a large number of software projects
covering different contexts and domains, however we cannot claim that our results
generalise beyond the subjects studied herein.

4. RESULTS
4.1. RQ1. Does LP4EE Satisfy the Requirements for a Baseline Model?

Linear Programming (LP) has been largely used in the optimization field [Rardin 1998]
primarily due to the fact that it offers a strong mathematical framework along with an
easy implementation and results interpretability. To the best of our knowledge this is
the first time that LP is used for effort estimation.

In the following we describe how our proposed method, LP4EE, satisfies all the re-
quirements a baseline estimation model should meet (as listed in Table 1).

LP4EE describes the effort estimation problem as a simple and elegant constrained
linear mathematical problem (see Section 2), which is easily readable and even ge-
ometrically representable (requirement 1). Moreover, LP4EE performs an automatic
feature selection at learning time and explicitly gives as outputs the coefficients for
each of the features for the dataset under evaluation. This feature of LP not only
gives easy interpretability and straightforward application of the model to new test
points (requirement 1), but also provides users with an insight into the most impor-
tant variables of the projects (requirement 4). Furthermore, LP4EE is deterministic in
its outcome (requirement 2) and can be applied to real, integer, and categorical vari-
ables (requirement 3). It is also hyper-parameters free (requirement 5) and a reference
implementation for the R environment is publicly available! (requirement 6).

In order to show that LP4EE satisfies requirement 7 (i.e., be more accurate than a
random guess or an estimate based purely on the distribution of the response vari-
able) we empirically assessed whether it is more accurate than a random guess and
also than estimates based on the Mean and Median effort of past projects (as de-
tailed in Section 3.5). The analysis of the SA values (see Table 4) suggests that the

Alessio Petrozziello

A:14 F. Sarro and A. Petrozziello

estimations obtained using LP4EE are always better than those achieved by using
Mean (SArpape > SAnrean), Median (SArparr > SAredian), and Random estimates
(SAppsge > 0) for all the 10 datasets considered in our study. These observations
are confirmed by the tests we used to assess if any statistically significant difference
arises between the accuracy of the estimates provided by LP4EE and the other meth-
ods considered and the magnitude of this difference (i.e., effect size). Table 5 shows
the win-tie-loss outcome of the Wilcoxon test (for both the MAE and MdJAE distribu-
tions) summarised by counting the number of times LP4EE scored a p — value < 0.001
(win), p — value > 0.99 (loss) and 0.001 <= p — value <= 0.99 (tie). We can observe that
LP4EE achieves the best win-tie-loss for balance across all the measures and datasets
considered. Indeed, the MAE and MdAE distributions obtained by LP4EE are always
statistically significantly better than those provided by other methods with a large ef-
fect size for 21 out of 27 cases (78%) and a medium effect size for the remaining six
cases (22%). For completeness, the same tests have been carried out for ATLM and the
results are reported in the last three columns of Table 5. We can observe that ATLM
does not always score a win and provides a worse win-tie-loss outcome with respect to
LP4EE. This inferential statistical analysis confirms that our approach significantly
outperforms the baselines, thereby passing the sanity check set by requirement 7 (see
Table 1).

To check if requirement 9 holds (i.e., do not be expensive to apply), we have analysed
the running time spent by LP4EE and ATLM to build an estimation model for each of
the 10 datasets using four different cross-validation methods. We ran all the experi-
ments on a notebook with an Intel Core i5 2Ghz CPU and memory of 8GB. Table VI
shows the average running time over 30 runs expressed in seconds?: We can observe
that both LP4EE and ATLM build the prediction model in less than a second (usually
milliseconds) for all the datasets and validation methods we considered and therefore
both approaches satisfy requirement 9.

Finally, we have assessed that LP4EE is robust to different data splits and valida-
tion methods (requirement 8) and offers comparable performance to standard methods
(requirement 10) by carrying out a thorough empirical study, whose results are dis-
cussed in Section 4.2.

Therefore, we can positively answer our first research question RQ1: LP4EE satis-
fies the requirements for a baseline estimation model.

4.2. RQ2: Is LP4EE Effective to Benchmark State-of-the-art Estimators?

4.2.1. RQ2.1: Is LP4EE (ATLM) Sensitive to Different Cross-validation Methods?. To check to
what extend our proposed method, LP4EE, is sensitive to the validation method we
ran the same experiments with four different methods widely used in effort estima-
tion, i.e., leave-one-out (LOO), 3-fold, 5-fold, a