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Abstract: The central nervous system (CNS) relies on complex and dynamic interactions
between neurons and glial cells. Among glial cells, astrocytes regulate the chemical envi-
ronment surrounding neurons and supply essential nutrients for brain metabolism whereas
microglia, the resident macrophages of the CNS, play critical roles in homeostasis, defense,
and responses to injury. Both microglia and astrocytes contribute to the regulation of
excitotoxicity and inflammation mediated by the metabolism of tryptophan (Trp) via the
kynurenine pathway. Trp metabolism generates several bioactive metabolites, including
quinolinic acid (QUIN) and kynurenic acid (KYNA), which have opposing effects. QUIN,
produced by activated microglia, acts as an agonist for NMDA receptors; excessive stimula-
tion of these receptors can lead to excitotoxicity and neuronal death. Conversely, KYNA,
primarily produced by astrocytes via kynurenine 2,3-aminotransferases (KAT), acts as
an NMDA receptor antagonist, conferring neuroprotection by mitigating excitotoxicity.
Dysregulation of the Trp metabolism is implicated in many neurodegenerative diseases
such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis and amyotrophic lat-
eral sclerosis, as well as in various neuropsychiatric disorders. This review examines the
cellular and molecular mechanisms underlying Trp metabolism in glial cells, highlighting
the unique contributions of each glial phenotype, the implications for CNS pathologies, and
the potential biomarkers and therapeutic targets for restoring homeostasis and preventing
disease progression.

Keywords: astrocytes; microglia; kynurenine pathway; neurodegeneration; inflammation

1. Introduction

The central nervous system (CNS) is a highly complex structure composed of various
cell types dynamically interacting to maintain homeostasis, neuronal functions, and im-
mune response. Glial cells play a crucial role not only in providing structural support but
also in regulating metabolic, immunological, and neuroprotective processes [1]. Among
the metabolic pathways associated with these cells, Trp metabolism via the kynurenine
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pathway (KP) has emerged as a critical link for understanding the interaction between
inflammation, neurodegeneration, and neuroprotection. This review explores the mecha-
nisms associated with Trp metabolism in the CNS, focusing on the implication of glial cells
in the neuroinflammatory response and the pathogenesis of neurodegenerative diseases
(NDD), such as Alzheimer’s disease (AD), Parkinson’s disease (PD), multiple sclerosis
(MS) and amyotrophic lateral sclerosis (ALS). Key metabolic and inflammatory markers
of NDD progression are also discussed to enhance our understanding of the molecular
mechanisms underlying these diseases and to provide a foundation for the development of
new biomarkers and effective therapies.

2. Communication Between Microglia and Astrocytes During
Neuroinflammation and Activation of the KP

In the CNS, microglia, oligodendrocytes, and astrocytes are the glial cells responsible
for providing support and protection to neurons [1-3]. Oligodendrocytes are responsible
for the production and maintenance of myelin, which is essential for the rapid transmission
of action potentials, as well as for axonal stabilization and nutrition. In response to injury
or damage, the inflammatory response is triggered by the activation of microglia and
astrocytes and the infiltration of immune system cells, playing key roles as immune effectors
within the CNS. Astrocytes are responsible for regulating the chemical environment around
neurons and supplying essential nutrients for brain metabolism [4].

In the human cerebral cortex, the number of astrocytes is comparable to the number of
neurons, but their size is larger compared to other species [5]. Pelvig et al. (2008) estimated
that astrocytes account for approximately 20% of all glial cells in the human cortex, where
they provide structural support to neurons and other cells, contributing to the three-
dimensional architecture of the CNS [5-7] (Figure 1). The diverse functions of astrocytes are
related to the protection and maintenance of the brain’s chemical environment, regulation
of ionic balance, pH, and neurotransmitter levels in the extracellular environment, all of
which contribute to the proper transmission of intercellular signals. Astrocytes also play
a key role in neuronal development by releasing neurotrophins such as brain-derived
neurotrophic factor (BDNF) and nerve growth factor (NGF) [8], as well as in the regulation
of neuronal metabolism by storing glucose in glycogen granules, which is then converted
into lactate and pyruvate to meet the high ATP demands of neurons [9]. Additionally,
astrocytes are also crucial for the formation of the blood-brain barrier, synapse plasticity,
and tissue recovery after injury [9].

Astrocytes” morphology varies according to the region in which they are found,
and they are classically divided into the following: (i) protoplasmic astrocytes of the
gray matter, with a spongy morphology, where the processes branch profusely to contact
and enclose synapses and blood vessels [9]; (ii) fibrous astrocytes of the white matter,
which are characterized by long, non-uniform fibers [10]; (iii) radial astrocytes, which are
more abundant during development and transpose into cortical astrocytes. Astrocytes are
identified by the expression of glial fibrillary acidic protein (GFAP), although levels of this
protein vary in different brain regions, as well as other proteins, such as interleukin (IL) 6
and STAT3 [6].

In response to CNS injury, astrocytes undergo phenotypic changes, generally associ-
ated with increased GFAP expression and morphological hypertrophy, termed astrogliosis,
together with altered metabolism and expression of cytokines, proteases, and transcription
factors [11]. These pathological responses are termed astrocyte reactivity, with pheno-
type modification accompanied by gradual changes in molecular mechanisms that can
promote the survival or the programmed death of surrounding neurons [12]. The factors
inducing astrocyte reactivity are diverse and highly context-dependent, including tumor
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necrosis factor alpha (TNF-o), a potent inflammatory inducer of astrogliosis [13], chemoat-
traction of peripheral immune cells, and subsequent activation of microglia, promoting
an inflammatory response [14]. Reactive astrocytes participate in the immune response,
activating defense mechanisms, including those against pathogens, through the release
of immunomodulatory substances [15,16]. Their production of antioxidant enzymes and
neurotrophic factors helps protect and recover neurons under conditions of oxidative stress
or injury [17]. It is important to highlight that astrocyte activation occurs throughout life in
a healthy organism and is part of the plasticity and homeostasis of the CNS.
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Figure 1. Cellular components of SNC. Astrocytes (purple) surround blood vessels in order to
select metabolites that can pass through the blood-brain barrier. Astrocytes also support neuron
(yellow) metabolism and function. Oligodendrocytes (pink) create a myelin sheath that wraps
around axons and helps in the transmission of signaling. Microglia (red) is the immune resident
cell in the CNS which controls not only immune signaling but also synapse growth and pruning in

physiological conditions.

Microglia play a crucial role in the defense and maintenance of brain homeostasis
by monitoring the neuronal environment for signs of injury, inflammation, or infection,
which lead to microglial activation. Astrocytes play a key role in modulating microglial
activation by regulating the inflammatory response, producing several cytokines such
as IL-1, IL-3, IL-5, IL-6, and IL-8, and secreting TNF-«, transforming growth factor beta
(TGF-B), Interferon gamma (INF-y), granulocyte-macrophage colony-stimulating factor
(GM-CSF), colony-stimulating factor (M-CSF), and the mediators prostaglandin E2 (PGE2),
monocyte chemoattractant protein-1 (MCP-1) and INF-y-inducible protein-10 (IP-10). These
molecules signal and influence the neuroinflammatory response either by recruiting other
cells or acting in a chemotactic manner [16]. A primary function of activated microglia
is phagocytosis, engulfing and eliminating pathogens, abnormal proteins, dead cells, or
cellular debris [18]. Microglia also process and present antigens to T lymphocytes, in
addition to regulating the inflammatory response by recruiting adaptive immune cells
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and releasing cytokines, chemokines, and other inflammatory mediators [19]. Microglial
activation is a graded response, and an exacerbated microglial response to injury can
contribute to chronic neurodegenerative and inflammatory processes [20]. Under these
conditions, there is an increased release of pro-inflammatory cytokines, such as IL-1(3, TNF-
o and IL-6. These cytokines are primarily secreted by activated immune cells and, when
present in excess and for prolonged periods, they lead to uncontrolled activation, causing
damage to neurons and other cells of the CNS. Furthermore, microglia produce chemokines
from the CXC family or a-family (IL-8, IL-10) and the CC family or 3-family (MIP-1&, MIP-
13, MCP-1, RANTES [21]), which contribute to the recruitment of T cells, macrophages, and
dendritic cells during neuroinflammation [14,18]. Additionally, these chemokines can also
stimulate microglial migration to injured or other inflammatory sites [22]. The imbalance
in the production and proportion of pro-inflammatory and anti-inflammatory cytokines, as
well as the dysfunction in the regulation of chemokines in the CNS, plays an important
role in chronic neuroinflammation and the development of neurological diseases, such
as MS, AD and PD. Therefore, understanding these complex interactions is fundamental
for advancing the development of therapies that aim to restore the balance of cytokines
and chemokines in neuroinflammation, thus promoting immunological homeostasis in the
CNS [23].

3. Trp Catabolism Through the KP During Neuroinflammatory Conditions

Trp is an essential amino acid obtained by dietary intake or synthesis in the microbiota
in humans. During evolution, Trp metabolism became part of cellular and organismal com-
munication strategies that align food availability with physiology and behavior. Besides
being a constituent in protein synthesis, it coordinates organismal responses to environ-
mental and dietary signals. Ninety percent of Trp is bound to serum albumin, while the
remaining portion is freely available to be metabolized by the liver, kidney, and brain, where
it crosses the blood-brain barrier through a system of neutral amino acid transporters and
generates several metabolites with distinct biological activities in the immune response and
neurotransmission [24] (Figure 2). Trp is primarily degraded by three distinct metabolic
pathways. About 2% of it is directed to the serotonin pathway, and approximately 3% is
metabolized, generating catabolites such as tryptamine, skatole, and indole acetate, which
act as ligands for aryl hydrocarbon receptors (AhRs) [25]. However, most of this amino
acid is catabolized through the KP [26,27], a route generating neuroactive intermediate
metabolites with crucial physiological roles in both the CNS and the immune system [28].

Trp is a substrate for tryptophan 2,3-dioxygenase (TDO E.C. 1. 13.11.11) and in-
doleamine 2,3-dioxygenase (IDO1 E.C.1. 13.11.52). TDO has substantial activity localized
in the liver and is activated by dietary proteins and corticosteroids [29], but it is not in-
duced by pro-inflammatory stimuli such as IFN-y [30]. The basal serum level of Trp is
primarily controlled by TDO [31]. In turn, IDO1, a heme protein, is expressed in cells such
as macrophages, astrocytes, and microglia, and may exist in the IDO1 or IDO2 isoforms,
depending on the tissue [31,32]. IDO1 initially converts Trp to formyl kynurenine and
subsequently to L-kynurenine (KYN), allowing the generation of many biologically active
metabolites (Figure 3). Four isozymes, kynurenine 2,3-aminotransferases (KAT I, II, III, and
IV), are involved in the synthesis of kynurenic acid (KYNA) from KYN in the human and
rodent CNS. Macrophages and microglia express all enzymes of the kynurenine monooxy-
genase (KMO, E.C.1.14.13.9) branch of KP, allowing their primary contributions to local
QUIN production in response to inflammatory stimuli within the CNS [33]. These isoforms
share similarities in their structure and function, being involved in the conversion of Trp
into other metabolites, with broad immunomodulatory functions [30].
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The human and rodent genomes encode the four KAT isozymes, which demonstrate
the ability to use KYN as an amino group donor in the first half-reaction: KAT I (also known
as glutamine transaminase K or cysteine conjugate beta-lyase), KAT II (x-aminoadipate
aminotransferase), KAT III (glutamine transaminase L), and KAT IV (mitochondrial as-
partate aminotransferase) [34]. A comparative analysis between species reveals a high
degree of conservation of the primary sequence of these isozymes, with KAT IV being the
isoform that is most phylogenetically conserved [35]. On the other hand, within the same
species, KAT I and KAT IV are the most divergent isozymes, probably due to their specific
characteristics and the different roles played by the N-terminal regions of the proteins [36].
Changes in KAT II activity are considered important for the pathogenesis of neurological
diseases, given the neuroprotective role of KYNA [28]. Studies have shown that genetic
alterations for KAT II present perinatal reductions in brain KYNA levels, accompanied
by behavioral and pathological abnormalities [36]. However, these alterations are pro-
gressively repaired as the individual reaches adulthood. These observations suggest that
another KAT isoform can compensate for the absence of KAT II, and, in mice, normalization
of KYNA levels has been observed [37].
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Figure 2. Tryptophan can be metabolized into serotonin and melatonin through sequential multi-
step reactions or alternatively metabolized via the kynurenine pathway (KP). Kynurenine (KYN)
is the rate-limiting KP product of initial tryptophan metabolism by the enzymes indoleamine-2,3-
dioxygenase (IDO-1) and tryptophan dioxygenase (orange box). Kynurenine is then converted
via kynurenine aminotransferases (KAT I/II/III) into kynurenic acid (KYNA), a neuroprotective
molecule that antagonizes glutamate receptor-induced neurotoxicity. 3-Hydroxykynurenine (3-HK)
is produced through further metabolism of kynurenine, with accumulating evidence suggesting its
neurotoxic potential. The conversion of quinolinic acid (QUIN) into the essential cofactor NAD+ is
catalyzed by quinolinate phosphoribosyltransferase (QPRT).
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Figure 3. Metabolism of the kynurenine pathway in the glial cells. As shown above, (a) trypto-
phan (Trp) is converted into kynurenine (KYN) via the enzymes indoleamine 2,3-dioxygenase (IDO)
and tryptophan 2,3-dioxygenase (TDO). In astrocytes (b), KYN is preferentially metabolized by
kynurenine aminotransferases (KAT) into kynurenic acid (KYNA), a neuroprotective metabolite with
anti-excitotoxic and anti-inflammatory properties. In contrast, microglia (c) favor the metabolism of
KYN via kynurenine monooxygenase (KMO) and kynureninase (KYNU), leading to the production
of 3-hydroxykynurenine (3-HK), a pro-oxidant compound, and quinolinic acid (QUIN), a neuro-
toxic NMDA receptor agonist associated with neurodegenerative processes. Although frequently
associated with neuroinflammatory function, KP in microglia also can produce neuroprotective
metabolites such as picolinic acid and 3-hydroxyanthranilic acid (3-HAA). Furthermore, astrocytes
and neurons can uptake QUIN and produce the neuroprotective metabolite nicotinamide adenine
dinucleotide (NAD). This differential metabolism of KYN in astrocytes and microglia, as well as its
concentration, is crucial in determining the balance between neuroprotection and neurotoxicity in the
central nervous system. Adapted from Guillemin et al. (2012) [29].

Pro-inflammatory stimuli, such as IFN-y, TNF-«, IFN-{3 or LPS, recruit macrophages
from the periphery into the brain and the enzyme KMO is activated, leading to increased
production of 3-hydroxy kynurenine (3-HK) and exacerbating the KP’s oxidative profile.
KMO is a mitochondrial flavoprotein expressed in several peripheral tissues [38—40], in-
cluding the liver, kidney, and phagocytes, such as macrophages and monocytes [34]. This
enzyme uses O as a co-substrate and NADPH as a cofactor [40]. Being a flavin ade-
nine dinucleotide-dependent enzyme, its activity might be expected to be decreased in
riboflavin (vitamin B2) deficiency [26,41]. In the CNS, KMO is expressed predominantly
in microglia [41]. The continuity of the oxidative branch of KP leads to the production of
3-hydroxyanthranilic acid (3-HAA), xanthurenic acid (XA) and anthranilic acid (AA) [38],



Neuroglia 2025, 6, 14

7 of 21

which, through the action of kynureninase (KYNU), contributes to the production of
QUIN [26,42]. Independently, KMO regulates the conversion of Kyn into neuroactive and
neurotoxic KP metabolites, including quinolinic acid (QUIN). QUIN can be converted into
NAD+—a key coenzyme in energy metabolism—by certain cell types, but the physiological
significance of this de novo NAD+ production via the KP is unclear, as NAD+ is mainly
produced by salvage pathways [41]. The enzyme quinolinate phosphoribosyl transferase
(QPRTase), responsible for the synthesis of NAD from QUIN, has been detected in rat
brain in astrocytes, tanycytes, ependymal cells, and some neurons. The expression of this
enzyme in the human brain is partially understood, with immunoreactivity observed in
glial cells and neurons [43-45]. Guillemin et al.’s (2005) findings suggest high expression
of QPRTase in human fetal astrocytes and neurons, indicating that both can catabolize
QUIN [43]. However, the exact mechanism by which QUIN is absorbed by these cell types
remains unclear [44,45]. QUIN is an NMDA receptor agonist, which can mediate neuronal
death by excitotoxicity when excessively stimulated [37,38].

In cultured rat and mouse cortical cells, the metabolite 3-HK is an intermediate that in-
duces the selective death of neuronal cells in specific brain regions, exhibiting pro-apoptotic
characteristics that may be relevant to the pathology of neurodegenerative disorders [45,46].
Moreover, in physiological conditions, QUIN participates in the production of Nicoti-
namide Adenine Dinucleotide (NAD), but an excess of QUIN in astrocytes and neurons
induces apoptosis through activation of the NMDA receptor [47]. This condition also
increases astrocyte expression of GFAP, along with cell proliferation [37,48,49].

It is known that KYN is actively transported across the blood-brain barrier by neutral
amino acid transporters. QUIN and KYNA do not have access to brain tissue where they
are generated by the direct degradation of endogenous Trp [50]. In pathological conditions,
activated astrocytes can be stimulated to produce KYN in large quantities [51]. This
metabolite is captured by microglia, increasing QUIN synthesis, since only this phenotype
exhibits gene expression for the KMO enzyme [37]. Activation of the KMO branch that
induces elevated levels of 3-HK and QUIN in the CNS is observed in most inflammatory
neurological diseases [28].

Although the kynurenine and serotonin pathways are almost entirely responsible
for Trp catabolism, a small portion is directed to the tryptamine pathway. In this path-
way, Trp is decarboxylated by the enzyme amino acid decarboxylase (AADC) to produce
tryptamine, which is then demethylated to S-adenosyl methionine (SAM). Through a nu-
cleophilic attack in a reaction catalyzed by indolethylamine-N-methyltransferase (INMT),
N-methyltryptamine and dimethyltryptamine (DMT) are formed, metabolites that are
ligands for aryl hydrocarbon receptors (AhRs) [51]. High levels of KYN also interact with
AhRs, stimulating transcription factors found in most human cells related to cell prolifera-
tion, by a functional alteration of cell signaling, involving GCN2 and mTOR kinases [52].
Several molecules, such as the adenosine/purinergic pathway, CTLA-4 and PD-L1, col-
laborate with kynurenine and its metabolites to induce the immune response [52]. This is
achieved through different mechanisms, including Trp exhaustion, TH17 cell induction,
dendritic cell and macrophage trans-differentiation, CD4 T cell differentiation into Treg
cells, and IL-2 inhibition, which prevents CD4 T cell survival [52]. These mechanisms are
attributed to astrocytes in the brain immune microenvironment [53].

Trp catabolism may act in immune defense mechanisms against pathogen invasion
by producing reactive oxygen species (ROS), including superoxide anion, during the
respiratory burst induced by phagocytes. By degrading Trp, IDO1 also contributes to
controlling the proliferation of pathogens [54-56]. IDO1 acts as a link between the innate
and adaptive immune systems, as well as communication between the nervous system and
the peripheral immune system. In a study using glial cells infected with Neospora caninum,
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Argolo et al. (2021) observed genotypic modulation of the inflammatory profile through
KP activity [56]. The parasite uses the KP as a cellular escape and evasion mechanism and
promotes tissue preservation through the production of KYNA [56].

The extreme scarcity of Trp (<1 uM) leads to the accumulation of uncharged tRNAs,
which activate the general control nonderepressible kinase 2 (GCN2) pathway, resulting
in dysfunction of T cells and antigen-presenting cells (APCs) [56]. However, even under
conditions of forced dioxygenase expression, the Trp levels in the local microenvironment
do not decrease enough to activate GCN2 [57]. Studies have shown that there are differences
in QUIN concentrations in neurodegenerative diseases among individuals of different ages,
and that these differences may be associated with the levels of intermediate metabolites
such as 3-HK and XA, reinforcing the neurotoxic role of 3-HK and QUIN [58,59]. Other
studies indicate differences in QUIN concentrations between men and women [60,61]. This
may suggest that the KP influences the hormonal response [62,63]. It is well established
that KYN concentrations below the picomolar level are sufficient to bind to AhRs [64]. In
turn, the activities of these enzymes result in the accumulation of KP metabolites, mainly
KYN. Kyn can be converted into AA by kynureninase (KYNU) and kynurenic acid (KYNA)
by kynurenine aminotransferases (KATI-KATIII), with the latter step being important for
controlling the production of neuroprotective KYNA [65]. Particularly in the brain, KYN can
be transaminated into KYNA by mitochondrial aspartate aminotransferase (GOT2) [43,66].

It has been shown that kynurenic acid (KYNA) is present in the CNS of various animal
species, including humans, with extracellular concentrations or levels in the cerebrospinal
fluid (CSF) ranging from 15 to 150 nM, which accumulate with age [67,68]. However, it
should be noted that extracellular concentrations of KYNA in mammalian brains are in
the low nM range, whereas its affinity for the glycine site of the NMDA receptor complex
is approximately 10-20 uM [67]. The levels of KYNA in the brain can be increased by
administering direct or indirect precursors, transport inhibitors, or inhibitors of KMO, the
most abundant enzyme involved in kynurenine metabolism [68,69]. An elegant study
reported that inhibiting kynurenine 3-monooxygenase in peripheral organs, in turn in-
creasing kynurenine levels in the blood and KYNA content in the brain, significantly
reduced neurodegeneration in various transgenic models of Huntington’s and AD [70]. In
recent decades, crucial information about the action of KYNA has been revealed. KYNA
not only acts as an endogenous antagonist of ionotropic excitatory amino acid receptors
for glutamate, such as the N-methyl-D-aspartate (NMDAR), alpha-amino-3-hydroxy-5-
methylisoxazole-4-propionic acid (AMPA), and kainate receptors [5,40] and the nicotinic
acetylcholine receptor subtype o-7 (x-7nAChR) [37], but also acts as an agonist of the
G-protein-coupled receptor GPR-35 [43,44], with anticonvulsant and neuroprotective activ-
ities [41,71]. Regarding the importance of KYNA and XA involvement with the GPR-35
receptor in the gut microbiota, specific positive GPR-35 signals have been detected in the
gastrointestinal tract [26,42,72], which should be further investigated.

4. KP and Neurodegenerative Diseases

The KP contributes to understanding neurodegenerative disorders and neuropsy-
chiatric diseases, such as PD, AD, MS, Huntington’s disease (HD), and ALS, as well as
mood and personality disorders, depression, and schizophrenia, among other nervous
system disorders [28,73]. As previously discussed, inflammatory cytokines such as TNF-«,
IL-1p and IL-6 are inducers of the IDO1 enzyme, stimulating the metabolism of Trp to syn-
thetize different kynurenines that are responsible for the modulatory response in nervous
tissue [74-76].

The levels of this amino acid, its metabolites, and enzymes have been studied in the
brain, liver, and kidney of female Wistar rats, showing that Trp concentration and IDO1
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activity decrease with age in all these tissues [77]. Another study showed that IDO1 activity
increases in the brain but decreases in the liver and kidneys of Wistar rats with age [78].
The inflammatory processes observed in aging act as a driving force to activate the KP,
with excess production of QUIN, which may increase the likelihood of neurodegenera-
tive diseases. It was also observed that reduced IDO1 activity suppresses the toxicity of
a-synuclein («Syn) [79]. Several studies have shown an association between serum or CSF
levels of KP catabolites and neuropsychiatric pathologies [43,65]. The correlation between
neurodegeneration and neuropreservation mediated by the KP involves interactions be-
tween microglia and astrocytes. Depending on the stimulus, pathological responses and
the emergence of diseases can occur, which are aggravated by the loss of neural network
function and failure in synaptic communication [80]. This mechanism can be understood
in the various neuroinflammatory manifestations that lead to neurodegenerative and neu-
ropsychiatric diseases.

4.1. Trp Catabolism and KP in AD

AD is the most common form of dementia and is defined as a slowly progressive
neurodegenerative disease characterized by neuritic plaques resulting from the accumula-
tion of beta-amyloid and neurofibrillary tangles [81]. The most affected areas of the brain
are the medial temporal lobe and neocortical structures [82]. The disease is characterized
by progressive cognitive impairment, including memory loss, disorientation, language
impairment, and executive dysfunction. The “amyloid hypothesis” as the cause of AD has
been strongly questioned in recent years. According to this hypothesis, deposits of A3
oligomers originating from misfolded amyloid precursor protein (APP) and higher-order
aggregates such as fibrils favor the formation of so-called amyloid plaques [83]. APP, a
transmembrane glycoprotein, is cleaved by amyloid secretase, an enzyme with several
variants at the «, 3, and y cleavage sites [84]. The cleavage of APP by y-secretase produces
sAPP{ peptides and amyloid 3 (A3) monomers. Amyloid (3 aggregates, particularly small
oligomers, are considered neurotoxic and neuroinflammatory [85]. Although they are not
the root cause of AD, they have a pronounced cytotoxic effect and may contribute to disease
progression [85,86].

In AD-associated dementia, behavioral changes are usually the first symptoms to
appear, while memory and perceptual spatial skills are not initially affected. In the early
stages, the patient begins to develop motor symptoms [87]. Currently, there are no available
biomarkers for the diagnosis of dementia or neurodegenerative diseases, limiting this work
to behavioral and cognitive characteristics only [88,89]. A molecularly precise diagnosis is
currently only possible by studying the patient’s tissue in a post-mortem process [88].

Studies have shown that Trp and its metabolites modulate A3 biochemistry in a
potentially beneficial manner by interacting with various enzymes or by interacting directly
with AP itself [28]. 3-Hydroxyanthranilic acid, generated by the KP, is an endogenous
inhibitor of A aggregation [90]. Among other enzymes implicated in the biochemistry
of A oligomers and influenced by Trp, a crucial role is played by neprilysin (NEP), a
metalloproteinase that regulates the brain clearance of A} peptides. A decrease in the
elimination of these oligomers significantly contributes to the pathogenesis of AD [26,42].
A study demonstrated that two Trp metabolites, 5-hydroxy indoleacetic acid (5-HIAA) and
KYNA, stimulate the activity and expression of NEP and prevent A peptide-induced
neurotoxicity, possibly by interacting with the AhR [42].

Finally, Trp metabolism correlates with cellular physiology and contributes to the
understanding of the interaction between amyloid biochemistry and mechanisms associated
with AD. This knowledge allows for the exploration of effective therapeutic targets and the
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analysis of biomarkers aimed at the prevention and diagnosis of AD, helping to reduce the
impacts and burden of neurodegeneration associated with the disease.

4.2. Trp Catabolism and KP in PD

PD is a neurodegenerative disease that ranks second only to AD as the most common
neurodegenerative condition. With increasing life expectancy and fewer competing causes
of death, its prevalence is expected to increase to 12 to 17 million people by 2040 [88,89,91].
The cause of PD is multifactorial, and although there is consensus among experts that it is
an age-related disease, questions remain about the extent to which external factors (such as
pollutants) contribute to its development [92].

The pathogenesis of PD involves the loss of dopaminergic neurons in the substantia
nigra pars compacta (SNpc), resulting in a dopamine deficit in the basal ganglia, which
leads to the motor symptoms of classic parkinsonism [93], including bradykinesia, ataxia,
muscle rigidity, postural instability, and resting tremor. Approximately 15% of PD patients
have the familial form of the disease, and 5-10% have a monogenic Mendelian form, with
23 loci and 19 causative genes already identified [94].

In PD, Trp metabolism is modulated, showing an increase in IDO1 activity, elevated
KMO expression, and, consequently, increased QUIN synthesis [73]. Elevated QUIN results
in strong sensitization of NMDA receptors in dopaminergic neurons, leading to neuronal
death due to excitotoxicity [74]. Additionally, there is an accumulation of NAD™*, which
induces oxidative imbalance within mitochondria, a set of reactions well known in this
disease [73].

Dhivyahave et al. (2020) demonstrated in experimental models the involvement of
KP in modulating phenomena associated with PD. For example, they infused QUIN into
the brains of rats, resulting in a reduction in KYN and KYNA levels [93-95]. Moreover,
increased levels of KYNA in the brain of monkeys may protect nigrostriatal dopaminergic
neurons from damage caused by QUIN-induced excitotoxicity [73]. PD patients have
shown lower Trp concentrations, a higher KYN/TRP ratio, and elevated levels of KYN, AA,
and KYNA compared to controls [75]. Other studies have shown reduced KYNA levels in
the cortical regions, caudate putamen, SNpc, and cerebellum of PD patients [96]. The molar
ratio between Trp and KYN, as well as KYN and KYNA, remains unchanged in PD patients
treated with or without L-DOPA [44]. Although significant progress has been made in
correlating the KP with PD, further in-depth studies are still needed to better understand
the molecular and biochemical mechanisms underlying the etiopathogenesis of PD.

4.3. Trp Catabolism in ALS

ALS is a progressive disease that affects motor neurons, resulting in signs of upper
motor neuron involvement, such as spasticity and hyperreflexia, and lower motor neuron
involvement, such as muscle weakness, atrophy, and weight loss [97,98]. According to the
El Escorial criteria, the diagnosis of ALS requires evidence of progressive deficits in both
upper and lower motor neurons in at least one limb or body region. Alternatively, deficits
of the lower motor neuron can be confirmed through clinical examination (in one region)
and/or by electromyography in two body regions, defined as bulbar, cervical, thoracic, and
lumbosacral [99]. Overall, the levels of metabolites from the KP were significantly lower
in ALS patients compared to healthy individuals in the frontal cortex, substantia nigra,
hippocampus, and neostriatum regions. The levels of AA and the ratios of kynurenine to
Trp showed consistent reductions across all brain regions investigated in ALS [100].

Several mutations are associated with the onset and progression of ALS. Interestingly,
among these are the SOD1 gene, which encodes copper-zinc superoxide dismutase (SOD1),
the TARDBP gene, which encodes Tar DNA binding protein 43 (TDP-43), and the human
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chromosome 9 open reading frame 72 hexanucleotide repeat (C90rf72) [101]. Both the loss
of function and toxic gain of function of these proteins are related to the development of
inflammatory and oxidative cascades that culminate in motor neuron death [102]. A recent
study conducted by Fifita et al. (2023) identified variations in two genes related to KYNA
metabolism (KYAT1/CCBL1 and GOT2) and two related to QUIN metabolism (KYNU and
HAAO) that may be involved in the sporadic form of ALS [100].

Inflammation and oxidative stress play crucial roles in the degeneration of motor
neurons and the neuromuscular junction in ALS [43]. Reactive astrocytes are found around
primary and secondary motor neurons throughout the lateral corticospinal tract, along
with invasive microglia and T cells, all of which contribute to motor degeneration [102].
Astrogliosis in ALS is characterized by increased GFAP and 51003, in addition to markers
such as COX-2, iNOS, and IDO1 [103,104]. Astrocytes are the main producers of KYNA in
the nervous system through the enzyme KAT, and KYNA levels are altered depending on
the onset and severity of ALS [105]. In patients with bulbar onset, KYNA levels are higher
than in patients with limb onset. Serum KYNA concentrations are lower in patients with
more severe clinical symptoms [106,107].

Although there is evidence that ALS modulates the Trp pathway, the mechanisms
involved in this pathology and its correlation with the KP require further investigation for
a better understanding.

4.4. Trp Catabolism and KP in MS

MS is a chronic inflammatory disease of the CNS that causes demyelination and
disseminated or plaque-like lesions in the white matter and spinal cord. Its etiology is
multifactorial and still not fully understood, primarily affecting young adults and being
more prevalent in females [3]. The disease manifests in different clinical forms, including
primary or secondary progressive, relapsing-remitting types, all of which significantly
impair the quality of life of patients, often in their productive years [105]. It is believed that,
like other neurodegenerative diseases, the pathological mechanism underlying MS is not
singular, but rather a complex set of cellular and biochemical alterations that ultimately
trigger degeneration [106,107].

Microglia are intrinsic immune cells of the CNS involved in the processes of demyeli-
nation and remyelination. Specifically, the infiltration of immune cells into the CNS results
in the loss of myelin and oligodendrocyte [16]. Myelin loss has devastating effects on CNS
function and ultimately leads to neuronal degeneration, both of which are hallmarks of
MS and other related neuropathologies [107]. Therapies currently used for MS include
immunomodulatory agents that aim to reduce inflammation and myelin damage, and
immunosuppressants that target the autoimmune reaction [108]. However, such treat-
ments have limited efficacy and can cause collateral damage, failing to ensure significant
improvement or stabilization of remyelination [108]. Recently, it has been shown that
the modulation of mitochondrial activity can mitigate neuronal damage associated with
MS [109]. Indeed, mitochondria are also associated with immune activation in macrophages
and microglia [110-112].

The experimental autoimmune encephalomyelitis (EAE) model has been widely used
to investigate the underlying mechanisms of MS [113]. Evidence suggests that the activation
of the enzyme IDO and the KP plays a critical role in inflammation-related diseases.
Studies have shown that IDO inhibition can reduce the clinical signs of EAE, as well
as cytokine production and neurotoxic metabolites such as quinolinic acid. Similarly,
progressive MS, characterized by metabolic dysfunctions in neurons and glial cells, presents
therapeutic challenges due to the complexity of the mechanisms involved, including
mitochondrial dysfunction, oxidative stress, and incomplete myelin repair. Integrating
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therapeutic strategies to modulate the KP, improve cellular metabolism, and promote
remyelination may offer promising new approaches for the treatment of both relapsing and
progressive forms of MS [45,114].

Clinical trials based on the KP have explored the levels of catabolites or the expres-
sion/activation of their enzymes [115]. For example, Aeinehband et al. (2016) found an
increase in QUIN in the cerebrospinal fluid of patients with MS, attributed to the activation
of the KMO enzyme [115]. These same authors reported that it is possible to monitor the
course of the disease based on the increased QUIN/KYN ratio in patients with MS relapses,
while patients in primary MS crises presented increased levels of all metabolites. Addition-
ally, Mancuso et al. (2015) reported that significant levels of KYN in the serum of patients
with MS result from the activation of the IDO enzyme [116]. Due to these findings, KP en-
zymes have been explored in the diagnosis and prediction of progression of MS [46,71,117]
and also as therapeutic targets in MS and other neurological diseases [118-121].

5. Biomarkers and Pharmacological Targets in KP for
Neurodegenerative Diseases

Neuroinflammation is considered one of the main features of several neurodegener-
ative diseases, as it can exacerbate the pathological formation and accumulation of toxic
proteins [122,123]. One pathway through which neuroinflammation can worsen neurode-
generation involves the (super)activation of the KD, the primary catabolic pathway of Trp.

Neurodegenerative and neuroinflammatory diseases involve the death of neurons,
leading to a gradual loss of synaptic integrity, which may remain imperceptible to the
individual during the clinical stage. The KP metabolites can be detected in serum, plasma,
or CSF and may serve as effective biomarkers and pharmacological targets, facilitating
early diagnosis and clinical monitoring in a range of pathologies.

To propose new methods for early diagnosis, Lovelace (2016) correlated concentra-
tions of KP metabolites in biological materials including blood, CSF and urine in models
involving cardiovascular diseases. The study analyzed CSF samples from patients with
bacterial meningitis to evaluate the expression of Trp catabolism enzymes through poly-
merase chain reaction (PCR) gene sequences [46]. Other studies have also evaluated serum
levels of Trp, KYN, KYNA, AA, 3-HK, and XA using liquid chromatography—-tandem
mass spectrometry (LC-MS/MS) to correlate these metabolites as biomarkers with clinical
and pathophysiological findings in neuroinflammatory diseases [124]. Additionally, other
authors report increased plasma levels of KYNA in diseases such as schizophrenia, drawing
correlations with mood disorders and psychiatric comorbidities [125]. Other studies have
linked associations between serum 3-HK and BDNF levels in individuals exposed to stress
and elderly individuals with a predisposition to dementia, showing that in situations of
stress and cognitive deficit, there is an increase in 3-HK concentrations and a decrease in
BDNF concentrations [126]. Furthermore, these studies observed that after 10 weeks of
physical and cognitive training, BDNF levels increased and 3-HK decreased, respectively.
Fujigaki et al. (2017) compared the concentrations of KPP metabolites in various biological
fluids in neuropsychiatric disorders [78], highlighting their potential role in diagnostic and
therapeutic application. The detection of these metabolites can provide valuable clues for
the investigation, diagnosis, and clinical monitoring of pathologies, enabling more precise
diagnoses and effective therapies [79].

The association of Trp metabolites with various diseases has led to significant efforts
to therapeutically modulate the KP, particularly through the inhibition of the key enzymes
involved, such as IDO1, TDO, and KMO (Figure 1). In the case of CNS disorders, there is a
growing interest in correcting the altered balance of KP metabolites, targeting specific KP
enzymes to achieve a neuroprotective effect, as well as the role of Trp and its metabolites
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in mediating interactions between the gut microbiome and the brain (the “gut-brain
axis”) [127]. In oncology, IDOL1 inhibitors have been extensively investigated for cancer
immunotherapy in recent years, with multiple compounds in clinical trials, typically in
combination with other drugs, such as immune checkpoint inhibitors [128]. Since the
discovery of its immunosuppressive effects [57], a growing body of evidence supports
the fundamental role of IDO1 in immune regulation [129]. The activation of TDO, which
catalyzes the same reaction as IDO1, similarly affects the immune response by inhibiting T
cell proliferation, limiting tumor immune infiltration, and restraining antitumor immune
responses [130]. Although the IDO2 enzyme, related to IDO1, may support IDO1-mediated
immune tolerance, the physiological functions of IDO2 and its roles in disease conditions
involving KP activity are not yet fully understood [131]. The immunoregulatory properties
of Trp metabolism are primarily a result of KP metabolites rather than Trp depletion [131].
To date, there are no Food and Drug Administration (FDA)- or European Medicines Agency
(EMA)-approved treatments for frontotemporal dementia [89], with available treatments
primarily acting on the inhibition of monoamines. For ALS, only two treatments are currently
approved: riluzole, a glutamate antagonist, and edaravone, an antioxidant [97,99,132].

6. Conclusions

This review explores the importance of Trp metabolism and its derivatives produced
via the KP in glial cells (mostly astrocytes and microglia) in their roles in maintaining home-
ostasis and their immunoinflammatory responses. Trp metabolism and the production of
KP metabolites play a key role in the regulation of the immune system in the brain during
pathological conditions, such as NDDs. Table 1 summarizes the progress over time in
studying the Trp pathway in relation to the CNS and diseases, by measuring KP metabolite
ratios and/or enzymatic activity and using glial phenotypes, indicating potential upregula-
tion and/or downregulation of KP enzymes and metabolites, while also evidencing that
the advances in studies in neurodegeneration were mostly focused on AD. Trp metabolism
emerges as a key to understanding neuroinflammatory processes, helping to identify new
prognostic biomarkers and potentially lead to therapeutic translation. The importance of
metabolites such as KYN, KYNA and QUIN on excitotoxic and neuroprotective pathways
illustrates the delicate balance between processes that can promote neuronal protection
or degeneration. The involvement of multiple factors including inflammatory cytokines,
oxidative stress, and enzymes regulating the KP in astrocytes and microglia highlight the
extreme complexity of these interactions in the CNS. Understanding Trp metabolism and
the roles played by KP metabolites in NDDs will accelerate our comprehension of the
progression of these pathologies, potentially predicting morbidity and mortality while
facilitating the development of more efficient therapeutic strategies. Furthermore, the anal-
ysis of bioactive compounds capable of modulating microglial inflammation and astrocyte
response to protect neurons highlights their possible effects on the KP and their therapeutic
potential for NDDs. The insights gained from this dynamic may not only improve the
understanding of the molecular basis of neurological diseases but also provide valuable
tools for early diagnosis, prognosis and the development of more effective treatments.
Future studies should aim to further elucidate these pathways and explore the practical
application of these findings through clinical trials.
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Table 1. Contribution on understanding the role of Trp metabolism in health disorders.
Year Experimental Conditions Contributions Reference
Injection of QUIN (240 nmol/kg) in rats reduced striatal KAT
1984 Action of KYNA on the metabolism activity. KYNA in the hippocampus antagonized both the Froster et al.
of QUIN in the CNS of rats. neurodegeneration and seizures caused by the local application [133]
of QUIN.
KYNA levels vary from 15 pmol/g protein in the first week of
life (to 320 pmol/g protein at the third month and to
1988 Role of KYNA during development 747 pmol/g protein in the 18th month); QUIN levels do not Moroni et al.
and aging processes in rats. alter in the liver or kidney with age, but their concentration in [67]
blood increases from 28 pmol/mL at 3 months to 65 pmol/mL
at 18 months.
The distribution of KYNA in the CNS revealed the highest
1088 Identification and quantification of concentration (1.58 pmc?l /mg of tissue) in the Cauda?te nucleus Turski et al.
KYNA in human brain tissue. . and lower levejls in the thalamus, globus palhdt'ls, [68]
hippocampus, parietal cortex, and frontal cortex, with the
lowest concentration of KYNA (0.14 pmol/mg of tissue).
1992 Egﬁig{ﬁ:ﬁ:ﬁ?gﬁ;ﬁ INF-y increased the QUIN concentration in the macrophage Heyes et al.
culture medium from 2.8 uM in 24 h to 11.6 uM in 48 h. [31]
macrophage cultures.
KP in culture of human astrocytic KYNA (85.5 nm), IFN-y and IFN-y + TNF-« (100 IU/mL) Cuillemin et al
2001 cells treated with KYNA and induced, respectively, the production of 11.7, 10.3 and 0.9 mM [37] ’
inflammatory agents. of KYN.
2001 KYNA inhibits 7 nAChR in KYNA (100 nM) inhibits the somatodendritic activation of &7 Hilmas et al.
cultures of neurons from rats. nAChRs in hippocampal and cortical neurons. [134]
. . QUIN (350, 500, or 1200 nM) induces astrocytes to produce
QU.IN induces chemokine . large amounts of CCL2, CCL5, IL-8, SDF-1, an}; CX3CPI)L1, while  Guillemin et al.
2003  Production and receptor expression Isoi ine th . f the ch Ki t 135
in human fetal astrocytes. also increasing the expression of the chemokine receptors [135]
CXCR4, CCR5, and CCR3.
Serum KYNA was lower (39.9 pmol/mL) in ALS patients with
2003 KYNA levels in the serum and CSF severe clinical status compared with healthy controls Hzecka et al.
from ALS patients. (59.6 pmol/mL); KYNA concentration did not vary in CSF in [103]
patients and between males and females.
. KAT isoforms I and II of permanent immature oligodendrocytes .
2005 _ KYNA and KAT-1and -2 in (OLN-93) synthesize}%YNA from L-KYN (5 EM) addedy Wejksza et al.
immature rat oligodendrocytes. [44]
exogenously.
Astrocytes isolated and treated with QUIN (50-1200 nM)
2009 QUIN and astrogliosis in AD. modify morphology and increase the proliferation of structural =~ Ting et al. [136]
proteins.
2010 Trp degradation and altered QUIN P?tien’Fs with AD increase Trp degradation, with 22.09 mM Kaur et al.
and KYNA levels in AD patients. elevating QUIN concentration to 334.0 nM and decreasing [137]
KYNA to 20.85 nM in plasma.
. Neuroprotective compound JM6 increases brain and serum .
2011 K{{%Zeie;i:isz;; ;?c?ozelrsl\l/?o KYNA by 180% and 344%, respectively, from basal levels Zw111[17nog] etal
’ (2.5 nM) by inhibiting blood KMO.
In schizophrenia and depression, opposing patterns of type-7
vs. type-2 immune response seem to be associated with
2013 Altered Trp metabolite levels in differences in the activation of the enzyme IDO and in the Trp ~ Schwarz et al.
patients with psychiatric disorders. metabolism, resulting in increased production of KYNA in [138]
schizophrenia and decreased production of kynurenic acid
KYNA in depression.
. Deletion in the gene for KMO increases KYN and KYNA b L
2013 KMO gene deletlon. modulates KP about 10%% and decreases QUIN by about 80% in Y Gilorgini et al.
metabolites. . [139]
several tissues.
) Serum IDO activity and KYN/Trp Seru.m IDO act.ivity and the KYN/Trp ratio. increasg in Patients Hernis et al.
015 . with acute disease (64 nM) and decrease in chronic disease
in ME. . . . [117]
(10 nM) relative to neopterin concentration.
Levels of plasma Trp (57.5 uM), KYN (1.8 uM), HAA (28.7 nM),
2017 KPin AD. and QUIN (465 nM) were significantly lower in patients with  Giil et al. [140]

AD compared to controls.
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Table 1. Cont.

Year Experimental Conditions Contributions Reference

IDO activity modifies the plasma [KYN]/[Trp] ratio,

The plasma KYN/Trp ratio and Badawy and

2019 IDO activity. influencing the concerftration of KYN, KMO, KYNU and, to a Guillemin. [25]
esser extent, KAT.
The IDO inhibitor (INCB024360) at 200 mg/kg orally reduced Zarzecki et al.
2020 IDO activity in AIE. the mRNA expres.sion of IDO., i.ts en;ymatic actiyity :imd KMO [113]
levels and improved clinical signs of AIE in mice.
2021 Neuroprotective action against KYNA at concentrations of 300, 150, 50 mg/kg preserves tissue Bratek-Gerej
oxidative stress of KYNA oxidative stress in rat. etal. [141]
2021 KP in AD. In Plasma and/or urine of patients wi.th AD, thereis a dec1.'ease Whiley et al.
in Trp KYN, XA, KYNA concentration and Kyn/Trp ratio. [142]
2024 Sex differences in CSF Trp and KYN In CSF, leV.els of Trp, KYN and QUIN are }}igher.in men thanin  Knapskog et al.
levels in AD women with AD; KYNA/QUIN ratio is higher in AD women. [143]
Abbreviations: Tryptophan (Trp); kynurenine (KYN); kynurenic acid (KYNA); 3-hydroxykynurenine (3-
HK); quinolinic acid (QUIN); xanthurenic acid (XA) and anthranilic acid (AA); indoleamine 2,3-dioxygenase
(IDO); tryptophan 2,3-dioxygenase (TDO); kynurenine aminotransferases (KAT); kynurenine monooxyge-
nase (KMO); kynureninase (KYNU); 2-(3,4-dimethoxybenzenesulfonylamino)-4-(3-nitrophenyl)-5-(piperidin-
1-yl)methylthiazole (JM6); cerebrospinal fluid (CSF); Alzheimer’s disease (AD); amyotrophic lateral sclerosis
(ALS); autoimmune encephalomyelitis (EAE); multiple sclerosis (MS).
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